+ All Categories
Home > Documents > Conductance Quantization and Landauer Formula -...

Conductance Quantization and Landauer Formula -...

Date post: 13-May-2018
Category:
Upload: phungdiep
View: 221 times
Download: 1 times
Share this document with a friend
31
Conductance Quantization and Landauer Formula Nina Leonhard SS 2010
Transcript

Conductance Quantization and Landauer Formula

Nina Leonhard SS 2010

1. Important length scales

2. Potential well

3. 2-dimensional electron gas

4. Landauer formula

5. Landauer-BΓΌttiker formalism

6. S-Matrix

Contents

1. Important length scales

2. Potential well

3. 2-dimensional electron gas

4. Landauer formula

5. Landauer-BΓΌttiker formalism

6. S-Matrix

Contents

Important length scales

β€’ Wavelength: at low temperatures current transport occurs for electrons with energies near the Fermi-energy. The Fermi-wavelength is given as:

πœ†πΉ =2πœ‹

π‘˜πΉ 𝐸𝐹 =

ℏ2π‘˜πΉ2

2π‘š

For low temperatures, meaning π‘˜π‘‡ β‰ͺ 𝐸𝐹 , the Fermi distribution is almost a step function

E

f(E)

GaAs: πœ†πΉ β‰ˆ 40 nm Si: πœ†πΉβ‰ˆ 35 - 112 nm

π‘˜π‘₯

π‘˜π‘¦

π‘˜πΉ

βˆ’π‘˜πΉ

βˆ’π‘˜πΉ

π‘˜πΉ

Important length scales

β€’ Wavelength: at low temperatures current transport occurs for electrons with energies near the Fermi-energy. The Fermi-wavelength is given as:

πœ†πΉ =2πœ‹

π‘˜πΉ 𝐸𝐹 =

ℏ2π‘˜πΉ2

2π‘š

For low temperatures, meaning π‘˜π‘‡ β‰ͺ 𝐸𝐹 , the Fermi distribution is almost a step function

E

f(E)

GaAs: πœ†πΉ β‰ˆ 40 nm Si: πœ†πΉβ‰ˆ 35 - 112 nm

Important length scales

β€’ Mean free path π‘³π’Ž: distance an electron travels until its initial momentum is destroyed

β€’ Phase-relaxation length 𝑳𝝋: distance an electron travels until its initial

phase is randomized

Ballistic regime: πœ†πΉ < 𝐿 < πΏπ‘š Diffusive regime 𝐿 > πΏπ‘š Coherent transport: 𝐿 < πΏπœ‘ Incoherent transport: 𝐿 > πΏπœ‘

GaAs: πΏπ‘š β‰ˆ 100 βˆ’ 10000 nm πΏπœ‘ β‰ˆ 200 nm

Si : πΏπ‘š β‰ˆ 37 βˆ’ 118 nm πΏπœ‘ β‰ˆ 40 βˆ’ 400 nm

π‘³π’Ž

𝑳𝝋

1. Important length scales

2. Potential well

3. 2-dimensional electron gas

4. Landauer formula

5. Landauer-BΓΌttiker formalism

6. S-Matrix

Contents

Solve

βˆ’β„2

2π‘šβˆ† + 𝑉 π‘₯ Ξ¨ π‘₯ = 𝐸Ψ π‘₯

with boundary conditions

Ξ¨ βˆ’πΏ

2= Ξ¨ +

𝐿

2= 0

β‡’ 𝐸𝑛 =ℏ2πœ‹2𝑛2

2π‘šπΏ2

π‘˜π‘› =π‘›πœ‹

𝐿

with 𝑛 ∈ β„•

Number of occupied states

𝐸𝐹 =ℏ2π‘˜πΉ2

2π‘š= 𝐸𝑀 =

ℏ2πœ‹2𝑀2

2π‘šπΏ2

β‡’ 𝑀 = πΌπ‘›π‘‘π‘˜πΉπΏ

Ο€

Potential well

E

L

Potential well

Discrete energy-levels for small widths For macroscopic systems energy bands

E E

1. Important length scales

2. Potential well

3. 2-dimensional electron gas

4. Landauer formula

5. Landauer-BΓΌttiker formalism

6. S-Matrix

Contents

Two semiconductor layers:

n-AlGaAs and i-GaAs layer

electrons flow from n- to i-layer

electrons are β€žcaughtβ€œ in z-direction

2-dimensional electron gas

z

z

𝐸𝐢

𝐸𝐢

𝐸𝐹

𝐸𝐹

𝐸𝑉

𝐸𝑉

E

E

2-deg

Wavefunction of a free particle

Ξ¨ π‘₯, 𝑦, 𝑧 = πœ™π‘š 𝑧 π‘’π‘–π‘˜π‘₯π‘₯π‘’π‘–π‘˜π‘¦π‘¦

Its energy is given as:

𝐸(π‘˜) = 𝐸𝐢 + πœ€π‘š(𝑧) +ℏ2

2π‘šπ‘˜π‘₯2 + π‘˜π‘¦

2

πœ€π‘š(𝑧): transverse energy in z-direction

2-deg: only π‘š = 1 is occupied

πœ€1(𝑧) < 𝐸𝐹 πœ€π‘š>1

(𝑧) > 𝐸𝐹

2-dimensional electron gas

π‘˜ = π‘˜π‘₯2 + π‘˜π‘¦

2

E(k)

𝐸𝐹

πœ€1(𝑧)

πœ€2(𝑧)

πœ€3(𝑧)

2-dimensional electron gas

contact 1 contact 2 L

W

Ohmβ€˜s law for the resistance 𝑅 =𝐿

πœŽπ‘Š

We can also use the conductance 𝐺 = π‘…βˆ’1 =Οƒπ‘Š

𝐿

For 𝐿 β†’ 0 we would expect 𝐺 β†’ ∞

But: experiments show that G is quantized

π‘Š β‰ͺ 𝐿 π‘˜πΉ < 𝐿 < πΏπ‘š

x

y

2-dimensional electron gas

First experimental results were obtained by B.J. van Wees in 1988

2-dimensional electron gas at an AlGaAs-GaAs interface

The width is controlled with the gate voltage

Width

2-dimensional electron gas

𝐸𝐹

Because W is so small, only a few modes are occupied. We can rewrite the wavefunction:

Ξ¨ π‘₯, 𝑦, 𝑧 = πœ™1 𝑧 πœ‰π‘›(𝑦)π‘’π‘–π‘˜π‘₯

Its energy is given as:

𝐸 π‘˜ = 𝐸𝐢 + Ξ΅1(𝑧)+ πœ€π‘›(𝑦)+ℏ2π‘˜2

2π‘š

πœ€π‘›(𝑦): transverse energy in y-direction

(e.g. energies of the potential well)

𝐸𝐢 + Ξ΅1(𝑧)+ πœ€π‘›(𝑦)< 𝐸𝐹 : open transport channel

𝐸𝐢 + Ξ΅1(𝑧)+ πœ€π‘›(𝑦)> 𝐸𝐹 : closed transport channel

π‘˜ = π‘˜π‘₯

E(k)

Ξ΅1(𝑦)

Ξ΅2(𝑦)

Ξ΅3(𝑦)

Ξ΅4(𝑦)

1. Important length scales

2. Potential well

3. 2-dimensional electron gas

4. Landauer formula

5. Landauer-BΓΌttiker formalism

6. S-Matrix

Contents

Landauer formula

Assumptions:

β€’ Reflectionless contacts: the current flowing from the conductor to the contacts is not reflected

β€’ Ballistic conductor: no reflection within the conductor

β€’ Low temperatures

contact 1 contact 2 Ballistic

conductor

Β΅1 Β΅2

-k -k

+k +k

Landauer formula

Result: finite contact resistance that is quantized for a ballistic

conductor 𝐺𝐢 =2𝑒2

β„Žπ‘€

How do we calculate M?

Number of modes can be estimated to be (for zero magnetic field)

𝑀 = πΌπ‘›π‘‘π‘˜πΉπ‘Š

Ο€

because of 𝐸𝑀 = 𝐸𝐹

Landauer formula

A very large number of modes has to be carried by a few modes.

k k k

E E E

resistance = contact resistance

πœ‡1

πœ‡2 πœ‡2

πœ‡1

Landauer formula

Now consider a conductor with two ballistic leads. There is a

transmission probability T that an electron crosses the conductor.

𝐼1+ =2𝑒

β„Žπ‘€[ΞΌ1 βˆ’ πœ‡2] and 𝐼2

+ =2𝑒

β„Žπ‘€π‘‡ ΞΌ1 βˆ’ πœ‡2

𝐼1βˆ’ =2𝑒

β„Žπ‘€(1 βˆ’ 𝑇)[ΞΌ1 βˆ’ πœ‡2]

Total current: 𝐼 = 𝐼1+ βˆ’ 𝐼1

βˆ’ = 𝐼2+ =2𝑒

β„Žπ‘€π‘‡ πœ‡1 βˆ’ πœ‡2 β‡’ 𝐺 =

2𝑒2

β„Žπ‘€π‘‡

Β΅1 Β΅2 Lead 1 Lead 2 conductor

𝐼1+

𝐼1βˆ’

𝐼2+

transmission

reflection

Landauer formula

𝐺 =2𝑒2

β„Žπ‘€π‘‡ Landauer formula

Generalization: 𝐺 =2𝑒2

β„Ž 𝑀𝑇𝑛 𝑛

Can we obtain Ohmβ€˜s law from the Landauer formula? Yes, we can see that:

πΊβˆ’1 =𝐿

Οƒπ‘Š+𝐿0Οƒπ‘Š

1. Important length scales

2. Potential well

3. 2-dimensional electron gas

4. Landauer formula

5. Landauer-BΓΌttiker formalism

6. S-Matrix

Contents

Landauer-BΓΌttiker-formalism

More difficult problem, e.g.

1

2

3

V

Landauer-BΓΌttiker-formalism

The formula has to be modified

𝐼𝑝 =2𝑒

β„Ž π‘‡π‘žβ†π‘πœ‡π‘ βˆ’ π‘‡π‘β†π‘žΞΌπ‘žπ‘ž with 𝑇 = 𝑀𝑇

We can introduce πΊπ‘π‘ž =2𝑒2

β„Žπ‘‡π‘β†π‘ž

and obtain

𝐼𝑝= πΊπ‘π‘žπ‘‰π‘ βˆ’ πΊπ‘žπ‘π‘‰π‘žπ‘ž

Sum rule (Kirchhoff-laws):

πΊπ‘žπ‘π‘ž = πΊπ‘π‘žπ‘ž

1. Important length scales

2. Potential well

3. 2-dimensional electron gas

4. Landauer formula

5. Landauer-BΓΌttiker formalism

6. S-Matrix

Contents

S-Matrix

For a coherent conductor the transmission function can be expressed with the scattering matrix. The scattering matrix relates the incoming amplitudes for each state with the outgoing amplitudes after the scattering process.

𝑏 = 𝑆 π‘Ž For the transmission probabilities:

π‘‡π‘šβ†π‘› = π‘ π‘šβ†π‘›

2

𝑆 = π‘Ÿ 𝑑′𝑑 π‘Ÿβ€²

π‘Ÿ, 𝑑, π‘Ÿβ€˜, π‘‘β€˜ are matrices

Incoming states {a}

Β΅1 Β΅2

{b} states after scattering

Scattering

S

S-Matrix

Properties of the S-matrix: β€’ Calculating the S-matrix is equivalent to solving the problem. β€’ dim𝑆 = 𝑀𝑇 ×𝑀𝑇 with 𝑀𝑇(𝐸) = 𝑀𝑝(𝐸)𝑝

β€’ S has to be unitary 𝑆†S = 𝑆𝑆† = 𝐼 β€’ Reversing the magnetic field transposes the S-Matrix

𝑆 𝐡 = 𝑆𝑑(βˆ’π΅)

S-Matrix

Combining S-matrices: Instead of solving the problem rightaway, one can divide it into smaller problems that have already been solved. Example:

π‘Ž1

π‘Ž3 𝑏1

𝑏3 𝑏2

π‘Ž2

𝐬(𝟏) 𝐬(𝟐)

S-Matrix

𝑏1𝑏2= π‘Ÿ

(1) 𝑑′(1)

𝑑(1) π‘Ÿβ€²(1)π‘Ž1π‘Ž2 and

𝑏3π‘Ž2= π‘Ÿ

(2) 𝑑′(2)

𝑑(2) π‘Ÿβ€²(2)π‘Ž3𝑏2

Eliminate π‘Ž2 and 𝑏2: 𝑏1𝑏3=π‘Ÿ 𝑑′

𝑑 π‘Ÿβ€²π‘Ž1π‘Ž3

Where 𝑑 = 𝑑(2)𝑑(1)

1βˆ’π‘Ÿβ€²(1)π‘Ÿ(2)

𝑑′ =𝑑′(1)𝑑′(2)

1βˆ’π‘Ÿ(2)π‘Ÿβ€²(1)

π‘Ÿ = π‘Ÿ(1) +𝑑′(1)π‘Ÿ(2)𝑑(1)

1βˆ’π‘Ÿβ€²(1)π‘Ÿ(2)

π‘Ÿβ€² = π‘Ÿβ€² 2 +𝑑(2)π‘Ÿβ€²(1)𝑑′(2) 1βˆ’π‘Ÿβ€²(1)π‘Ÿ(2)

𝑠(1)

𝑠(2)

𝑠(1+2)

Summary

β€’ For mesoscopic ballistic conductors the conductance is 𝐺𝐢 =2𝑒2

β„Žπ‘€

β€’ Conductor with 2 ballistic leads 𝐺 =2𝑒2

β„Žπ‘€π‘‡

β€’ Generalization for many conductors πΊπ‘π‘ž =2𝑒2

β„Žπ‘‡π‘β†π‘ž

β€’ We can use the S-matrix to calculate the conductance

Thank you for your attention.


Recommended