+ All Categories
Home > Documents > Computation of pedestal and stellarator neoclassical ......stellarator neoclassical effects using a...

Computation of pedestal and stellarator neoclassical ......stellarator neoclassical effects using a...

Date post: 08-Oct-2020
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
24
Computation of pedestal and stellarator neoclassical effects using a new spectral speed grid Matt Landreman, MIT PSFC Thanks to Michael Barnes, Peter Catto, Darin Ernst, Felix Parra, Istvan Pusztai First part of work: J Comp Phys (2013) http://dx.doi.org/10.1016/j.jcp.2013.02.041
Transcript
Page 1: Computation of pedestal and stellarator neoclassical ......stellarator neoclassical effects using a new spectral speed grid Matt Landreman, MIT PSFC ... • Modal vs. collocation 8.

Computation of pedestal and stellarator neoclassical effects using a new spectral speed grid

Matt Landreman, MIT PSFC

Thanks to Michael Barnes, Peter Catto, Darin Ernst, Felix Parra, Istvan Pusztai

First part of work: J Comp Phys (2013) http://dx.doi.org/10.1016/j.jcp.2013.02.041

Page 2: Computation of pedestal and stellarator neoclassical ......stellarator neoclassical effects using a new spectral speed grid Matt Landreman, MIT PSFC ... • Modal vs. collocation 8.

Outline

• New spectral discretization scheme for v or v.

• Application 1: Pedestal global Fokker-Planck code.

• Application 2: Stellarator Fokker-Planck code.

2

Page 3: Computation of pedestal and stellarator neoclassical ......stellarator neoclassical effects using a new spectral speed grid Matt Landreman, MIT PSFC ... • Modal vs. collocation 8.

Desirable features of a discretization for v or v

• Accurate integration and differentiation on the same grid or modes.

3

Page 4: Computation of pedestal and stellarator neoclassical ......stellarator neoclassical effects using a new spectral speed grid Matt Landreman, MIT PSFC ... • Modal vs. collocation 8.

Desirable features of a discretization for v or v

• Accurate integration and differentiation on the same grid or modes.• Domain: [0, ).

4

Page 5: Computation of pedestal and stellarator neoclassical ......stellarator neoclassical effects using a new spectral speed grid Matt Landreman, MIT PSFC ... • Modal vs. collocation 8.

Desirable features of a discretization for v or v

• Accurate integration and differentiation on the same grid or modes.• Domain: [0, ).• Should work well for Maxwellian-like functions.

5

Page 6: Computation of pedestal and stellarator neoclassical ......stellarator neoclassical effects using a new spectral speed grid Matt Landreman, MIT PSFC ... • Modal vs. collocation 8.

Desirable features of a discretization for v or v

• Accurate integration and differentiation on the same grid or modes.• Domain: [0, ).• Should work well for Maxwellian-like functions.• Want grid points clustered at smallish v.

6

Page 7: Computation of pedestal and stellarator neoclassical ......stellarator neoclassical effects using a new spectral speed grid Matt Landreman, MIT PSFC ... • Modal vs. collocation 8.

Desirable features of a discretization for v or v

• Accurate integration and differentiation on the same grid or modes.• Domain: [0, ).• Should work well for Maxwellian-like functions.• Want grid points clustered at smallish v.• Accurate integrals for density/momentum/pressure, which differ by

a factor of v = (2– Non-analyticity of at v = 0 can destroy spectral convergence (Barnes,

Dorland, & Tatsuno, PoP 17, 032106 (2010)).

7

Page 8: Computation of pedestal and stellarator neoclassical ......stellarator neoclassical effects using a new spectral speed grid Matt Landreman, MIT PSFC ... • Modal vs. collocation 8.

Desirable features of a discretization for v or v

• Accurate integration and differentiation on the same grid or modes.• Domain: [0, ).• Should work well for Maxwellian-like functions.• Want grid points clustered at smallish v.• Accurate integrals for density/momentum/pressure, which differ by

a factor of v = (2– Non-analyticity of at v = 0 can destroy spectral convergence (Barnes,

Dorland, & Tatsuno, PoP 17, 032106 (2010)).

• Modal vs. collocation

8

Page 9: Computation of pedestal and stellarator neoclassical ......stellarator neoclassical effects using a new spectral speed grid Matt Landreman, MIT PSFC ... • Modal vs. collocation 8.

Desirable features of a discretization for v or v

• Accurate integration and differentiation on the same grid or modes.• Domain: [0, ).• Should work well for Maxwellian-like functions.• Want grid points clustered at smallish v.• Accurate integrals for density/momentum/pressure, which differ by

a factor of v = (2– Non-analyticity of at v = 0 can destroy spectral convergence (Barnes,

Dorland, & Tatsuno, PoP 17, 032106 (2010)).

• Modal vs. collocation

9

,0Laguerre: m m m y

i j i jdy L y L y y e 22 /2

0

ˆ 2 / th

nm

j j thj

f f L e

Page 10: Computation of pedestal and stellarator neoclassical ......stellarator neoclassical effects using a new spectral speed grid Matt Landreman, MIT PSFC ... • Modal vs. collocation 8.

Desirable features of a discretization for v or v

• Accurate integration and differentiation on the same grid or modes.• Domain: [0, ).• Should work well for Maxwellian-like functions.• Want grid points clustered at smallish v.• Accurate integrals for density/momentum/pressure, which differ by

a factor of v = (2– Non-analyticity of at v = 0 can destroy spectral convergence (Barnes,

Dorland, & Tatsuno, PoP 17, 032106 (2010)).

• Modal vs. collocation

10

,0Laguerre: m m m y

i j i jdy L y L y y e

2

,0New polynomials: x

i j i jd P x P x e 2/

0

ˆ / thn

j j thj

f f P e

22 /2

0

ˆ 2 / th

nm

j j thj

f f L e

Page 11: Computation of pedestal and stellarator neoclassical ......stellarator neoclassical effects using a new spectral speed grid Matt Landreman, MIT PSFC ... • Modal vs. collocation 8.

These new non-standard polynomials lead to an integration and differentiation scheme.

11

2

0

ˆ n

xj j

j

f f P x e

/ 2 /x T m

2

0 x

i j ijdx P x P x e

Page 12: Computation of pedestal and stellarator neoclassical ......stellarator neoclassical effects using a new spectral speed grid Matt Landreman, MIT PSFC ... • Modal vs. collocation 8.

These new non-standard polynomials lead to an integration and differentiation scheme.

12

/ 2 /x T m

2

0 x

i j ijdx P x P x e

Locationsof zeros:(can scaleto smaller x)

First 10 modes:

2

0

ˆ n

xj j

j

f f P x e

Page 13: Computation of pedestal and stellarator neoclassical ......stellarator neoclassical effects using a new spectral speed grid Matt Landreman, MIT PSFC ... • Modal vs. collocation 8.

These new non-standard polynomials lead to an integration and differentiation scheme.

13

/ 2 /x T m

2

0 x

i j ijdx P x P x e

Locationsof zeros:(can scaleto smaller x)

• Gaussian integration

• Spectral differentiation: Weideman & Reddy, ACM Trans. Math. Software 26, 465 (2000).

• I use collocation method, but could also use a modal approach.

• Grid points at polynomial zeros.

• Can add a point at x=0 if desired.

2

0

ˆ n

xj j

j

f f P x e

Page 14: Computation of pedestal and stellarator neoclassical ......stellarator neoclassical effects using a new spectral speed grid Matt Landreman, MIT PSFC ... • Modal vs. collocation 8.

New scheme outperforms others at both integration and differentiation

14

Page 15: Computation of pedestal and stellarator neoclassical ......stellarator neoclassical effects using a new spectral speed grid Matt Landreman, MIT PSFC ... • Modal vs. collocation 8.

New scheme outperforms others on some physics applications

15

Number of speed grid points

Rel

ativ

e er

ror i

n Sp

itzer

resi

stiv

ity

1D problem: Spitzer resistivity 1 || MeEC f fT

3|| 1/ E e d f

Page 16: Computation of pedestal and stellarator neoclassical ......stellarator neoclassical effects using a new spectral speed grid Matt Landreman, MIT PSFC ... • Modal vs. collocation 8.

New spectral scheme may or may not work well for your problem

• Pros:– Spectrally accurate integration and differentiation.– Very small # of points needed.– Can be exactly conservative:

(Barnes, Abel, Dorland et al, PoP 16, 072107 (2009))

– Grid points localized to small v.

16

0

0Ad A

Page 17: Computation of pedestal and stellarator neoclassical ......stellarator neoclassical effects using a new spectral speed grid Matt Landreman, MIT PSFC ... • Modal vs. collocation 8.

New spectral scheme may or may not work well for your problem

• Pros:– Spectrally accurate integration and differentiation.– Very small # of points needed.– Can be exactly conservative:

(Barnes, Abel, Dorland et al, PoP 16, 072107 (2009))

– Grid points localized to small v.• Cons:

– Differentiation matrix is dense (though diagonal is a great preconditioner for Krylov solvers.)

– So far, seems unstable for time-dependent problems, even with implicit time-advance!

17

0

0Ad A

Page 18: Computation of pedestal and stellarator neoclassical ......stellarator neoclassical effects using a new spectral speed grid Matt Landreman, MIT PSFC ... • Modal vs. collocation 8.

Application 2: stellarator Fokker-Planck code SFINCS

24

Stellarator Fokker-Planck Iterative Neoclassical Conservative Solver

1 1|| 1 1

ME FP m

f f ff C f

b v v

1 1 , , ,f f

Page 19: Computation of pedestal and stellarator neoclassical ......stellarator neoclassical effects using a new spectral speed grid Matt Landreman, MIT PSFC ... • Modal vs. collocation 8.

Application 2: stellarator Fokker-Planck code SFINCS

25

11 12 13

21 22 23

|| ||31 32 33

ln ln

ln

Transport matrix

d p e d d TL L L d T d d

d TL L Ld

V B E BL L L

q

Page 20: Computation of pedestal and stellarator neoclassical ......stellarator neoclassical effects using a new spectral speed grid Matt Landreman, MIT PSFC ... • Modal vs. collocation 8.

10-2

10-1

100

101

102

10-4

10-2

100

102

*

-L11 (Particle diffusivity)

Fokker-Planckpitch-angle scatteringmomentum-conserving model

10-2

10-1

100

101

102

10-4

10-2

100

102

*

L12=L21 (Thermodiffusion)

10-2

10-1

100

101

102

-1.5

-1

-0.5

0

0.5

*

L13=L31 (Bootstrap/Ware)

10-2

10-1

100

101

102

10-1

100

101

102

*

-L22 (Heat diffusivity)

10-2

10-1

100

101

102

-3

-2

-1

0

1

*

L23=L32 (Bootstrap/Ware)

10-2

10-1

100

101

102

10-2

100

102

104

*

L33 (Conductivity)

Application 2: stellarator Fokker-Planck code SFINCS

26

11 12 13

21 22 23

|| ||31 32 33

ln ln

ln

Transport matrix

d p e d d TL L L d T d d

d TL L Ld

V B E BL L L

q

For ion neoclassical physics in LHD, momentum-conserving model collision operator compares well to full Fokker-Planck operator.

Page 21: Computation of pedestal and stellarator neoclassical ......stellarator neoclassical effects using a new spectral speed grid Matt Landreman, MIT PSFC ... • Modal vs. collocation 8.

Summary• New spectral discretization scheme for v or v gives rapid

convergence with # of grid points.

– Very useful for the time-independent collisional problems I’ve considered. Other applications?

– Matlab & fortran source code for generating grid, integration weights, & differentiation matrices available at http://web.mit.edu/landrema/www/software/

– J Comp Phys (2013) http://dx.doi.org/10.1016/j.jcp.2013.02.041

• Scheme implemented in global Fokker-Planck code for tokamak pedestals.

– Strong poloidal asymmetries arise in flow.

• Scheme implemented in stellarator Fokker-Planck code.27

Page 22: Computation of pedestal and stellarator neoclassical ......stellarator neoclassical effects using a new spectral speed grid Matt Landreman, MIT PSFC ... • Modal vs. collocation 8.

Extra slides

28

Page 23: Computation of pedestal and stellarator neoclassical ......stellarator neoclassical effects using a new spectral speed grid Matt Landreman, MIT PSFC ... • Modal vs. collocation 8.

Zeros of polynomials = Grids for Gaussian integration

29

New polynomials

Laguerre (dots)Associated Laguerre, m=1/2 (crosses)

Page 24: Computation of pedestal and stellarator neoclassical ......stellarator neoclassical effects using a new spectral speed grid Matt Landreman, MIT PSFC ... • Modal vs. collocation 8.

30

2

First 10 new polynomial modes: xjP x e

22First 10 Laguerre polynomial modes: xjL x e


Recommended