+ All Categories
Home > Documents > COMPUTATIONAL MECHANOBIOLOGY OF HARD TISSUE . …kinetic/biomat09/biomat/Lecture_1.pdf · 2009. 6....

COMPUTATIONAL MECHANOBIOLOGY OF HARD TISSUE . …kinetic/biomat09/biomat/Lecture_1.pdf · 2009. 6....

Date post: 22-Aug-2021
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
31
COMPUTATIONAL MECHANOBIOLOGY OF HARD TISSUE . APPLICATIONS TO IMPLANT DESIGN AND TISSUE ENGINEERING Lecture 1. Structure, properties and mechanical behaviour of bone tissue Manuel Doblaré Aragón Institute of Engineering Research (I3A) University of Zaragoza (Spain) [email protected] Lecture 1. Structure, properties and mechanical behaviour of bone tissue 2 COMPUTATIONAL MECHANOBIOLOGY OF HARD TISSUE, APPLICATIONS TO IMPLANT DESIGN AND TISSUE ENGINEERING-BIOMAT-Granada June-2009 Lecture 1. Structure, properties and mechanical behaviour of bone tissue 1.1. Overview of the structure of connective tissues 1.2. Mechanical properties of bone tissue 1.3. Influence of age 1.4. Mechanisms and criteria of bone fracture 1.5. Computational prediction of bone fracture
Transcript
Page 1: COMPUTATIONAL MECHANOBIOLOGY OF HARD TISSUE . …kinetic/biomat09/biomat/Lecture_1.pdf · 2009. 6. 2. · voids ˆ 1 ˆ =1 = 1 = − = = ... EERING-BIOMAT-Granada June-2009 In 1985,86

COMPUTATIONAL MECHANOBIOLOGY OF HARD TISSUE . APPLICATIONS TO IMPLANT DESIGN AND TISSUE ENGINEERING

Lecture 1. Structure, properties and mechanical behaviour of bone tissue

Manuel DoblaréAragón Institute of Engineering Research (I3A) University of Zaragoza (Spain)[email protected]

Lecture 1. Structure, properties and mechanical behaviour of bone tissue 2

CO

MP

UT

AT

ION

AL

ME

CH

AN

OB

IOL

OG

Y O

F H

AR

D T

ISS

UE

, AP

PL

ICA

TIO

NS

TO

IM

PL

AN

T D

ES

IGN

AN

D T

ISS

UE

EN

GIN

EE

RIN

G-B

IOM

AT

-Gra

nad

a Ju

ne

-200

9

Lecture 1. Structure, properties and mechanical behaviour of bone tissue

1.1. Overview of the structure of connective tissues

1.2. Mechanical properties of bone tissue

1.3. Influence of age

1.4. Mechanisms and criteria of bone fracture

1.5. Computational prediction of bone fracture

Page 2: COMPUTATIONAL MECHANOBIOLOGY OF HARD TISSUE . …kinetic/biomat09/biomat/Lecture_1.pdf · 2009. 6. 2. · voids ˆ 1 ˆ =1 = 1 = − = = ... EERING-BIOMAT-Granada June-2009 In 1985,86

Lecture 1. Structure, properties and mechanical behaviour of bone tissue 3

CO

MP

UT

AT

ION

AL

ME

CH

AN

OB

IOL

OG

Y O

F H

AR

D T

ISS

UE

, AP

PL

ICA

TIO

NS

TO

IM

PL

AN

T D

ES

IGN

AN

D T

ISS

UE

EN

GIN

EE

RIN

G-B

IOM

AT

-Gra

nad

a Ju

ne

-200

9

1.1. Overview of the structureof connective tissues

Lecture 1. Structure, properties and mechanical behaviour of bone tissue 4

CO

MP

UT

AT

ION

AL

ME

CH

AN

OB

IOL

OG

Y O

F H

AR

D T

ISS

UE

, AP

PL

ICA

TIO

NS

TO

IM

PL

AN

T D

ES

IGN

AN

D T

ISS

UE

EN

GIN

EE

RIN

G-B

IOM

AT

-Gra

nad

a Ju

ne

-200

9

STRUCTURE OF CONNECTIVE TISSUES

http://bioengineering.ucsf.edu/news.html

Page 3: COMPUTATIONAL MECHANOBIOLOGY OF HARD TISSUE . …kinetic/biomat09/biomat/Lecture_1.pdf · 2009. 6. 2. · voids ˆ 1 ˆ =1 = 1 = − = = ... EERING-BIOMAT-Granada June-2009 In 1985,86

Lecture 1. Structure, properties and mechanical behaviour of bone tissue 5

CO

MP

UT

AT

ION

AL

ME

CH

AN

OB

IOL

OG

Y O

F H

AR

D T

ISS

UE

, AP

PL

ICA

TIO

NS

TO

IM

PL

AN

T D

ES

IGN

AN

D T

ISS

UE

EN

GIN

EE

RIN

G-B

IOM

AT

-Gra

nad

a Ju

ne

-200

9

PRINCIPAL COMPONENTS

Major structural matrix molecules (ECM):

• collagens

• proteoglycans

• fibronectin, laminin, elastin

Water + small molecules (ions, metabolites)

Cells: tissue-specific

Soluble factors in fluid or attached tomatrix:

• growth factors

• cytokines

• hormones

Lecture 1. Structure, properties and mechanical behaviour of bone tissue 6

CO

MP

UT

AT

ION

AL

ME

CH

AN

OB

IOL

OG

Y O

F H

AR

D T

ISS

UE

, AP

PL

ICA

TIO

NS

TO

IM

PL

AN

T D

ES

IGN

AN

D T

ISS

UE

EN

GIN

EE

RIN

G-B

IOM

AT

-Gra

nad

a Ju

ne

-200

9

Cortical bone

Elastic cartilage Hyaline cartilage

Trabecular bone

Page 4: COMPUTATIONAL MECHANOBIOLOGY OF HARD TISSUE . …kinetic/biomat09/biomat/Lecture_1.pdf · 2009. 6. 2. · voids ˆ 1 ˆ =1 = 1 = − = = ... EERING-BIOMAT-Granada June-2009 In 1985,86

Lecture 1. Structure, properties and mechanical behaviour of bone tissue 7

CO

MP

UT

AT

ION

AL

ME

CH

AN

OB

IOL

OG

Y O

F H

AR

D T

ISS

UE

, AP

PL

ICA

TIO

NS

TO

IM

PL

AN

T D

ES

IGN

AN

D T

ISS

UE

EN

GIN

EE

RIN

G-B

IOM

AT

-Gra

nad

a Ju

ne

-200

9

Tendon (longitudinal section)

Skin

Tendon (transversal section)

Fibrocartilage

Lecture 1. Structure, properties and mechanical behaviour of bone tissue 8

CO

MP

UT

AT

ION

AL

ME

CH

AN

OB

IOL

OG

Y O

F H

AR

D T

ISS

UE

, AP

PL

ICA

TIO

NS

TO

IM

PL

AN

T D

ES

IGN

AN

D T

ISS

UE

EN

GIN

EE

RIN

G-B

IOM

AT

-Gra

nad

a Ju

ne

-200

9

Bone

• Cells: osteoblasts, osteoclasts and osteocytes

• Matrix: mainly collagen I and minerals (hydroxiapathite)

Cartilage

• Cells: chondrocytes

• Matrix: collagen II and large proteoglycans (agrecans)

Tendon/ligament

• Cells: fibroblasts

• Matrix: collagen I, elastin and small proteoglycans

Skin

• Cells: fibroblasts

• Matrix: dense, disorganized collagen (types I, III, IV)

Page 5: COMPUTATIONAL MECHANOBIOLOGY OF HARD TISSUE . …kinetic/biomat09/biomat/Lecture_1.pdf · 2009. 6. 2. · voids ˆ 1 ˆ =1 = 1 = − = = ... EERING-BIOMAT-Granada June-2009 In 1985,86

Lecture 1. Structure, properties and mechanical behaviour of bone tissue 9

CO

MP

UT

AT

ION

AL

ME

CH

AN

OB

IOL

OG

Y O

F H

AR

D T

ISS

UE

, AP

PL

ICA

TIO

NS

TO

IM

PL

AN

T D

ES

IGN

AN

D T

ISS

UE

EN

GIN

EE

RIN

G-B

IOM

AT

-Gra

nad

a Ju

ne

-200

9

1.2. Mechanical properties ofbone tissue

Lecture 1. Structure, properties and mechanical behaviour of bone tissue 10

CO

MP

UT

AT

ION

AL

ME

CH

AN

OB

IOL

OG

Y O

F H

AR

D T

ISS

UE

, AP

PL

ICA

TIO

NS

TO

IM

PL

AN

T D

ES

IGN

AN

D T

ISS

UE

EN

GIN

EE

RIN

G-B

IOM

AT

-Gra

nad

a Ju

ne

-200

9

Bone has the following functions:

• Structural support

• Protection (skull)

• Assist movement

• Mineral “bank”

• Blood cell production: hemopoyesis (red marrow)

• Energy storage: adipose tissue (yellow marrow)

INTRODUCTION

Page 6: COMPUTATIONAL MECHANOBIOLOGY OF HARD TISSUE . …kinetic/biomat09/biomat/Lecture_1.pdf · 2009. 6. 2. · voids ˆ 1 ˆ =1 = 1 = − = = ... EERING-BIOMAT-Granada June-2009 In 1985,86

Lecture 1. Structure, properties and mechanical behaviour of bone tissue 11

CO

MP

UT

AT

ION

AL

ME

CH

AN

OB

IOL

OG

Y O

F H

AR

D T

ISS

UE

, AP

PL

ICA

TIO

NS

TO

IM

PL

AN

T D

ES

IGN

AN

D T

ISS

UE

EN

GIN

EE

RIN

G-B

IOM

AT

-Gra

nad

a Ju

ne

-200

9Bone classification by shape: • Long bones

• Short bones

• Flat bones

Lecture 1. Structure, properties and mechanical behaviour of bone tissue 12

CO

MP

UT

AT

ION

AL

ME

CH

AN

OB

IOL

OG

Y O

F H

AR

D T

ISS

UE

, AP

PL

ICA

TIO

NS

TO

IM

PL

AN

T D

ES

IGN

AN

D T

ISS

UE

EN

GIN

EE

RIN

G-B

IOM

AT

-Gra

nad

a Ju

ne

-200

9

Parts of a long bone

• Epiphyses: expanded ends of a long bone that includes the articular surface

• Diaphysis: shaft of long bone

• Medullar canal

Page 7: COMPUTATIONAL MECHANOBIOLOGY OF HARD TISSUE . …kinetic/biomat09/biomat/Lecture_1.pdf · 2009. 6. 2. · voids ˆ 1 ˆ =1 = 1 = − = = ... EERING-BIOMAT-Granada June-2009 In 1985,86

Lecture 1. Structure, properties and mechanical behaviour of bone tissue 13

CO

MP

UT

AT

ION

AL

ME

CH

AN

OB

IOL

OG

Y O

F H

AR

D T

ISS

UE

, AP

PL

ICA

TIO

NS

TO

IM

PL

AN

T D

ES

IGN

AN

D T

ISS

UE

EN

GIN

EE

RIN

G-B

IOM

AT

-Gra

nad

a Ju

ne

-200

9

Two different bone tissues: cortical and trabecular

• Both have the samecomposition andstructure

• Cortical bone has lowerporosity (10 %) thantrabeculae bone (50-90 %)

• Different distributionimplies differentmechanical properties

Lecture 1. Structure, properties and mechanical behaviour of bone tissue 14

CO

MP

UT

AT

ION

AL

ME

CH

AN

OB

IOL

OG

Y O

F H

AR

D T

ISS

UE

, AP

PL

ICA

TIO

NS

TO

IM

PL

AN

T D

ES

IGN

AN

D T

ISS

UE

EN

GIN

EE

RIN

G-B

IOM

AT

-Gra

nad

a Ju

ne

-200

9

Bone is a multiphasic, porous, heterogeneous and anisotropic material with different properties in tension and compression.

Cortical boneSpongy

bone

Bone microstructure has a strong influence of the macroscopic behaviour and therefore on the mechanical properties, i.e. cortical and spongy bone.

The microstructure is wonderfully adapted to the specific function of each bone, leading to very different mechanical properties.Bone is able to adapt its properties and structure in the long term to the specific mechanical environment it supports, achieving maximum stiffness and strength with minimum weight and reducing microdamage (Bone Remodelling).

Page 8: COMPUTATIONAL MECHANOBIOLOGY OF HARD TISSUE . …kinetic/biomat09/biomat/Lecture_1.pdf · 2009. 6. 2. · voids ˆ 1 ˆ =1 = 1 = − = = ... EERING-BIOMAT-Granada June-2009 In 1985,86

Lecture 1. Structure, properties and mechanical behaviour of bone tissue 15

CO

MP

UT

AT

ION

AL

ME

CH

AN

OB

IOL

OG

Y O

F H

AR

D T

ISS

UE

, AP

PL

ICA

TIO

NS

TO

IM

PL

AN

T D

ES

IGN

AN

D T

ISS

UE

EN

GIN

EE

RIN

G-B

IOM

AT

-Gra

nad

a Ju

ne

-200

9

Flat bone (iliac crest) Short bone (body of the 4thhuman vertebrae)

Long bone (human phalanx)

Lecture 1. Structure, properties and mechanical behaviour of bone tissue 16

CO

MP

UT

AT

ION

AL

ME

CH

AN

OB

IOL

OG

Y O

F H

AR

D T

ISS

UE

, AP

PL

ICA

TIO

NS

TO

IM

PL

AN

T D

ES

IGN

AN

D T

ISS

UE

EN

GIN

EE

RIN

G-B

IOM

AT

-Gra

nad

a Ju

ne

-200

9

Simple load states (standard mechanical tests) like uniaxial tension and compression, three or four point bending, biaxial stress, etc., are used to obtain bone properties.

The obtained values are then extrapolated and averaged to obtain a continuous mathematically consistent constitutive model.

The specimen size is very important due to the average character of the continuum mechanical properties and the complex structure of bone tissue.

MAIN BONE MECHANICAL PROPERTIES

Page 9: COMPUTATIONAL MECHANOBIOLOGY OF HARD TISSUE . …kinetic/biomat09/biomat/Lecture_1.pdf · 2009. 6. 2. · voids ˆ 1 ˆ =1 = 1 = − = = ... EERING-BIOMAT-Granada June-2009 In 1985,86

Lecture 1. Structure, properties and mechanical behaviour of bone tissue 17

CO

MP

UT

AT

ION

AL

ME

CH

AN

OB

IOL

OG

Y O

F H

AR

D T

ISS

UE

, AP

PL

ICA

TIO

NS

TO

IM

PL

AN

T D

ES

IGN

AN

D T

ISS

UE

EN

GIN

EE

RIN

G-B

IOM

AT

-Gra

nad

a Ju

ne

-200

9

Anisotropy is other important characteristic of bone tissue. Mechanical properties strongly depend on the direction.

Tension and compression tests on longitudinally and transversely oriented specimens from the medial human femur

Femoral dyaphisis (Frankel&Nordin)

have provided the following average values for cortical bone (Reilly y Burstein, 1975):

tension strength:

135 MPa (longitudinally)

53 MPa (transversely)

compression strength:

193 MPa (longitudinally)

133 MPa (transversely)

Lecture 1. Structure, properties and mechanical behaviour of bone tissue 18

CO

MP

UT

AT

ION

AL

ME

CH

AN

OB

IOL

OG

Y O

F H

AR

D T

ISS

UE

, AP

PL

ICA

TIO

NS

TO

IM

PL

AN

T D

ES

IGN

AN

D T

ISS

UE

EN

GIN

EE

RIN

G-B

IOM

AT

-Gra

nad

a Ju

ne

-200

9

Similar measures on the elastic modulus for the same cortical bone have given the following numbers in GPa:

– Reilly & Burstein, 1974, 1975; Ashman et al, 1984. Direct measures. Tension tests

– Yoon & Katz, 1976. Indirect measures. Ultrasounds

Reilly & Burstein (1974, 1975)

Yoon & Katz (1976)

Ashman et al. (1984)

Etransversal 11.5 18.8 12. ó 13.4 Elongitudinal 17. 27.4 20.

Page 10: COMPUTATIONAL MECHANOBIOLOGY OF HARD TISSUE . …kinetic/biomat09/biomat/Lecture_1.pdf · 2009. 6. 2. · voids ˆ 1 ˆ =1 = 1 = − = = ... EERING-BIOMAT-Granada June-2009 In 1985,86

Lecture 1. Structure, properties and mechanical behaviour of bone tissue 19

CO

MP

UT

AT

ION

AL

ME

CH

AN

OB

IOL

OG

Y O

F H

AR

D T

ISS

UE

, AP

PL

ICA

TIO

NS

TO

IM

PL

AN

T D

ES

IGN

AN

D T

ISS

UE

EN

GIN

EE

RIN

G-B

IOM

AT

-Gra

nad

a Ju

ne

-200

9

With respect to the stress-strain relation, a typical curve for cortical bone is the following obtained for a strain rate of 0,001 s-1. For physiological strains the response is almost linear.

(Proubasta et al., 1997; Cowin et al., 1987)

Lecture 1. Structure, properties and mechanical behaviour of bone tissue 20

CO

MP

UT

AT

ION

AL

ME

CH

AN

OB

IOL

OG

Y O

F H

AR

D T

ISS

UE

, AP

PL

ICA

TIO

NS

TO

IM

PL

AN

T D

ES

IGN

AN

D T

ISS

UE

EN

GIN

EE

RIN

G-B

IOM

AT

-Gra

nad

a Ju

ne

-200

9

The strain rate affects the stress-strain curve (visco-elastic effect) but this effect is not much relevant for physiological rates.

Bone porous are filled with marrow. There is also fluid (mainly water) flowing through

Proubasta et al, 1997.

the different channels (Haversian cannals, canaliculi,..) that formed a complex flow network. This flow has an important mechanobiological function but its contribution to the mechanical behaviour of the tissue is negligible.

Bone is therefore usually modelled as a heterogeneous, anisotropic linear elastic material.

Page 11: COMPUTATIONAL MECHANOBIOLOGY OF HARD TISSUE . …kinetic/biomat09/biomat/Lecture_1.pdf · 2009. 6. 2. · voids ˆ 1 ˆ =1 = 1 = − = = ... EERING-BIOMAT-Granada June-2009 In 1985,86

Lecture 1. Structure, properties and mechanical behaviour of bone tissue 21

CO

MP

UT

AT

ION

AL

ME

CH

AN

OB

IOL

OG

Y O

F H

AR

D T

ISS

UE

, AP

PL

ICA

TIO

NS

TO

IM

PL

AN

T D

ES

IGN

AN

D T

ISS

UE

EN

GIN

EE

RIN

G-B

IOM

AT

-Gra

nad

a Ju

ne

-200

9

Mechanical properties in trabecular bone strongly depend on the porosity and directional distribution of the trabeculae, changing within the same bone and from one bone to another.

This makes it difficult to determine the specific values of the elastic properties for trabecularbone.

QUANTIFICATION OF THE POROUS STRUCTURE OF CANCELLOUS BONE

Lecture 1. Structure, properties and mechanical behaviour of bone tissue 22

CO

MP

UT

AT

ION

AL

ME

CH

AN

OB

IOL

OG

Y O

F H

AR

D T

ISS

UE

, AP

PL

ICA

TIO

NS

TO

IM

PL

AN

T D

ES

IGN

AN

D T

ISS

UE

EN

GIN

EE

RIN

G-B

IOM

AT

-Gra

nad

a Ju

ne

-200

9

Structural average constitutive properties of trabecular bone have been also evaluated from the bulk properties of the composing material and micro-CT images by means of voxel-FEM approaches at the microstructural level performing virtually standard tests (Huiskes et al., Mueller et al.).

Page 12: COMPUTATIONAL MECHANOBIOLOGY OF HARD TISSUE . …kinetic/biomat09/biomat/Lecture_1.pdf · 2009. 6. 2. · voids ˆ 1 ˆ =1 = 1 = − = = ... EERING-BIOMAT-Granada June-2009 In 1985,86

Lecture 1. Structure, properties and mechanical behaviour of bone tissue 23

CO

MP

UT

AT

ION

AL

ME

CH

AN

OB

IOL

OG

Y O

F H

AR

D T

ISS

UE

, AP

PL

ICA

TIO

NS

TO

IM

PL

AN

T D

ES

IGN

AN

D T

ISS

UE

EN

GIN

EE

RIN

G-B

IOM

AT

-Gra

nad

a Ju

ne

-200

9In spongy bone, the size of the trabeculae impedes modelling the whole microstructure (except for a very few cases), forcing to work with average or apparent properties thatdepend on the specific point and on the actual properties of the tissue.

Bone is formed by solid and porous phases. Porous are filled with marrow, that although very viscous, flows between them. There is also fluid (mainly water) flowing through the different channels (Haversian cannals, canaliculi,..) that formed a complex flow network inside bone.

This flow has important mechanobiological functions but its contribution to the mechanical behaviour of the tissue is negligible.

Bone is therefore usually modelled as a heterogeneous, anisotropic linear elastic material.

Lecture 1. Structure, properties and mechanical behaviour of bone tissue 24

CO

MP

UT

AT

ION

AL

ME

CH

AN

OB

IOL

OG

Y O

F H

AR

D T

ISS

UE

, AP

PL

ICA

TIO

NS

TO

IM

PL

AN

T D

ES

IGN

AN

D T

ISS

UE

EN

GIN

EE

RIN

G-B

IOM

AT

-Gra

nad

a Ju

ne

-200

9

• Following the principles of Continuum Mechanics, we work, therefore with properties averaged in a volume of enough size to collect the main statistical properties of the tissue (RVE).

• The microstructural distribution of mass is then averaged by the so-called apparent density (ρ), related to the actual tissue density ( ) and porosity (n).

VT

VhuecosVM

( ) ρ

ρ -

/ρM

)ρ/(M-

V

V -

V

VV

V

V n

T

T

T

M

T

MT

T

voids

ˆ1

ˆ11 ===

−==

ρ̂

Page 13: COMPUTATIONAL MECHANOBIOLOGY OF HARD TISSUE . …kinetic/biomat09/biomat/Lecture_1.pdf · 2009. 6. 2. · voids ˆ 1 ˆ =1 = 1 = − = = ... EERING-BIOMAT-Granada June-2009 In 1985,86

Lecture 1. Structure, properties and mechanical behaviour of bone tissue 25

CO

MP

UT

AT

ION

AL

ME

CH

AN

OB

IOL

OG

Y O

F H

AR

D T

ISS

UE

, AP

PL

ICA

TIO

NS

TO

IM

PL

AN

T D

ES

IGN

AN

D T

ISS

UE

EN

GIN

EE

RIN

G-B

IOM

AT

-Gra

nad

a Ju

ne

-200

9In 1985,86 Cowin defined a second-order, positive definite, structural tensor, the “fabric tensor”, as a stereological measure of the directional distribution of bone mass, related therefore with the anisotropic properties of bone tissue.

Since then, different ways of measuring the fabric tensor have been defined: The mean interception length (MIL), the volume orientation (VO) and the star volume distribution (SVD) among others.

Mean interception length (MIL) Method.

Determination of the fabric tensor

MIL (ω) = L / I (ω)L is the total length, I thenumber of interceptions

and ω the orientation

1/2-jiij2

)(L

1MH =⇒= nnM

n

Lecture 1. Structure, properties and mechanical behaviour of bone tissue 26

CO

MP

UT

AT

ION

AL

ME

CH

AN

OB

IOL

OG

Y O

F H

AR

D T

ISS

UE

, AP

PL

ICA

TIO

NS

TO

IM

PL

AN

T D

ES

IGN

AN

D T

ISS

UE

EN

GIN

EE

RIN

G-B

IOM

AT

-Gra

nad

a Ju

ne

-200

9

The volume orientation (VO) Method

The star volume distribution (SVD) Method

At each point the VO measure is defined as the length associated to the orientation with the maximum interception length for a number of random points distributed in the representative volume element (RVE) associated to that point.

∑=

ω=ωn

1ii )( L

n

1 )( s

At each point the SVD measure is defined as:

being n a number of random points distributed in the representative volume associated to that point

Page 14: COMPUTATIONAL MECHANOBIOLOGY OF HARD TISSUE . …kinetic/biomat09/biomat/Lecture_1.pdf · 2009. 6. 2. · voids ˆ 1 ˆ =1 = 1 = − = = ... EERING-BIOMAT-Granada June-2009 In 1985,86

Lecture 1. Structure, properties and mechanical behaviour of bone tissue 27

CO

MP

UT

AT

ION

AL

ME

CH

AN

OB

IOL

OG

Y O

F H

AR

D T

ISS

UE

, AP

PL

ICA

TIO

NS

TO

IM

PL

AN

T D

ES

IGN

AN

D T

ISS

UE

EN

GIN

EE

RIN

G-B

IOM

AT

-Gra

nad

a Ju

ne

-200

9

Different experimental studies (Odgaard et al, 1997) have shown that all these methods give rise to very similar results and that those results characterize sufficiently well the principal directions and principal values of the fabric tensor.

These measures have also shown that these directions and values correlate equally well with the local anisotropic properties of bone tissue, that is with the local elastic constitutive tensor (van Rietbergen et al, 1996b; Odgaard et al, 1997; Zysset et al, 1998).

What it seems clear is that cancellous bone can be considered with enough accuracy as a locally orthotropic material, such as its principal axes of orthotropy are aligned with those of the fabric tensor.

Lecture 1. Structure, properties and mechanical behaviour of bone tissue 28

CO

MP

UT

AT

ION

AL

ME

CH

AN

OB

IOL

OG

Y O

F H

AR

D T

ISS

UE

, AP

PL

ICA

TIO

NS

TO

IM

PL

AN

T D

ES

IGN

AN

D T

ISS

UE

EN

GIN

EE

RIN

G-B

IOM

AT

-Gra

nad

a Ju

ne

-200

9

1.3. Influence of age

http://www.uni-kiel.de/radiologie/medphys/diffbone.jpg

Page 15: COMPUTATIONAL MECHANOBIOLOGY OF HARD TISSUE . …kinetic/biomat09/biomat/Lecture_1.pdf · 2009. 6. 2. · voids ˆ 1 ˆ =1 = 1 = − = = ... EERING-BIOMAT-Granada June-2009 In 1985,86

Lecture 1. Structure, properties and mechanical behaviour of bone tissue 29

CO

MP

UT

AT

ION

AL

ME

CH

AN

OB

IOL

OG

Y O

F H

AR

D T

ISS

UE

, AP

PL

ICA

TIO

NS

TO

IM

PL

AN

T D

ES

IGN

AN

D T

ISS

UE

EN

GIN

EE

RIN

G-B

IOM

AT

-Gra

nad

a Ju

ne

-200

9As age progresses, the walls of the trabecuale of cancellousbone become thinner, sometimes arriving to complete resorption. An important reduction of the mass of the spongy bone is progressively produced.

The cortical region also diminishes its thickness and the whole size of the bone may also reduce. Porosity of cortical bone alsoincreases for advanced ages.

Healthy bone Osteoporotic bone

Lecture 1. Structure, properties and mechanical behaviour of bone tissue 30

CO

MP

UT

AT

ION

AL

ME

CH

AN

OB

IOL

OG

Y O

F H

AR

D T

ISS

UE

, AP

PL

ICA

TIO

NS

TO

IM

PL

AN

T D

ES

IGN

AN

D T

ISS

UE

EN

GIN

EE

RIN

G-B

IOM

AT

-Gra

nad

a Ju

ne

-200

9

This decrease in the internal mass and size of bone organs, produces a reduction of the mechanical properties of bone tissue (Frankel y Nordin, 1980; Kelly et al, 1988; Buckwalter et al, 1995b; Evans, 1973).

Stress-strain curves for the tibia of two adults with different ages (Frankel y Nordin, 1980; Burstein et al, 1976).

Page 16: COMPUTATIONAL MECHANOBIOLOGY OF HARD TISSUE . …kinetic/biomat09/biomat/Lecture_1.pdf · 2009. 6. 2. · voids ˆ 1 ˆ =1 = 1 = − = = ... EERING-BIOMAT-Granada June-2009 In 1985,86

Lecture 1. Structure, properties and mechanical behaviour of bone tissue 31

CO

MP

UT

AT

ION

AL

ME

CH

AN

OB

IOL

OG

Y O

F H

AR

D T

ISS

UE

, AP

PL

ICA

TIO

NS

TO

IM

PL

AN

T D

ES

IGN

AN

D T

ISS

UE

EN

GIN

EE

RIN

G-B

IOM

AT

-Gra

nad

a Ju

ne

-200

9

Experimental studies show that the process of bone remodelling is altered by age. Both the response to cyclic loads and the hormonal balance are modified also by age (Buckwalter et al., 1995a,b).

Regular exercise seems to help to keep bone mass or at least to reduce the rate of loss of bone mass in elder people and postmestrual women (Forwoodand Burr, 1993; Jacobson et al., 1984).

Lecture 1. Structure, properties and mechanical behaviour of bone tissue 32

CO

MP

UT

AT

ION

AL

ME

CH

AN

OB

IOL

OG

Y O

F H

AR

D T

ISS

UE

, AP

PL

ICA

TIO

NS

TO

IM

PL

AN

T D

ES

IGN

AN

D T

ISS

UE

EN

GIN

EE

RIN

G-B

IOM

AT

-Gra

nad

a Ju

ne

-200

9

1.4. Mechanisms and criteriaof bone fracture

Page 17: COMPUTATIONAL MECHANOBIOLOGY OF HARD TISSUE . …kinetic/biomat09/biomat/Lecture_1.pdf · 2009. 6. 2. · voids ˆ 1 ˆ =1 = 1 = − = = ... EERING-BIOMAT-Granada June-2009 In 1985,86

Lecture 1. Structure, properties and mechanical behaviour of bone tissue 33

CO

MP

UT

AT

ION

AL

ME

CH

AN

OB

IOL

OG

Y O

F H

AR

D T

ISS

UE

, AP

PL

ICA

TIO

NS

TO

IM

PL

AN

T D

ES

IGN

AN

D T

ISS

UE

EN

GIN

EE

RIN

G-B

IOM

AT

-Gra

nad

a Ju

ne

-200

9

OVERLOAD

CREEP

FATIGUE

MECANISMS OF BONE FRACTURE

Lecture 1. Structure, properties and mechanical behaviour of bone tissue 34

CO

MP

UT

AT

ION

AL

ME

CH

AN

OB

IOL

OG

Y O

F H

AR

D T

ISS

UE

, AP

PL

ICA

TIO

NS

TO

IM

PL

AN

T D

ES

IGN

AN

D T

ISS

UE

EN

GIN

EE

RIN

G-B

IOM

AT

-Gra

nad

a Ju

ne

-200

9

Stress tensor

MACROSCOPIC CRITERIA OF BONE FRACTURE UNDER OVERLOADING

Porosity

F(σeq(σij), σu (Hij, n, α)) = 0

Fabric tensor Ash fraction

Equivalent stress Ultimate strength

strength ultimatestress equivalent

=≡ RFCβ

Page 18: COMPUTATIONAL MECHANOBIOLOGY OF HARD TISSUE . …kinetic/biomat09/biomat/Lecture_1.pdf · 2009. 6. 2. · voids ˆ 1 ˆ =1 = 1 = − = = ... EERING-BIOMAT-Granada June-2009 In 1985,86

Lecture 1. Structure, properties and mechanical behaviour of bone tissue 35

CO

MP

UT

AT

ION

AL

ME

CH

AN

OB

IOL

OG

Y O

F H

AR

D T

ISS

UE

, AP

PL

ICA

TIO

NS

TO

IM

PL

AN

T D

ES

IGN

AN

D T

ISS

UE

EN

GIN

EE

RIN

G-B

IOM

AT

-Gra

nad

a Ju

ne

-200

9

The ultimate strength of bone depends on:

• porosity/apparent density;

• degree of mineralisation;

• microstructure: fabric tensor.

σu (Hij, n, α)

porosityanisotropy

Ultimate Strength

mineralisation

Lecture 1. Structure, properties and mechanical behaviour of bone tissue 36

CO

MP

UT

AT

ION

AL

ME

CH

AN

OB

IOL

OG

Y O

F H

AR

D T

ISS

UE

, AP

PL

ICA

TIO

NS

TO

IM

PL

AN

T D

ES

IGN

AN

D T

ISS

UE

EN

GIN

EE

RIN

G-B

IOM

AT

-Gra

nad

a Ju

ne

-200

9

BONE FRACTURE CRITERIA USED IN NUMERICAL SIMULATIONSE

Anisotropic criteria

Symmetric

Non-symmetric

• von Mises-Hencky(Lotz et al., 1991; Ford et al. 1996, Keyak et al. 1998, 2000, 2001)

• Strain-based criteria(Bayraktar, 2004; Schileo, 2007)

• Hoffman(Lotz et al., 1991; Keyak y Rossi 2000)

• Maximum stress (criterio de Rankine)(Fenech y Keaveny, 1999; Keyak y Rossi, 2000)

• Mohr-Coulomb(Keyak y Rossi, 2000)

• Tsai-Wu (1971)

• Cowin (1986)

• Pietrusczak (1999)

• Zysset and Ricón (2004)

Isotropic criteria

Page 19: COMPUTATIONAL MECHANOBIOLOGY OF HARD TISSUE . …kinetic/biomat09/biomat/Lecture_1.pdf · 2009. 6. 2. · voids ˆ 1 ˆ =1 = 1 = − = = ... EERING-BIOMAT-Granada June-2009 In 1985,86

Lecture 1. Structure, properties and mechanical behaviour of bone tissue 37

CO

MP

UT

AT

ION

AL

ME

CH

AN

OB

IOL

OG

Y O

F H

AR

D T

ISS

UE

, AP

PL

ICA

TIO

NS

TO

IM

PL

AN

T D

ES

IGN

AN

D T

ISS

UE

EN

GIN

EE

RIN

G-B

IOM

AT

-Gra

nad

a Ju

ne

-200

9Von Misses

( ) ( ) ( )

( ) ( ) ( )c

ct

c

Assumes

σσσσσσσ

β

σσσσσσσσσ

221

213

232

221

213

232

−+−+−=

=−+−+−

-200

-150

-100

-50

0

50

100

150

200

-200 -100 0 100 200

sig1(Mpa)si

g2(M

pa)

Ductile materials (metals)

Lecture 1. Structure, properties and mechanical behaviour of bone tissue 38

CO

MP

UT

AT

ION

AL

ME

CH

AN

OB

IOL

OG

Y O

F H

AR

D T

ISS

UE

, AP

PL

ICA

TIO

NS

TO

IM

PL

AN

T D

ES

IGN

AN

D T

ISS

UE

EN

GIN

EE

RIN

G-B

IOM

AT

-Gra

nad

a Ju

ne

-200

9

Hoffman

( ) ( ) ( )

( ) ( ) ( ) 3625142

2132

1322

321

654321

3625142

2132

1322

321

11

2

1

1

σσσσσσσσσβ

σσσσ

σσσσσσσσσ

CCCCCC

CCCCCC

CCCCCC

ctct

+++−+−+−=

−======

=+++−+−+−

-120

-80

-40

0

40

-200 -150 -100 -50 0

σ2σ

1

(Brittle materials)

Page 20: COMPUTATIONAL MECHANOBIOLOGY OF HARD TISSUE . …kinetic/biomat09/biomat/Lecture_1.pdf · 2009. 6. 2. · voids ˆ 1 ˆ =1 = 1 = − = = ... EERING-BIOMAT-Granada June-2009 In 1985,86

Lecture 1. Structure, properties and mechanical behaviour of bone tissue 39

CO

MP

UT

AT

ION

AL

ME

CH

AN

OB

IOL

OG

Y O

F H

AR

D T

ISS

UE

, AP

PL

ICA

TIO

NS

TO

IM

PL

AN

T D

ES

IGN

AN

D T

ISS

UE

EN

GIN

EE

RIN

G-B

IOM

AT

-Gra

nad

a Ju

ne

-200

9

Maximum stress

(Rankine)

321 σσσ >>⎩⎨⎧

<>

c

t

σσσσ

3

1

Mohr-Coulomb

Modified Mohr-Coulomb

⎥⎦

⎤⎢⎣

⎡=

ct

maxσσ

σσβ 31 ,⇒

13

1

=−c

t

σσ

σσ

ct σσ

σσβ 31 −=⇒

⎪⎪⎩

⎪⎪⎨

=−−

−≤=

..1

11

31

3

1

1

ccctc

tc

t

σσσ

σσσσ

σσ

σσ

Lecture 1. Structure, properties and mechanical behaviour of bone tissue 40

CO

MP

UT

AT

ION

AL

ME

CH

AN

OB

IOL

OG

Y O

F H

AR

D T

ISS

UE

, AP

PL

ICA

TIO

NS

TO

IM

PL

AN

T D

ES

IGN

AN

D T

ISS

UE

EN

GIN

EE

RIN

G-B

IOM

AT

-Gra

nad

a Ju

ne

-200

9

Criterion of Pietruszczak (Concrete, frictional anisotropic materials)

( ) ( )

( ) ( ) ( )( )( ) ( ) ( ) ( )θ⋅−−+−−+

−−+=θ

=⎟⎟⎠

⎞⎜⎜⎝

⎛+−⎟⎟

⎞⎜⎜⎝

⎛⋅θ

σ+⎟⎟

⎞⎜⎜⎝

⎛⋅θ

σ=

3sina1K1a1a1K

Ka1a1g

0f

Ia

fga

fgaF

c3

2

c2

c1

Directional dependency: ( ) ( ) γγ

⎟⎟⎠

⎞⎜⎜⎝

⎛−−

=⎟⎟⎠

⎞⎜⎜⎝

⎛ρρ

=0

i0c

00cic n1

ln1fflf

Criterion of Tsai-Wu (anisotropic materials)

( ) 1=+= jiijiik FFf σσσσ

Page 21: COMPUTATIONAL MECHANOBIOLOGY OF HARD TISSUE . …kinetic/biomat09/biomat/Lecture_1.pdf · 2009. 6. 2. · voids ˆ 1 ˆ =1 = 1 = − = = ... EERING-BIOMAT-Granada June-2009 In 1985,86

Lecture 1. Structure, properties and mechanical behaviour of bone tissue 41

CO

MP

UT

AT

ION

AL

ME

CH

AN

OB

IOL

OG

Y O

F H

AR

D T

ISS

UE

, AP

PL

ICA

TIO

NS

TO

IM

PL

AN

T D

ES

IGN

AN

D T

ISS

UE

EN

GIN

EE

RIN

G-B

IOM

AT

-Gra

nad

a Ju

ne

-200

9Criterion of Zysset and Rincón

• Double quadratic criterion (traction and compression) based on the Hill criterion.

• It fulfills all the tensorial and thermodynamic requirements.

• It has some problems in identifying the criterion material parameters of the bone organ point wise.

• It has been only applied to the interpretation of experimental tests on small size specimens very well characterized.

Lecture 1. Structure, properties and mechanical behaviour of bone tissue 42

CO

MP

UT

AT

ION

AL

ME

CH

AN

OB

IOL

OG

Y O

F H

AR

D T

ISS

UE

, AP

PL

ICA

TIO

NS

TO

IM

PL

AN

T D

ES

IGN

AN

D T

ISS

UE

EN

GIN

EE

RIN

G-B

IOM

AT

-Gra

nad

a Ju

ne

-200

9

Criterion of Cowin (1986) Locally orthotropic materials

6,...,2,1,, para 1),,( =−+= kjiFGnf kmijijkmijij σσσσ Η

12 −++ jjiiiijjiiiiiiiiii FFG σσσσ

In the space of principal streses, it may be written as

Page 22: COMPUTATIONAL MECHANOBIOLOGY OF HARD TISSUE . …kinetic/biomat09/biomat/Lecture_1.pdf · 2009. 6. 2. · voids ˆ 1 ˆ =1 = 1 = − = = ... EERING-BIOMAT-Granada June-2009 In 1985,86

Lecture 1. Structure, properties and mechanical behaviour of bone tissue 43

CO

MP

UT

AT

ION

AL

ME

CH

AN

OB

IOL

OG

Y O

F H

AR

D T

ISS

UE

, AP

PL

ICA

TIO

NS

TO

IM

PL

AN

T D

ES

IGN

AN

D T

ISS

UE

EN

GIN

EE

RIN

G-B

IOM

AT

-Gra

nad

a Ju

ne

-200

9

• Biaxial strength:

• Directional tension strength:

Constant 0<α< 1

• Directional compression strength: (Pietruszczak et al. , 1999)

Directional porosity

Lecture 1. Structure, properties and mechanical behaviour of bone tissue 44

CO

MP

UT

AT

ION

AL

ME

CH

AN

OB

IOL

OG

Y O

F H

AR

D T

ISS

UE

, AP

PL

ICA

TIO

NS

TO

IM

PL

AN

T D

ES

IGN

AN

D T

ISS

UE

EN

GIN

EE

RIN

G-B

IOM

AT

-Gra

nad

a Ju

ne

-200

9

1.5. Computational predictionof bone fracture

Page 23: COMPUTATIONAL MECHANOBIOLOGY OF HARD TISSUE . …kinetic/biomat09/biomat/Lecture_1.pdf · 2009. 6. 2. · voids ˆ 1 ˆ =1 = 1 = − = = ... EERING-BIOMAT-Granada June-2009 In 1985,86

Lecture 1. Structure, properties and mechanical behaviour of bone tissue 45

CO

MP

UT

AT

ION

AL

ME

CH

AN

OB

IOL

OG

Y O

F H

AR

D T

ISS

UE

, AP

PL

ICA

TIO

NS

TO

IM

PL

AN

T D

ES

IGN

AN

D T

ISS

UE

EN

GIN

EE

RIN

G-B

IOM

AT

-Gra

nad

a Ju

ne

-200

9

Non-invasive techniques as dual energy absorciometry no (DEXA) o computerized axial tomography (TAC) allow obtaining the distribution of porosity point-wise but not the distribution of anisotropy.

ALTERNATIVE: Three-dimensional Micro-CT for small size specimens.

GENERAL ALTERNATIVE : BONE REMODELLING MODELS

PARAMETERS ESTIMATION

Lecture 1. Structure, properties and mechanical behaviour of bone tissue 46

CO

MP

UT

AT

ION

AL

ME

CH

AN

OB

IOL

OG

Y O

F H

AR

D T

ISS

UE

, AP

PL

ICA

TIO

NS

TO

IM

PL

AN

T D

ES

IGN

AN

D T

ISS

UE

EN

GIN

EE

RIN

G-B

IOM

AT

-Gra

nad

a Ju

ne

-200

9

THE FRACTURE CRITERION

New loads andboundaryconditions

Mesh of theproximal

femur

BONE REMODELING

Cycle of 100 days Fabric TensorDensity

Prediction ofthe type of

bone fracture

Risk to Fracture Coefficient of

(RFC)

stress ultimatestressequivalent

=RFC

Page 24: COMPUTATIONAL MECHANOBIOLOGY OF HARD TISSUE . …kinetic/biomat09/biomat/Lecture_1.pdf · 2009. 6. 2. · voids ˆ 1 ˆ =1 = 1 = − = = ... EERING-BIOMAT-Granada June-2009 In 1985,86

Lecture 1. Structure, properties and mechanical behaviour of bone tissue 47

CO

MP

UT

AT

ION

AL

ME

CH

AN

OB

IOL

OG

Y O

F H

AR

D T

ISS

UE

, AP

PL

ICA

TIO

NS

TO

IM

PL

AN

T D

ES

IGN

AN

D T

ISS

UE

EN

GIN

EE

RIN

G-B

IOM

AT

-Gra

nad

a Ju

ne

-200

9

Acetabularcup

Femur Load cell

Belt

Support

Acetabularcup

Load

45º

Load cell

Shaft holder

Belt

Support of the femoral

head

Femur

Shaft holder

Experimental results (Yang et al., 1996)

Load at the lesser trochanter 7 neck fractures

Load at the greater trochanter 4 subtrochanteric and 3 intertrochantericfractures

Lecture 1. Structure, properties and mechanical behaviour of bone tissue 48

CO

MP

UT

AT

ION

AL

ME

CH

AN

OB

IOL

OG

Y O

F H

AR

D T

ISS

UE

, AP

PL

ICA

TIO

NS

TO

IM

PL

AN

T D

ES

IGN

AN

D T

ISS

UE

EN

GIN

EE

RIN

G-B

IOM

AT

-Gra

nad

a Ju

ne

-200

9

Iliopsoascontraction

Gluteusmediuscontraction

45º

Page 25: COMPUTATIONAL MECHANOBIOLOGY OF HARD TISSUE . …kinetic/biomat09/biomat/Lecture_1.pdf · 2009. 6. 2. · voids ˆ 1 ˆ =1 = 1 = − = = ... EERING-BIOMAT-Granada June-2009 In 1985,86

Lecture 1. Structure, properties and mechanical behaviour of bone tissue 49

CO

MP

UT

AT

ION

AL

ME

CH

AN

OB

IOL

OG

Y O

F H

AR

D T

ISS

UE

, AP

PL

ICA

TIO

NS

TO

IM

PL

AN

T D

ES

IGN

AN

D T

ISS

UE

EN

GIN

EE

RIN

G-B

IOM

AT

-Gra

nad

a Ju

ne

-200

9

Von Misses Hoffman Maximal stress

Load at the lesser trochanter (Iliopsoas)

Neck fracture

P=3000N α = 0.2

Lecture 1. Structure, properties and mechanical behaviour of bone tissue 50

CO

MP

UT

AT

ION

AL

ME

CH

AN

OB

IOL

OG

Y O

F H

AR

D T

ISS

UE

, AP

PL

ICA

TIO

NS

TO

IM

PL

AN

T D

ES

IGN

AN

D T

ISS

UE

EN

GIN

EE

RIN

G-B

IOM

AT

-Gra

nad

a Ju

ne

-200

9

Modified Cowin

Neck fracture

P=3000N α = 0.2

Load at the lesser trochanter (Iliopsoas)

Page 26: COMPUTATIONAL MECHANOBIOLOGY OF HARD TISSUE . …kinetic/biomat09/biomat/Lecture_1.pdf · 2009. 6. 2. · voids ˆ 1 ˆ =1 = 1 = − = = ... EERING-BIOMAT-Granada June-2009 In 1985,86

Lecture 1. Structure, properties and mechanical behaviour of bone tissue 51

CO

MP

UT

AT

ION

AL

ME

CH

AN

OB

IOL

OG

Y O

F H

AR

D T

ISS

UE

, AP

PL

ICA

TIO

NS

TO

IM

PL

AN

T D

ES

IGN

AN

D T

ISS

UE

EN

GIN

EE

RIN

G-B

IOM

AT

-Gra

nad

a Ju

ne

-200

9

Von Misses Hoffman Maximal Stress

P=6000N α = 0.4

Cowin

Neck fracture

Load at the lesser trochanter (Iliopsoas)

Lecture 1. Structure, properties and mechanical behaviour of bone tissue 52

CO

MP

UT

AT

ION

AL

ME

CH

AN

OB

IOL

OG

Y O

F H

AR

D T

ISS

UE

, AP

PL

ICA

TIO

NS

TO

IM

PL

AN

T D

ES

IGN

AN

D T

ISS

UE

EN

GIN

EE

RIN

G-B

IOM

AT

-Gra

nad

a Ju

ne

-200

9

Von Misses Hoffman Maximal stress

P=3000N α = 0.2

Load at the greater trochanter (Gluteus medius)

Sub and Inter trochanteric fractures

Page 27: COMPUTATIONAL MECHANOBIOLOGY OF HARD TISSUE . …kinetic/biomat09/biomat/Lecture_1.pdf · 2009. 6. 2. · voids ˆ 1 ˆ =1 = 1 = − = = ... EERING-BIOMAT-Granada June-2009 In 1985,86

Lecture 1. Structure, properties and mechanical behaviour of bone tissue 53

CO

MP

UT

AT

ION

AL

ME

CH

AN

OB

IOL

OG

Y O

F H

AR

D T

ISS

UE

, AP

PL

ICA

TIO

NS

TO

IM

PL

AN

T D

ES

IGN

AN

D T

ISS

UE

EN

GIN

EE

RIN

G-B

IOM

AT

-Gra

nad

a Ju

ne

-200

9

Modified CowinIntertrochantericfracture P=3000N α = 0.2

Sub and Inter trochantericfractures

Load at the greater trochanter (Gluteus medius)

Lecture 1. Structure, properties and mechanical behaviour of bone tissue 54

CO

MP

UT

AT

ION

AL

ME

CH

AN

OB

IOL

OG

Y O

F H

AR

D T

ISS

UE

, AP

PL

ICA

TIO

NS

TO

IM

PL

AN

T D

ES

IGN

AN

D T

ISS

UE

EN

GIN

EE

RIN

G-B

IOM

AT

-Gra

nad

a Ju

ne

-200

9

The use of isotropic elastic behavior and isotropic criteria allows predicting neck fractures but not intertrochantericfractures.

Anisotropy plays a fundamental role in the probability and region of fracture appearance in bone organs.

To obtain accurate quantitative results, subject-specific simulations are needed, using the actual material properties of the specific bone organ. On the contrary, only qualitative conclusions can be obtained due to the strong inter-individual variability of the properties of bone tissue.

MAIN CONCLUSIONS

Page 28: COMPUTATIONAL MECHANOBIOLOGY OF HARD TISSUE . …kinetic/biomat09/biomat/Lecture_1.pdf · 2009. 6. 2. · voids ˆ 1 ˆ =1 = 1 = − = = ... EERING-BIOMAT-Granada June-2009 In 1985,86

Lecture 1. Structure, properties and mechanical behaviour of bone tissue 55

CO

MP

UT

AT

ION

AL

ME

CH

AN

OB

IOL

OG

Y O

F H

AR

D T

ISS

UE

, AP

PL

ICA

TIO

NS

TO

IM

PL

AN

T D

ES

IGN

AN

D T

ISS

UE

EN

GIN

EE

RIN

G-B

IOM

AT

-Gra

nad

a Ju

ne

-200

9

• Different works seem to indicate that local bone failure may be driven by deformation (Nalla et al., 2003, Taylor, 2003).

• There is a growing consensus on the substantial isotropy of the yield strain and its invariance to density (Bayraktar, 2004, Currey, 2004, Cowin and He, 2005).

• Strain based criteria seem to reproduce accurately some uniand multiaxial experiments (Bayraktar, 2004)

• Some recent results (Viceconti, 2007) seem to support these ideas, proving that a maximum strain criterion produces a more localized risk fracture region and in some specific experiments an accurate reproduction of the fracture load.

STRAIN-DRIVEN CRITERIA

Lecture 1. Structure, properties and mechanical behaviour of bone tissue 56

CO

MP

UT

AT

ION

AL

ME

CH

AN

OB

IOL

OG

Y O

F H

AR

D T

ISS

UE

, AP

PL

ICA

TIO

NS

TO

IM

PL

AN

T D

ES

IGN

AN

D T

ISS

UE

EN

GIN

EE

RIN

G-B

IOM

AT

-Gra

nad

a Ju

ne

-200

9

STRESS FRACTURES

Bone is continuously cumulating microcracks (damage) that induce a progressive reduction of the strength and increase the risk of fracture under physiological loads.

Stress fractures are produced when damage accumulation and damage repair due to bone remodeling become unbalanced.

Pathologic bones (i.e osteoporotic) and bones under cyclic loads with high amplitude have a higher probability of developing stress fractures.

Page 29: COMPUTATIONAL MECHANOBIOLOGY OF HARD TISSUE . …kinetic/biomat09/biomat/Lecture_1.pdf · 2009. 6. 2. · voids ˆ 1 ˆ =1 = 1 = − = = ... EERING-BIOMAT-Granada June-2009 In 1985,86

Lecture 1. Structure, properties and mechanical behaviour of bone tissue 57

CO

MP

UT

AT

ION

AL

ME

CH

AN

OB

IOL

OG

Y O

F H

AR

D T

ISS

UE

, AP

PL

ICA

TIO

NS

TO

IM

PL

AN

T D

ES

IGN

AN

D T

ISS

UE

EN

GIN

EE

RIN

G-B

IOM

AT

-Gra

nad

a Ju

ne

-200

9

Lecture 1. Structure, properties and mechanical behaviour of bone tissue 58

CO

MP

UT

AT

ION

AL

ME

CH

AN

OB

IOL

OG

Y O

F H

AR

D T

ISS

UE

, AP

PL

ICA

TIO

NS

TO

IM

PL

AN

T D

ES

IGN

AN

D T

ISS

UE

EN

GIN

EE

RIN

G-B

IOM

AT

-Gra

nad

a Ju

ne

-200

9

Fatigue strength of materials is usually determined by an important amount of tests under different stress levels, determining the number of load cycles needed to get the fracture.

This results are represented in curves (S-N curves).

Fatigue behaviour under stress control for a bone “in vitro” under cyclic loads (Proubasta, 1997; Carter y Hayes, 1977).

Page 30: COMPUTATIONAL MECHANOBIOLOGY OF HARD TISSUE . …kinetic/biomat09/biomat/Lecture_1.pdf · 2009. 6. 2. · voids ˆ 1 ˆ =1 = 1 = − = = ... EERING-BIOMAT-Granada June-2009 In 1985,86

Lecture 1. Structure, properties and mechanical behaviour of bone tissue 59

CO

MP

UT

AT

ION

AL

ME

CH

AN

OB

IOL

OG

Y O

F H

AR

D T

ISS

UE

, AP

PL

ICA

TIO

NS

TO

IM

PL

AN

T D

ES

IGN

AN

D T

ISS

UE

EN

GIN

EE

RIN

G-B

IOM

AT

-Gra

nad

a Ju

ne

-200

9

Some results show that fatigue life is much more dependent on the amplitude of the strain cycle than on its mean or peak value.

Fatigue behaviour under strain control for a bone “in vitro” (Proubasta et al., 1997).

These results suggest that fatigue life of bone is much lower than that previously thought. This means that bone is permanently accumulating fatigue damage during its normal activity, being only the bone remodelling process the responsible of maintaining the long-term structural integrity of the skeletal system.

Lecture 1. Structure, properties and mechanical behaviour of bone tissue 60

CO

MP

UT

AT

ION

AL

ME

CH

AN

OB

IOL

OG

Y O

F H

AR

D T

ISS

UE

, AP

PL

ICA

TIO

NS

TO

IM

PL

AN

T D

ES

IGN

AN

D T

ISS

UE

EN

GIN

EE

RIN

G-B

IOM

AT

-Gra

nad

a Ju

ne

-200

9

PREDICTION OF STRESS FRACTURES

First alternative: Simple models that predict “fatigue” life by means of experimental S-N curves.

However, more accurate models should take into account the simultaneous accumulation and repair of microdamage. In this case, damage repair has to be taken into account.

In fact, Frost (1960) and many other authors have proposed that ones of the main goals of bone remodeling is microcrackrepairing and therefore microdamage would be the actual bone remodeling mechanical stimulus.

Second alternative: To use coupled damage-remodeling approaches. We shall discuss this aspect in the next lectures.

Page 31: COMPUTATIONAL MECHANOBIOLOGY OF HARD TISSUE . …kinetic/biomat09/biomat/Lecture_1.pdf · 2009. 6. 2. · voids ˆ 1 ˆ =1 = 1 = − = = ... EERING-BIOMAT-Granada June-2009 In 1985,86

COMPUTATIONAL MECHANOBIOLOGY OF HARD TISSUE . APPLICATIONS TO IMPLANT DESIGN AND TISSUE ENGINEERING

Lecture 1. Structure, properties and mechanical behaviour of bone tissue

Manuel DoblaréAragón Institute of Engineering Research (I3A) University of Zaragoza (Spain)[email protected]


Recommended