+ All Categories
Home > Documents > Conceptual Detector Design From the Neutron Fluxes Point of...

Conceptual Detector Design From the Neutron Fluxes Point of...

Date post: 18-Jul-2020
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
26
GEM TN-93-265 Conceptual Detector Design From the Neutron Fluxes Point of View V. L. Morgunov Institute for Theoretical and Experimental Physics January 8, 1993 Abstract: This article presents an attempt to estimate the lowest reachable level of neutron fluxes in an idealized, conceptual design of the detector. It was shown that most neutron sources in the GEM setup and underground hole is the collimator of Low-Beta Quadrupoles (LBQ). There were four conceptions used: 1) Calorimeter has no cracks for neutrons to escape; 2) Tapered inner hole in Forward Calorimeter; 3) Tapered vacuum tube up to LBQ's Collimator; 4) Shielding around Collimator and LBQ. Minimal neutron flux in volume of GEM conceptual design is - 5 · 1 Q9 neutrons/ SSCyear/cm2.
Transcript
Page 1: Conceptual Detector Design From the Neutron Fluxes Point of …lss.fnal.gov/archive/other/ssc/ssc-gem-tn-93-265.pdf · 2013-03-14 · Conceptual Detector Design from the Neutron Fluxes

GEM TN-93-265

Conceptual Detector Design From the Neutron Fluxes Point of View

V. L. Morgunov Institute for Theoretical and Experimental Physics

January 8, 1993

Abstract:

This article presents an attempt to estimate the lowest reachable level of neutron fluxes in an idealized, conceptual design of the detector. It was shown that most neutron sources in the GEM setup and underground hole is the collimator of Low-Beta Quadrupoles (LBQ). There were four conceptions used: 1) Calorimeter has no cracks for neutrons to escape; 2) Tapered inner hole in Forward Calorimeter; 3) Tapered vacuum tube up to LBQ's Collimator; 4) Shielding around Collimator and LBQ. Minimal neutron flux in volume of GEM conceptual design is - 5 · 1 Q9 neutrons/ SSCyear/cm2.

Page 2: Conceptual Detector Design From the Neutron Fluxes Point of …lss.fnal.gov/archive/other/ssc/ssc-gem-tn-93-265.pdf · 2013-03-14 · Conceptual Detector Design from the Neutron Fluxes

Conceptual Detector Design from the Neutron Fluxes Point of View

V.L. Morgunov SSC La.bora.tory

Institute for Theoretical a.nd Experimental Physics

117279 Moscow Russia.

January 8, 1993

Abstract This article presents a.n attempt to estimate the lowest rea.chea.ble

level of neutron fluxes in a.n idealized, conceptual design of the detec­tor. It wa.s shown tha.t most neutron sources in the GEM setup a.nd underground hole is the collimator of Low-Betta. Quadrupoles (LBQ).

There were four conceptions used, 1) Calorimeter ha.s no cracl:s for neutrons to escape. 2) Tapered inner hole in Forward Calorimeter. 3) Tapered vacuum tube up to LBQ's Collimator. 4) Shielding a.round Collimator a.nd LBQ.

Minimal neutron flux in volume of GEM conceptual design is ...., 5 · 109 neutrons/SSCyea.r/cm2•

1 Introduction

Simulations presented here were ma.de using system LAHET (LANL) and include LAHET itself Ref. (1] a.s well a.s the low energy neutron transport code MCNP Ref. (2].

1

Page 3: Conceptual Detector Design From the Neutron Fluxes Point of …lss.fnal.gov/archive/other/ssc/ssc-gem-tn-93-265.pdf · 2013-03-14 · Conceptual Detector Design from the Neutron Fluxes

The geometry and materials description for GEM Base Line 2 was written by Laurie Waters.

Calculations for both Base Line 2 and Simple2 setups are based on the same set of 50 minibias events generated by N. Mokhov with the DTUJET program and normalized to C = 1033 or 1015 events/SSC year.

All pictures were made by the CERN program, PAW Ref. [3], and draw­ings with the PAW command, HISTOGRAM/PLOT ID COLZ, which re­sulted in the colored scale at the right side of the histograms, numbers are power of 10. Resolutions of the histograms are 5cm x 5cm and lOcm x 5cm, scales of histograms are in centimeters.

Continuous colors (any point of Rand Z) indicate a distribution of flux for neutrons with energy 2:: 20MeV (program LAHET). There is no possi­bility to plot two dimension continuous flux distribution for neutrons with energy less than 20MeV - program MCNP called user only at the geometrical boundaries. That is the reason that only separate lines are shown for the sum­marized neutron fluxes. Neutron energy region is 10-9eV ~En~ 20TeV.

2 Description of Simplified Setup Figures 1, 2, 3, 4

All pictures of this setup are referenced, "Simple2".

1. Tracker - cylinder 2m diameter, 4m length, filled with air. (no struc­ture inside)

2. Barrel part of calorimeter is not separated into Electro-magnetic and Hadron parts and is filled with a mixture of liquid krypton and lead with average density equal to 5.2g/cm3

Endcap isn't separated and is filled with the same mixture as a barrel part.

Hadron catcher is filled with a mixture of copper and scintillator with average density equal to 8.7g/cm3

Outside radius of the whole calorimeter is 3.7m.

Forward calorimeter has a tapered inside hole, filled with a mixture of tungsten and scintillator with average density equal to 17.5g/cm3 •

2

Page 4: Conceptual Detector Design From the Neutron Fluxes Point of …lss.fnal.gov/archive/other/ssc/ssc-gem-tn-93-265.pdf · 2013-03-14 · Conceptual Detector Design from the Neutron Fluxes

"

3. Vacuum tube is tapered from the edge of the FCAL up to the collimator of LBQ.

10 cm borrated polyethylene shielding is placed around the vacuum tube.

4. There is a concrete shielding around the collimator of LBQ and the LBQ itself with a thickness of 2m. The same thickness of shielding is 4 meters upstream of the collimator. Inner diameter of this shielding is tapered. Inner diameter of collimator is 2.4cm.

LBQ distance from interaction point is 35m.

5. There is a whole geometrical description of the underground GEM hole which includes the outside wall; thickness equals 3m of concrete. It is important for keeping all of the low energy neutron flux inside the GEM setup.

6. Other lines that you can see in the picture are specially made for reading fluxes from MCNP code. This program gives information to the user at the geometrical boundaries and has no usual tracking subroutines.

7. All material and mixtures used in Simple2 are the same as in Baseline2.

8. There was no description of GEM Baseline 2 setup done here; the information is in the Baseline 2 document Ref. [4].

3 What is the reason to study the simplified setup?

In early studies of neutron sources Ref. [5] you can see a large amount of hadronic stars along the beam tube and at the face of the field shaper. This is parasitic sources of neutron. All particle flux from the interaction point may be divided on two separated parts in theta angle direction.

First: From 90 degrees to approximately 0.5 degrees (71- 5.5). This part of high energy particles has to be measured for the physical reasons.

Second: From 0.5 degree of theta up to 0 degrees is parasitic for mea­surement and has to be far from the setup and should be shielded (have no neutron noise in muon chambers, for example) because it creates a large

3

Page 5: Conceptual Detector Design From the Neutron Fluxes Point of …lss.fnal.gov/archive/other/ssc/ssc-gem-tn-93-265.pdf · 2013-03-14 · Conceptual Detector Design from the Neutron Fluxes

amount of neutron fiuxes in all of the GEM setup. The idea was to remove all unneeded sources to a large distance and shield it to reduce the neutron fiuxes in GEM setup and in underground hole.

The pseudorapidity distribution of energy and multiplicity in minibias events (normalized on one event) are shown in Figures 5,6. This picture (Figure 6) shows a percentage of integrals for the different pseudorapidity regions. The number of neutrons produced is proportional to these integrals.

Tapered inner hole in Forward Calorimeter: If there is no tapered inner hole in FCAL you will have the following situation:

--p p

High energy hadrons will go to the face of the field shaper and create an additional neutron fiux in the muon chambers.

If there is no tapered vacuum tube:

1 mm 1m

10 m

--p p

4 Description of Sources Figures 7, 8, 9

These are Z, R plots of density of hadronic stars multiplied by the number of neutrons which are created in this hadron interaction; the plot includes energy region of neutrons from several TeV to approximately 1 MeV and

4

Page 6: Conceptual Detector Design From the Neutron Fluxes Point of …lss.fnal.gov/archive/other/ssc/ssc-gem-tn-93-265.pdf · 2013-03-14 · Conceptual Detector Design from the Neutron Fluxes

some less (neutrons evaporated from the rest nuclei). In Figure 7, the LBQ collimator region is shown with an uncompleted

transverse hadronic shower development which shows the spread of high en­ergy hadrons in any direction around collimator. These hadrons create neu­tron sources in other parts of the setup and at the walls of the underground hole. In Figure 8, neutron sources are present even in the magnet vessel walls and field shaper support. These sources should not occur at all. Never­theless, the calorimeter has enough interaction length to catch the hadronic shower and one can see a high density of neutron sources along the beam line downstream calorimeter. These sources occur because the Baseline 2 design has no tapered forward inner calorimeter hole and no tapered vacuum tube. For the same reason, many hadronic stars are present at the face of the field shaper. Figure 9 shows integral by R (projection on Z axis) all neutron sources and, again, one can see a large difference between the two setups.

5 Description of Fluxes Figures 10, 11, 12, 13, 14, 15

It must be pointed out first that there are not enough statistics ( 50 pp events) available for both setups. You can see separated neutron tracks (En > 20MeV) and no possibility of precisely calculating the flux. But we have an opportunity to make an upper estimation of neutron fluxes.

In the Figures 10,11 you can see neutron fluxes in 4 meters region around the beam tube (Fig.10), and inside the GEM setup volume 20 x 10 meters (Fig.11).

As was stated before, unshielded collimator and LBQ are the biggest sources of high (E ;::: 20 MeV) energy neutrons and hadrons. Also one can see that 2m of concrete shielding is not enough to catch the high energy neutron flux, and that the length of shielding upstream collimators should be increased. A big difference between the two configurations one can see at Figure 11. There is no high energy neutrons flux for the idealized calorimeter (Simple2), and a big flux irradiated from the edge of the calorimeter in Base Line 2 and from the beam tube between the calorimeter and field shaper.

Total neutron fluxes (10-9 eV::; En::; 20TeV ).are shown as separated lines and as one can see, they all have the same color in most part of volume.

5

Page 7: Conceptual Detector Design From the Neutron Fluxes Point of …lss.fnal.gov/archive/other/ssc/ssc-gem-tn-93-265.pdf · 2013-03-14 · Conceptual Detector Design from the Neutron Fluxes

This means the summarized picture for Base Line 2 will have a red color (- 1012 neutrons/SSCyear/cm2) around all the picture and for Simple2, it will be blue (- 109 neutrons/SSCyear/cm2

) on average. Numerical values of neutron fluxes are shown at the Figures 12,13,14,15

in the usual manner. At each histogram of Figures 12,13 you can see two curves, the lower of them is a flux for neutrons with energy > 20 MeV (Program LAHET), the higher curve is a flux for neutrons with energy 10-9eV::; En::; 20MeV. There are several interesting facts which should be pointed out:

1. For Base Line 2 , high energy neutron flux is negligible in comparison with low energy one.

2. Outside the calorimeter all low energy neutron curves become flat. This means the low energy neutron spreads like a gas or a cloud with the approximately constant density in all volume of the setup.

3. By comparison of low energy neutron fluxes for both devices (Figure 14,15), one can estimate the difference of a factor of 5 · 102

- 103• The

same relation between high energy neutron fluxes gives a factor 10 -20.

One order difference in high energy fluxes in comparison with three orders difference in low energy fluxes means than high energy neutrons and other hadrons create low energy neutron sources in any dense vol­umes of the GEM setup and in the walls of the underground hole.

6 Errors Estimation

Difference between the two setups which are under study is a factor of sev­eral hundreds. Any benchmark of LAHET system shows the disagreement less than 50%. Another factor takes place in the uncertainties of the soft hadronic interaction theoretical predictions at super-high energies. Several such theories and models now exist and are reviewed in Ref. (6, 7, 8]. Total cross section estimates made by Bock Ref. [9] shows a difference in total cross section of about a factor of two, but Bock uses a very simple model

6

Page 8: Conceptual Detector Design From the Neutron Fluxes Point of …lss.fnal.gov/archive/other/ssc/ssc-gem-tn-93-265.pdf · 2013-03-14 · Conceptual Detector Design from the Neutron Fluxes

to estimate the total cross section; it's a usual extrapolation. In more so­phisticated models like supercritical pomeron exchange Ref. [10], there is no large uncertainty in estimate of a total cross section for pp interaction at f<s) = 40TeV. This error can be estimated as a factor 1.4.

Another error comes from multiplicity distribution. A usual picture for multiplicity distribution is shown

8

7[ §~

7

;:-r------:; t

I

c IZ V

dl•teJd -da•wd/ai•dy Bcex ~DC a 3aBDCUNOCTlt OT 6wCTpOTW v C\")l)llpm.IX cneJ\TpOB JI Paa-~e ~ • . .. ) tli!leBHLIX • pp-CT0.1KHOBellllJIX. -38pHmeBBJ.l:t 118CTllU (B OC'ROBROll !'t·lle30B~B ! po .- ., 53 r B

l CllCTC'llW p-p· 1 - \ s-20 raB. • - 3 1

KpJIBLtC OTnOCllTCR K paanliDI aseprnllll • • .. ,... 20 " .,n raB 4 ' TaB 5 - 20 TaB 6 - 10' TaB, 7 - 10' TaB. )l;m 3B8'10B1lD l ,6_ ' " - """ • - - • ' N - 'd ID tg (~/2) - RBUB YCT• :53 11 MO ras mTpHXOM yu.aas XO~ Be.nB11DR d clll "'' l'Jl8 ,,_r c -

pota, a T&K>Ke :iaa:m..te aKcnepnxesTa .u;n11 dllic1a/d'fl

with a numeric value for the number of charged particles at the plateau between 6 - 14 for different models.

The slope of this distribution I T/ I> 5 has a very different value in each model also. There is not an estimation of the fiuence of this slope to neutron fiuxes in all setups at the SSC and LHC but a big dependence of fiuxes (number of sources in collimator of LBQ) seems to be from this slope.

7

Page 9: Conceptual Detector Design From the Neutron Fluxes Point of …lss.fnal.gov/archive/other/ssc/ssc-gem-tn-93-265.pdf · 2013-03-14 · Conceptual Detector Design from the Neutron Fluxes

7 Proposals for Future Design

Neutrons with energy less than 20 MeV have transversal and longitudinal distribution in hadronic showers wider than any other hadrons and they are transported through the cracks. This should be taken into account during the calorimeter design.

Any neutron sources may be calculated using GEANT more easily than LAHET or CALOR 89.

8 Conclusion

A conceptual, idealized design of the detector shows a possibility to reach 5 x 109 flux in muon chambers by making an acceptable length of calorime­ter without cracks for neutrons, tapered inner hole of forward calorimeter, tapered vacuum tube and shielded collimator and LBQ of less expensive material, i.e., concrete.

9 Acknowledgments

Author gratefully acknowledges Yuri Kamyshkov, Mike Marx, Laurie Waters, Yuri Fisyak and Nikolay Mokhov for their helpful comments and an inter­est for this work, and Linda Fowler, for her assistance and support during preparation for publication.

10 References

1. R.E. Prael and H. Lichtenstein "User Guide to LCS: The LAHET Code System", LA-UR-89-3014, (September 1989).

2. Judith F. Briesmeister, Editor "MCNP - A General Monte Carlo Code for Neutron and Photon Transport (Version 3A)", LA-7396-m, Rev. 2 Manual, UC-32, (September 1986).

3. R.Brun et al. "PAW Physics Analysis Workstation", CERN, Ql21, (August 1989).

8

Page 10: Conceptual Detector Design From the Neutron Fluxes Point of …lss.fnal.gov/archive/other/ssc/ssc-gem-tn-93-265.pdf · 2013-03-14 · Conceptual Detector Design from the Neutron Fluxes

4. "Progress Report on the GEM Detector Baseline Design", GEM Col­laboration, GEM TN-92-231,Draft, (December 1992).

5. "Neutrion Task Force meeting- SSCL", GEM TN-92-217, (October 21, 1992).

6. Shekhard Shukla "High Energy Elastic And Diffractive Scattering", FERMILAB-Conf-92/232, (August 1992).

7. M.M. Block, A.R. White "Review of Total Cross Sections and Forward Scattering Parameters at Ultra-High Energies", Northwestern Univer­sity N.U.H.E.P. report No. 191, ANL-HEP-CP-91-95, (October 1991).

8. R. Engel, F.W. Bopp, D. Perterman, J. Ranft, "Extrapolation of Hadron Cross Section to Supercollider Energies within the Two Component Dual Parton model", SI-92-5, UL-HEP-92-5, (May 1992).

9. M.M. Block, R.N. Cahn, "Fit to High Energy pp and pp Total Cross Section and p0 Values", Phys. Lett. B 188 (1987), 143

10. C. Bourrely, J. Soffer, T.T. Wu, "Impact Picture Prediction for pp and pp elastic scttering at CERN Collider, FNAL Collider, LHS and SSC", Z. Phys. C 37, (1988), 369

11 Appendix

1. Flux definition: If function <p(r, t, E, fl) makes full differential description of density of flux of particles, then the flux density is

lalyear !. lEm~

~(;:") = dtdfldE.,,(r,t,E,n) 0 41" 0

(1)

and equivalent value is(~(;:")= dN/ds) number of particles which pass through the sphere centered at r position with cross section equal ds.

2. All pictures may be seen by making a command on pdsf hp, paw histogram/file l -morgunov /picture/ simpl2.hist

9

Page 11: Conceptual Detector Design From the Neutron Fluxes Point of …lss.fnal.gov/archive/other/ssc/ssc-gem-tn-93-265.pdf · 2013-03-14 · Conceptual Detector Design from the Neutron Fluxes

(separated files: are simpl2Jahet, simpl2..mcnp) or histogram/ file 2 -morgunov/picture/baslin2.hist (separated files : are baslin2Jahet, baslin2..mcnp) opt logz min 231 l.e6 min 222 l.e6 min 231 l.e7 min 232 l.e7 histogram/plot 221 colz histogram/plot 222 colz histogram/plot 231 colz histogram/plot 232 colz

3. All histograms consist of more information than shown in this article; make ZOOM to see more details.

For example to see fluxes in the Tracker only, type: hist/plot 231(1 : 50, 1 : 25) colz

To have numerical information, type: vector/create vl(400, 80) r get/ contents 231 vl vector/write vl file After these commands you will have a file with all containment of his­togram.

10

Page 12: Conceptual Detector Design From the Neutron Fluxes Point of …lss.fnal.gov/archive/other/ssc/ssc-gem-tn-93-265.pdf · 2013-03-14 · Conceptual Detector Design from the Neutron Fluxes

,..._... ~ O::> o~

::> 00 o::: z O::> • ::> ::> ... O::> 0 . 0 00 :::: .... ... 00 0 . .., ... ...,

-o . ., z ,., 0 - O:> 0

:."l t.') ... O:> 00 .... ::: "' 00 •O .... ~ 00 0 . •">> O:> ::: ... 00 0 ... ~

. .., "'"' o- .., _..,

-' Nt.. O:> o~ c ::E 00 0 ,_.., n 00 • n ''""-' 00 0

~~ Q ooz. ... -(l)OO- z =- .. t!) u

-::ix 0'6'00- ~ .., =< = x c.. c-o-i.J

I I

..... ,, .lit

·;; // .... --< V) - -

I I fl II

HI ltl IF==i I \I t ! 1 I ~:. /?· ,~

Figure I

11

I !-\1'-. __ --l

WJ w

I I

Page 13: Conceptual Detector Design From the Neutron Fluxes Point of …lss.fnal.gov/archive/other/ssc/ssc-gem-tn-93-265.pdf · 2013-03-14 · Conceptual Detector Design from the Neutron Fluxes

,_.... -00 o-0 00 00

6 00 •O

"' 00 0 <;.) 00 0 u .. 00 0 . , .... 0

-o N z ,., 0 - 00 0

''"'' "' OC> 00 ... = ... 00 •C .... ...... 00 Cl .... > C> 00 0 .... QC> 0 ... ...... c .., Ill N o- N _..,

...J NC.. 00 o-c~ 00 0 ,_..., a 00 • B

""" ...J 00 C>

~~ c ooz .... -U>OQ- z

NW m- ... .... -:,, )( ocnae>- i-.... c::< c: x

=-=~~

u

u

" ~

= 0

" .. = ~

= u ~

,. • 0

= .. .. " = ~ = c ,. • =

" ~ " .. ~ • = ~ ..

= .. ~ = c 0 ,. ~ ,. 0 u

i : ; w •• I :.

I f

I .. : L J·t

f

' -. -~-~'"· .. ·· ' . ~~~-:.,; !

l·,·1--------;-:, -.~.-

r .q '-------

j ---------ll; ... : ... ··. 1 •.

======·-<~-::_~-~~====

Figure 2

Page 14: Conceptual Detector Design From the Neutron Fluxes Point of …lss.fnal.gov/archive/other/ssc/ssc-gem-tn-93-265.pdf · 2013-03-14 · Conceptual Detector Design from the Neutron Fluxes

12/~0/22 20 12 47 G!Y SlMULA.TlCN FINE St:~~NiAi!ON

PP.0!10 • 12/10/92 20 O~ 17 BA.s:s c a.oocooo. 0.000000, 1.ooooool ( 0. oocooo. 1 • 000000. Q. 00 0000 ORIGIN i 0.00, o.oo. 0.00) ~x~e:Ni - ( 2000.00. 2oco.oo)

0

~~·~·~~~~~-:-~~-"+-~~,I-Tl

r

I r.,

gt-i=~~~~~~~H

• 1 ~ I i:;;:======ilf=::====;;:;~i1 1 1 ~ I~~ I

U ur oH] ~~~~ ~~y

~ ;~ I ri f

l i.!! ~=:::!!!:=== ========:=! .l !111 I \! t

, " I ~ r gl_J~~~~~~~~~~~~~~~~~~~u~I~, o· 1 1 ~ ~ f

-1oco o 1000 2GOO

Figure :3

Page 15: Conceptual Detector Design From the Neutron Fluxes Point of …lss.fnal.gov/archive/other/ssc/ssc-gem-tn-93-265.pdf · 2013-03-14 · Conceptual Detector Design from the Neutron Fluxes

i J I

•• I ...... I ' • I I •• ' ' ' I • 1 •

~ i '----.!....------'1------'------'I'------'------' I f g~~_;_~~~'~l~_;_~~~llC--~--'--~~ I r o '.I ..,- ;

0 ~ ' ~

I ~ I [ L

i I . I

I I I

r

c I

I ~ r

I " ' ' 2 J I

2: I r N I

I

j

~ J I

-4000

I

I ' I I I I I '

-2000

Figure 4

I

[ L [ ~

r I I

~ t I [

' ' ' '

2000 4000

Page 16: Conceptual Detector Design From the Neutron Fluxes Point of …lss.fnal.gov/archive/other/ssc/ssc-gem-tn-93-265.pdf · 2013-03-14 · Conceptual Detector Design from the Neutron Fluxes

93/01/02 16.34

DTUJET Minibias Event IO'

IO•

······+~~1••······· .,;or . . . . ~~-L_. ________ L_ ____ . _____ L ___________ L. __________ _L _______ _

IO'

10

0 2 4 • 8 10 12

Energy

~ z 20

"" " 10

0 0 2 4 • 10 12

Multiplicity

10• ,....:.···· ... :

10' .. ··-·· ... ~- ··---... ··-·f ·. ··-·· .. ----~---- ---··;- : . -'··········f ····------. . . ' . . . . . . . . . . ---- -- ----1· ----------··:---·-· - .. ·r··--------·--:--------- ----;-·· ---- ... 10'

10 ··-r···········-·r····· .. ···· .. r·········· .. ·i·-········ . . . . . . . . . . ' . . . . --- . --~---·. -------. -:-····· ... ·····7·····--·····-~-· ..... ·-·---~---·---··.

0 2 4 • 8 10

Average Energy

Figure .5

Page 17: Conceptual Detector Design From the Neutron Fluxes Point of …lss.fnal.gov/archive/other/ssc/ssc-gem-tn-93-265.pdf · 2013-03-14 · Conceptual Detector Design from the Neutron Fluxes

to

·• 10

. , to

·• 10

0

93/0 l/02 16.35

DTUJET Minibias Event

················--;··············--···--:···················-; ..................... , .................... .;. ... --·····-:i

"" ~ _,

. . ······};-s--z..; ..................... ; ................... r················---i···

. . ' . . '

·······o;·~-~t>·········· ······-~·-······--····· ···+···· ··············i··· . . . . . . . . . .

~.,et.·~ f;:, 1 .. • 1 • l LS Q .

• • •• • • • • • • •• •• • • • :. • •• •• •• • • J. ••u •• •• ~- • •••••• •• •• ••• •• •• ~- •••• •• • • •• •• •••••• •• ~- ••

/ PD~WA-11-1'

CA- i:.o fU ~1 . . . . ............. -----~---·-····· ········· :·-············· .. ··:······· ··············:···

e, ... v,,ee: + : : : ~ .. ,,! cuif'

. . . . .................. 1·----·~: .......... ,. .......... ~ ..... ]' .................... [;.:; 1,j : !oi . .

2 • • • Integral Contlirunent of Energy

Figure 6

................ ; ................. .

-·········--·---;--················

10 12

Page 18: Conceptual Detector Design From the Neutron Fluxes Point of …lss.fnal.gov/archive/other/ssc/ssc-gem-tn-93-265.pdf · 2013-03-14 · Conceptual Detector Design from the Neutron Fluxes

0:::

320

280

240

200

160

120

IO

40

0

400

360

320

2IO

240

200

160

120

IO

40

0

0 soo 1000

ase ne

1500 2000 3000

NEUTRON ORIGINS DISTRIBUTION

NEUTRON ORIGINS DISTRIBUTION

Figure 7

93/01/03 11.53

z

z

13

12

11

10

9

8

7

6

13

12

11

10

9

8

7

6

Page 19: Conceptual Detector Design From the Neutron Fluxes Point of …lss.fnal.gov/archive/other/ssc/ssc-gem-tn-93-265.pdf · 2013-03-14 · Conceptual Detector Design from the Neutron Fluxes

93ft)l,-03 11.52

1000 13

12 800

11

600 2 10

9

8

7

~· ...... 6

800 1000 1200 1400 1600

z NEUTRON ORIGINS DISTRIBUTION

1000 13

12 IOO

11

600 Simpl 2 10

9

8

200

7

0 6 IOO 1000 uoo

z NEUTRON ORIGINS DISTRIBUTION

Figure 8

Page 20: Conceptual Detector Design From the Neutron Fluxes Point of …lss.fnal.gov/archive/other/ssc/ssc-gem-tn-93-265.pdf · 2013-03-14 · Conceptual Detector Design from the Neutron Fluxes

id'~ id'~

~

=u id' E..

! ~ r

10' ~ F

10• ~ := r r 1 r l 1 r

0 soo

0 soo

' ' ' 1000 ,,..

iooo ISOO

92/12/17 11.29

i I'

.I , I I ' ' ' ' 2000 lSOO 3000 3500 -

Linear neutron origins density

111.111\1 '''I j I liijilij

' =

2000 !SOO 4500

Linear neutron origins density

Figure 9

Page 21: Conceptual Detector Design From the Neutron Fluxes Point of …lss.fnal.gov/archive/other/ssc/ssc-gem-tn-93-265.pdf · 2013-03-14 · Conceptual Detector Design from the Neutron Fluxes

400

360

320

280

240

200

160

120

80

40

0

400

360

320

280

2'()

200

160

120

80

40

0

Neutron flux density

NEUTRON FLUX DENSITY

Figure 10

93~1ft)3 11.39

z

z

16

15

14

13

12

11

10

9

8

7

16

15

14

13

12

, j

10

9

8

7

Page 22: Conceptual Detector Design From the Neutron Fluxes Point of …lss.fnal.gov/archive/other/ssc/ssc-gem-tn-93-265.pdf · 2013-03-14 · Conceptual Detector Design from the Neutron Fluxes

93/01/03 11.41

a::: 16 1000

15

IOO 14

13

600 12

11

10

9 200

8

0 7

z Neutron flux density

a::: 1000 15

14

IOO 13

12 600

11

400 10

9 200

8

0 7

z NEUTRON FLUX DENSITY

Figure 11

Page 23: Conceptual Detector Design From the Neutron Fluxes Point of …lss.fnal.gov/archive/other/ssc/ssc-gem-tn-93-265.pdf · 2013-03-14 · Conceptual Detector Design from the Neutron Fluxes

1ti'

10'

io. 0

1d'

id'

1d'

id'

io.

io. 0

id'

id'

io.

io. 0

id'

id'

io.

0

93/01/04 17.12

Neutron Flux Density Baseline2

750 1000 Ii!..

z=685cm

""'-.,; ' I •• : •• • : ..... ·- .. ~ .. ·-·-------:---........ ~----··· ... :.'1" . . . . . . . . ... . . . . -~----· .. ·····: ····· ... ----:- ···-·-·-···!· \.. ; : ; ; .. ~:~.,..~·w.··'Y·-~---·-··4·-.:.. ........... ;.

: :. ..... ,,. l':.'f"~"i-1-., ~- --...:__ : . . .......... ,.~. ~ . ---- .... · 1····· .. ... --~ ...... .. : .. 1-........ -~\!'

500 750 1000 n..

z=985cm

_,,_ __ __,. : ... :

------ ---1- -- ----- ----i-· -------·· 1··· ·------!-r -~- ---· ··1 ·· ----- -----1 --- ·-· -----1---·· ·-·-· ··r -~-~ . . . . :., :t .. ~-.f;.'~;:v~~:. ·;; ~ ··---~········· --·!·

: .. ...,.. ~ .:-,,.~~•":.'fr~ : : : ; . ' . ....... · 1 · -··· ..... ··1-·· ... ----·t· ........ .

250 500 750 iooo R.

z=1005cm

......... ~ ....... -----~--- ........ .:... ____ _. __ ::. ~ . . . . . . . . . . . . . . . . . ..... -···1··-· ----. ···i··------ ----:-·-········· l· . ·········•···········-~-·-········.,:.. ........... .;.

: _•\':f/"...;,.f~,1,"'.."-f~.:J..V1~• ~

------··+2-=·.: .. :.r--··-"··--·1····:: ... 4t. 500 750 iooo R.

z=1440cm

HI'

io'

io'

id'

td'

id'

uf'

io.

io.

uf'

id'

id'

id'

io'

io'

id'

id'

id'

id'

io.

io.

Figure 12

0

0

0

0

. . .... - - - - . - - - • : ••••• - - • - •. - ~ - - - - ••••••• .!- - - ••• - - - - ·- ;. . ' . .

' . . ' . ' . ' . .

-'.-~~-~--- -- .... ·- -~ ··-- -- .. ·- --~---- -- ·····-l-• :.A-~- :

......... ~- •• "'"'!/"•·;'Iii .......... -..:- ...•...•... ;. . . ""'-- . " . : .. :1...,... ..... ,................... : : : ... : •. • f~~:

•••••••••;•••••••••••·~·····•·•····i··'····••·~~ o\ . . . . .. 500 750 1000 1<.

z=705cm

~ :· : ... : ······--·~············:···········-=-·········=·:' . . . . . . . . ........ ; ........... -~ ........... .;. ........... ; . . : : : : .. . . . . ·"'"~ . : .. : : : . ... _, .... iK.•-..,c'A.t.~~~~---···-=····-·······i-...... ~.,. . . ............ .

• '!: •• • • • ..,. ~·--.•A'._,, : . .... : ... 1-----···----~······:·····j·······::.:1~ ...

250 750 iooo R.

z=996cm

·········1············:···········t· .. ··: .. :,.:,

: :: :: :: :: L :::~:: :: :t:: :: :: :: :: T :: :: :::: :: i: · i~.: v"1i'tW:.::~~~v.'<'' : ... ~~--,.··: ........... . ······'~--1------:······r-···········1····--=--·~-:

500 750 iooo R..

z=l190cm

....... "" l" ........ ···f .......... ·t··· .: :. --"=-i= . . . .

·········~·-··········:·········· --~··········-:-. . . . . . . . . . . . ···------~-----::·::·::·:;;;~~~----··----:·

: . -~· ..... ~"' ... ~-- '· ······--~~---?---····:f····-······t···: ..... 1~\l

250 500 750 iooo t<.

z=1460cm

Page 24: Conceptual Detector Design From the Neutron Fluxes Point of …lss.fnal.gov/archive/other/ssc/ssc-gem-tn-93-265.pdf · 2013-03-14 · Conceptual Detector Design from the Neutron Fluxes

id'

id'

10.

10. 0

id'

id'

uf'

10'

10' 0

11/'

id'

Id'

•••

••• II

93/01/04 16.59

Neutron Flux Density Simple 2

\

\ ~ : . : ·····x··:········ .. ··:·· .. ·····-·:--......... . \ \i : :

--i---i~·:·········!··········-r·········· >l. : : · :· r···~- ·· ··.· -~ ·· ···:: · · ·1·=~-- ·; ·· ·· . \ "'-::...., ... .. . . . . ... ,.. : .. --:ii ..... ::~. .. -~:.::· .:: ·:·· .

··-···;:····:··:·~T··········· ~.

"" ,,.

IDDO />-

z=205cm

. . . .

:::::::::i:::::::::::r:::::::::r::::::::::i: . . . . . . . . . . . . . . . . . . .

·······:·4:·~ .. ·-·:···r·········:·T···········r .. ·j": . ~-... :·_: .. : .. ~-~ .... :·~-. j

··:·····r··!·~--- .. ::.~-. :.r:··; :····I' l :· . l

"" 7'11 .... I<,_

z=740cm

. . . . . . · ·· ·· ·-·-r ---- ---- -- ·i·------- -- ·1···· ·· ·· ···· r . . . . . . . . . . . . . . . . . . . . . . . . . . . . ························----------..----------···· . . . . . . . . . . . . . . . . . . . . ... . . . . . . -.-:. : : . 'io'" • ---·:·;··;·:r·:,;,····i:t···········::

·: ..... - .. :···•·.·.-·;: ....... :.·-"·-.-· -:: .. •.,; ....... . . ... .. . . .. .. (. . .. . -:. i· ... := .. -·:~·····-~·:· ·r·=·=· ... :.: :·

.... .... z=l800cm

id'

ID'

ID'

111'

id'

1rl'

•••

111'

111'

11/'

id'

lrl'

111'

• ••

Figure I:J

. . . . . . . ........ ~ ............ ~ ..... . .................... . .

......... ~ ............ : ........... .:. ........... : .

: ':~~-~ -~·:·: ~:).-.~~-~:·;~:t.::·-~::· .. :· ·.,~~-';

.1. :. : .. : .. -~-~.: :: .. ~. : .. J.~.: :: ...... i. . . :· . . . :· . ·. .

II ... ,,. .... fl.

z=580cm

. :. .. II ""

,,. IDDD R_

z=lOOOcm

. . . . . . ········:-··········~··········:··········~······· . . . . . . . . . . . . . . . . . . . . . . . . ·······-························ ················

. . . . ··:· .. ··::·:·· .. ·: ··;· :· ...... ··:; :··· ...... :· ..... . .... -"""'' ....... ,, ,. :--" ~- ~ ....... •-: : · ... -: .. : ~ ...... ·. ,., : •':. .... ~. ·;,., -~ l ·. :·';-:. ..... f-:-.\."':..•v·r:··r:····:t··"'···::··; .. ·····

• • :. ,i>.· .. j, • ••• : . . . . 0 ... l2DD .... -r

r=910cm

Page 25: Conceptual Detector Design From the Neutron Fluxes Point of …lss.fnal.gov/archive/other/ssc/ssc-gem-tn-93-265.pdf · 2013-03-14 · Conceptual Detector Design from the Neutron Fluxes

93/01/06 OX.34 r:: > 20 MeV L. ,,

1<1'

1o'l ·········~·········---:- ---····--·:-··········-~- 1d'

1d'

id'

10.

JO.

0

0

. ' . . ·•. ':a:..: ~:

.. _______ ;":;...~:-.----l-IQ~s~-~·:!'_~j:2 "<t.':. ~ :~ . :

0•'\~I ,J.. • 0

• :.,r.

. ; ~ ·~ '\",?· . ·,·~:.:.. .:. ----- ·: -- ~ ----- -------r ------- ----~ -- ----- -:· ~:r·~

:'.... . . i .~ ~ 111 ~e.e 2.. :· . . .... : :

lOO 150 1000 I'-

z=685cm

' ' ' . . . --·--· ---1 · -· -· ··· ·· -·1 ·------ · --- ·;- · · · ·---- ---r ' . ' ' ' . ' ' ' ' ' ' ' ' ' ' ' ' ' ' '

: : : ' ' . ' . . . . . -. -..... ·- -----· ---- ........ -.. -- .... -....... --·. . . . . . . . . . ' ' ' ' ' ' ' ' ' ' ' ' ' .. : : . ' . ' . '

·:~,~~;~?:·:-:~/~i:~~:--~-·1:-:----.----+ : • • ; "a•"'N.:.;~~ •• ; : i ... ...... ·<:.·:d ~ : . ·..: .. ·

·····1;· -~- ........... ~ ----- ·-··· ·-:·· .. ·······4;:·

·1· ' i . . .j_ j.:-: ·:-. : : 1 1 ... i .... .. ;

,,. 10011

z=IOOScm

10.

10.

10'

Figure 14

0

0

......... ~ ... -........ : -... -..... --:- ---........ ~ .

.•. ·: .. ...

.,., ~

~-';. ....... _,, ......... ; ... :~~-!~ .... ; ... ----····,············ ,.

.... "·i " ;r,. I!· r

~ • ; .. • .~.:",. v•t .. ,;:':_;:, :. • .. ........ . . :· . ·.·.: \ . . . . ·········i·····:······•············~-: ....... !.~ . .

.... .. :-:. . _,

·~· .. . '••

"" lOO '" 1000

z=705cm

' ' . . ' ' ·········1············;···········-r···········1·

. ' . . . ................................. -............ . ' ' ' ' ' ' . ' .

' ' ......... ~·······--···~--····-----~--·--·----··:·

l ~~~+-.::-:;::::,i;~~~,;;::;~: J ... : > : :'~ ·" .. : ··- .:· : ·.:·:· . :· : : : ..

····•·.:·:··-·;;----·!"''"""""":·------··--:· ""I~ '•! : :

; ' · .... ·~. .. ' ... . :· .. ·.... ... ..: .. _

500 750 1000

z=1460cm

I'\

Page 26: Conceptual Detector Design From the Neutron Fluxes Point of …lss.fnal.gov/archive/other/ssc/ssc-gem-tn-93-265.pdf · 2013-03-14 · Conceptual Detector Design from the Neutron Fluxes

-" I) "eV< En<. 2 D Met! 93/01/06 08.34

HI' HI' • ' ·-...; : ~- ... .

......... : ..... 13..~.~-"'-~'.:~.~ .. ?. .... .":.;, . .

\ ........

~........_.,_,.,., __ ~ ...... -.. ~- .. -.... -... ; -...... -.... : ... -. --... ~ -; ..

1d' . . . -·-· ······-········--·········----------------··· : :

HI' .... -.... ;, .... ·- .... -~ ....... -... .:. .. -. -... -.. : . : . :

... :. s4mpeie,2 .

':.;·::::.r~,7 .. ::::,:~p.:_~;:.~~~J_;.~_:·:~:···:· . . . : ........ ; .. · .......... ~ ............ ; ............ :·

. ·:·

. . •. : . . . : . : . ··. . 10'

. . . . .... --. -. ~ .. -........ -~ ... -...... -~--- -- ·: .... -~. :• : . 10.

. .

10. 0 soo 750 1000 il 0 soo 750 1000 R

z=685cm z=705cm

1d'

1d'

.. . . ·-· .. -... ~ .... -- ...... ; ........ -. -~--- ..... --=. ~ 1d'

.:.~. ·r- 1 ~ ·· · :·

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . --· -... --·. -. -..... ·--·-····. ------... ···-----·· . . . . 1d' 1d' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ' . . ' . . . . . ' . . . . . · .. •, . ; : . . . . ': .~- .... ;; -1----··· ..... j ........... ~--···:·-----~-

' :t'::~f'U'/f <1 10.

1d' . . . .,. :. : . .

.,;:1::.::;r;:yr:;;;.~.

................ ,v;··'•••·,,··;·:~·•••·······" 10'

~ l j l" 10.

0 ,,. llllO II. 0 soo 750 1000 R

z:l005cm z:l460cm

Figure J.5


Recommended