+ All Categories
Home > Documents > Computational Perceptionlewicki/cp-s08/sound-localization1.pdf · 2008. 1. 17. · CP08:: Sound...

Computational Perceptionlewicki/cp-s08/sound-localization1.pdf · 2008. 1. 17. · CP08:: Sound...

Date post: 01-Sep-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
35
Computational Perception 15-485/785 Sound Localization 1 January 17, 2008
Transcript
Page 1: Computational Perceptionlewicki/cp-s08/sound-localization1.pdf · 2008. 1. 17. · CP08:: Sound localization 1 Michael S. Lewicki Carnegie Mellon On the scientific method 32 Georg

Computational Perception15-485/785

Sound Localization 1

January 17, 2008

Page 2: Computational Perceptionlewicki/cp-s08/sound-localization1.pdf · 2008. 1. 17. · CP08:: Sound localization 1 Michael S. Lewicki Carnegie Mellon On the scientific method 32 Georg

Michael S. Lewicki ◇ Carnegie MellonCP08:: Sound localization 1

Orienting

• sound localization

• visual pop-out

• eye/body movements

• attentional shift

2

Page 3: Computational Perceptionlewicki/cp-s08/sound-localization1.pdf · 2008. 1. 17. · CP08:: Sound localization 1 Michael S. Lewicki Carnegie Mellon On the scientific method 32 Georg

Michael S. Lewicki ◇ Carnegie MellonCP08:: Sound localization 1

The Problem of Sound Localization

3

What are the acoustic cues?

Page 4: Computational Perceptionlewicki/cp-s08/sound-localization1.pdf · 2008. 1. 17. · CP08:: Sound localization 1 Michael S. Lewicki Carnegie Mellon On the scientific method 32 Georg

Michael S. Lewicki ◇ Carnegie MellonCP08:: Sound localization 1

Sound propagation

4

from Yost, 2000

Page 5: Computational Perceptionlewicki/cp-s08/sound-localization1.pdf · 2008. 1. 17. · CP08:: Sound localization 1 Michael S. Lewicki Carnegie Mellon On the scientific method 32 Georg

Michael S. Lewicki ◇ Carnegie MellonCP08:: Sound localization 1

• dB is always relative.

• A standard in acoustics is:

Units of sound intensity: deciBels (dB)

5

dB SPL ! 10 log(I/I0)I0 = 20µ Pascals

" 10!12W/m2

sound level typical example

140 close range gunshot

100 close shouting

70 normal conversation

30 soft whispering

6.5 human threshold (at 1 kHz)

-10 threshold for some animals

The just noticeable level difference for humans is ~ 1dB.

Perceived sound level is freq. dependent.dB ≠ loudness.

• dB SPL for common sounds

Page 6: Computational Perceptionlewicki/cp-s08/sound-localization1.pdf · 2008. 1. 17. · CP08:: Sound localization 1 Michael S. Lewicki Carnegie Mellon On the scientific method 32 Georg

Michael S. Lewicki ◇ Carnegie MellonCP08:: Sound localization 1

How does sound level attenuate?

6

intensity = power / unit areaI = P/A

= P/(4!r2)! 6 dB per 2r

This equation holds for a free field.

How does this fail?

from Blauert, 1997

Page 7: Computational Perceptionlewicki/cp-s08/sound-localization1.pdf · 2008. 1. 17. · CP08:: Sound localization 1 Michael S. Lewicki Carnegie Mellon On the scientific method 32 Georg

Michael S. Lewicki ◇ Carnegie MellonCP08:: Sound localization 1

Reflection of sound energy

7

from Yost, 2000

Page 8: Computational Perceptionlewicki/cp-s08/sound-localization1.pdf · 2008. 1. 17. · CP08:: Sound localization 1 Michael S. Lewicki Carnegie Mellon On the scientific method 32 Georg

Michael S. Lewicki ◇ Carnegie MellonCP08:: Sound localization 1

Sound propagation and objects

8

• Reflection depends on the relative size of the wavelength and the object:

- “small” wavelengths are reflected and create interference

- “large” wavelengths pass by an object

- “intermediate wavelengths cast an acoustic shadow

• Relevant wavelengths for a typical human head:

- 345 m/s / 0.18 m = 1916 Hz

• What are factors are there?

from Yost, 2000

Page 9: Computational Perceptionlewicki/cp-s08/sound-localization1.pdf · 2008. 1. 17. · CP08:: Sound localization 1 Michael S. Lewicki Carnegie Mellon On the scientific method 32 Georg

Michael S. Lewicki ◇ Carnegie MellonCP08:: Sound localization 1 9

Page 10: Computational Perceptionlewicki/cp-s08/sound-localization1.pdf · 2008. 1. 17. · CP08:: Sound localization 1 Michael S. Lewicki Carnegie Mellon On the scientific method 32 Georg

Michael S. Lewicki ◇ Carnegie MellonCP08:: Sound localization 1 10

Solving the computational problem

1. Problem statement: what do you want to do?

2. Simplification or idealization

3. Mathematical description of problem

4. Deriving algorithms or formulas

Page 11: Computational Perceptionlewicki/cp-s08/sound-localization1.pdf · 2008. 1. 17. · CP08:: Sound localization 1 Michael S. Lewicki Carnegie Mellon On the scientific method 32 Georg

Michael S. Lewicki ◇ Carnegie MellonCP08:: Sound localization 1

Simple(r) case: lateralization

11

What are the acoustic cues for determining lateralization?

• interaural time differences (ITD)

• interaural intensity differences (IID, or ILDs)from Moore, 1997

Are these reasonable assumptions?How could we validate them?

Page 12: Computational Perceptionlewicki/cp-s08/sound-localization1.pdf · 2008. 1. 17. · CP08:: Sound localization 1 Michael S. Lewicki Carnegie Mellon On the scientific method 32 Georg

Michael S. Lewicki ◇ Carnegie MellonCP08:: Sound localization 1

ITD: measured vs predicted

12

from Warren, 1999

Page 13: Computational Perceptionlewicki/cp-s08/sound-localization1.pdf · 2008. 1. 17. · CP08:: Sound localization 1 Michael S. Lewicki Carnegie Mellon On the scientific method 32 Georg

Michael S. Lewicki ◇ Carnegie MellonCP08:: Sound localization 1

Measured IIDs

13

What can you observe?

from Moore, 1997

Page 14: Computational Perceptionlewicki/cp-s08/sound-localization1.pdf · 2008. 1. 17. · CP08:: Sound localization 1 Michael S. Lewicki Carnegie Mellon On the scientific method 32 Georg

Michael S. Lewicki ◇ Carnegie MellonCP08:: Sound localization 1

The duplex theory of sound lateralization

14

Lord Rayleigh, 1907

• Use ITDs for low frequencies.

• Use IIDs for high frequencies.

How could you test this theory?

Page 15: Computational Perceptionlewicki/cp-s08/sound-localization1.pdf · 2008. 1. 17. · CP08:: Sound localization 1 Michael S. Lewicki Carnegie Mellon On the scientific method 32 Georg

Michael S. Lewicki ◇ Carnegie MellonCP08:: Sound localization 1

Localization in 3D space

15

from Moore, 1997

Page 16: Computational Perceptionlewicki/cp-s08/sound-localization1.pdf · 2008. 1. 17. · CP08:: Sound localization 1 Michael S. Lewicki Carnegie Mellon On the scientific method 32 Georg

Michael S. Lewicki ◇ Carnegie MellonCP08:: Sound localization 1

Localization performance

16

How can we measure human sound localization performance?

• perceived direction vs actual direction

• detection of a sound source shift

Page 17: Computational Perceptionlewicki/cp-s08/sound-localization1.pdf · 2008. 1. 17. · CP08:: Sound localization 1 Michael S. Lewicki Carnegie Mellon On the scientific method 32 Georg

Michael S. Lewicki ◇ Carnegie MellonCP08:: Sound localization 1

Direction acuity: horizontal plane

17

from Blauert, 1997

Page 18: Computational Perceptionlewicki/cp-s08/sound-localization1.pdf · 2008. 1. 17. · CP08:: Sound localization 1 Michael S. Lewicki Carnegie Mellon On the scientific method 32 Georg

Michael S. Lewicki ◇ Carnegie MellonCP08:: Sound localization 1

Sound shift acuity: minimum audible angle

18

Signal Type Acuity

clicks 0.75° - 2°

sinusoids 1° - 4°

tone bursts 0.8° - 3.3°

speech 0.9° - 1.5°

noise 3.2°

Measuring minimal perceivable displacement from forward direction,under various “ideal” conditions.

Page 19: Computational Perceptionlewicki/cp-s08/sound-localization1.pdf · 2008. 1. 17. · CP08:: Sound localization 1 Michael S. Lewicki Carnegie Mellon On the scientific method 32 Georg

Michael S. Lewicki ◇ Carnegie MellonCP08:: Sound localization 1

Direction acuity: medial plane

19

from Blauert, 1997

Page 20: Computational Perceptionlewicki/cp-s08/sound-localization1.pdf · 2008. 1. 17. · CP08:: Sound localization 1 Michael S. Lewicki Carnegie Mellon On the scientific method 32 Georg

Michael S. Lewicki ◇ Carnegie MellonCP08:: Sound localization 1

MAA vs frequency for different azimuths

20

from Moore, 1997

Page 21: Computational Perceptionlewicki/cp-s08/sound-localization1.pdf · 2008. 1. 17. · CP08:: Sound localization 1 Michael S. Lewicki Carnegie Mellon On the scientific method 32 Georg

Michael S. Lewicki ◇ Carnegie MellonCP08:: Sound localization 1

Experimental Tests of the Duplex Theory

ITD:

• most sensitive at 0°

• smallest detectable change is ~10 μs or 1°

• f > 900 Hz, ITD sensitivity drops dramatically

IID:

• most sensitive at 0°

• smallest detectable change is ~1 dB

• Real world IIDs are small f < 1800 Hz, but still perceptible.

21

Page 22: Computational Perceptionlewicki/cp-s08/sound-localization1.pdf · 2008. 1. 17. · CP08:: Sound localization 1 Michael S. Lewicki Carnegie Mellon On the scientific method 32 Georg

Michael S. Lewicki ◇ Carnegie MellonCP08:: Sound localization 1

MAA vs frequency for different azimuths

22

from Moore, 1997

How does this compared to measured ITD and IID?

Page 23: Computational Perceptionlewicki/cp-s08/sound-localization1.pdf · 2008. 1. 17. · CP08:: Sound localization 1 Michael S. Lewicki Carnegie Mellon On the scientific method 32 Georg

Michael S. Lewicki ◇ Carnegie MellonCP08:: Sound localization 1

Can we explaining the MAA data?

23

Page 24: Computational Perceptionlewicki/cp-s08/sound-localization1.pdf · 2008. 1. 17. · CP08:: Sound localization 1 Michael S. Lewicki Carnegie Mellon On the scientific method 32 Georg

Michael S. Lewicki ◇ Carnegie MellonCP08:: Sound localization 1

How do we compute ITD?

24

• Cross correlation:

• This assumes signals have zero mean.

• Correlation is normalized so Corr(xR, xL) = 1 when xR = xL

Corr(xR, xL)(t) =1

Z

!!

"!

xR(!)xL(t + !)d!

=1

Z

N"t"k=1

xR(k)xL(k + t)

Z =

!!

"!

xR(!)xL(!)d!

Page 25: Computational Perceptionlewicki/cp-s08/sound-localization1.pdf · 2008. 1. 17. · CP08:: Sound localization 1 Michael S. Lewicki Carnegie Mellon On the scientific method 32 Georg

Michael S. Lewicki ◇ Carnegie MellonCP08:: Sound localization 1

Example: white noise

25

xR(t)

0 500 1000 1500 2000

xL(t)

−1000 −500 0 500 1000−1

−0.5

0

0.5

1Corr(xR(t), xL(t))

Will this work for all signals?

μsecμsec

Page 26: Computational Perceptionlewicki/cp-s08/sound-localization1.pdf · 2008. 1. 17. · CP08:: Sound localization 1 Michael S. Lewicki Carnegie Mellon On the scientific method 32 Georg

Michael S. Lewicki ◇ Carnegie MellonCP08:: Sound localization 1

Example: low frequency sinusoids

26

xR(t) freq=500 Hz

0 500 1000 1500 2000

xL(t) freq=500 Hz

−1000 −500 0 500 1000

Corr(xR(t), xL(t))

μsecμsec

Page 27: Computational Perceptionlewicki/cp-s08/sound-localization1.pdf · 2008. 1. 17. · CP08:: Sound localization 1 Michael S. Lewicki Carnegie Mellon On the scientific method 32 Georg

Michael S. Lewicki ◇ Carnegie MellonCP08:: Sound localization 1

Example: high frequency sinusoids

27

−1000 −500 0 500 1000

Corr(xR(t), xL(t))xR(t) freq=1500 Hz

0 500 1000 1500 2000

xL(t) freq=1500 Hz

This is called phase ambiguity. What do people hear?

μsecμsec

Page 28: Computational Perceptionlewicki/cp-s08/sound-localization1.pdf · 2008. 1. 17. · CP08:: Sound localization 1 Michael S. Lewicki Carnegie Mellon On the scientific method 32 Georg

Michael S. Lewicki ◇ Carnegie MellonCP08:: Sound localization 1

More signal improves localization accuracy

28

Louder Longer

from Blauert, 1997

Page 29: Computational Perceptionlewicki/cp-s08/sound-localization1.pdf · 2008. 1. 17. · CP08:: Sound localization 1 Michael S. Lewicki Carnegie Mellon On the scientific method 32 Georg

Michael S. Lewicki ◇ Carnegie MellonCP08:: Sound localization 1

Limitations of the Duplex Theory

29

• limited to lateralization

• doesn’t do front-back discrimination

• doesn’t explain why are sounds are outside your head

• neglects acoustic environment

• can’t handle multiple sound sources

Page 30: Computational Perceptionlewicki/cp-s08/sound-localization1.pdf · 2008. 1. 17. · CP08:: Sound localization 1 Michael S. Lewicki Carnegie Mellon On the scientific method 32 Georg

Michael S. Lewicki ◇ Carnegie MellonCP08:: Sound localization 1

The Barn Owl

30

Filmed with a stroboscopic infrared camera.

The owl grabs the mouse in total darkness.

images by M. Konishi

Page 31: Computational Perceptionlewicki/cp-s08/sound-localization1.pdf · 2008. 1. 17. · CP08:: Sound localization 1 Michael S. Lewicki Carnegie Mellon On the scientific method 32 Georg

Michael S. Lewicki ◇ Carnegie MellonCP08:: Sound localization 1

3D Localization in the barn owl

31

from Konishi, 1993

Page 32: Computational Perceptionlewicki/cp-s08/sound-localization1.pdf · 2008. 1. 17. · CP08:: Sound localization 1 Michael S. Lewicki Carnegie Mellon On the scientific method 32 Georg

Michael S. Lewicki ◇ Carnegie MellonCP08:: Sound localization 1

On the scientific method

32

Georg von Békésy (1899-1972): Won the 1961 Nobel Prize in Physiology for his discovery of how sound is transduced in the cochlea.

“Of great importance in any field of research is the selection of problems to be investigated and a determination of the particular variables to be given attention.”

“When a field is in its early stage of development the selection of good problems is a more hazardous matter than later on, when some of the principles have begun to be developed.”

Page 33: Computational Perceptionlewicki/cp-s08/sound-localization1.pdf · 2008. 1. 17. · CP08:: Sound localization 1 Michael S. Lewicki Carnegie Mellon On the scientific method 32 Georg

Michael S. Lewicki ◇ Carnegie MellonCP08:: Sound localization 1

Taxonomy of Scientific Problems (von Békésy, 1960)

33

• Theoretical vs mosaic approach

• The classical problem: much effort but no solution

• The premature problem: poorly formulated or not susceptible to attack

• The strategic problem: seeks data to distinguish between two basic assumptions

or principles

• The stimulating problem: may lead to re-examination of accepted principles and

may open up new areas of exploration

• The statistical question: a survey of possibilities

• The unimportant problem: easy to formulate easy to solve

• The embarrassing question

• The pseudo problem: differences in terminology or methods of approach

Page 34: Computational Perceptionlewicki/cp-s08/sound-localization1.pdf · 2008. 1. 17. · CP08:: Sound localization 1 Michael S. Lewicki Carnegie Mellon On the scientific method 32 Georg

Michael S. Lewicki ◇ Carnegie MellonCP08:: Sound localization 1

Issues

34

• What are the scientific questions?

- What do you want to understand?

- What do you want to explain?

• What are the computational problems?

- What is our scope?

- Do we need to solve the same problem in a similar way?

• What behavioral questions would you ask?

Page 35: Computational Perceptionlewicki/cp-s08/sound-localization1.pdf · 2008. 1. 17. · CP08:: Sound localization 1 Michael S. Lewicki Carnegie Mellon On the scientific method 32 Georg

Michael S. Lewicki ◇ Carnegie MellonCP08:: Sound localization 1

Next time: sound localization in 3D space

35


Recommended