+ All Categories
Home > Documents > Computational infrastructure for doing mathematicsSmooth*shiD*to*graphics*calculators* 1995 •...

Computational infrastructure for doing mathematicsSmooth*shiD*to*graphics*calculators* 1995 •...

Date post: 27-Jul-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
39
Mathema’cs curriculum, assessment and teaching for living in the digital world: Computa’onal tools in high stakes assessment Kaye Stacey University of Melbourne [email protected] Paper presented at Third Interna?onal Mathema?cs Curriculum Conference under the auspices of the Center for the Study of Mathema?cs Curriculum (CSMC), on the theme “Mathema?cs Curriculum Development, Delivery, and Enactment in a Digital World”, November 79, 2014, University of Chicago.
Transcript
Page 1: Computational infrastructure for doing mathematicsSmooth*shiD*to*graphics*calculators* 1995 • Advantages* – UpHtoHdate* – Easy*access*to*dynamic*graphs*in*class*and*for*studentuse*

Mathema'cs  curriculum,  assessment  and  teaching  for  living  in  the  digital  world:  

Computa'onal  tools  in  high  stakes  assessment  

Kaye  Stacey  University  of  Melbourne  [email protected]  

 Paper  presented  at  Third  Interna?onal  Mathema?cs  Curriculum  Conference  under  the  auspices  of  the  Center  for  the  Study  of  Mathema?cs  Curriculum  

(CSMC),  on  the  theme  “Mathema?cs  Curriculum  Development,  Delivery,  and  Enactment  in  a  Digital  World”,  November  7-­‐9,  2014,  University  of  Chicago.  

   

Page 2: Computational infrastructure for doing mathematicsSmooth*shiD*to*graphics*calculators* 1995 • Advantages* – UpHtoHdate* – Easy*access*to*dynamic*graphs*in*class*and*for*studentuse*

Computational infrastructure for doing mathematics

Page 3: Computational infrastructure for doing mathematicsSmooth*shiD*to*graphics*calculators* 1995 • Advantages* – UpHtoHdate* – Easy*access*to*dynamic*graphs*in*class*and*for*studentuse*

Sketch  of  computa'on  changes    

End  of  school  and  university  entrance    Year  12  examina'ons,  Victoria,  Australia    

 

Page 4: Computational infrastructure for doing mathematicsSmooth*shiD*to*graphics*calculators* 1995 • Advantages* – UpHtoHdate* – Easy*access*to*dynamic*graphs*in*class*and*for*studentuse*

Smooth  shiD  to  graphics  calculators  1995  •  Advantages  

–  Up-­‐to-­‐date  –  Easy  access  to  dynamic  graphs  in  class  and  for  student  use  –  Quick  numerical  solving  of  equa'ons  possible  from  tables  and  graphs,  which  led  to  a  flourishing  of  numerical  approaches  

–  BeNer  sta's'cs  calcula'ons  and  data  handling  –  Mul'ple  representa'ons  

•  Barriers  –  Cost  to  students  and  hence  concern  with  equity  –  Need  for  teacher  professional  development  to  learn  to  use  technology  and  to  teach  with  it  

–  Need  to  change  a  few  examina'on  ques'ons  –  Some  concern  about  students  losing  pen-­‐and-­‐paper  capability  e.g.  to  plot  and  sketch  graphs  

Page 5: Computational infrastructure for doing mathematicsSmooth*shiD*to*graphics*calculators* 1995 • Advantages* – UpHtoHdate* – Easy*access*to*dynamic*graphs*in*class*and*for*studentuse*

Changing  examina'on  ques'ons  BEFORE      Which  of  the  following  four  graphs  below  shows  the  deriva've  func'on  of    f(x)  =  x(x-­‐1)(x+1)(x-­‐2)?  AFTER  Which  of  the  following  four  graphs  shows  the  deriva've  of  the  func'on  in  this  sketch?    

func'on  

correct  

CHOICES  

Page 6: Computational infrastructure for doing mathematicsSmooth*shiD*to*graphics*calculators* 1995 • Advantages* – UpHtoHdate* – Easy*access*to*dynamic*graphs*in*class*and*for*studentuse*

Changing  examina'on  ques'ons  –  exact  rather  than  numerical  answers,  more  parameters  

BEFORE  Find  turning  points  of  f(x)  =  x(x-­‐1)(x+1)(x-­‐2)  (Use  calculus)  AFTER  Find  exact  turning  points  of  f(x)  =  x(x-­‐1)(x+1)(x-­‐2)    x  =  (sqrt(5)+1)/2,  x  =  (-­‐sqrt(5)+1)/2,  x  =  ½      

f(x)  =  x(x-­‐1)(x+1)(x-­‐2)  

Zooming  in  on  a  turning  point  

Page 7: Computational infrastructure for doing mathematicsSmooth*shiD*to*graphics*calculators* 1995 • Advantages* – UpHtoHdate* – Easy*access*to*dynamic*graphs*in*class*and*for*studentuse*

Handheld  CAS  by  late  1990s  

•  Compelling  reasons  to  use  it  –  Up  to  date  –  Could  do  more  mathema'cs  –  Pedagogical  opportuni'es  

Page 8: Computational infrastructure for doing mathematicsSmooth*shiD*to*graphics*calculators* 1995 • Advantages* – UpHtoHdate* – Easy*access*to*dynamic*graphs*in*class*and*for*studentuse*

Transi'on  to  symbolic  algebra  has  bigger  impact  on:    •  Curriculum  

–  Challenges  core  of  course  content:  algebraic  manipula'ons,  differen'a'on  and  integra'on,  trigonometry  

•  Assessment  –  40%  of  examina'on  ques'ons  severely  impacted    (Flynn  &  McCrae)  

•  Teaching  –  harder  for  teachers  and  students  to  learn  to  use  –  poten'ally  more  pedagogical  opportuni'es,  related  to  symbolic    work  in  addi'on  to  graphing  and  other  capabili'es  

Page 9: Computational infrastructure for doing mathematicsSmooth*shiD*to*graphics*calculators* 1995 • Advantages* – UpHtoHdate* – Easy*access*to*dynamic*graphs*in*class*and*for*studentuse*

Changing  examina'on  ques'ons  –  exact  rather  than  numerical,  more  parameters    

BEFORE  Find  turning  points  of  f(x)  =  x(x-­‐1)(x+1)(x-­‐2)  But  these  can  be  found  from  the  graph.      AFTER  Find  exact  turning  points  of  f(x)  =  x(x-­‐1)(x+1)(x-­‐2)    x  =  (sqrt(5)+1)/2,  x  =  (-­‐sqrt(5)+1)/2,  x  =  ½  

symbolic  algebra  with  calculus  Zooming  in  on  a  turning  point  

Page 10: Computational infrastructure for doing mathematicsSmooth*shiD*to*graphics*calculators* 1995 • Advantages* – UpHtoHdate* – Easy*access*to*dynamic*graphs*in*class*and*for*studentuse*

Introduc'on  of  MM(CAS)  “Mathema'cal  Methods  (CAS)”  •  Research  project  2000  –  2002  CAS-­‐CAT  

–  (Stacey,  McCrae,  Ball,  Flynn,  Leigh-­‐Lancaster  et  al)  •  Studied  curriculum,  assessment  and  teaching  •  Parallel  content  to  MM,  with  a  few  expansions  

–  Same  func'ons  and  calculus  core  with  sta's'cs  etc  –  Fewer  restric'ons  on  testable  func'ons  (e.g.  absolute  value  func'on)  

–  Transi'on  matrices  added  –  Con'nuous  probability  added  

•  First  Year  12  examina'ons  in  2002  •  3  volunteer  schools  2000  –  2002,  then  expanding    pilot  •  3  CAS  brands,  expanding  range  but  s'll  limited  •  KS  –  Chicago  CSMC  2008  and  USACAS  –  experiences  in  

the  project  

Page 11: Computational infrastructure for doing mathematicsSmooth*shiD*to*graphics*calculators* 1995 • Advantages* – UpHtoHdate* – Easy*access*to*dynamic*graphs*in*class*and*for*studentuse*

Graphing  Calculator  Capabili1es  for  AP  Calculus  AB  (2015)  •  Examiners  assume  student  access  to  four  calculator  capabili'es:    

–  Plot  the  graph  of  a  func'on  within  an  arbitrary  viewing  window  –  Find  the  zeros  of  func'ons  (solve  equa'ons  numerically)  –  Numerically  calculate  the  deriva've  of  a  func'on  –  Numerically  calculate  the  value  of  a  definite  integral  

•  When  using  one  of  the  four  capabili'es  above,  students    –  write  the  setup  (e.g.,  the  equa'on  being  solved,  or  the  deriva've  or  definite  integral  being  

evaluated)  that  leads  to  the  solu'on,    –  along  with  the  result  produced  by  the  calculator.    

•  For  solu'ons  obtained  using  other  calculator  capability,  students    –  must  also  show  the  mathema'cal  steps  that  lead  to  the  answer;  –   a  calculator  result  is  not  sufficient.  

•  Exam  ques'ons  do  not  favor  students  who  use  graphing  calculators  with  more  features.  

hNps://apstudent.collegeboard.org/apcourse/ap-­‐calculus-­‐ab/calculator-­‐policy  

Difference:  MM(CAS)  allows  all  calculator  func'ons  to  be  used  

Page 12: Computational infrastructure for doing mathematicsSmooth*shiD*to*graphics*calculators* 1995 • Advantages* – UpHtoHdate* – Easy*access*to*dynamic*graphs*in*class*and*for*studentuse*

Changes  since  pilot  •  MM(CAS)  and  MM  ran  in  parallel  2002-­‐  2010  •  Two  subjects  merged  (using  CAS)  in  2010  •  Technology-­‐free  examina'on  (Exam  1)  introduced  in  2006  (same  items  for  MM  and  MMCAS)  

•  CAS  permiNed  with  Specialist  Maths  (higher  level)  from  2010,  also  with  technology-­‐free  examina'on  

•  Substan'al  professional  development  for  teachers  •  Teachers  interested  to  use  CAS  from  Year  9  •  LiNle  use  of  other  computa'onal  technology  in  senior  years  (e.g.  dynamic  geometry)  

Page 13: Computational infrastructure for doing mathematicsSmooth*shiD*to*graphics*calculators* 1995 • Advantages* – UpHtoHdate* – Easy*access*to*dynamic*graphs*in*class*and*for*studentuse*

Sketch  of  computa'on  changes  

CAS      Graphics      Scien'fic      Log  tables  

Page 14: Computational infrastructure for doing mathematicsSmooth*shiD*to*graphics*calculators* 1995 • Advantages* – UpHtoHdate* – Easy*access*to*dynamic*graphs*in*class*and*for*studentuse*

Comparing  student  performance  with  and  without  CAS  –  studies  mainly  by  examiners  and  examina'on  authority  •  Evans,  M.,  Norton,  P.,  &  Leigh-­‐Lancaster,  D.  (2005).  Mathema'cal  Methods  Computer  Algebra  System  (CAS)  2004  

Pilot  Examina'ons  and  Links  to  a  Broader  Research  Agenda.  Proceedings  of  28th  conference  of  the  Mathema'cs  Educa'on  Research  Group  of  Australasia.      hNp://www.merga.net.au/documents/RP342005.pdf  

•  Forgasz,  H.,  &  Tan,  H.  (2010).  Does  CAS  use  disadvantage  girls  in  VCE  Mathema'cs?  Australian  Senior  Mathema?cs  Journal,  24(1),  25–36.  

•  Leigh-­‐Lancaster,  D.    (2010).  The  case  of  technology  in  senior  secondary  mathema'cs:  Curriculum  and  assessment  congruence?  Proceedings  of  2010  ACER  research  conference.  (pp.43  –  46).  hNp://research.acer.edu.au/cgi/viewcontent.cgi?ar'cle=1094&context=research_conference  

•  Leigh-­‐Lancaster,  D.,  Les,  M.,    &  Evans,  M.  (2010)  Examina'ons  in  the  Final  Year  of  Transi'on  to  Mathema'cal  Methods  Computer  Algebra  System  (CAS)  Proceedings  of  33rd  conference  of  the  Mathema?cs  Educa?on  Research  Group  of  Australasia.  hNp://www.merga.net.au/documents/MERGA33_Leigh-­‐Lancaster&Les&Evans.pdf  

•  Leigh-­‐Lancaster,  D.,  Norton,  P.,  Jones,  P.,  Les,  M.,  Evans  M.,  &  Wu,  M.    (2008).  The  2007  Common  Technology  Free  Examina'on  for  Victorian  Cer'ficate  of  Educa'on  (VCE)  Mathema'cal  Methods  and  Mathema'cal  Methods  Computer  Algebra  System  (CAS)    Proceedings  of  31st  conference  of  the  Mathema?cs  Educa?on  Research  Group  of  Australasia.    hNp://www.merga.net.au/documents/RP382008.pdf  

•  Norton,  P.,  Leigh-­‐Lancaster,  D.,  Jones,  P.,    &  Evans,  M.,      (2007).  Mathema'cal  Methods  and  Mathema'cal  Methods  Computer  Algebra  System  (CAS)  2006  -­‐  Concurrent  Implementa'on  with  a  Common  Technology  Free  Examina'on    Proceedings  of  30th  conference  of  the  Mathema?cs  Educa?on  Research  Group  of  Australasia.    hNp://www.merga.net.au/documents/RP492007.pdf  

•  Zoanex,  N.,  Les,  M.,  &  David  Leigh-­‐Lancaster,  D.    (2014).  Comparing  the  Score  Distribu'on  of  a  Trial  Computer-­‐Based  Examina'on  Cohort  with  that  of  the  Standard  Paper-­‐Based  Examina'on  Cohort.  Proceedings  of  37th  conference  of  the  Mathema?cs  Educa?on  Research  Group  of  Australasia.    hNp://www.merga.net.au/documents/merga37_zoanex.pdf  

Page 15: Computational infrastructure for doing mathematicsSmooth*shiD*to*graphics*calculators* 1995 • Advantages* – UpHtoHdate* – Easy*access*to*dynamic*graphs*in*class*and*for*studentuse*

Do  students  with  CAS  lose  by-­‐hand  skills?    •  Data  from  the  no-­‐technology  exam  2006  –  2009  comparing  MMCAS  with  MM  students  

•  Slightly  beNer  results  for  MMCAS  students  each  year  –  Similar  percent  of  students  get  high  scores  –  Fewer  MMCAS  students  get  very  low  scores  – Mean  of  middle  MMCAS  students  is  slightly  higher  

•  Effect  persists  when  controlled  by  –  general  ability  test  score  (math/science/tech  component)  –  Overall  score  in  all  Year  12  examina'ons  

•  2009:    7189  MMCAS  and  8887  MM  students  

Page 16: Computational infrastructure for doing mathematicsSmooth*shiD*to*graphics*calculators* 1995 • Advantages* – UpHtoHdate* – Easy*access*to*dynamic*graphs*in*class*and*for*studentuse*

How  does  using  CAS  rather  than  GC  affect  performance?  •  Studied  technology-­‐permiNed  exams  2006  –  2009  •  Items  classified  as    

–  technology  independent    •  e.g  finding  the  maximal  domain  of  log|x-­‐b|  

–  technology  of  assistance  but  neutral  with  respect  to  graphics  calculators  or  CAS    

•  e.g.  finding  the  numerical  probability  of  8  or  more  heads  in  tossing  a  coin  10  'mes  

–  use  of  CAS  likely  to  be  advantageous    •  e.g.  solving  |2k+1|  =  k  +  1    

•  Compared  common  items  (about  half  items  of  exam  2)  

Page 17: Computational infrastructure for doing mathematicsSmooth*shiD*to*graphics*calculators* 1995 • Advantages* – UpHtoHdate* – Easy*access*to*dynamic*graphs*in*class*and*for*studentuse*

How  does  using  CAS  rather  than  GC  affect  performance?  •  CAS  students  slightly  beNer  in  every  year  2006  -­‐  2009  •  2006  had  35  common  ques'ons  

–   total  score  on  35  ques'ons:  MMCAS  >  MM    – MM  >  MMCAS  on  2  ques'ons  –   MMCAS  >  MM  on  12  ques'ons,  including  items  which  are  technology  independent,  neutral  or  CAS  affected.    

•  Examiners/researchers  reported  use  of  CAS  avoided  simple  algebraic  errors  (oDen  used  for  checking)  and  so  assists  students  to  engage  with  further  parts  of  ques'ons.      

Page 18: Computational infrastructure for doing mathematicsSmooth*shiD*to*graphics*calculators* 1995 • Advantages* – UpHtoHdate* – Easy*access*to*dynamic*graphs*in*class*and*for*studentuse*

How  does  using  CAS  rather  than  GC  affect  performance?  (controlled)  •  2009  tech-­‐permiNed  exams,  taking  scores  on  common  

items  (excluding  CAS  affected)  –  17  of  22  mul'ple  choice  ques'ons  –  21  of  32  extended  answer  ques'ons  

•  Rasch  regression  model,  with  score  on  no-­‐tech  exam  as  measure  of  ability  

•  Outcomes:  –  No  difference  at  the  top  end  –  MMCAS  >  MM  for  all  other  abili'es  –  Peak  difference  for  mul'ple  choice  items  for  below  average  students  (-­‐1  logits)  

–  Peak  difference  for  extended  response  items  for  students  slightly  beNer  than  average    (+0.5  logits)  

Page 19: Computational infrastructure for doing mathematicsSmooth*shiD*to*graphics*calculators* 1995 • Advantages* – UpHtoHdate* – Easy*access*to*dynamic*graphs*in*class*and*for*studentuse*

Should  by-­‐hand  skills  be  the  covariate,  or  the  target?  That  reverses  the  interpreta'on!  

No  technology  

With

 techno

logy  

Page 20: Computational infrastructure for doing mathematicsSmooth*shiD*to*graphics*calculators* 1995 • Advantages* – UpHtoHdate* – Easy*access*to*dynamic*graphs*in*class*and*for*studentuse*

Why  were  MMCAS  students  slightly  beNer?  •  Sampling  bias?  Probably  not,  especially  by  2009.    

–  Schools  transi'oning  first  may  be  adventurous  ???  –  But  very  high-­‐scoring  schools  tended  to  be  slow  –  Effects  persist  even  when  controlled  for  ability  in  three  ways  

•  Evidence  from  examina'on  scripts  –  CAS  students  avoid  careless  errors  and  so  get  further  into  items    –  CAS  students  become  more  accurate  in  CAS/GC  entry  

•  2004  solve  numerically  ln(x+1)  =  1  –  x  to  two  dec.  places  •  MMCAS  90%  correct,  MM  80%  correct  •  CAS  entry  not  easier  than  GC–  more  aNen'on  to  detail?  

•  Possibili'es  of  beNer  learning  as  research  predicts  

Page 21: Computational infrastructure for doing mathematicsSmooth*shiD*to*graphics*calculators* 1995 • Advantages* – UpHtoHdate* – Easy*access*to*dynamic*graphs*in*class*and*for*studentuse*

Gender  Equity  –  does  using  CAS  instead  of  GC  disadvantage  girls?    •  Some  reports  e.g.  Forgasz  &  Tan  2010  •  In  all  examina'ons  

–  More  girls  get  good  but  not  excellent  grades  –  More  boys  than  girls  always  score  very  badly  –  Biggest  gender  gaps  are  in  the  A  and  A+  range  and  at  the  boNom  

0  

0.5  

1  

1.5  

2  

2.5  

3  

3.5  

4  

4.5  

MM   MMCAS  

Excess  %  of  boys  over  girls  receiving  A  and  A+  grades  (2009)  

Exam  1  -­‐  no  tech  

Exam  2  -­‐  gc  or  cas  

Page 22: Computational infrastructure for doing mathematicsSmooth*shiD*to*graphics*calculators* 1995 • Advantages* – UpHtoHdate* – Easy*access*to*dynamic*graphs*in*class*and*for*studentuse*

Gender  Equity  –  does  using  CAS  instead  of  GC  disadvantage  girls?    •  Puzzle  with  unanswered  ques'ons:  

–  why  would  using  CAS  affect  girls  more  than  using  GC?    –  why  would  girls  learn  by-­‐hand  algebra  worse  in  CAS  environment?  

•  Gender  differences  in  axtudes  –  boys  like  using  technology  for  maths;    –  girls  value  it  for  what  it  can  do  (Pierce,  Stacey,  Barkatsas  2007)  

•  Australian  gexng  a  gender  gap    –  significant  in  recent  TIMSS  Gr  4  and  8    and  PISA  15yr  olds  

0  0.5  1  

1.5  2  

2.5  3  

3.5  4  

4.5  

MM   MMCAS  

Excess  %  of  boys  over  girls  receiving  A  and  A+  grades  (2009)  

Exam  1  -­‐  no  tech  

Exam  2  -­‐  gc  or  cas  

Page 23: Computational infrastructure for doing mathematicsSmooth*shiD*to*graphics*calculators* 1995 • Advantages* – UpHtoHdate* – Easy*access*to*dynamic*graphs*in*class*and*for*studentuse*

Comparing  performance  with  calculator  or  computer  CAS  •  Pressures    

–  Schools  and  parents  do  not  want  to  buy  dedicated  devices  for  maths  –  Administra've  benefits  by  moving  from  paper  examina'ons  –  Some  schools  already  using  Mathema'ca  

•  2013  first  trial  –  62  volunteer  students  from  5  schools  –  Examina'on  1  same  –  Examina'on  2  delivered  and  answered  in  Mathema'ca  notebook  

•  Results  –  No  significant  mode  effect  in  predic'on  of  Exam  2  score  from  Exam  1  

score,  with  and  without  general  ability  score  in  regression.    –  Only  one  item  showed  sta's'cally  different  DIF    (iden'fying  a  variable  

normally  distributed  and  finding  an  associated  probability).  No  apparent  reason  for  difference.    

Page 24: Computational infrastructure for doing mathematicsSmooth*shiD*to*graphics*calculators* 1995 • Advantages* – UpHtoHdate* – Easy*access*to*dynamic*graphs*in*class*and*for*studentuse*

How  is  CAS  used  at  school?  •  Pierce  and  Ball  –  large  teacher  survey  2009      

–  teachers  generally  op'mis'c  about  effects  on  teaching  and  learning  –  25%  strongly  concerned  about  effect  on  by-­‐hand  algebra  skills  –  25%  feel  need  to  learn  to  teach  CAS  use  takes  too  much  'me  from  

effec've  mathema'cs  instruc'on  –  these  groups  of  dissen'ng  voices  overlap  and  many  mid-­‐career  teachers  

•  Pierce  &  Stacey  (2013)  –  studied  ‘early  majority’  adopters  with  strong  school  support  –  hard  to  learn  technology  –  transi'on  in  teaching  prac'ces  extremely  slow  –  tendency  to  use  CAS  like  a  ‘calculator’  –  just  step  by  step  assistance  with  

by-­‐hand  solu'on  –  and  advances  in  technology  means  they  need  to  keep  learning  –  students  ask  more  ques'ons  (but  about  technology  rather  than  maths  –  

less  ‘shame’?)      

Page 25: Computational infrastructure for doing mathematicsSmooth*shiD*to*graphics*calculators* 1995 • Advantages* – UpHtoHdate* – Easy*access*to*dynamic*graphs*in*class*and*for*studentuse*

Many  teachers  use  CAS  in  Years  9/10  

Marina’s  Fish  Shop    Finding  the  fish  sign  with  the  minimum  area  –  an  inves'ga'on  with  quadra'c  func'ons  

Page 26: Computational infrastructure for doing mathematicsSmooth*shiD*to*graphics*calculators* 1995 • Advantages* – UpHtoHdate* – Easy*access*to*dynamic*graphs*in*class*and*for*studentuse*

How  is  CAS  used  at  school?  

•  Pierce  and  Bardini  –  2013/2014  survey  –  First  year  Uni  Melbourne  maths  students  –  Generally  very  good  students  –  334  of  2000  answered  survey  and  used  CAS  in  Yr  12  exam  

•  Students  asked  about  their  own  use  of  CAS  and  their  percep'ons  of  teachers’  use  of  CAS  in  class  –  Learn  by  hand  skills  –  Use  real  data  –  Explore  regularity  and  varia'on  –  Simulate  real  situa'ons  –  Link  representa'ons    

FUNC T IONAL  OPPORTUNIT IE SPrimary purpose and strength

Execute algorithms quickly and accurately

PE DAGOG IC ALOPPORTUNIT IE S

Exploit contrast of ideal & machine

mathematics

Build metacognitionand overview

Explore regularity

and variation

Learn pen-and-

paper skills

Link representations

Change classroom

didactic contract

Change classroom

social dynamics

Pedagog ic al  map  for

 mathematic s  analys is  s oftware

Use real data

Re-balance emphasis on skills,

concepts, applications

C URR IC UL UM  C HANGE

AS S E S SMENT  C HANGE

Simulate real

situations   Tas

ks(Impr

oved

 spe

ed,  

acce

ss,  a

ccur

acy)

Class

room

(Impr

oved

 display

,  per

sona

l  autho

rity)

Sub

ject

(Re-­‐as

sess

ed    

goals  &  m

etho

ds)

Page 27: Computational infrastructure for doing mathematicsSmooth*shiD*to*graphics*calculators* 1995 • Advantages* – UpHtoHdate* – Easy*access*to*dynamic*graphs*in*class*and*for*studentuse*

Students’  percep'ons  of  teachers’  use  

•  Teachers’  in-­‐class  demonstrated  uses  –  Graphing  clearly  main  use  (over  50%  oDen)  –  Then  matrices,  solving  equa'ons,  applica'ons  (26%  oDen)  –  Not  oDen  for  tables  or  hard  algebra,  not  much  to  support  teaching  by-­‐hand  skills  

•  PaNern  of  use  indicates  diffusion  of  innova'on  may  have  stalled  –  a  few  teachers  use  CAS  oDen  in  most  topics    –  a  small  percent  use  CAS    oDen  in  some  topics  and  occasionally  in  most    

–  the  majority  is  skewed  towards  liNle  use  –   a  few  have  almost  no  use  

Page 28: Computational infrastructure for doing mathematicsSmooth*shiD*to*graphics*calculators* 1995 • Advantages* – UpHtoHdate* – Easy*access*to*dynamic*graphs*in*class*and*for*studentuse*

Students’  use  more  than  teachers’:  consistent  finding  across  all  studies  

Pierce  and  Bardini,  in  press  

Page 29: Computational infrastructure for doing mathematicsSmooth*shiD*to*graphics*calculators* 1995 • Advantages* – UpHtoHdate* – Easy*access*to*dynamic*graphs*in*class*and*for*studentuse*

One  teachers’  reflec'ons  (12  years)  on  self,  colleagues    &  beyond    (Sue  Garner)  •  Common  teaching  approaches  

–  Some  colleagues  show  liNle  change  •  use  CAS  algebra  only  as  answer  checker  •  avoid  ‘explosion  of  methods’  

–  Self  and  others  have  established  different  norms  •  turned  teaching  around,  to  start  with  purpose  and  applica'ons,  and  then  look  at  techniques  in  detail  

•  TENDSS:  “Teaching  the  ends  and  sides  of  a  topic  with  CAS”    •  Celebrate  ‘explosion  of  methods’  with  more  student  input  

•  Sue’s  students’  reac'ons    –  “[CAS]  is  a  friend  that  is  useful  some'mes,  annoying  some'mes  and  plainly  a  waste  of  'me  at  other  'mes.  The  task  is  to  find  when!  “  (Student  C  and  typical  of  successful  students)    

–  “I  s'll  want  to  marry  my  CAS.”  (Student  M)  

Garner  and  Pierce  (in  press)  CAS:  More  than  ten  years  on  

Page 30: Computational infrastructure for doing mathematicsSmooth*shiD*to*graphics*calculators* 1995 • Advantages* – UpHtoHdate* – Easy*access*to*dynamic*graphs*in*class*and*for*studentuse*

Examiners’  play  “beat  the  CAS”  

Also  played  with  mul'ple  choice  distractors  

Page 31: Computational infrastructure for doing mathematicsSmooth*shiD*to*graphics*calculators* 1995 • Advantages* – UpHtoHdate* – Easy*access*to*dynamic*graphs*in*class*and*for*studentuse*

Consequences  for  students  

•  Garner’s  categories  of  students  –  “Stayers”:  steadily  achieve  in  all  environments  –  “Resenters”:  CAS  devalues  their  skills  –  “Flyers”:  find  and  enjoy  new  solu'on  methods,  rela'onships  and  paNerns  with  CAS  (“explosion  of  methods”)  

–  “Enabled”:  CAS  compensates  for  unreliable  by-­‐hand  algebra  

•  Early  CAS    classes  (without  no-­‐tech  exam)  had  small  but  significant  numbers  of  “enabled”.    Sue  says  these  students  have  gone.    

Page 32: Computational infrastructure for doing mathematicsSmooth*shiD*to*graphics*calculators* 1995 • Advantages* – UpHtoHdate* – Easy*access*to*dynamic*graphs*in*class*and*for*studentuse*

Reflec'ons  •  Successful  innova'on  

–  accepted,  fair,  con'nuing  (even  with  new  Australian  curriculum)  –  many  teachers  and  students  finding  it  very  rewarding  –  teachers  adapt  the  innova'on  to  their  personal  preferences  and  values  for  teaching  mathema'cs  

–  teachers  finding  some  uses  as  early  as  Year  9  •  Hard  for  many  to  learn  to  use  and  teach  with  CAS    

–  also  need  to  regularly  update  and  to  learn  associated  technology  e.g.  computer  presenta'on  

–  aggravated  by  equipment  problems  even  in  well  equipped  schools  

–  but  great  progress  overall  •  “No-­‐tech  exam”  has  mollified  fears,  and  has  emerged  as  

standard  model  around  the  world  –  “Beat  the  CAS”  items  keep  focus  on  by-­‐hand  algebra  –  Students  can  maintain    comparable  by-­‐hand  skills  with  CAS    

Page 33: Computational infrastructure for doing mathematicsSmooth*shiD*to*graphics*calculators* 1995 • Advantages* – UpHtoHdate* – Easy*access*to*dynamic*graphs*in*class*and*for*studentuse*

Reflec'ons  •  No-­‐tech  exam  has  stalled  thinking  about  impact  on  curriculum  and  

purpose  of  mathema'cs  –  some  ques'ons  are  harder,  but  not  doing  more  in  a  purposeful  way  –  no  more  real  world  applica'ons  than  before  –  not  much  shiD  towards  analy'c  rather  than  GC  numerical  solu'ons  taking  

advantage  of  symbolic  algebra  –  examiners  need  new  skills  ,  but  harder  ques'ons  mean  students  fail  (Brown  2010)  –  gradual  decline  in  student  numbers  

•  happening  around  Australia  so  not  caused  by  use  of  CAS  •  could  it  be  arrested  by  a  curriculum  which  deals  with  real,  real  world  problems  

–  s'll  not  using  technology  fully  as  an  amplifier  rather  than  to  compensate  for  inadequate  algebraic  skills  

•  Technology  environment  con'nues  to  change  –  BYOD,  special  purpose  apps  with  ‘wizards’,  internet  CAS  (e.g.  Wolfram  Alpha),  

Geogebra  and  other  free  tools,    internet  sta's'cal  analysis,  ….  –  Mul'-­‐page  open  tools  with  built-­‐in  computa'on  

•  Over  30  years  since  mμmath!    –  philosophical  challenges  unresolved  in  teachers’  minds  –  prac'cal  challenges    and  opportuni'es  keep  changing  

Page 34: Computational infrastructure for doing mathematicsSmooth*shiD*to*graphics*calculators* 1995 • Advantages* – UpHtoHdate* – Easy*access*to*dynamic*graphs*in*class*and*for*studentuse*

Specialist  Mathema'cs  2013  (with  CAS)  

Ques'on  3  from  Examina'on  2,  Specialist  Mathema'cs  2013,  Victorian  Curriculum  and  Assesssment  Authority.  

Page 35: Computational infrastructure for doing mathematicsSmooth*shiD*to*graphics*calculators* 1995 • Advantages* – UpHtoHdate* – Easy*access*to*dynamic*graphs*in*class*and*for*studentuse*

Specialist  Mathema'cs  2013  (Q3)  

Range  specified  in  ques'on  

a  

b  

c  

dii   e  

Page 36: Computational infrastructure for doing mathematicsSmooth*shiD*to*graphics*calculators* 1995 • Advantages* – UpHtoHdate* – Easy*access*to*dynamic*graphs*in*class*and*for*studentuse*

Specialist  Mathema'cs  2013  (Q3)  

And  with  more  general  algebra….  

Page 37: Computational infrastructure for doing mathematicsSmooth*shiD*to*graphics*calculators* 1995 • Advantages* – UpHtoHdate* – Easy*access*to*dynamic*graphs*in*class*and*for*studentuse*

Specialist  Mathema'cs  2013  (no  tech)  

Page 38: Computational infrastructure for doing mathematicsSmooth*shiD*to*graphics*calculators* 1995 • Advantages* – UpHtoHdate* – Easy*access*to*dynamic*graphs*in*class*and*for*studentuse*

Specialist  Mathema'cs  2013  (with  CAS)  

hNp://www.vcaa.vic.edu.au/documents/exams/mathema'cs/2013/2013specmat2-­‐w.pdf  

Page 39: Computational infrastructure for doing mathematicsSmooth*shiD*to*graphics*calculators* 1995 • Advantages* – UpHtoHdate* – Easy*access*to*dynamic*graphs*in*class*and*for*studentuse*

Thank  you    

(and  special  thanks  to  all  the  contribu'ng  researchers)  

Kaye  Stacey  University  of  Melbourne  [email protected]  


Recommended