+ All Categories
Home > Documents > Complex Analysis 1990

Complex Analysis 1990

Date post: 06-Apr-2018
Category:
Upload: rsureshkannan
View: 219 times
Download: 0 times
Share this document with a friend

of 38

Transcript
  • 8/3/2019 Complex Analysis 1990

    1/38

    This document contains text automatically extracted from a PDF or image file. Formatting may havebeen lost and not all text may have been recognized.

    To remove this note, right-click and select "Delete table".

  • 8/3/2019 Complex Analysis 1990

    2/38

    UPSCCivilServicesMain1990-Mathematics

  • 8/3/2019 Complex Analysis 1990

    3/38

    ComplexAnalysisSunderLalRetired Professor of MathematicsPanjab University

    ChandigarhMarch5,2010Question1(a)Letfberegularfor|z|

  • 8/3/2019 Complex Analysis 1990

    4/38

    f(0)=2i12

    0f(Rei)R2e2iRieid=2R12

    f(Rei)eid0(1)

    Wenowconsidertheintegral12iCR

    f()t1(RRz

    d

    ByCauchys

    residue

    theorem,

    the

    above

    integral

    is

    equal

    to

    2i(sum

    of

    residues

    of

    theintegrandwithinC

    R

    )t+1).Ift1,theonlypossibilityofapolecouldbeatthepoint=R2z

    ,1

  • 8/3/2019 Complex Analysis 1990

    5/38

    =but|z|=|z|

  • 8/3/2019 Complex Analysis 1990

    6/38

    R

    ,so|R2z

    >R2

    RR,soR2z

    liesoutsideCR

    andhencetheintegrand12iCR

    f()t1(RRz

    d=0fort1Inparticular,takingt=1,z=0,12i)t+1C

    Rf()R2d=0Thusweget0=12R20

    0=

    12Rf(Rei)eid2

  • 8/3/2019 Complex Analysis 1990

    7/38

    f(Rei)eid0(2)Adding(1),(2),wegetf(0)=2R

    12

    (f(Rei)+f(Rei))eid=0

    1R2

    u()exp(i)d

    0asrequired.Note1:Togetthedesiredform,wecouldhaveconsideredtheintegralover{Cr

    :|z|=r

  • 8/3/2019 Complex Analysis 1990

    8/38

    isatleastr|ao

    |

    n=0

    an

    znseries,andMM+=|aM(r)0|whererisanynumbernotexceedingtheradiusofconvergenceofthe=sup|z|=r

    |f(z)|.Solution.ByCauchysintegralformula,f(z)f(0)=||=r||=r

    f()dwhere|z|

  • 8/3/2019 Complex Analysis 1990

    9/38

    ||=r

    (1

    z1

    M

    )d

    M2|z|

    02

    rieidrei(r|z|)=rM|z||z|

    because|z||||z|=r|z|on||=r.Thusr|f(0)||z|(M+|f(0)|)|z|M+|f(0)||f(0)|r

    .Heref(0)=a0

  • 8/3/2019 Complex Analysis 1990

    10/38

    ,andtheresultfollows.2

  • 8/3/2019 Complex Analysis 1990

    11/38

    Question1(c)Iff=u+ivisregularthroughoutthecomplexplane,andau+bvc0

  • 8/3/2019 Complex Analysis 1990

    12/38

    forsuitableconstantsa,b,cthenfisconstant.Solution.Theorem:Iff(z)=u+ivisentire,andu0,thenfisconstant.Proof:ConsiderF(z)=ef(z),thenF(z)isalsoentire.Moreover

    |F(z)|=|eu+iv|=|eu|1u0

    ThusF(z)isentireandbounded,henceisaconstantbyLiouvillestheorem.NowF(z)=

    f(z)ef(z)=0f(z)=0becauseef(z)=0,sof(z)isconstant.

    Corollary:Iff(z)=u+ivisentire,andu0,thenfisconstant.Proof:Considerf(z)=uiv,thenu0andf(z)isconstant.NowconsiderF(z)=(aib)f(z)c=(au+bvc)+i(avbu).NowF(z)isentire,andReF(z)=au+bvc0,soF(z)isconstant,hencef(z)isconstant.Question2(a)Provethat

    1x4+dxx8

    =2sin8usingresiduecalculus.

    Solution.Wetakef(z)=1+z8z4

    (R,0)(0,0)(R,0)ByCauchysresiduetheoremR

    limandthecontourCconsistingofasemicircleofradiusRwith

    center(0,0)lyingintheupperhalfplane,andthelinejoining(R,0)and(R,0).FinallywewillletR.C

    z4dz1+z8

  • 8/3/2019 Complex Analysis 1990

    13/38

    =

    1x4+dx

    x8+Rlimz4dz

    1+z8=2i(sumofresiduesatpolesoff(z)intheupperhalfplane)

    Now

    1z4+dzz8

    0

    R4e4iRieiR81

    d

  • 8/3/2019 Complex Analysis 1990

    14/38

    R5R81because|z8+1||z8|1=R81on|z|=R.ThereforeR

    limz4dz

    1+z8=0

    f(z)haspolesatzerosofz8+1=0z8=1z8=e(2n+1)iz=e(2n+1)i8

    ,nZ.

    Clearlyz=ei8

    ,e3i8

    ,e5i8

    ,e7i8

    aretheonlypolesoff(z)intheupperhalfplaneandallthese3

  • 8/3/2019 Complex Analysis 1990

    15/38

    z4

  • 8/3/2019 Complex Analysis 1990

    16/38

    aresimplepoles.Theresidueatanysimplepolez0

    is8z700

    =18z30

    ,sumofresiduesatpolesoff(z)intheupperhalfplane=)=18

    (e3i/8+e9i/8+e15i/8+e21i/8)=18(e3i/8ei/8+ei/8)e3i/8

    =18(2isin82isin)3

    ==4ii(

  • 8/3/2019 Complex Analysis 1990

    17/38

    42sin2

    i(2cos8sin4

    8cossin888cos

    8sin4)Thus

    x4dx

    1+x88asrequired.Question2(b)Deriveaseriesexpansionoflog(1+ez)inpowersofz.Solution.Letf(z)=log(1+ez),thenf(z)=

  • 8/3/2019 Complex Analysis 1990

    18/38

    =2i(2i2

    sin8)=2sinez

    1+ez1coshz2

    Letg(z)=coshz2

    =12ez

    2

    e2z2

    +ez2

    =12ez2

    ,theng(n)(z)={1

  • 8/3/2019 Complex Analysis 1990

    19/38

    2n

    sinhz2

    ,nodd12n

    coshz2

    ,nevenInparticular,g(n)(0)=0whennisodd,andg(n)(0)=2n1

    whenniseven.Moreoverf(z)coshz21z22

    UsingLeibnitzruleforthederivativeoftheproductoftwofunctions,wegetdndzn=f(z)g(z)=e)g(np)(z)f(p+1)(z)

    Thuswhenz=0,wegetnp=0

    (12ez2

    )

    =ez2

    2n+1=np=0

  • 8/3/2019 Complex Analysis 1990

    20/38

    (np(n

    )np

    {p2npf(p+1)(0)=2n+110,nodd1,neven4wheren

    =

  • 8/3/2019 Complex Analysis 1990

    21/38

    andtherefore

  • 8/3/2019 Complex Analysis 1990

    22/38

    2n+1f(n+1)(0)=1n1p=0

    (n

    p)2p+1np

    f(p+1)(0)Case(1):Whenniseven2n+1f(n+1)(0)=1(n)

    0)2f(0)n2(2p+1npp=1

    np

    f(p+1)(0)Notethatoddpdonotcontributeanythingtothesummation,asnp

    =0foroddp.Nowwecanseebyinductionthatf(n)(0)=01then2letting12

    =0.Assumebyinductionhypothesisn=2mintheaboveformula,whenevernisoddthatf(3)(0)andn>=f(5)(0)1.=f...(0)==f12

    (2m1)(0).23f(3)(0)=

    =0,22m+1f(2m+1)(0)=)22p+1f(2p+1)(0)=0Case(2):Whennisodd:Thetermswithevenpintheformulaabovedonotmakeanycontribution.Thuslettingn=2m+1,22m+2f(2m+2)(0)=1

  • 8/3/2019 Complex Analysis 1990

    23/38

    m1(2mp=1

    2p

    m1)r=0

    (2m2r++11)22r+2f(2r+2)(0)=1mr=1

    (22rf(2r)(0)()

    Wecannowseethatf(0)=14

    2m+12r1,fThus,f(4)(0)=18

    (6)(0)=1

    4.log(1+ez)=log2+z21142!1

    184!146!1

  • 8/3/2019 Complex Analysis 1990

    24/38

    z6+...=log2++z2z4+n=1

    f(2n)(0)z2n(2n)!

    wheref(2n)(0)isgivenby()forn1.

    Note:Wenowpresentanalternativesolution,whereweuseLeibnitzruleforthen-thderivativeofthequotientoftwofunctions.Itisagoodexerciseinitselfandisusuallymissingfromtextbooks.Theorem:Lety=uv

    z2+,whereu,varefunctionswithderivativesuptoordern.Thenyn

    v0

    =vn+11v1

    v2

    ...(

  • 8/3/2019 Complex Analysis 1990

    25/38

    21

    ...v)v1

    0...u

    50...u1

    v...u2

    .........vn

    (

    n)1

    )vn1

    (n2

    vn2

    ...un

  • 8/3/2019 Complex Analysis 1990

    26/38

    dny

  • 8/3/2019 Complex Analysis 1990

    27/38

    HerethedeterminantProof:vy=u,is(n+1)(n+1),andtherefore,bytakingsuccessiveyn

    =derivativesdxn

    .usingLeibnitzproductrulewegetvy=uv1

    =u1

    v2

    y+vy1y+2v1

    y1

    +vy2

    =u2

    ...v

    ny+(n1

    )vn1

    y1

    +...+vy

    n...=un

    Thesearen+1equationsinn+1unknownsy,y1

    ,andthedeterminantofthe

  • 8/3/2019 Complex Analysis 1990

    28/38

    coefficientmatrixisvn+1.ThusbyCramersrule

    yn

    ,...,yn

    v0

    =vn+11v1

    v2

    ...(21

    ...v)v1

    vn

    00v......u...u1

    ...u2

    (n

    )......1

  • 8/3/2019 Complex Analysis 1990

    29/38

    )vn1

    (n

    2vn2

    asrequired.Nowf(z)=log(1+ez),f(0)=log2.f(z)=1+ezez

    ...un

    Thenun

    (0)=1foreveryn,andv(0)=2,vn(0)=1for,fn(0)1.=Let12

    .LetF(z)u=ez,v=uv

    ,=1+ez.F(n)(0)=f(n+1)(0)=then

  • 8/3/2019 Complex Analysis 1990

    30/38

    F(1)(0)=f(2)(0)=

    200...0112n+111...220...012...011(n

    )1(n

    )2

    ......(n

    )n1

    ...

    1

  • 8/3/2019 Complex Analysis 1990

    31/38

    1

    4F(2)(0)=f(3)(0)=1421

    11=

    18

    21102211

    1

    =0F(3)(0)=f(4)(0)=

  • 8/3/2019 Complex Analysis 1990

    32/38

    21110

    22300231111

    2111022300231000

    18F(4)(0)=f(5)(0)=

  • 8/3/2019 Complex Analysis 1990

    33/38

    116=116

    =216=

    132

    21110223002300021111

    =014641

  • 8/3/2019 Complex Analysis 1990

    34/38

    Thuslog(1+ez)hastheexpansionasgivenabove.6

  • 8/3/2019 Complex Analysis 1990

    35/38

    (

  • 8/3/2019 Complex Analysis 1990

    36/38

    1cos1z

    )Question2(c)Determinethenatureofsingularpointsofsin

    andinvestigateitsbehavioratz=.Solution.1.Let=1z

    ),and()=f(1

    (1

    cos.Therefore0lim()=sin1,showingthat()hasaremovablesingularityat=0.Infact()isanalyticat=0if(0)isdefinedtobesin1.Notethat0

    lim)=sin)

    sectan=0Thussin()(0)=0limsin(cos1

    )sin1

    =0limcos(1cos(

  • 8/3/2019 Complex Analysis 1990

    37/38

    1)cos1z

    isregularat.

    2.Atallzerosofcos1z

    i.e.laritiesbecauselimx

    z=2(2n+1)thefunctionsin(cos1

    z1

    )hasessentialsingu-sinxdoesnotexistifitdid,thengiven>0,wewouldhaveNsuchthatx1

    |N,x2

    >N|sinx1

    sinx2

    =2n+2

    >x2

    =2n>N,then|sinx1

    sinx2

    |=1

  • 8/3/2019 Complex Analysis 1990

    38/38

    .7


Recommended