+ All Categories
Home > Health & Medicine > Composite quantitative analysis of international healthcare accreditation survey data

Composite quantitative analysis of international healthcare accreditation survey data

Date post: 19-Aug-2015
Category:
Upload: max-moldovan
View: 105 times
Download: 3 times
Share this document with a friend
Popular Tags:
27
Australian Institute of Health Innovation Composite quantitative analysis of international healthcare accreditation survey data Max Moldovan, Charles Shaw and Jeffrey Braithwaite
Transcript

Australian Institute of Health Innovation

Composite quantitative analysis of international healthcare accreditation survey data

Max Moldovan, Charles Shaw and Jeffrey Braithwaite

Healthcare accreditation:

a process that a health care institution, provider, or program undergoes to demonstrate compliance with standards developed by an official agency.[Miller-Keane Encyclopedia and Dictionary of Medicine, Nursing, and Allied Health, Seventh Edition. © 2003 by Saunders, an imprint of Elsevier, Inc. All rights reserved.]

Study and data set description

The first international healthcare accreditation survey was undertaken in 2000, commissioned by the World Health Organisation [WHO Review 2003, WHO/EIP/OSD/2003.1]The current data set has been collected over 2009-201144 accreditation agencies, located in 38 countries10 broad categories of attributes (e.g. “Policy and governance” and “Funding of the organization”)173 questions leading to categorical, date/numeric or free text responses

Older than 20 years Between 10 and 20 y.o. <10 y.o.;

* If more than one program per country, the oldest program is displayed

Geographical and age distribution of accreditation agencies*

Methods of analysis

Stratified categorical analysis

Supervised learning via penalised regression

Unsupervised learning via hierarchical clustering

Stratified categorical analysis

Organisations are stratified into two or more groups based on observed factorsResponses arranged into contingency tables Fisher’s exact conditional testing is appliedThe results are assessed based on the plots of sorted P-values

Stratified categorical analysis

Stratification factors:

1.Purchasing Power Parity adjusted GDP per capita2.Government relatedness3.Regional factor4.Age of organisation5.Country of origin population

Stratified categorical analysis

0.0

0.2

0.4

0.6

0.8

1.0

GDP PPP factor (US$20,000 split value)

Question IDs

P-v

alue

s

pol1

pol3

tra5

rep1

pol7

agh1

2re

p10

phc1

4fu

n1po

l16

phc1

2re

p4 int6

phc1

7fu

n5de

v8re

p13

int3

rep1

1fu

n4 tra1

phc8

agh8

pol1

9po

l10

rep2

pol6

agh1

4po

l13

rep1

2fu

n2re

p16

tra9

fun8

fun6

phc1

6po

l18

rep5 tra

6fu

n10

rep3 int1

pol1

7fu

n9re

p7re

p14

rep1

5ag

h16

agh1

7

0.05

Supervised learning via penalised regression

R package penalized: Penalised regressions via L1and L2 penalties [Goeman (2010): Biometrical Journal 52 (1), 70–84]L1: LASSO; L2: ridge; L1 and L2: elastic netsOnly L1 penalty (LASSO) has been usedSupervisory (response) variable is an ordinal four-level categorical variable defined by field experts (similar to phenotypes defined by clinical experts)Explanatory variables are categorical responses coded as factorsLogistic link function has been used

Supervised learning via penalised regression

LASSO [Tibshirani (1996): J. Royal. Statist. Soc. B 58 (1): 267–288] :

Supervised learning via penalised regression

Vitality categorisation (“phenotype”):

0 – on “life support” and unlikely to survive1 – hardly functional and deteriorating2 – functional, with signs of improvement3 – alive and well

Supervised learning via penalised regression

The set of shifted (“phenotype”) response variables:

yi,1 – refined “deprived”: 0 vs. 1-2-3

yi,2 – mid split: 0-1 vs. 2-3

yi,3 – refined “winners”: 0-1-2 vs. 3

Supervised learning via penalised regression

4.0 3.5 3.0 2.5 2.0 1.5

-0.5

0.0

0.5

1.0

1.5

LASSO path

lambda1

coef

ficie

nt

Supervised learning via penalised regression

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

LASSO path: Entrance distances

lam

bda1

tra5a

rep1

dre

p11b

pol3

apo

l3c

pol1

6apo

l10b

pol1

cre

p14a

rep1

3gpo

l1a

rep5

cre

p13h

tra9e

rep1

0bpo

l18e

pol1

3bfu

n4c

fun4

bpo

l19c

fun1

fpo

l19b

pol3

apo

l16c

rep1

6apo

l19d

tra6a

Supervised learning via penalised regression

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

LASSO path: Entrance distances

lam

bda1

tra5a

rep1

dre

p11b

pol3

apo

l3c

pol1

6apo

l10b

pol1

cre

p14a

rep1

3gpo

l1a

rep5

cre

p13h

tra9e

rep1

0bpo

l18e

pol1

3bfu

n4c

fun4

bpo

l19c

fun1

fpo

l19b

pol3

apo

l16c

rep1

6apo

l19d

tra6a

Supervised learning via penalised regression

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

LASSO path: Entrance distances

lam

bda1

tra5a

rep1

dre

p11b

pol3

apo

l3c

pol1

6apo

l10b

pol1

cre

p14a

rep1

3gpo

l1a

rep5

cre

p13h

tra9e

rep1

0bpo

l18e

pol1

3bfu

n4c

fun4

bpo

l19c

fun1

fpo

l19b

pol3

apo

l16c

rep1

6apo

l19d

tra6a

Supervised learning via penalised regression

“Winners” refined 50‐50 “Losers” refined

tra5a pol3a pol3a

rep1d pol13a pol10b

rep11b fun5b pol13a

pol3a dev8a rep11b

pol3c tra9b pol7a

pol16a rep11b fun1a

pol10b pol1a int6b

pol1c rep14b tra1c

rep14a tra5a fun10a

rep13g pol16a pol7d

pol1a fun4d pol19a

rep5c pol16d pol16d

rep13h fun1a rep3a

tra9e pol1c rep15a

rep10b fun8g tra1b

pol18e pol10b fun8g

pol13b pol6k fun4d

Supervised learning via penalised regression

“Winners” refined 50‐50 “Losers” refined

tra5a pol3a pol3a

rep1d pol13a pol10b

rep11b fun5b pol13a

pol3a dev8a rep11b

pol3c tra9b pol7a

pol16a rep11b fun1a

pol10b pol1a int6b

pol1c rep14b tra1c

rep14a tra5a fun10a

rep13g pol16a pol7d

pol1a fun4d pol19a

rep5c pol16d pol16d

rep13h fun1a rep3a

tra9e pol1c rep15a

rep10b fun8g tra1b

pol18e pol10b fun8g

pol13b pol6k fun4d

Supervised learning via penalised regression

“Winners” refined 50‐50 “Losers” refined

tra5a pol3a pol3a

rep1d pol13a pol10b

rep11b fun5b pol13a

pol3a dev8a rep11b

pol3c tra9b pol7a

pol16a rep11b fun1a

pol10b pol1a int6b

pol1c rep14b tra1c

rep14a tra5a fun10a

rep13g pol16a pol7d

pol1a fun4d pol19a

rep5c pol16d pol16d

rep13h fun1a rep3a

tra9e pol1c rep15a

rep10b fun8g tra1b

pol18e pol10b fun8g

pol13b pol6k fun4d

Unsupervised learning via hierarchical clustering

R function daisy (package cluster) has been used207 categorical attributes have been coded as asymmetric binomialsDissimilarity matrix has been computed based on Gower’s dissimilarity coefficient [Gower (1971) Biometrics 27,

857–874 ]Dendrograms are based on Ward’s hierarchical clustering methodWeights are imposed as an inverse of attribute counts within each category

Unsupervised learning via hierarchical clustering

Bos

nia_

Her

zego

vina

_AA

QI

Kaz

akhs

tan

Portu

gal

Fran

ceS

outh

_Kor

eaB

ulga

riaLe

bano

nPh

ilippi

nes

Rom

ania

Sau

di_A

rabi

aC

olom

bia

Cro

atia

Spa

inC

zech

_Rep

ublic

Net

herla

nds Br

azil

Indi

aU

SA_

JCI

Mon

golia

Kyr

gyzs

tan

Ser

bia

Bos

nia_

Her

zego

vina

_AKA

ZPo

land

Sou

th_A

frica

Ger

man

yJo

rdan

Arg

entin

aJa

pan

Sw

itzer

land

US

A_D

NV

HC

Taiw

anU

SA

_Joi

n_C

omis

sion Den

mar

kTh

aila

ndA

ustra

lia_A

CH

SM

alay

sia

Aus

tralia

_QIC

Eng

land

New

_Zea

land

_Tel

arc

Alb

ania

Can

ada

Lith

uani

aA

ustra

lia_A

GP

AL

New

_Zea

land

_HD

AN

Z

All categorical attributes

Unsupervised learning via hierarchical clustering

Bos

nia_

Her

zego

vina

_AA

QI

Kaz

akhs

tan

Portu

gal

Fran

ceS

outh

_Kor

eaB

ulga

riaLe

bano

nPh

ilippi

nes

Rom

ania

Sau

di_A

rabi

aC

olom

bia

Cro

atia

Spa

inC

zech

_Rep

ublic

Net

herla

nds Br

azil

Indi

aU

SA_

JCI

Mon

golia

Kyr

gyzs

tan

Ser

bia

Bos

nia_

Her

zego

vina

_AKA

ZPo

land

Sou

th_A

frica

Ger

man

yJo

rdan

Arg

entin

aJa

pan

Sw

itzer

land

US

A_D

NV

HC

Taiw

anU

SA

_Joi

n_C

omis

sion Den

mar

kTh

aila

ndA

ustra

lia_A

CH

SM

alay

sia

Aus

tralia

_QIC

Eng

land

New

_Zea

land

_Tel

arc

Alb

ania

Can

ada

Lith

uani

aA

ustra

lia_A

GP

AL

New

_Zea

land

_HD

AN

Z

All categorical attributes

Unsupervised learning via hierarchical clustering

Fran

ceSo

uth_

Kor

eaBo

snia

_Her

zego

vina

_AKA

ZB

ulga

riaLe

bano

nAl

bani

aPh

ilipp

ines

Pola

ndLi

thua

nia

Rom

ania

Kaza

khst

anPo

rtuga

lS

erbi

aBo

snia

_Her

zego

vina

_AAQ

IKy

rgyz

stan

Sau

di_A

rabi

aS

pain

Net

herla

nds Mon

golia

Arge

ntin

aSw

itzer

land Ja

pan

New

_Zea

land

_Tel

arc

Sou

th_A

frica

Jord

anC

zech

_Rep

ublic

Ger

man

yB

razi

lN

ew_Z

eala

nd_H

DAN

ZEn

glan

dC

anad

aU

SA_J

CI

Aust

ralia

_QIC

Mal

aysi

aTa

iwan

US

A_Jo

in_C

omis

sion

Aust

ralia

_AG

PAL

US

A_D

NV

HC

Indi

aC

olom

bia

Cro

atia Th

aila

ndAu

stra

lia_A

CH

SD

enm

ark

Policy and governance

Example of results triangulationIt has been identified that the legal status of organization is associated with the GDP PPP per capita factor (stratified analysis) => This association can be attributed to economic/social factors beyond the direct controlRelatively wealthy Portugal fell into a “deprived” cluster in the Policy and Governance motivated dendrogram (cluster analysis)POL3a (What is the legal status of the accreditation organization?: government agency) has been identified as highly important attribute contributing to failure (LASSO)It can be recommended to change the legal status

Challenges and extensions

Missing variablesAttributes interactionsNonlinear associations

Challenges and extensions

Missing variablesAttributes interactionsNonlinear associations

Risk factors analysisPredictive modelingRegulatory impact analysis

Questions


Recommended