+ All Categories
Home > Education > Confluent hypergeometricfunctions

Confluent hypergeometricfunctions

Date post: 13-Jun-2015
Category:
Upload: -
View: 101 times
Download: 2 times
Share this document with a friend
Popular Tags:
13
13 . Confluent Hypergeometric Functions LUCY JOAN SLATEB' Contents Mathematical Properties ................... 13.1. Definitions of Kummer and Whittaker Functions ..... 13.2. Integral Representations ............... 13.3. Connections With Bessel Functions ........... 13.4. Rkcurrence Relations and DifTerential Properties ..... 13.5. Asymptotic Expansions and Limiting Forms ....... 13.6. Special Cases .................... 13.7. Zeros and Turning Values ............... Page 504 504 505 506 506 508 509 510 Numerical Methods ...................... 511 13.8. Use and Extension of the Tables ............ 511 13.9. Calculation of Zeros and Turning Points ......... 513 13.10. Graphing M(a. b. z) .................. 513 References .......................... 514 Table 13.1. Confluent Hypergeometric Function M(a. b. z) ..... 516 Table 13.2. Zeros of M(u. b. z) .................. 535 Z= .l (.1) l(1) 10. a= - 1 (. 1)l. b= . 1 (.l)l, 8s ~=-1(.1)-.1, b=.I(.l)I, 7D The tables were calculated by the author on the electronic calculator EDSACI in the Mathematical Laboratory of Cambridge University. by kind permission of its director. Dr . hl . V . Wilkes. The table of M(a. b. 2) was recomputed by Alfred E . Beam for uniformity to eight significant figures . * University Mathematical Laboratory. Cambridge . (Preparedunder contract with the NatiOd Bureau Of StaIldlUdS.)
Transcript
Page 1: Confluent hypergeometricfunctions

13 . Confluent Hypergeometric Functions LUCY JOAN SLATEB'

Contents

Mathematical Properties . . . . . . . . . . . . . . . . . . . 13.1. Definitions of Kummer and Whittaker Functions . . . . . 13.2. Integral Representations . . . . . . . . . . . . . . . 13.3. Connections With Bessel Functions . . . . . . . . . . . 13.4. Rkcurrence Relations and DifTerential Properties . . . . . 13.5. Asymptotic Expansions and Limiting Forms . . . . . . . 13.6. Special Cases . . . . . . . . . . . . . . . . . . . . 13.7. Zeros and Turning Values . . . . . . . . . . . . . . .

Page 504 504 505 506 506 508 509 510

Numerical Methods . . . . . . . . . . . . . . . . . . . . . . 511 13.8. Use and Extension of the Tables . . . . . . . . . . . . 511 13.9. Calculation of Zeros and Turning Points . . . . . . . . . 513 13.10. Graphing M(a. b. z) . . . . . . . . . . . . . . . . . . 513

References . . . . . . . . . . . . . . . . . . . . . . . . . . 514

Table 13.1. Confluent Hypergeometric Function M(a. b. z) . . . . . 516

Table 13.2. Zeros of M(u. b. z) . . . . . . . . . . . . . . . . . . 535 Z= .l (.1) l(1) 10. a= - 1 (. 1)l. b= . 1 (.l)l, 8s

~=-1(.1)- .1, b=.I(.l)I, 7D

The tables were calculated by the author on the electronic calculator EDSACI in the Mathematical Laboratory of Cambridge University. by kind permission of its director. Dr . hl . V . Wilkes. The table of M(a. b. 2) was recomputed by Alfred E . Beam for uniformity to eight significant figures .

* University Mathematical Laboratory. Cambridge . (Prepared under contract with the NatiOd Bureau Of StaIldlUdS.)

Page 2: Confluent hypergeometricfunctions

13. Confluent Hypergeometric Functions Mathematical Properties

13.1. Definitions of Kummer and Whittaker Functions

Kummer's Equation

?!!+(b-z) dw --uw=o dZ dz 13.1.1

It has aregular singularity at z=O and an irregular singularity at m .

Independent solutions are

Kummer's Function

13.1.2

where

(u)~=u(u+~)(u+~) . . . (u+n-1), (u)~=I,

and

13.1.3

Parameters (m, n positive integers) M(a, b, 4

all values of a, b and z

i n 2

b#-n a#-m a convergent series for

b#-n a=-m a polynomial of degree m

b=-n a#-m b=-n a=-m, a simple pole at b=-n

m>n

b=-n a=-m, undefined

U(a, b, z) is defined even when b+fn

13.1.4

m5n

As 1 2 1 + m J

M(a, b, z)=m e'z"-b[l+O(lzl-l)] (9z>O) r (a) and

13.1.5

U(a, b, z) is a many-valued function. Its princi- pal branch is given by - r<arg z 5 r.

13.1.6 Logarithmic Solution

(?I-l)! - +- z "M(a-n, 1-n, 2)" I? (a)

for n=OJ 1, 2, . . ., where the last function is the sum to n terms. It is to be interpreted as zero when n=O, and ~(a)=I"(a)/I?(a).

13.1.7 U(a, 1-n, z)=z"U(a+q., l+n, z)

As 9 z + m

13.1.8 U(a, b, z)=z-"[l+O(l~J-')]

13.1.9 Analytic Continuation

?r M(b-a, b, Z) U(a, b, ze*")=- e-' sin ?rb ' I? (1 +a- b) r (b) efrf(l-B) 1-b

1 - z M(1-a,2--bJ Z)

r (a) r (2- b)

where either upper or lower signs are to be taken throughout.

13.1.10

+e-hfbRU(u, b, z)

Alternative Notations

IFl(a; b; z) or @(a; b; z) for M(a, b, z) z-"2Fo(a, 1 +a-b; ;- l/z) or *(a; b; z) for V(a, b, z)

Complete Solution

p=AM(a, b, z)+BU(a, b, Z) 13.1.11

where A and B are arbitrary constants, b#-n.

Eight Solutions

13.1.12 ~,=M(u, b, Z)

13.1.13 ys=zl-bM(l+a-b, 2-b, Z)

13.1.14 y,=ezM(b--a, b, -2)

Page 3: Confluent hypergeometricfunctions

CONFLUENT HYPERGEOMETRIC FUNCTIONS 505

13.1.15 y4=z1-bezM(1--a, 2-b, -2)

13.1.17 ~s=~' -~U( l+a-b , 2-b, Z)

13.1.18 y,=e'U(b--a, b, -2)

13.1.19 y,=zl-bezU(l--a, 2-4 -2)

WmIMkianS

If W{ m, n} =y,y~--y,,y& and t=sgn (Jz)=l if .fz>o,

=-1 if Y Z l O 13.1.20

W{1, 2}=W{3, 4}=W{l, 4}=-W{2, 3) = (1 4 ) z - bez

13.1.21

W{1, 3}=W{2,4}=W{5, 6}=W{7,8}=0

13.1.22 W{ 1, 5)=-r(b)~-~e~/r(a)

13.1.23 W{ 1, 7) = r(b)e"~*~-~e~/r(b--a)

13J.24 W{ 2, 5) = - r(2 - b)z- "*/r( 1 +a- 3)

13.1.25 W{ 2, 7 } = - r(2 - b)z- bez/r( 1 -a)

13.1.26 W(5, 7}=e"f(b-a' z e -*

Kummer Transformations

M(a, b, z)=e'M(b--a, b, -2) 13.1.27

13.1.28

~'-~M(l+a-b, 2-4 z)=zl-*ezM(l-u, 2-b, -2)

13.1.29 U(a, b, 2)=z1-*U(l+a-6, 216, Z)

13.1.30

Whittaker's Equation

13.1.31 %+I-,+--+ 1 K (t-r')],=, zz

Solutions:

Whittaker's Functions

13.1.32 Mg,,(z)=e-+'z++,M(3+p-N, 1+2p, Z) 13.1.33 Wg.,(Z) =e-W+W( 3+p--K, 1 +2p, 2)

(-r<arg ZIT, N=+~-u, p=+b-i)

13.1.34

General Confluent Equation 13.1.35

w"+[ 2A -+2j'+--h'-77 bh' h" ]w' z h

A(A-1) h"

Soh tions:

13.1.36 Z-Ae-f(z)M(a, b, h(Z))

13.1.37 Z-Ae-f")U(a, b, h(Z))

13.2. Integral Representations

9b>Wa>O 13.2.1

13.2.2

13.2.3

13.2.4

13.2.6

13.2.7

Page 4: Confluent hypergeometricfunctions

506 CONFLUENT HYPERGEOMETRIC FmycmoN8

13.2.8 r (a) ~ ( a , b, Z)

= eAzJAm e-z,(,-A)a-'(t+B)b-a-l~t

(A=l-B)

Similar integrals for ME,&) and W#,,,(z) can be deduced with the help of ..13.1.32' and 13.1.33.

13.2.9 Barnes-type Contour Integrals

for larg (-z)l<)r, a, b#O, -1, -2, . . . . The contour must separate the poles of I'(-s) from those of r(a+s); c is finite.

13.2.10

r(a)r(i+a-b)z"u(a, b, Z) 1 c+im

-- r(-8)r(~+~)r(i+a-b+s)z-*ds -2d L - t m

3r for larg z1<2, a#O, -1, -2, . . ., b-af l , 2,

3, . . . . The contour must separate the poles of r(--s) from those of r(a+s) and r(l+a-b+s).

13.3. Connections With b e e l Functions (see chapters 9 and 10)

Beace1 Functiom M LIrniti- caseo

If b and z are fixed,

13.3.1 h { M ( a ~ b, z/a)/r(b)} =2*-'1)-1(2m a+-

13.3.2 lim {M(a, b,-z/a)/r(b)} =z4-'Jb-1(21/z)

13.3.3 a+-

b {r(l+a-b) U(a, b, z/a)} =2z4-'&-1(2a a+-

13.3.4

lim{l"(l+a-b)U(a, b, -z/a)} a+-

= --xieTibz4-4bH$1(2~ (./z>O) -,,.ie-rib&+bHC21 13.3.5 - b-1(2&) (Jz<O)

E S ~ I ~ O M in Seriem 13.3.6 M(a, b, z)=e**r (b-~-))(tz)"-~++

13.3.7

m =e& 3 C"z"(-~2)'"-"")~b--l+n(2~(--az))

n-

where

Co=l, c,= -bh, c,= -)(2h-l)a+ib(b+l)hZ, (n+ l)Cs+l= [ (1 -2h)n--bhJC, + [ (1 -2h)a -h(h - 1) (b +n- 1 )] Cn-1

-h(h- l)aC,-2 (h real)

where c,= 1 , C,(a, b) =2a/b,

Cn+da, b)=2aC,(a+l, b+l)/b-Cs-,(a, b)

13.4. Recurrence Relations and Merentid Properties

13.4.1 (b-a)M(a-1, b, z)+(2a-b+z)M(a, b, 2)

-aM(a+l, b, z)=O

13.4.2 b(b-l)M(a, b-1, z)+b(l-b-z)M(a, b, 2)

+z(b-a)M(a, b+l, z)=O

13.4.3 (l+a-b)M(a, b, 2)-aM(u+l, b, 2)

+(b-l)M(a, b-1, z)=O

13.4.4 bM(a, b, 2)-bM(a-1, b, 2)-zM(a, b+l , z)=O

13.4.5 b(a+z)M(a, b, z)+z(a-b)Ai(a, b+l, 2)

--abM(a+l, b, z)=O

Page 5: Confluent hypergeometricfunctions

CONFLUENT HYPERGEOMETRIC FUNCTIONS 507

13.4.6

(a-l+z)M(a, b, z)+(b-a)M(a-l, b, 2) +(1-b)M(a, b-1, z)=O

13.4.7

b(l-b+z)M(a, b, z)+b(b-l)M(a-1, b-1, Pi

-azM(a+l, b+l , z)=O

(a)" M(a+n, b+n, 2) d" dz" 13.4.9 - { M(a, b, Z) }

13.4.10 aM(a+l, b, z)=aM(~, b, z)+zM'(a, b, Z)

13.4.11

(b-a)M(a-1, b, z)=(b-a-z)M(a, b, 2) +zM'(a, b, 4

13.4.12

(b-a)M(a, b+l , z)=bM(a, b, z)-bM'(a, b, 2)

13.4.13

(b-l)M(a, 6-1, z)=(b-l)M(a, b, 2) +zM'(a, bJ z,

13.4.14

(b-l)M(u-l, 6-1, z)=(b-1-z)M(a, b, 2) +zM'(aJ bJ z,

13.4.15

U(a-1, b, z)+(b-2a-z)U(a, b, 2) +a(l+a-b)U(a+l, b, z)=O

13.4.16

(b--a-l)U(fZ, b-1, z)+(l-b-z)U(a, b, 2) +zU(a, b+l, z)=O

13.4.11

U(a, b, 2)-aU(a+l, b, 2)-U(a, b-1, z)=O

13.4.18

(b-a) U(a, b, 2) + U(a- 1, b, 2) -zU(a, b+l , z)=O

13.4.19

(a+z)U(a, b, z)-zU(a, b+l , z) +a@-a-l)U(a+l, b, 2)=0

13.4.20

(a+z-l)U(a, b, 2)-U(a-1, b, z) +(l+a-b)U(a, b-1, z)=O

13.4.21 U'(U, b, z)=-aU(a+l, b+l, Z)

13.4.22

13.4.23

a(l+a-b)U(a+l, b, z)=aU(a, b, 2) +zU'@, b, 2)

13.4.24 (l+a-b)U(a, b-1, z)=(l-b)U(a, b, 2)

-zU'(a, b, 2)

13.4.25 U(a, b + l J z)=U(U, b, z)-U'(U, b, Z)

13.4.26 U(a-1, b, z)=(a-b+z)U(a, b, z)-zU'(a, b, 2)

13.4.27 U(u-1, b-1, z)=(l--b+z)U(a, b, 2)

-zU'(a, b, 2)

Page 6: Confluent hypergeometricfunctions

508 C 0 " T HYPEBGEOMETIUC FUNCI'IONS

13.5.11

13.5.12

(b=O)

~ L S a 4 - m for b bounded, z real.

where u ie defined in 13.5.13.

aa a+-- for b bounded, x rad.

For large real a, b, x If cdah' 6 = ~ / ( 2 b - 4 ~ ) 80 that ~>2b-U>l ,

Page 7: Confluent hypergeometricfunctions

CONFLUENT HYPERGEOMETRIC F"CM0NB 509

If z= (2b-&)[l+t/(b--2a)~], so that Z-2b-4~

13.5.19 M(a, b, z)=e+=(b-2a)'-Or(b)[Ai(t) cos (UT)

13.5.20 U(a, b, z) = e+=+"-+T(+) T-+&-*

+Bi (t) sin (UT) + O( I4b-a I-*)] { i--tr(~)(bz--2az)-13f~-f+O(l~--al-i)}

13.5.21 M(a, b, z) = r(b) exp { (b-24 COS* e}

[(b-2~) COS e]'-'[~($b-u) sin m]-+ [sin (ad +sin { (+-a) (2e-sin 2e) +ir)

13.5.22 U(U, b, ~)=exp [(b-24 COS~B] [ (~ -~U) COS el1-*

[(3b-U) sin 2e)-*{sin [($&a) If cos*f?=z/(2b-4~) so that 2b--4a>z>O, I (20- sin 26) + t TI + O(l 3b--al-') 1

13.6. SpeCi.1 Casea

13.6.1

13.6.2

13.6.3

13.6.4

13.6.5

13.6.6

13.6.7

13.6.8

13.6.9

13.6.10

13.6.11

13.6.12

13.6.13

13.6.14

13.6.15

13.6.16

13.6.17

13.6.18

13.6.19

13.6.20

Relation

e*

*

Function

BeeSel

&See1

Modified Bessel

Spherical Besael

Spherical Besael

Spherical Besael

Kelvin

Coulomb Wave

Incomplete Gamma

Poisson-Charlier

Exponential

Trigonometric

Hyperbolic

Weber or

Parabolic Cylinder

Hermite

Hermite

Error Integral

Toronto

*See page 11.

Page 8: Confluent hypergeometricfunctions

510

13.6.B

13.6.22

13.6.23

13.6.24

13.6.25

13.6.26

13.637

13.6.28

13.6.29

13.6.30

13.6.31

13.6.32

13.6.33

13.6.34

13.6.35

13.6.36

13.6.37

13.6.38

13.6.39

CONFLUENT HYPEROEOMETBIC F"C"I0NS

13.6. Spedrl CuebGntinued

a

V + t

V + t

V + t

n+l

9 n+t

-n

1--a

1

1

1

tm-n

- t V

1

1

- t V

4-1. t-tn t

b

2v+ 1

2v+ 1

2v+ 1

2n+2

+ 2n+ 1

a+ 1

1--a

1

1

1

l f m

0

1

1

t t t t

22

- 2ir 2it

2s

42'1'

6

2

2

-2

2

--In z

2

22

iz

-iz

t* 42'

a9

39

Relation Function

Modified Bessel

Hankel

Hankel

Spherical Bessel

Airy

Kelvin

Lsguem

Incomplete Gamma

Exponential Integral

Exponential Integrgl

Logarithmic Integral

Cunningham

Bateman

Sine and Cosine Integral

Sine and Cosine Integral

Weber or

Parabolic Cylinder

Hermite

Error Integral

13.7. &roe and Turning Values

If jD-l,, is the r'th positive zero OfJ&l(z), then a first approximation Xo to the r'th positive zero of M(a, b, z) is

13.7.1 XO=~:-~,, { 1/(2b-4a)+0(1/(3b-u)2) } 13.7.2

A closer approximation is given by

13.7.3 Xl=XO-M(a, 6, Xo)/M'(u, b, Xo)

For the derivative,

13.7.4

If XL is the first approximation to a turning value of M(u, b, z), that is, bo a zero of M'(u, b, z) then a better approxiniation is

Page 9: Confluent hypergeometricfunctions

CONFLUENT HYPERGEOMETRIC FU"I[ONS 51 1

The self-adjoint equation 13.1.1 can ala0 be written

13.7.6

I The Sonine-Polya Theorem

The maxima and minima of Iwl form an in- creasing or decreasing sequence according as

I - e - ' e - & Numerica

13.8. Use and Extension of the Tables Calculation of M(a, b, x) Kummer's Transformation

Compute M(.3, .2, -.I) to 7s. Using 13.1.27 and Tables4.4 and 13.1 we have a=& b=.2 so that

M( .3, .2, - .1) =e-.'M( - .l, .2, .l)

Thus 13.127 can be used to extend Table 13.1 to negative values of z. Kummer's transformation should also be used when a and b are large and nearly equal, for z large or small.

Example2. Compute M(17, 16, 1) to 7s. Here a=17, b=16, and

Exmple 1.

=.85784 90.

M(17, 16, l)=elM(-l, 16, -1) =2.71828 18X1.06250 00 =2.88817 44.

Recurrma Relations

Example 3. Compute M(--1.3, 1.2, .l) to 7s. Using 13.4.1 and Table 13.1 we have a=-.3, b=.2 so that

M( - 1.3, .2, .1)=2[.7 M( - .3, .2, . 1) - .3 M(.7, .2, . l)] =.35821 23.

By 13.4.5 when a= - 1.3 and b= .2, M(-1.3,1.2, .1)=[.26 M(--3, .2, .l)

-.24 M(--1.3, .2, .1)]/.15 =A9241 08.

Similarly when a= - .3 and b= .2

M(-.3, 1.2, .1)=.97459 52.

Check, by 13.4.6, M(-1.3, 1.2, .1)=[.2 M(-.3, .2, .l)

4-1.2 M(-.3, 1.2, .1)]/1.5 =A9241 08.

is an increasing or decreasing function of z, that is, they form an increasing sequence for M(a, b, z) if a>O, z<b-$ or if a<O, z>b-$, and a decreas- ing sequence if a>O and z>b-3 or if a<O and

The turning values of Iwl lie near the curves z<b-$.

1 Methods In this way 13.4.1-13.4.7 can be used together

with 13.1.27 to extend Table 13.1 to the range

-10<a<10, -10 j b <lo, -10 <z<10.

This extension of ten units in any direction is possible with the loss of about 1s. All the re- currence relations are stable except i) if a<O, b<O and lal>lbl, z>O, or ii) b<a, b<O, Ib--al>lbl, z<O, when the oscillations may become large, especially if IzI also is large.

Neither interpolation nor the use of recurrence relations should be attempted in the strips b=-nf.1 where the function is very large nu- merically. In particular M(a, b, z) cannot be evaluated in the neighborhood of the points a= - m, b=-n, m j n , as near these points small changes in a, b or z can produce very large changes in the numerical value of M(a, b, z).

Example 4. At the point (- 1, - 1, z), M(u, b, z) is undefined. When a=-1, M(-1, b, z)=l-afor all 2.

Hence lim M(-1, b,z)=l +z. ButM(b,b,z)=e)

for all z, when a=b. .Hence lim M(b, 6, z)=&.

In the first case b+- 1 along the line a= - 1, and in the second case b+-1 along the line a=b.

2

b+-1

b+-1

Derivatives

Example 5. To evaluate M'(-.7, -.6, .5) to 7s. By 13.4.8, when a= - .7 and b= -.6, we have

M(.3, .4, .5) - .7 M'(-.7, -.6, .5)=- - .6 =1.724128.

Asymptotic Formulas

For ~ 2 1 0 , a and b small, M(a, b, z) should be evaluated by 13.5.1 using converging factors 13.5.3 and 13.5.4 to improve the accuracy if necessary.

Page 10: Confluent hypergeometricfunctions

512 CONFLUENT HYPERGEOMETRIC FUNCTIONS

Example 6. Calculate M(.9, .l, 10) to 7S, using 13.5.1.

=-.198(.869) +1237253(.99190 285)

= 1227235.23- .17 + O(1) = 1227235+0(1)

+ O(1)

Check, from Table 13.1, M(.9, .l, 10)=1227235. To evaluate M(a, b, z) with a large, z small and b small or large 13.5.13-14 should be used.

Example7. Compute M(-52.5, .l, 1) to 3s, using 13.5.14.

M( -52.5, .l, 1) = r( .l)e-'(.05 + 52.5).25-.M .5642 COS [(.2-4( -52.5)) . I - .05r+ .254

11 +0((.05+52.5)-a6)]= -16.34+0(.2)

By direct application of a recurrence relation, M(-52.5, .l, 1) has been calculated as -16.447. To evaluate M(a, b, z) with z, a and/or b large, 13.5.17,19 or 21 should be tried.

Compute M(-52.5, .1, 1) using Example8. 13.5.21 to 3s, COS e=4'2.

M(-52.5, .l, 1) - -r(.l)e*oJ.l coa2e 1105.1 COS 8J1-.*.5641

52.55-1 sin 28-1[& (-52.5~) +sin (52.55(2e-~in 2e)+tr)

+ O((52.55)-')]= - 16.47-t O(.02)

A full range of asymptotic formulas to cover all possible cases is not yet known.

Calculation of U(a, b, x)

For - 105~510 , - 1 05~510 , -105b510 this is possible by 13.1.3, using Table 13.1 and the recurrence relations 13.4.15-20.

Example 9. Compute U(l.1, .2, 1) to 5s. Using Tables 13.1, 4.12 and 6.1 and 13.1.3, we have

U(.1, .2, 1)=

But M(.9, 1.8, 1)=.8[M(.9, . 8 , l)-M(-.l, .8, l)]

= 1.72329, using 13.4.4.

Hence

U(. 1, .2, 1) =5.344799 (.37 1765 - .194486) = .94752.

Similarly

Hence by 13.4.15

U(-.9, .2, 1)=.91272.

U(l.1, 2, l)=[U(.l, .2, l)-U(-.9, .2, 1)]/.09 = .38664.

Example 10. To compute U'(-.9, - . 8 , 1) to 5s. By 13.4.21

U'(-.9, -.8, 1)=.9U(.1, .2, 1) = (.9) (.94752) = .85276.

Asymptotic Formulae

Example 11. To compute U(1, .l, 100) to 5s. By 13.5.2

1 1 9 1 9 2 9 100 100100 U(1, .l, 100)=i&j{l-:+:

=.01{ 1-.019+.000551-.000021

=.00981 53. +0(10-9) 1,

Example 12. To evaluate V(.l, .2, .01). For z small, 13.5.612 should be used.

+O( (.01)1- -7 r (1 - .2) r (1.1 -.2) U(.l, .2, .Ol)=

=-+O( (.01) -7 U.9)

=1.09 to 3S, by 13.5.10.

To evaluate U(u, b, z) with a large, z small and b small or large 13.5.15 or 16 should be used.

To evaluate V(a, b, z) with z, a and/or b large 13.5.18, 20 or 22 should be tried. In all these cases the size of the remainder term is the guide to the number of significant figures obtainable.

Calculation of the Whittaker Functiona

Example 13. Compute M.o.-.4(l) and W.o, -.4(1) to 5s. By formulas 13.1.32 and 13.1.33 and Tables 13.1, 4.4

-44.0, -.,(l) =e-,'M(.l, .2, 1)=1.10622, W.o.- .,( 1) =e-.(U( .1, .2, 1) = .57469.

Page 11: Confluent hypergeometricfunctions

Thus the values of M..,(z) and Wdz) can always be found if the values of M(a, b, z) and U(a, b, z) are known.

13.9. Calculation of Zeros and Turning Points

a m p u b the smallest POsitive

Using 13.7.2 we have, as a first

Ex-Ple 14. zero of M(-4, . 6 , ~ > . This is outside the range of Table 13.2. approxima tion

1 x;=x; [l- M‘(-3,.6,Xi) -3M(-3, .6, Xi)

=Xi [I-M(-2,1.6, Xi)/.6M(-3, .6,Xi)]

=.9715)<1.0163=.9873 to 4s.

This process can be repeated to give as many significant figures as are required.

If we repeat this calculation, we find that

X2=X1+.00002 99=.17852 99 to 7s.

Calculation of Marima and Minima

Examp1e 15* Compute the va1ue Of z at which M(-1.8’ -*2’z) has a turningvalue’ Using13*4*8 and Table 13.2, we find that M’(-1.8, -.2,2) =9M(-.8, . 8 , z)=O when x=.94291 59.

-9M(.2, 1.8, z) and M(.2, 1.8, .94291 59)>0. Hence M(--1.8, -.2, z) has a maximum in z when ~=.94291 59.

Compute the smallest positive value of x for which M(-3, .6, z) has a turning value, Xi. This is outside the range of Table 13.2. Using 13.4.8 we have

Also M”(-1.8, -.2, z)=9M’(-.8, .8, 2)’

Example 16.

M’(-3, .6, ~)=-3M(-2, 1.6, ~)/.6.

By 13.7.2 for M(-2, 1.6, z),

Xo= (1.0!k)2/(11.2) = .9715.

Thisisafirst approximation to XiforM(-3, .6,z). Using 13.7.5 and 13.4.8 we find a second approxi- mation

FIGURE 13.1.

Figure 13.1 shows the curves on which M(a, 6, z) =O in the a, b plane when z=1. The function is positive in the unshaded areas, and negative in the shaded areas. The number in each square gives the number of real positive zeros of &&, b, z) as a function of z in that square. The vertical boundaries to the left are to be included in each square.

13.10. Graphing M(a, b, x)

Example 17. Sketch M(-4.5, 1, z). Firstly, from Figure 13.1 we see that the function has five real positive zeros. From 13.5.1, we find that M+- m , M’+- m as x++ m and that M++m, M’++m as z+--. By 13.7.2 we have 6s first approximations to the zeros, .3,1.5,3.7, 6.9, 10.6, and by 13.7.2 and 13.4.8 we find as first approximations to the turning values .9, 2.8, 5.8, 9.9. From 13.7.7, we see that these must lie near the curvea

y = f eN(54-t (1 -dl l)%-+.

From these facts we can form a rough graph of the behavior of the function, Figure 13.2.

Page 12: Confluent hypergeometricfunctions

514 CONFLUENT HYPERGEOMETRIC F"Cl'I0NS

FIQUF~E 13.2. M(-4.5, 1, 2). (From F. Gb2d?'ri, R~m$d;~y&~*&~o~l* Edblonl.

FIQUBE 13.4. M(a, .5, 2).

Inc, New York, fi.Y., 1945, with p m b l o n . ) (Ffom E. J8hnke cmd F. Emde Table8 of hmctlons Dover Publlcatknu,

References

Tcxts

[ 13.11 H. Buchholz, Die konfluente hypergeometrische Funktion (Springer-Verlag, Berlin, Germany, 1953). On Whittaker functions, with a large bibliography.

(13.21 A. Erdelyi et al., Higher transcendental functions, vol. 1, ch. 6 (McGraw-Hill Book Co., Inc., New York, N.Y., 1953). On Kummer functions.

[13.3] H. Jeffreys and B. 5. Jeffreys, Methods of mathe- matical physics, ch. 23 (Cambridge Univ. P-, Cambridge; England, 1950). On Kummer functions.

[13.4] J. C. P. Miller, Note on the general solutions of the confluent hypergeometric equation, Math. Tablea Aids Comp. 9,97-99 (1957).

113.61 L. J. Slater, On the evaluation of the confluent hypergeometric function, Proc. Cambridge Philoe. Soc. 49, 612-622 (1953).

FIQWE 13.3. M(o, 1, z).

ha., New York, &.Y, lM6, with pemmbsbm.) (prom E. Jahnke and F Emde Tables of function& Dover Publlatkxu.

Page 13: Confluent hypergeometricfunctions

CONFLUENT HYPERQEOMETBIC FUNCNONS 515

[13.6] L. J. Slater, The evaluation of the basic confluent hypergeometric function, Proc. Cambridge Philos. Soc. 50, 404-413 (1954).

[13.7] L. J. Slater, The real mros of the confluent hyper- geometric function, Proc. Cambridge Philos. Soc. 52, 626-635 (1956).

[13.8] C. A. Swanson and A. Erdhlyi, Asymptotic forms of confluent hypergeometric functions, Memoir 25, Amer. Math. S o c. (1957).

[13.9] F. G. Tricomi, Funeioni ipergeometriche confluenti (Edizioni Cremonese, Rome, Italy, 1954). On Kummer functions.

[13.10] E. T. Whittaker and G. N. Watson, A course of modern analysis, ch. 16, 4tb ed. (Cembridge Univ. Press, Cambridge, England, 1952). On Whittaker functions.

T d h

[13.11] J. R. Airey, The confluent hypergeometric function, British Association Reports, Oxford, 276-294 (1926), and Lee&, 220-244 (1927). M(a, b, z),

(.5)8, 5D. ~=-4(.5)4, a=*, 1, 3, 2, 3, 4, ~=.1(.1)2(.2)3

(13.121 J. R. Airey and H. A. Webb, The practical impor- tance of the confluent hypergeometric function, Phil. Mag. 36, 129-141 (1918). M(a, b, z),

(13.131 E. Jahnke and F. Emde, Tables of functions, ch. 10, 4th ed. (Dover Publications, Inc., New York, N.Y., 1945). Graphs of M(a, b, z) based on the tables of [13.11].

[13.14] P. Nath, Confluent hypergeometric functions, Sankhya J. Indian Statist. Soc. 11, 153-166 (1951). M(u, b, z), a=1(1)40, b=3,2=.02(.02) .1(.1)1(1)10(10)50, 100, 200, 6D.

[13.15] 8. Rushton and E. D. Lang, Tables of the confluent hypergeometric function, Sankhye J, Indian Statist. Soc. 13, 369-411 (1954). M(a, b, Z) , a=.5(.5)40, b= .5( .5) 3.5, Z= .02 (.02). 1 (. 1) 1 (1) 10( 10) 50, 100 ,

[13.16] L. J. Slater, Confluent hypergeometric functions (Cambridge Univ. Preas, Cambridge, England,

~=-3(.5)4, b=1(1)7, z=1(1)6(2)10, 45.

200, 7s.

1960). M(u, b, z), ~= - l ( . l ) l , b=.l(.l)l, ~=.l(.l)lO, 8s; M(u, b, l), ~=-11(.2)2, b= -4(.2) 1, 85; and smallest positive values of z for which Mfa, b, z)=O, a=-4(.1)-.l, b=.1(.1)2.5, 8s.


Recommended