+ All Categories
Home > Documents > CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

Date post: 18-Dec-2021
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
127
CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC STRUCTURAL SYSTEMS Seth R. Goodnight Gaur P. Johnson and Ian N. Robertson Research Report UHM/CEE/11-03 May 2011
Transcript
Page 1: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

CONNECTOR DEVELOPMENT FOR

HYBRID MASONRY SEISMIC STRUCTURAL SYSTEMS

Seth R. Goodnight Gaur P. Johnson

and Ian N. Robertson

Research Report UHM/CEE/11-03 May 2011

Page 2: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...
Page 3: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

Page i

ABSTRACT

Hybrid masonry construction has recently been developed as a means to provide

a more efficient use of masonry infill walls in steel frame structures by designing these

walls to function as a part of a structure’s lateral force resisting system. This system

has current applications in low seismic regions (Seismic Design Categories A, B, and

C). In regions of higher seismicity (Seismic Design Categories D and greater), there is a

need for a clear understanding of the mechanics of the interaction between the steel

frame and the masonry shear wall, as well as the development of specific detailing

requirements to provide for a ductile and somewhat predictable response in a seismic

event of significant magnitude.

The scope of this report is the investigation of the connection between the steel

beam and the top of the masonry wall for a Type I hybrid masonry system. The

proposed steel connector plates are through-bolted to the masonry wall bond beam and

welded to the bottom flange of the steel beam above. Preliminary guidelines and

recommendations are provided for the development of energy dissipating hybrid

masonry connector plates. The first portion of this study focused on the development of

connector plate designs to determine which provided the most stable, ductile cyclic

response. The second portion of this study investigated the strength and limit states of

the through-bolted connection to the masonry wall bond beam under shear loading.

Based on these experiments, recommendations are provided for the most suitable

connector plate designs as well as a general evaluation of the connection to the

masonry wall and potential limit states to consider in future design applications. For a

“rigid” connection between the steel frame and CMU wall, link connectors with a

thickness greater than 0.5 inches are recommended, whereas fuse Type T was proven

to be superior for a ductile, energy dissipating connector plate. ACI 530-08 design

values for bolt shear yielding and masonry shear failure were determined to be the most

appropriate limit states for determining an approximate design value for the through-

bolted CMU wall connections.

Page 4: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

Page ii

ACKNOWLEDGEMENTS

This report is based on an MS thesis prepared by Seth Goodnight under the

direction of Drs. Gaur Johnson and Ian Robertson. The authors would like to thank Drs.

Ronald Riggs and David Ma for their contributions as part of the Thesis Committee for

the project.

Special thanks to Tileco Inc. and Bonded Materials Co. for their generous

donation of materials used in this project, as well as to Mitch Pinkerton and Miles

Wagner of the University of Hawai‘i at Mānoa’s Structural Testing Laboratory for their

assistance throughout the project.

This research was supported by the National Science Foundation under Grant

No. CMMI 0936464 as part of the George E. Brown, Jr. Network for Earthquake

Engineering Simulation. This support is gratefully acknowledged.

Page 5: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

Page iii

TABLE OF CONTENTS

ABSTRACT ..................................................................................................................... i

ACKNOWLEDGEMENTS ............................................................................................... ii

1 INTRODUCTION ....................................................................................................... 1

1.1 INTRODUCTION ...................................................................................................... 1 1.2 OBJECTIVE ............................................................................................................ 1

2 LITERATURE REVIEW ............................................................................................. 2

2.1 HYBRID MASONRY LATERAL LOAD RESISTING SYSTEM ............................................. 2 2.2 CONNECTOR PLATES ............................................................................................. 4 2.3 CMU THRU-BOLT PUSH-OUT TESTS ....................................................................... 5

3 APPROACH .............................................................................................................. 7

3.1 CONNECTOR PLATE TESTS ..................................................................................... 7 3.1.1 Experimental Setup .................................................................................................................. 7 3.1.2 Test Specimens ........................................................................................................................ 8 3.1.3 Procedure ............................................................................................................................... 10

3.2 CMU THRU-BOLT PUSH-OUT TESTS ..................................................................... 12 3.2.1 Experimental Setup ................................................................................................................ 12 3.2.2 Test Specimens ...................................................................................................................... 15 3.2.3 Procedure ............................................................................................................................... 16

3.3 FULL-SCALE STEEL-MASONRY SUBASSEMBLIES ..................................................... 16

4 RESULTS ................................................................................................................ 17

4.1 SHEAR CONNECTOR TESTS .................................................................................. 17 4.1.1 Test Results Summary ........................................................................................................... 17 4.1.2 Specimen Behavior Narratives ............................................................................................... 20

4.2 CMU THRU-BOLT PUSH-OUT TESTS ..................................................................... 27 4.2.1 Specimen Behavior and Failure Mechanisms ........................................................................ 27 4.2.2 Test Results ............................................................................................................................ 30

5 ANALYSIS .............................................................................................................. 33

5.1 COMPARISON OF CONNECTOR PLATES (LINK AND FUSE TYPES A, S, AND T) ............ 33 5.2 ATC-24 CONNECTOR PLATE ANALYSIS ................................................................. 34 5.3 CMU THRU-BOLT PUSH-OUT TESTS ..................................................................... 44

5.3.1 Connection Failure Mechanisms ............................................................................................ 45 5.3.2 Comparison of Wall Specimens (Partially vs. Fully Grouted) ................................................. 48

6 CONCLUSIONS / RECOMMENDATIONS .............................................................. 49

7 REFERENCES ........................................................................................................ 51

APPENDICES (A, B, C, D)

Page 6: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

Page iv

TABLE OF FIGURES

Figure 1. Three proposed types (Type I, Type II, and Type III, shown clockwise from top left) of hybrid masonry systems, classified according to types of loads transferred to masonry walls [Biggs, 2011]. ..................................................................................... 2

Figure 2. Current state of connector plate detailing requirements as provided by the International Masonry Institute. .................................................................................. 5

Figure 3. Connector plate test setup with specimen highlighted. Lateral load is applied to the steel tube section at the top of the image. ....................................................... 7

Figure 4. Typical link and fuse connector details (in = 25.4 mm). .................................... 9

Figure 5. Graphic representation of the proposed full-scale test structure to be constructed at UIUC. ................................................................................................ 10

Figure 6. Modified ATC-24 cyclic loading routine for steel connector plates, with three cycles at each level of lateral displacement. ............................................................ 12

Figure 7. CMU bolt push-out test concept. .................................................................... 13

Figure 8. CMU bolt push-out test setup. ........................................................................ 14

Figure 9. Schematic drawing showing the dimensions and layout of the test assembly for loading of the CMU wall specimens. ................................................................... 14

Figure 10. (a) CMU block configuration "1", (b) CMU block configuration "2". .............. 15

Figure 11. (a) Non-Ductile Weld Rupture: P4_T4-01; (b) Rupture of Base Metal: P4_T4-02. ............................................................................................................................ 18

Figure 12. (a) Yielding then buckling: P4_T2-01; (b) Yielding/Fatigue rupture: P4_T4_FT3-01. ........................................................................................................ 19

Figure 13. Bent plate behavior, ductile response followed by C-shaped weld rupture: P4_T4_FT3-B-01. .................................................................................................... 19

Figure 14. P4_T2-01, showing typical buckling failure. ................................................. 20

Figure 15. P4_T4-02 showing weld failure and base plate rupture. .............................. 21

Figure 16. Specimens P4_T4_FA1-01, _FA2-01, and _FA3-01 showing typical fuse base rupture (shown from left to right). .................................................................... 22

Figure 17. Fuse roughness and early rupture of P4_T4_FA2-P-01 due to cutting with a hand-held plasma torch. .......................................................................................... 23

Page 7: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

Page v

Figure 18. P4_T4-FS-01 showing significant buckling at ±2.00” displacement. ............ 23

Figure 19. P4_T4-FT2-01 displaying a combination of lateral-torsional buckling and rupture due to fatigue. .............................................................................................. 24

Figure 20. P4_T4-FT3-01 displaying uniform distribution of yielding along entire fuse section. .................................................................................................................... 24

Figure 21. Specimens P4_T4_FT2-01 and _FT3-01, showing buckling and tapered fuse base rupture (shown from left to right). .................................................................... 25

Figure 22. P4_T4_FT3-B-01 showing rupture of C-shaped fillet weld on bent leg. ....... 25

Figure 23. P4_T6_FA2-01 showing typical fuse base rupture. ...................................... 26

Figure 24. (a) Final cracking patterns for specimen FG-1A; (b) Typical cracks around rod bearing area as seen in specimen FG-1A. ........................................................ 27

Figure 25. (a) Final cracking patterns for specimen FG-2A; (b) Typical threaded rod shear deformation as seen in specimen FG-2A. Load values shown on specimens were rounded to the nearest whole number. ............................................................ 28

Figure 26. Specimen PG-1B showing mortar joint separation along the entire height of the right side of the middle blocks, typical of partially grouted specimens. .............. 29

Figure 27. Final cracking patterns of specimen PG-2A, with vertical mortar joint separation visible above the location of the threaded rod. ....................................... 30

Figure 28. Load vs. Displacement for all CMU specimen "A" tests. .............................. 32

Figure 29. Load vs. Displacement for all CMU specimen "B" tests. .............................. 32

Figure 30. Assumed projected shear area for masonry breakout failure (in = 25.4 mm).47

Figure 31. Tapered fuse design dimensions. ................................................................ 66

Page 8: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

Page vi

TABLE OF TABLES

Table 1. Seismic Design Values for Reinforced Masonry Shear Walls. .......................... 3

Table 2. Connector plate specimen naming convention (in = 25.4mm). .......................... 9

Table 3. Actuator displacement summary. .................................................................... 11

Table 4. Critical Points of Hysteretic Response (in = 25.4 mm, kip = 4.45 kN, kip-in = 113 J). ...................................................................................................................... 17

Table 5. ASTM E8 tension test results for connector plate steel bar (inch = 25.4mm, ksi = 6.895 MPa). .......................................................................................................... 18

Table 6. CMU bolt push-out maximum load values and corresponding downward deflection (in = 25.4 mm, kip = 4.45 kN). ................................................................. 31

Table 7. Summary of results from CMU prism tests. ..................................................... 31

Table 8. Specimen Cumulative Displacement and Total Energy Dissipation Values (in = 25.4 mm, kip-in = 113 J). ......................................................................................... 33

Table 12. Summary of Applicable ACI 530-08 Design Values and Measured Test Results (kip = 4.45 kN)............................................................................................. 47

Page 9: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

Page 1

1 Introduction

1.1 Introduction

There currently exist a wide variety of structural systems designed to resist lateral seismic and wind load, each system presenting its own unique set of advantages and disadvantages. Some of the most common systems in use today are steel moment frames, shear walls, and braced frames. In steel frame construction, architectural masonry infill walls are often present to enclose the building envelope but do not traditionally serve any structural purpose. Hybrid masonry, a relatively new concept in seismic load resisting building systems that has already been implemented in several projects in areas of low seismicity [Abrams et al., 2010], serves to incorporate the masonry infill walls, designed and reinforced as shear walls, as a specifically-designed structural component of the building’s seismic force resisting system. A Type I hybrid masonry system uses steel connector plates to transfer only lateral forces from the steel frame to the top of the masonry wall. Type II hybrid masonry extends the purpose of the masonry wall to resisting both lateral forces and vertical compressive forces by eliminating the gap between the steel frame and the top of the wall and connecting the two components with a system of headed studs across the top of the masonry wall. Finally, Type III hybrid masonry contributes an additional load transfer mechanism by providing a similar headed stud connection along both sides of the masonry wall to resist vertical shear forces. The intent of this project is to investigate the incorporation of masonry infill walls into the lateral load resisting system, and more specifically, to develop a steel-masonry connector suitable for this purpose. Investigation will concentrate primarily on the development of a structural “fuse” to serve as a ductile link to dissipate seismic energy and enhance seismic performance of the lateral system. This project is part of a larger on-going NEESR-SG project under Principal Investigator Daniel Abrams of the University of Illinois (UIUC). Ductile fuses have been studied and tested by others for various applications, such as [Bruneau & El-Bahey, 2010] and [Aliaari & Memari, 2007].

1.2 Objective

The scope of this particular study is limited solely to the investigation of the Type I hybrid masonry system and will focus on the development of a steel-masonry connection using steel connector plates through-bolted to masonry walls to transfer horizontal shear forces from the steel frame into the masonry walls.

Page 10: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

Page 2

2 Literature Review

2.1 Hybrid Masonry Lateral Load Resisting System

The hybrid masonry system, first proposed in 2006 [Biggs, 2006], incorporates the traditional, non-structural masonry infill wall into the lateral load resisting system of a structure through design of the infill wall as a masonry shear wall and application of a series of shear connector plates between the infill wall and the steel frame of the building. Hybrid masonry is classified into three categories, shown in Figure 1, based on the degree of confinement of load transfer between the steel frame and masonry wall [Biggs, 2011].

Figure 1. Three proposed types (Type I, Type II, and Type III, shown clockwise from top left) of

hybrid masonry systems, classified according to types of loads transferred to masonry walls [Biggs, 2011].

For the Type I system, the masonry wall is designed only for in-plane and out-of-plane loads, with a gap between the top of the masonry panel and the bottom of the steel beam above to prevent transfer of gravity loads to the wall. In this case, connector plates have also been detailed with vertical slotted holes to eliminate any vertical load transfer through these connections. In the Type II system, the masonry wall is designed for the in-plane and out-of-plane loads of a Type I system, but the gap at the top of the

Page 11: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

Page 3

panel is not present, requiring the wall to serve additionally as a vertical loadbearing wall. In this case, hybrid masonry can serve to prevent progressive collapse as a means to increase redundancy in the structure. Finally, the Type III system, although still in the early stages of development, will provide for additional connectivity between the ends of the masonry panel and the wide flange steel columns, as a means to provide a greater degree of masonry confinement and more direct transfer of overturning moments.

The International Building Code [IBC, 2006] and The Building Code Requirements and Specifications for Masonry Structures [MSJC, 2008] currently provide for three different classifications of masonry shear walls: ordinary reinforced, intermediate reinforced, and special reinforced. Each of these classifications is assigned different seismic factors that are used for the overall design of the lateral force resisting system. These factors, R (response modification coefficient), Ω0 (system over-strength factor), and Cd (deflection amplification factor), are given in Table 1 for each of the classifications of masonry shear walls. Current applications of hybrid masonry systems have been designed using the seismic forces developed according to the IBC and the design values for reinforced masonry shear walls.

Table 1. Seismic Design Values for Reinforced Masonry Shear Walls.

To date, hybrid masonry systems have been implemented in Seismic Design Categories A, B, and C. Extension of hybrid masonry load resisting systems into higher SDCs is currently under investigation as the requirements of structural steel construction fall under the AISC Seismic Design Manual for SDC D and E [IMI, 2009]. Computer models have been developed for Type I hybrid masonry systems using Bentley RAM Elements and also with linear shell models to confirm the assumed behavior of the steel frame and masonry shear wall assembly [Abrams et al., 2010]. Based on the results from a comparison of these models with equations derived from statics, it was suggested that an appropriate design rule was to proportion steel columns to resist the axial forces resulting from total overturning moments and to proportion masonry walls to resist the total story shears. The total shear in the masonry wall and the column axial force can be represented by Equation [1] and Equation [2], respectively.

[1]

Wall Classification R Ω0 Cd

Ordinary 3 2.5 2.25

Intermediate 4 2.5 2.5

Special 5.5 2.5 4

Page 12: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

Page 4

[2]

In these equations Fj is the lateral force at level j, n is the total number of stories in the building under consideration, Vk is the story shear in story k, hk is the individual story height, and L is the bay width.

Results from the same study also demonstrated that current building codes would be appropriate for the structural design of both steel frames and masonry walls, but it was determined that there exists a lack of structural details for the connection between the two systems. 2.2 Connector Plates

Design of the connector plates for hybrid masonry systems has been addressed in its simplest form but this design has focused solely on design for in-plane and out-of-plane masonry wall reactions [Biggs, 2011]. The preliminary design procedure was developed on the sole premise that “the connector’s only purpose is to transfer in-plane shear to the wall and also to brace the frame for out-of-plane loadings” [Biggs, 2011]. Using this design approach the masonry wall is assumed to crack under high seismic loading, with the connectors resisting the load through flexure but providing little to no additional ductility to the overall system. Refer to Figure 2 for the current detailing requirements of the connector plates. There have been numerous investigations into the development of structural “fuses”, a building component that absorbs energy through yielding behavior, and even through failure, in order to prevent damage to more critical elements. In one study such structural fuses were proposed and tested as a component that “initially engages the infill walls in seismic resistance of the frame, but ultimately isolates them” [Aliaari & Memari, 2007].

Page 13: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

Page 5

Figure 2. Current state of connector plate detailing requirements as provided by the

International Masonry Institute.

For the purposes of determining the required flexural strength of the connector

plates, the plates have been idealized as a cantilever with a maximum moment equal to the total shear to each connector plate determined by computer analysis multiplied by the distance from the bottom of the beam flange to the center of the connector plate slotted hole. Alternatively, Biggs suggests that a second option is to detail the connector plate geometry in a manner that the plates may serve as a seismic energy-dissipating fuse in the system, minimizing damage to the masonry wall. 2.3 CMU Thru-Bolt Push-Out Tests

The Building Code Requirements and Specifications for Masonry Structures (ACI 530-08) [MSJC, 2008] provides guidelines and code requirements for the design of embedded anchor bolts in masonry, but through-bolted connections are never clearly addressed. In the commentary for ACI 530-08 it states that “the design equations provided in the Code stem from research conducted on cast-in-place headed anchor bolts and bent-bar anchors (J- and L-bolts) in grout. Therefore, the application of these provisions to post-installed anchors may be in question.” ACI 530-08 provides guidelines for determining the nominal bearing strength of masonry as well as the nominal shear strength of headed and bent-bar anchor bolts. For the purposes of determining the nominal shear strength, the Code addresses the following potential failure mechanisms: nominal shear strength governed by masonry breakout, nominal shear strength governed by masonry crushing, nominal shear strength governed by anchor bolt pryout, and nominal shear strength governed by steel yielding. Although, these provisions are not directly applicable to the through-bolted connection proposed for hybrid masonry systems, they can be used as a basis for an evaluation of the

Page 14: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

Page 6

connection performance. The applicability of the individual failure mechanisms will be addressed in more detail in the analysis portion of this report. ASTM E488 [ASTM, 2003] provides guidelines for determining the strength of anchors in concrete and masonry elements, loaded in single shear. Based on the procedure outlined in this guideline, a similar methodology has been developed for the testing of the post-installed through-bolted connections to be employed in this project.

Page 15: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

Page 7

3 Approach

3.1 Connector Plate Tests

3.1.1 Experimental Setup

The experimental test setup for this portion of the testing was developed to simulate the loading and restraints provided by the actual overall hybrid masonry assembly, while allowing for compliance with ATC-24 guidelines. Provision was also made for quick replacement of connector plates to facilitate the testing of multiple specimens with the only damage incurred by the test specimens themselves. The lateral load was applied to the connector plate by bearing of a ¾” diameter ASTM A325 bolt in a ¾” by 1 ¾” vertical slotted hole located 0.625” from the top edge of the plate. The headed end of the bolt was welded to a 6” channel section, which provided adequate stiffness to simulate the condition of the connection to a CMU wall. The web of the channel was reinforced with a ½” cover plate at the location of the bolt for additional web stiffness. Lateral displacement of the channel section and attached bolt was provided by the extension and retraction of a hydraulic actuator connected to the 3” square tube section as shown in Figure 3. Each test specimen was individually welded to a 6” by 9” by ½” hot rolled steel base plate with four bolt holes symmetrically placed. During testing, the base plate was connected to a stiffened W12 wide flange section with four ¾” ASTM A325 bolts to provide a fixed reaction—this setup isolates the behavior of the connector/fuse from the potential flexibility of the beam above the masonry wall in the hybrid system.

Figure 3. Connector plate test setup with specimen highlighted. Lateral load is applied to the

steel tube section at the top of the image.

Page 16: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

Page 8

The tube section was restrained from vertical translation using two load rods, with pinned connections at each end, that were bolted through the W12 base and into the laboratory’s reinforced concrete strong floor. Additional braces were attached between three locations on the testing assembly and the laboratory wall located approximately 12 feet away to provide restraint against lateral twisting, rotation, and out-of-plane translation of the tube section. A load cell was used to measure the load applied by the hydraulic actuator while an internal LVDT measured displacement. Lateral deflection of the connector plates was measured at the centerline of the bolted connection relative to the specimen base using a string potentiometer as shown in the figure. 3.1.2 Test Specimens

The connector plate specimens tested in this project were manufactured from ASTM A36 bar steel hot rolled to 4-inch widths and varying thicknesses, as identified by the actual thicknesses reported for the individual test specimens. For the purposes of this report, “link” connector plates will reference plates that have a uniform width throughout the length of the specimen, while “fuse” connector plates will refer to specimens manufactured with regions of constant or tapered width significantly less than the width of the rest of the plate. Bent plates refer to plates manufactured with a 90-degree bend near the bottom of the plate, simulating the bend as would be required for attachment to the beam flange above in the actual hybrid masonry assembly. All plates were cut to shape with a milling machine, except for specimen P4_T4_FA2-P-01, which was cut using a hand-held plasma torch. 17 connector plates were tested in this phase of the project; six link connectors and 11 fuse connectors. In order to identify the ideal fuse geometry for the purposes of this project, three unique fuse types were tested, identified as either type A, S, or T. Figure 4 shows the typical dimensions of a link connector plate as well as the three types of fuse connectors utilized. Fuse type A, for aspect ratio, was the first fuse to be designed and tested. This fuse type is characterized by a narrowed region of constant width machined into the bar with the intent to develop a plastic hinge and increase the deformation capacity of the connector plate. The narrowed region was designed to force full utilization of the non-linearity of the stress-strain curve within the fuse. Type A fuses were machined with an aspect ratio (length of narrowed region, Lf, to reduced section width, wf) of either one, two, or three and using plates of various thicknesses.

The behavior of a type S fuse, for slotted, is governed by a 2-inch (50.8 mm) wide by 4-inch (101.6 mm) long slot removed from the 4-inch (101.6 mm) wide bar. The intent of this fuse was to develop plastic hinges within both one-inch wide legs adjacent to the slot to increase the deformation capacity of the connection, while providing greater flexural stiffness than fuse type A. Type S should allow an increase in the deformation capacity and ensure full utilization of the non-linearity of the stress-strain curve within the fuse. After observing the yielding behavior of the type A fuses, a modification was made to the design of the reduced width section to account for the linearly varying moment distribution in this region.

Fuse type T, for tapered, was the result of this modification and was designed with a linearly varying reduced section width to facilitate first yielding simultaneously along the entire length of the narrowed region of the plate. For a detailed explanation of the methodology used to develop the tapered fuse section, refer to the Appendix. Fuse

Page 17: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

Page 9

type T was also machined with an aspect ratio of either two or three, similar to type A, and as identified in the specimen nomenclature.

Figure 4. Typical link and fuse connector details (in = 25.4 mm).

Table 2. Connector plate specimen naming convention (in = 25.4mm).

In order to differentiate between the various connector plate properties utilized in

each specimen test, a specimen naming convention was developed and is shown in

PX _ TX _ FX - X - 0XPlate

Width (in.)Thickness x 1/8 inch

Fuse Type

Misc.Specimen

No.[1] [2] [3] [4] [5]4 2 1 P4_T2-014 2 A2 1 P4_T2_FA2-014 3 1 P4_T3-014 3 A2 1 P4_T3_FA2-014 4 1 P4_T4-014 4 2 P4_T4-024 4 B 1 P4_T4-B-014 4 B 2 P4_T4-B-024 4 A1 1 P4_T4_FA1-014 4 A2 1 P4_T4_FA2-014 4 A3 1 P4_T4_FA3-014 4 A2 P 1 P4_T4_FA2-P-014 4 S 1 P4_T4_FS-014 4 T2 1 P4_T4_FT2-014 4 T3 1 P4_T4_FT3-014 4 T3 B 1 P4_T4_FT3-B-014 6 A2 1 P4_T6_FA2-01

Specimen Designation

[6]

Page 18: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

Page 10

Table 2. Column 1 gives the width in inches of the bar, or plate, from which the connector was constructed, while Column 2 gives the thickness of the same bar in eighths of an inch. Column 3 identifies the fuse type, as well as the aspect ratio when applicable, utilized for the particular specimen. Column 4 identifies any miscellaneous information about the specimen such as whether the specimen was cut with a handheld plasma torch (P) or constructed as the bent plate to be used for attachment to the beam flange (B). Column 5 simply identifies the individual specimen number for such cases when a particular plate geometry required more than one test. Finally, the complete specimen name is assembled and listed in Column 6. All specimens are referenced using the names as shown in Column 6. 3.1.3 Procedure

Of primary concern for the development of an effective steel-masonry connection is the detailing of the connector plates in order to facilitate a ductile response during seismic events. In order to investigate the response of various shaped and sized steel connector plates, a testing assembly was constructed to simulate the loading and deflection that will be applied to the plates in the full-scale tests, shown in Figure 5. This test assembly allowed for studying the behavior of a wide variety of connector plate designs under cyclic loading with minimum required labor to change test specimens.

Figure 5. Graphic representation of the proposed full-scale test structure to be constructed at

UIUC.

Each plate was installed in the test assembly as shown in Figure 3 and loaded according to the displacement-controlled sequence shown in Figure 6, at a programmed strain rate of approximately 0.2 in./in. per minute according to specified loading rates in

Page 19: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

Page 11

ASTM A370 and E8 [ASTM, 2008]. Flexibility of the test setup resulted in an actual loading rate approximately 5% slower than the programmed value.

Using the test assembly shown, a modification of the recommended ATC-24 single-specimen testing program was developed to investigate the hysteretic responses of each connector plate. According to this adaptation of the ATC-24 procedure, each specimen was cyclically loaded using a hydraulic actuator under displacement-based control. Each cycle began with the connector plate in the vertical position (origin) and proceeded with an outward extension of the actuator corresponding to the specified lateral displacement, followed by a reversal of direction back to the origin. The second half of the cycle consisted of the retraction of the actuator a distance corresponding to the specified lateral displacement and again followed by a reversal of direction back to the origin. The first half of each cycle, the extension and return to the origin, and the second half of each cycle, the retraction and return to the origin, have been termed as a positive excursion and a negative excursion, respectively. Each displacement level (±0.010”, ±0.015”,…, ±2.75”, ±3.00”) consisted of three cycles, i, and each cycle (i = 1, 2, 3,…, n-1, n) consisted of both a positive excursion, i+, and a negative excursion, i-. The deformation history used for testing of the connector plate specimens is shown in Table 3 and Figure 6. In determining the specific displacement levels for the testing routine, a value of the yield strain for a typical connector plate was approximated and used to calculate the corresponding lateral deflection. Taking this value, ±0.015 in., the first level of displacement was chosen to provide for the completion of at least three cycles prior to yielding. After assumed first yield had occurred, lateral deflections were increased step-wise according to the deformation history. Due the flexibility of the test setup, the specified displacement levels apply only to the programmed motion of the actuator. Actual plate displacements were determined to be approximately 10% less than these values. All data were plotted using the actual measured displacements of the specimens. The following general procedure was followed for each connector plate specimen:

1) Initiate hydraulics and data collection devices.

2) Attach connector plate specimen to the testing apparatus by bolting down the specimen base plate, tightening with an impact wrench for a “rigid” connection.

Table 3. Actuator displacement summary.

Deformation Step Number

Displacement (inch = 25.4mm)

Cumulative Cycles

Completed1 0.01 32 0.015 63 0.03 94 0.06 125 0.1 156 0.25 187 0.5 218 0.75 249 1 27

10 1.25 3011 1.5 3312 1.75 3613 2 3914 2.25 4215 2.5 4516 2.75 4817 3 51

Page 20: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

Page 12

3) Attach nut and washers at location of the slotted hole, providing a finger-tight connection that will allow for plate rotation and vertical translation with respect to the bolt.

4) Adjust lateral displacement of the plate connection until the load cell registers an initial load near zero.

5) Begin cyclic displacement-controlled loading of the specimen according to the specified deformation history. Continue cyclic testing until plate failure or significant buckling failure occurs, indicated by a significant decrease in the load on the specimen.

Figure 6. Modified ATC-24 cyclic loading routine for steel connector plates, with three cycles at

each level of lateral displacement.

3.2 CMU Thru-Bolt Push-Out Tests

3.2.1 Experimental Setup

In order to determine the lateral capacity of a through-bolted connection to the bond beam of the hybrid masonry CMU wall, the experimental test setup was developed to load a single ¾” ASTM A307 threaded rod in double shear, bearing along the cross-section of the cell of a grouted concrete masonry block. In the hybrid masonry assembly, pairs of connector plates will be placed at specified locations along the top of the wall, one connector plate on each face of the wall. Figure 7 provides an illustration of the concept applied to the testing of these connections. In order to provide symmetric loading to the threaded rod extending from each side of the test specimen, the loading device shown in Figure 8 was constructed. This loading device, composed of a top piece and two legs, was constructed from a 4” channel section. The top piece was stiffened with a 0.5” steel plate welded to its flanges, providing for a contact surface with

Page 21: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

Page 13

the actuator platen. Each leg was connected to the top piece using two ½” diameter bolts, allowing for insertion of shims to level the device. The ¾” bolt holes were provided in each leg of the device for attachment to the test specimens. Displacement of the loading device relative to the test specimen was measured by attaching a linear potentiometer (LPOT) near the location of the bolted connection, on each face of the test specimen. A steel angle was welded to opposite flanges on each leg at the height of the bolt holes to support the LPOT pins. The base of each LPOT was connected to an aluminum block and epoxied to the face of the CMU assembly. A load cell on the actuator assembly measured the applied load on the specimens. During testing, the ends of the specimens were supported by thin steel plates and ¼” thick plywood pieces to provide a uniform bearing surface in contact with the reinforced concrete laboratory floor. The bearing plates extended 2” inward from the ends of the specimen. A threaded rod was installed into a pre-drilled ¾” hole at approximately 10.5” from each end of the wall as shown in Figure 9.

Figure 7. CMU bolt push-out test concept.

Page 22: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

Page 14

Figure 8. CMU bolt push-out test setup.

Figure 9. Schematic drawing showing the dimensions and layout of the test assembly for

loading of the CMU wall specimens.

Page 23: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

Page 15

3.2.2 Test Specimens

In order to determine the capacity of the through-bolted connection at the top of the CMU wall, small wall specimens were constructed to model the behavior of this connection. Since the critical bolt location of the small wall tests was determined to be at the second row of blocks from the top of the wall and at least one cell from the edge of the wall, the bolted connection capacity was tested using a specimen 3 blocks high by 2 blocks wide as shown in Figure 10. Each specimen was of running bond construction using standard 8x8x16 inch units obtained from Tileco on the island of Oahu. For a detailed test report of the CMU blocks, refer to the Appendix section of this report. The middle row of blocks was detailed as the bond beam with a centered #3 steel reinforcing bar (As = 0.11 in.2) with a 180 degree hook at each end. A single, centered vertical #5 steel reinforcing bar (As = 0.31 in.2) was provided at each end of the specimens. Identical reinforcement was provided for all the specimens.

A ¾” hole was pre-drilled into each specimen at two mirrored locations, approximately 10.5” from the edge of the specimen and at the centerline of the second row. To minimize spalling of the test specimens, drilling of the holes for the threaded rod connection was performed by pre-drilling from both sides of the specimen with masonry drill bits of increasing diameter until the required ¾” hole size was achieved. Four specimens were constructed for testing, and each specimen was drilled to allow for two tests denoted as test A or test B in order of completion, for a total of eight push-out tests. Of the four specimens, two were partially grouted (PG) and two were fully grouted (FG). In order to address all possible block arrangements, the specimens were constructed with either two half blocks and a single whole block (Configuration 1) at the bond beam level or two whole blocks (Configuration 2) as shown in Figure 10(a) and Figure 10(b), respectively. For example, specimen FG-1B denotes the 2nd test of a fully grouted specimen constructed according to block configuration 1.

Figure 10. (a) CMU block configuration "1", (b) CMU block configuration "2".

Page 24: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

Page 16

3.2.3 Procedure

Prior to testing, each CMU specimen was drilled at two locations as previously identified, to accommodate for test A and B loading. The specimen to be tested was rotated 90 degrees and placed under the four-post hydraulic frame and rested on the steel and plywood bearing supports, extending two inches from the edge of the specimen on each side. The loading device was placed over the specimen and attached to the threaded rod using nuts and washers. In order to insure a symmetrically applied load, shims were used as leveling devices at the connections of the legs to the top channel section. Once assembled, the loading device was centered and clamped to the raised actuator platen, to hold the apparatus in place. The actuator was then loaded downward at a displacement-controlled rate of 0.002 in./sec. in 0.25-inch intervals. Loading was stopped periodically to make observations and record behavior of the test specimen. After completion of test A, the specimen was removed from the test assembly and rotated 180 degrees so that the damaged end of the specimen faced vertically upward. A new piece of threaded rod was inserted into the 2nd hole and test B was completed just as the first test. It should be noted that there was often residual damage and cracking in the specimens from test A, which often propagated well into the region of the specimen that bolt B was bearing upon, potentially affecting the results of the second test on each specimen.

3.3 Full-Scale Steel-Masonry Subassemblies

Three 8” thick CMU walls have been constructed for the purpose of testing the hybrid masonry assembly in its completed state, incorporating the results and designs from both the connector plate tests and CMU bolt push-out tests. These subassemblies will be tested under similar loading conditions to those proposed for the full scale tests at UIUC, including monotonic shear tests and cyclic shear tests. The masonry walls for these tests were previously constructed and consist of 4 rows of 8” blocks, each row 5 blocks long, in running bond assembly. Analysis of the results from both the steel connector plate tests and the masonry wall bolted connection tests will be used to determine the final plate connection details for the connection of the CMU walls to a steel frame, consisting of two wide flange columns and beam. Testing of these subassemblies will continue until an adequate system is finalized for implementation in the UIUC full-scale hybrid masonry panel tests.

Page 25: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

Page 17

4 Results

4.1 Shear Connector Tests

4.1.1 Test Results Summary

A plot of the hysteretic behavior (load vs. displacement) for each connector plate specimen was used to visually identify critical defining points (yield point, point of maximum load, and point of maximum displacement) in the behavior of the specimen. The displacement and corresponding load for each of these critical points was manually extracted from the plots for both the positive and negative excursions. Table 4 provides a summary of the identified points for each of the 17 specimens tested in this study. The load and corresponding displacement identified at the point of specimen yielding is listed in Column 2. The maximum load and corresponding displacement are listed in Column 3. Finally, Column 4 gives the maximum displacement and corresponding load for each specimen.

Table 4. Critical Points of Hysteretic Response (in = 25.4 mm, kip = 4.45 kN, kip-in = 113 J).

Specimen Designation

[1]Displ.(in) Load (kip) Displ.(in) Load (kip) Displ.(in) Load (kip)

(+/-) (+/-) (+/-) (+/-) (+/-) (+/-)P4_T2-01 0.10/-0.15 3.0/-3.3 0.40/-0.40 4.4/-4.3 1.80/-1.90 2.3/-2.3P4_T2_FA2-01 0.12/-0.13 0.8/-0.8 1.00/-0.94 1.4/-1.4 1.95/-1.96 1.0/-1.0P4_T3-01 0.17/-0.17 5.3/-5.0 0.90/-0.84 7.3/-7.4 1.92/-1.88 4.8/-5.1P4_T3_FA2-01 0.10/-0.14 1.2/-1.3 2.65/-1.90 2.5/-2.5 2.70/-2.64 1.5/-1.8P4_T4-01 0.14/-0.14 4.9/-5.2 0.38/-0.43 7.6/-8.0 0.38/-0.43 7.6/-8.0P4_T4-02 0.17/-0.19 5.5/-6.3 0.83/-0.79 9.5/-9.3 1.12/-1.12 0.3/-0.5P4_T4-B-01 0.12/-0.15 1.7/-2.0 1.20/-0.91 3.3/-3.3 2.20/-2.17 2.9/-1.9P4_T4-B-02 0.13/-0.18 1.6/-1.8 0.67/-0.91 3.2/-3.2 1.95/-1.91 1.7/-2.3P4_T4_FA1-01 0.13/-0.12 1.7/-1.7 2.20/-2.17 3.5/-3.5 2.20/-2.17 3.5/-3.5P4_T4_FA2-01 0.12/-0.17 1.5/-2.0 2.40/-2.38 3.3/-3.5 2.40/-2.38 3.3/-3.5P4_T4_FA3-01 0.19/-0.25 2.0/1.9 2.43/-2.40 3.4/-3.4 2.43/-2.40 3.4/-3.4P4_T4_FA2-P-01 0.14/-0.17 1.5/-1.4 1.19/-1.43 2.5/-3.5 1.45/-1.43 1.8/-2.5P4_T4_FS-01 0.11/-0.07 3.2/-3.0 0.92/-0.88 5.9/-5.8 2.10/-2.14 4.5/-4.3P4_T4_FT2-01 0.17/-0.15 1.5/-1.5 3.06/-2.86 3.4/-3.2 3.06/-2.86 3.4/-3.2P4_T4_FT3-01 0.17/-0.25 1.6/-1.5 2.83/-2.90 3.2/-3.0 2.83/-2.90 3.2/-3.0P4_T4_FT3-B-01 0.22/-0.28 1.2/-1.4 2.90/-2.87 2.6/-2.6 2.90/-2.87 2.6/-2.6P4_T6_FA2-01 0.12/-0.15 1.7/-2.0 3.06/-2.86 3.3/-3.3 2.20/-2.17 2.9/-1.9

[2] [3] [4]Yield Point Maximum Load Max.Displacement

In order to determine the actual material strengths of the ASTM A36 steel bar used for the connector plate specimens, tension tests were conducted according to ASTM E8 [ASTM, 2008c]. Table 5 provides a summary of the test results for the three thicknesses of steel bar tested.

Page 26: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

Page 18

Table 5. ASTM E8 tension test results for connector plate steel bar (inch = 25.4mm, ksi = 6.895 MPa).

Figure 11. (a) Non-Ductile Weld Rupture: P4_T4-01; (b) Rupture of Base Metal: P4_T4-02.

For all the specimens tested, five characteristic hysteretic behaviors were identified. Each of the 17 specimens displayed one of these five typical responses, with varying degrees of magnitude. The first of these, non-ductile weld rupture, is typified by the behavior of specimen P4_T4-01 in Figure 11(a). This hysteretic response represents the behavior of a specimen failure due to rupture of the weld at the base of the specimen. This weld joins the plate to the base plate that is bolted to, and considered part of, the testing frame. Figure 11(b) shows the hysteretic response of specimen P4_T4-02. This hysteretic response characterizes a specimen which first yields but then initiates rupture in the base plate and gradually separates itself from the testing frame with the base weld still intact.

Stress (ksi) Strain Stress (ksi) Strain

0.25 49.629 0.00164 79.467 0.171 31000

0.375 50.016 0.00162 79.993 0.16571 31000

0.50 53.447 0.00168 83.293 0.16771 32000

0.75 52.953 * * * *

Yield Ultimate Young's Modulus, E (ksi)

Bar Thickness (in.)

*Data not available due to testing error and/or insufficient load capacity of test frame.

Page 27: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

Page 19

Figure 12. (a) Yielding then buckling: P4_T2-01; (b) Yielding/Fatigue rupture: P4_T4_FT3-01.

The hysteretic response of specimen P4_T2-01 shown in Figure 12(a) is representative of a specimen that begins to yield but then undergoes local buckling in the link, causing the load on the specimen to decrease at increasing displacement levels. Once buckling initiated in specimens displaying this behavior, the specimen would only begin to rupture due to fatigue from repeated cycling at large displacements. Figure 12(b) shows the hysteretic response of specimen P4_T4_FT3-01. This hysteretic response characterizes a specimen that first yields in the fuse region and then undergoes eventual fatigue rupture in this region due to increasing, or repeating, displacement cycles. The hysteretic response of specimen P4_T4_FT3-B-01, shown in Figure 13, shows the effect of a bent plate connection in combination with the yielding behavior displayed by a type T fuse. This response is characteristic of a specimen that first yields in the fuse region and continues to respond as a ductile connection until significant stress concentration at either leg of the C-shaped weld begins to initiate weld rupture.

Figure 13. Bent plate behavior, ductile response followed by C-shaped weld rupture:

P4_T4_FT3-B-01.

Page 28: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

Page 20

4.1.2 Specimen Behavior Narratives

P4_T2-01 Plate test specimen P4_T2-01 was tested up to and through the ± 2.00”

excursions, for a total of 39 complete loading cycles. Testing of this specimen did not continue beyond the ±2.00” level as significant buckling had already occurred and the load on the specimen had diminished significantly (Figure 14). Lateral-torsional buckling was determined to be the governing limit state for this specimen, with initiation of buckling observed around the ±0.5” cycles, at a load of 4.3 kips. This specimen reached a maximum load of 4.4 kips in the positive excursion direction and 4.3 kips in the negative excursion direction.

P4_T2_FA2-01

Plate test specimen P4_T2_FA2-01 was tested up to and through the ± 2.00” excursions, for a total of 39 complete loading cycles. Testing of this specimen did not continue beyond the ±2.00” level as significant buckling had already occurred and the load on the specimen had diminished significantly. Lateral-torsional buckling was determined to be the governing limit state for this specimen, with initiation of buckling observed around the ±1.00” cycles, at a load of 1.3 kips. This specimen reached a maximum load of 1.4 kips in the positive excursion direction and -1.4 kips in the negative excursion direction.

P4_T3-01

Plate test specimen P4_T3-01 was tested up to and through two complete cycles of the ± 2.00” excursions, for a total of 38 complete loading cycles. Prior to this test, an additional restraining brace was added to the test setup in order to minimize rotation of the loading hardware due to plate buckling. Due to the significant buckling induced in this plate, the additional restraint caused significant tensile forces to develop in the bolted connection. Tension in the bolted connection contributed to failure of the bolted connection prior to completion of testing. Testing of this specimen stopped due to the bolt failure. The test setup was then modified to eliminate flexural bending of the bolt that failed. The bolt is inserted through a tight fit clearance hole—the hole was previously 1/16” oversized per typical AISC details. Lateral-torsional buckling was determined to be the governing limit state for this specimen, with initiation of buckling observed around the ±1.25” cycles, at a load of 7.1 kips. This specimen reached a maximum load of 7.25 kips in the positive excursion direction and -7.4 kips in the negative excursion direction, at a displacement of 0.9 inches. P4_T3_FA2-01

Plate test specimen P4_T3_FA2-01 was tested up to and through the ± 2.75” excursions, for a total of 48 complete loading cycles. The first signs of significant plate

Figure 14. P4_T2-01, showing

typical buckling failure.

Page 29: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

Page 21

rupture were detected at the base of the fuse at the beginning of the ±2.75” cycles, at a load of 2.5 kips. This rupture led to complete separation of the plate across the fuse base at the end of the ±2.75” cycles. Initial signs of lateral-torsional buckling were observed at the 3rd cycle at the ±2.00” displacement level, but plate rupture was identified as the governing limit state. This specimen reached a maximum load of 2.5 kips in the positive excursion direction and -2.5 kips in the negative excursion direction. P4_T4-01 / P4_T4-02

Plate test specimen P4_T4-01 was tested up to and through the ±0.75” excursions, for a total of 24 complete cycles. Initial signs of rupture of the fillet weld joining the connector plate to the base plate were observed during the 0.50” cycles, at a load of 7.5 kips. Complete separation of the base fillet weld occurred by the end of the 0.75” cycles (Figure 15). This specimen reached a maximum load of 7.6 kips in the positive excursion direction and -8.0 kips in the negative excursion direction. In order to determine if insufficient weld thickness was the cause of premature failure, a second specimen (-02) was tested using a heavier weld. Plate test specimen P4_T4-02 was tested up to and through six complete cycles at the 1.25” displacement level. Initial signs of weld rupture were observed at the ±1.00” displacement level, at a load of 9.5 kips, followed by base plate rupture around the weld connection. This specimen reached a maximum load of 9.5 kips in the positive excursion direction and -9.25 kips in the negative excursion direction. A combination of weld failure and base plate rupture was determined to be the governing limit state for this specimen.

P4_T4-B-01 / P4_T4-B-02

Plate test specimen P4_T4-B-01 was tested up to and through the ±2.00” excursions followed by 12 cycles at ±2.25” and three cycles at ±2.50”, for a total of 54 complete cycles. Initial signs of fillet weld rupture were identified during the ±1.00” cycles in the portion of the weld perpendicular to the wide face of the plate, at a load of 3.25 kips. After the specimen reached the ±2.25” displacement level one corner of the welded bent portion of the plate had separated completely, propagating the weld failure to the long weld parallel to the wide face of the plate. At the end of the 54th cycle the load capacity dropped to 1.1 kips. The specimen was completely ruptured by manually controlled displacement with four additional cycles at undefined displacement levels until the weld had completely separated at all three sides. This specimen reached a maximum load of 3.25 kips in the positive excursion direction and -3.3 kips in the negative excursion direction. In order to determine if defects in the weld were the causes of premature failure, a second specimen (-02) was tested, with increased attention paid to weld application and thickness. Plate test specimen P4_T4-B-02 was

Figure 15. P4_T4-02 showing weld failure and base plate

rupture.

Page 30: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

Page 22

tested up to and including one cycle at the ±2.25” displacement level. During this testing, it was noted that initial yielding was occurring on the bent leg of the plate as early as the ±0.25” cycles. Weld failure began similarly to the previous bent plate, with one corner of the weld showing complete separation by the ±2.00” displacement level. This specimen reached a maximum load of 3.15 kips in the positive excursion direction and -3.15 kips in the negative excursion direction. Weld failure was determined to be the governing limit state for these specimens. P4_T4_FA1-01

Plate test specimen P4_T4_FA1-01 was tested up to and through the ±2.25” excursions, for a total of 42 cycles. Yielding of the fuse section was first noticed through signs of flaking at the base of the fuse section during the ±0.25” displacement cycles, at a load of 2.1 kips. Initial rupture of the specimen was identified at the base of the fuse section at the ±2.00” displacement cycles, leading to complete separation at the fuse base at the end of the ±2.25” displacement cycles (Figure 16). This specimen reached a maximum load of 3.5 kips in the positive excursion direction and -3.5 kips in the negative excursion direction. Fuse base rupture was determined to be the governing limit state for this specimen. No significant buckling behavior was observed.

P4_T4_FA2-01

Plate test specimen P4_T4_FA2-01 was tested up to and through the ±2.50” excursions with an additional cycle at ±2.50”, for a total of 46 cycles. Yielding of the fuse section was first noticed through signs of flaking at the base of the fuse section at approximately the ±0.25” displacement cycles, at a load of 2.0 kips. Initial rupture of the specimen was identified at the base of the fuse section at approximately the ±2.00” displacement cycles, leading to complete separation at the fuse base at the end of four ±2.50” displacement cycles (Figure 16). This specimen reached a maximum load of 3.25 kips in the positive excursion direction and -3.5 kips in the negative excursion direction. Fuse base rupture was determined to be the governing limit state for this specimen. No significant buckling behavior was observed. P4_T4_FA3-01

Plate test specimen P4_T4_FA3-01 was tested up to and through the ±2.50” excursions with an additional cycle at ±2.50”, for a total of 46 cycles. Yielding of the fuse section was first noticed through signs of flaking at the base of the fuse section at the ±0.25” displacement cycles, at load of 2.0 kips. Initial rupture of the specimen was identified at the base of the fuse section at the ±2.25” displacement cycles, leading to

Figure 16. Specimens P4_T4_FA1-01, _FA2-01, and _FA3-01 showing

typical fuse base rupture (shown from left to right).

Page 31: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

Page 23

complete separation at the fuse base at the end of four ±2.50” displacement cycles (Figure 16). This specimen reached a maximum load of 3.4 kips in the positive excursion direction and -3.4 kips in the negative excursion direction. Fuse base rupture was determined to be the governing limit state for this specimen. No significant buckling behavior was observed. A machining error was noted to have caused a slightly over-sized slotted hole in this specimen, leading to approximately 0.10” of slip in the connection at the top of the plate. Surface flaking was not observed over the entire fuse region but stopped at approximately 4/5th of the distance from the base to the top of the fuse. P4_T4_FA2-P-01

Plate test specimen P4_T4_FA2-P-01 was tested up to and through the ±1.50” excursions with an additional cycle at ±1.50”, for a total of 34 cycles. Yielding of the fuse section was first noticed through signs of flaking at the base of the fuse section at approximately the ±0.25” displacement cycles, at a load of 1.7 kips. Initial rupture of the specimen was identified at the base of the fuse section at the ±1.25” displacement cycles, at a load of 2.4 kips. This led to complete separation at the fuse base at the end of four ±1.50” displacement cycles (Figure 17). This specimen reached a maximum load of 2.45 kips in the positive excursion direction and -3.5 kips in the negative excursion direction. Fuse base rupture was determined to be the governing limit state for this specimen. No significant buckling behavior was observed. P4_T4_FS-01

Plate test specimen P4_T4_FS-01 was tested up to and through the ± 2.25” excursions, for a total of 42 complete loading cycles. Testing of this specimen did not continue beyond the ±2.25” level as significant buckling had already occurred and the load on the specimen had diminished significantly to 2.9 kips (Figure 18). Out-of-plane buckling was determined to be the governing limit state for this specimen, with initiation of significant buckling observed around the ±1.00” cycles, at a load of 5.9 kips. This specimen reached a maximum load of 5.85 kips in the positive excursion direction and -5.8 kips in the negative excursion direction.

Figure 17. Fuse roughness and early rupture of

P4_T4_FA2-P-01 due to cutting with a hand-held

plasma torch.

Figure 18. P4_T4-FS-01 showing significant buckling at

±2.00” displacement.

Page 32: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

Page 24

P4_T4_FT2-01 Plate test specimen P4_T4_FT2-01 was tested

up to and through the ±3.00” excursions with an additional 13 cycles at this displacement level, for a total of 64 complete loading cycles. Uniform flaking of the tapered fuse region was observed as early as the ±0.25” displacement level, at a load of 1.76 kips, and initial signs of lateral torsional buckling behavior were identified at the ±2.25” displacement level, at a load of 2.8 kips. Although buckling behavior became significant, no decrease in load was observed so testing was continued until rupture of the plate at the 64th cycle (Figure 19). A combination of lateral-torsional buckling and plate fatigue were identified as the governing limit state for the specimen. This specimen reached a maximum load of 3.4 kips in the positive excursion direction and -3.15 kips in the negative excursion direction. P4_T4_FT3-01

Plate test specimen P4_T4_FT3-01 was tested up to and through the ±3.00” excursions with an additional 28 cycles at this displacement level, for a total of 79 complete loading cycles. Loading of this specimen was stopped after the 57th cycle. The specimen was uninstalled from the test setup and reinstalled when testing was later resumed until failure occurred at the end of the 79th cycle. Uniform flaking of the tapered fuse region was observed as early as the ±0.25” displacement level, at a load of 1.6 kips, and initial signs of lateral torsional buckling behavior were identified at the ±2.25” displacement level, at a load of 2.6 kips (Figure 20). Although buckling behavior became significant, no decrease in load was observed so testing was continued until failure. A combination of lateral-torsional buckling and eventual plate fatigue were identified as the governing limit state for the specimen. This specimen reached a maximum load of 3.2 kips in the positive excursion direction and -3.3 kips in the negative excursion direction. Figure 21 shows the final failed state of both tapered fuse specimens.

Figure 19. P4_T4-FT2-01 displaying a combination of

lateral-torsional buckling and rupture due to fatigue.

Figure 20. P4_T4-FT3-01 displaying uniform distribution of yielding along entire fuse

section.

Page 33: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

Page 25

Figure 21. Specimens P4_T4_FT2-01 and _FT3-01, showing buckling

and tapered fuse base rupture (shown from left to right).

P4_T4_FT3-B-01

Plate test specimen P4_T4_FT3-B-01 was tested up to and through the ±3.00” excursions with an additional 15 cycles at this displacement level, for a total of 66 complete cycles. Uniform flaking of the tapered fuse region was observed as early as the ±0.25” displacement level, at a load of 1.2 kips. Yielding of the plate specimen in the region welded to the base plate was also observed at approximately the 0.50” displacement level, at a load of 1.8 kips. Initial signs of fillet weld rupture were identified during the ±2.00” cycles in the portion of the weld perpendicular to the wide face of the plate, at a load of 2.4 kips. After the specimen had completed several cycles at the ±3.00” displacement level one corner of the welded bent portion of the plate had separated completely, propagating the weld failure to the long weld parallel to the wide face of the plate. Loading was continued until the weld had completely separated at all three sides (Figure 22). This specimen reached a maximum load of 2.55 kips in the positive excursion direction and -2.6 kips in the negative excursion direction. Weld failure was determined to be the governing limit state for this specimen.

Figure 22. P4_T4_FT3-B-01 showing rupture of C-shaped

fillet weld on bent leg.

Page 34: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

Page 26

P4_T6_FA2-01 Plate test specimen P4_T6_FA2-01 was tested

up to and through the ±2.25” excursions with an additional two cycles at this displacement level, for a total of 44 complete loading cycles. Yielding of the fuse section was first noticed through signs of flaking at the base of the fuse section at approximately the ±0.25” displacement cycles, at a load of 2.9 kips. Initial rupture of the specimen was identified at the base of the fuse section at approximately the ±2.00” displacement cycles, at a load of 5.0 kips, leading to complete separation at the fuse base at the end of five ±2.25” displacement cycles (Figure 23). This specimen reached a maximum load of 5.1 kips in the positive excursion direction and -5.1 kips in the negative excursion direction. Fuse base rupture was determined to be the governing limit state for this specimen. No significant buckling behavior was observed.

Figure 23. P4_T6_FA2-01 showing typical fuse base

rupture.

Page 35: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

Page 27

4.2 CMU Thru-Bolt Push-Out Tests

4.2.1 Specimen Behavior and Failure Mechanisms

FG-1A/1B CMU test specimen FG-1A showed first signs of minor cracking due to bearing at

one of the specimen supports at approximately 20 kips. Cracking was then observed around the threaded rod bearing area along with mortar joint splitting on both sides of the middle half block at approximately 21 kips. Diagonal shear cracks began to form at approximately 24 kips, along with further cracking around the bolt bearing area. At 26 kips, diagonal shear cracks had propagated to within a couple inches of the supports and some horizontal cracks were observed above the location of the threaded rod. The maximum load reached by the specimen was 26.48 kips. At the end of testing, shearing type deformation was observed in the threaded rod as well as some cracking in the grout at the ends of the specimen (Figure 24). No significant cracking was observed to have propagated into the area appropriated for test FG-1B.

CMU test specimen FG-1B showed first signs of mortar joint separation along the horizontal surface of the half block immediately below the location of the threaded rod at approximately 21 kips. At this time slight vertical mortar joint separation was also observed along one side the full block immediately above the location of the threaded rod. Vertical mortar joint separation was observed along one side of the middle half block at a load of 27 kips. Testing of the specimen continued to a load of 32.13 kips, at which point one end of the threaded rod sheared off, with the other end of the threaded rod showing significant shear deformation.

Figure 24. (a) Final cracking patterns for specimen FG-1A; (b) Typical cracks around rod bearing area as seen in specimen FG-1A.

FG-2A/2B

CMU test specimen FG-2A showed first signs of minor cracking around the threaded rod bearing area along with vertical mortar joint separation along the sides of the bottom cell of the middle full block at approximately 21 kips. Diagonal shear cracks began to form at approximately 26 kips and propagated to the bottom of the specimen shortly after. Testing of this specimen continued until significant cracking had taken

Page 36: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

Page 28

place, with the half block resting on the support beginning to rotate under the load. The maximum load reached by the specimen was 25.75 kips (Figure 25a). At the end of testing, shearing type deformation was observed in the threaded rod along with significant cracking around the rod bearing surface (Figure 25b). Some cracking was observed to have propagated into the area appropriated for test FG-2B.

CMU test specimen FG-2B showed first signs of horizontal shear cracking along with mortar joint separation along the sides of the bottom cell of the middle full block as well as the tops of the end half blocks at approximately 19 kips. The load on the specimen did not increase much beyond this point and testing continued until significant crack opening and mortar joint separation had occurred. The maximum load reached by the specimen was 19.61 kips. Some random cracking was also observed in the grout at the ends of specimen.

Figure 25. (a) Final cracking patterns for specimen FG-2A; (b) Typical threaded rod shear deformation as seen in specimen FG-2A. Load values shown on specimens were rounded to

the nearest whole number. PG-1A/1B

CMU test specimen PG-1A showed first signs of cracking around the threaded rod bearing area along with vertical mortar joint separation along the sides of the bottom cell of the middle half block at approximately 20 kips. Diagonal shear cracks began to form at approximately 24 kips, at which point the specimen reached its maximum load of 24.19 kips. Testing was continued until further displacement led to propagation of mortar joint separation up along the entire height of the full block, i.e. three cells from the bottom of the specimen. At the end of testing, slight shearing type deformation was observed in the threaded rod as well as splitting cracks through the ungrouted cells at the ends of the specimen. Although no cracking was observed to have propagated into the area appropriated for test PG-1B, mortar joint separation had propagated into that area.

CMU test specimen PG-1B showed first signs of mortar joint separation along the sides of the middle half block at approximately 22 kips. Diagonal shear cracks began to form at approximately 25 kips. Loading continued until the specimen reached its maximum load of 25.26 kips. Continued deformation of the specimen beyond its

Page 37: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

Page 29

maximum load led to significant vertical mortar joint separation, propagating almost through the entire height of the specimen (Figure 26). At the end of testing, significant opening of shear cracks had occurred and shearing type deformation of the threaded rod was also observed.

Figure 26. Specimen PG-1B showing mortar joint separation along the entire height of the right

side of the middle blocks, typical of partially grouted specimens.

PG-2A/2B

CMU test specimen PG-2A showed first signs of vertical mortar joint separation along the sides of the middle full block at approximately 20 kips. Cracks around the threaded rod bearing area and some horizontal mortar joint separation along the tops of the end half blocks were observed at approximately 22.5 kips. Diagonal shear cracks began to form at approximately 24 kips, with the specimen maximum load of 24.48 kips occurring shortly after. Testing was stopped after mortar joint separation began propagating through almost the entire height of the specimen. At the end of testing, significant opening of shear cracks had occurred and shearing type deformation of the threaded rod was also observed (Figure 27). Although no cracking was observed to have propagated into the area appropriated for test PG-2B, mortar joint separation had propagated into that area.

CMU test specimen PG-2B showed first signs of mortar joint separation along both surfaces of one of the end half blocks at approximately 21 kips, followed by cracking around the threaded rod bearing area and vertical mortar joint separation of the other end half block. Diagonal shear cracks began to form at approximately 27 kips, with the specimen reaching its maximum load of 27.30 kips shortly after. Continued deformation of the specimen beyond its maximum load led to significant vertical mortar

Page 38: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

Page 30

joint separation, propagating almost through the entire height of the specimen. At the end of testing, significant opening of shear cracks had occurred and shearing type deformation of the threaded rod was observed.

Figure 27. Final cracking patterns of specimen PG-2A, with vertical mortar joint separation

visible above the location of the threaded rod.

4.2.2 Test Results

A summary of the maximum loads reached by all the test specimens, as well as the deflections at which these loads occurred, is provided in Table 6. In addition to the CMU bolt push-out test specimens, three CMU prism specimens were constructed and tested to determine the compressive strength of the masonry, fmt, according to ASTM C1314 [ASTM, 2008b]. The results from these specimen tests are listed in Table 7.

Page 39: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

Page 31

Table 6. CMU bolt push-out maximum load values and corresponding downward deflection (in = 25.4 mm, kip = 4.45 kN).

Specimen Test Max Load (kips) Deflection (in.)A 26.48 0.710

B 32.13 0.600

A 25.75 0.792

B 19.61 0.578

A 24.19 0.442

B 25.26 0.458

A 24.48 0.442

B 27.30 0.466

FG1

FG2

PG1

PG2

Table 7. Summary of results from CMU prism tests.

The results for the individual test specimens are grouped as “A” tests and “B” tests and plotted in Figure 28 and Figure 29, respectively, with the displacement values on the x-axis and the corresponding load value on the y-axis. These plots represent the data collected for each specimen and show the difference in behavior between the fully grouted and partially grouted specimens as well as the effect of damage incurred during the “A” tests on the behavior of the specimens during the “B” tests.

SpecimenMaximum

Compressive LoadCross-Sectional

AreaObserved Mode of

FailureCompressive Strength, fmt

(lbs = 4.45 N) (in2 = 645.16 mm2) (psi = 0.00689 N/mm2)

[1] [2] [3] [4] [5]

P1 137500 58.14Semi-conical break, face shell separation, no grout cracking

2365

P2 138000 58.14 Face shell separation 2374

P3 155500 58.14 Face shell separation, some grout cracking

2675

Page 40: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

Page 32

Figure 28. Load vs. Displacement for all CMU specimen "A" tests.

Figure 29. Load vs. Displacement for all CMU specimen "B" tests.

Page 41: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

Page 33

5 Analysis

5.1 Comparison of Connector Plates (Link and Fuse Types A, S, and T)

Of all the connector plates tested, the full-width specimens without the fuse detail provided the highest maximum load values, as the greater specimen width provided a larger cross-section for higher flexural loads. Either plate buckling or failure of the connection of the specimen to the test assembly ultimately governed behavior of these specimens. Such a plate design would be preferable only for situations requiring a non-ductile connection with higher lateral load requirements.

Fuse type A provided a much more ductile response than the full width plates, although a significant decrease in the load capacity was observed due to the reduced cross-section. Failure of these specimens was also much more predictable and they maintained their maximum load for multiple cycles before rupture occurred due to high strain levels at the base of the fuse region.

Fuse type S performed equally as well as the type A specimens up until larger displacement levels at which point buckling behavior began to cause a reduction in the maximum load achieved in subsequent excursions.

Fuse type T provided the most ductile behavior of all the specimens. The tapered fuse width allowed for a nearly uniform distribution of initial yielding, identified through the uniform flaking of mill scale along the fuse length.

Implementation of the bent plate configuration introduced another design consideration into the detailing of specimens. Specimens bearing this connection type typically failed by failure of the C-shaped weld, without reaching the energy dissipation potential of a similar specimen without the bent plate configuration. Further testing is necessary in developing this connection detail to compensate for the introduction of earlier weld rupture. Table 8 summarizes the cumulative displacement and total energy

Table 8. Specimen Cumulative Displacement and Total Energy Dissipation Values (in = 25.4 mm, kip-in = 113 J).

Specimen CumulativeDisplacement (in)

Total Energy Dissipated (kip-in)

[1] [2] [3]

P4_T4-01 13.364 16.207

P4_T2_FA2-01 107.561 67.413

P4_T4_FA2-P-01 73.718 74.276

P4_T4-02 54.077 90.023

P4_T4_B-02 113.705 119.025

P4_T2-01 101.492 119.666

P4_T4_B-01 271.477 205.452

P4_T4_FA1-01 131.433 260.585

P4_T3_FA2-01 193.302 270.003

P4_T3-01 94.909 278.346

P4_T4_FA3-01 165.132 316.197

P4-T4-FS-01 126.714 325.956

P4_T4_FA2-01 169.192 328.713

P4_T6_FA2-01 143.132 378.051

P4_T4_FT3-B-01 394.675 487.936

P4_T4_FT2-01 383.307 698.707

P4_T4_FT3-01 544.697 978.726

Page 42: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

Page 34

dissipated for each specimen, in columns 2 and 3, respectively. The rows in the table were sorted numerically according to the values in column 3 from least to greatest in order to provide a rank of the energy dissipating characteristics of the specimens. The value of energy dissipation shown for each specimen was determined by integrating the area under the hysteretic loop for each excursion and then summing these values for the entire testing routine. Similarly, the cumulative displacement were obtained by summing the maximum measured displacement value reached for each excursion completed by the specimen up until the point of failure or significant buckling that validated ending the test.

5.2 ATC-24 Connector Plate Analysis

In order to facilitate performance evaluation of the connector plate specimens tested, an analysis of the hysteretic test results was conducted to generate all of the parameters recommended in ATC-24 [ATC, 1992]. The intention of the ATC-24 recommendations is to provide all the data necessary for a deduction of a complete set of performance parameters, addressing measures of specimen strength characteristics, stiffness characteristics, deformation capacity, and energy dissipation for each excursion of the specimen loading history. With these results, future analytic models can be developed for further exploration and/or verification of earlier predictions. Table 9 through Error! Reference source not found. show the ATC-24 recommended results for three representative connector plate specimens. All of the experimentally determined values listed in the tables have been normalized with respect to analytically determined values of yield force, Qy, and yield displacement, δy, based on an assumed material yield strength, Fy, of 42 ksi. Column 1 lists the entry number for each row of data, starting with 1 at the first excursion and increasing with each subsequent excursion. Column 2 lists the absolute value of the programmed actuator displacement level corresponding to each excursion. Column 3 lists the excursion number from which each row of data was extracted, followed by a positive sign (+) or a negative sign (-) noting either a compressive or a tensile force in the actuator load cell, respectively. Although previously an excursion was identified by displacement direction, ATC-24 documentation requires an excursion to be identified by the sign of the load on the specimen since residual deformation can make displacement levels deviate from the origin. The maximum deflection, δ, reached by a specimen during a given excursion is listed in Column 4. The deflection at the start of each excursion, δ0, is listed in Column 5. The difference between this value and the deflection at the start of the subsequent excursion (i.e. the point at which the load on the specimen changed signs) represents the plastic deformation range, Δδpm, for each excursion and is listed in Column 6. It should be noted that the plastic deflection range for the final entry of each specimen test has been omitted from the tables as this value would often prove to be a misrepresentation of the physical test in specimens that either failed prior to completion of the excursion or when loading was stopped before completion of the excursion.

The load, Q, corresponding to the maximum deflection in each excursion is given The load, Q, corresponding to the maximum deflection in each excursion is given in Column 7, while Column 8 lists the maximum overall load, Qmax, attained by the specimen during each excursion. The initial loading stiffness, K0, and initial unloading stiffness, K, are given in Columns 9 and 10, respectively. These values correspond to the slope (change in load vs. change in displacement) of the first 20 (loading) and last

Page 43: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

Page 35

20 (unloading) data values in each excursion. Finally, the area under the hysteretic loop of each excursion was used to quantity the specimen energy dissipation, as listed in Column 11.

The ATC-24 based hysteretic analysis of specimens P4_T4-01, P4_T4_FA3-01, and P4_T4_FT3-01 are shown in Table 9, Table 10, and Error! Reference source not found. respectively, providing a representation of three of the general failure modes observed: base connection failure, fuse base rupture, and fuse buckling/fatigue rupture, respectively. All other specimen tables can be found in the Appendix.

Page 44: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

Page 36

Sp

ecim

enP

4_T

4-0

1F

y =

42.0

0ks

i(a

ssu

me

d)Q

y =

5.6

0ki

ps!

y =

0.0

593

in.

En

try

Dis

pla

cem

ent

Le

vel

Pea

k D

efle

ctio

n

De

flect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

D

efle

ctio

n R

ang

e

Loa

d a

t P

eak

De

flect

ion

Ma

x. L

oad

in

Exc

urs

ion

Initi

al L

oadi

ng

Stif

fnes

sIn

itia

l Unl

oadi

ng

Stif

fne

ssH

yste

resi

s A

rea

(in.)

(+

/-)

i+i-

!/!

y!

0/!

y"

!pm

/!y

Q/Q

yQ

ma

x/Qy

K0/(

Qy/

! y)

K/(

Qy/

! y)

A/(

Qy/

! y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

10

.01

1+

0.11

20.

112

-0.0

28-0

.004

-0.0

09-0

.065

-0.0

65

0.00

0007

21

-0.

182

0.09

80

.03

50

.03

10

.051

0.2

890.

115

0.0

0001

23

2+

0.11

20.

112

-0.0

21-0

.002

-0.0

08-0

.047

-0.0

47

0.00

0013

42

-0.

175

0.10

50

.02

10

.04

70

.051

0.2

930.

202

0.0

0001

85

3+

0.12

60.

126

-0.0

28-0

.002

-0.0

07-0

.040

-0.0

40

0.00

0018

63

-0.

203

0.11

20.

007

0.0

150.

051

0.35

6-0

.00

60.

0000

227

0.0

24

+0.

091

0.09

1-0

.091

-0.0

02-0

.011

-0.0

41-0

.04

10.

0000

248

4-

0.19

60.

007

0.1

19

0.0

66

0.0

730.

366

0.25

00

.000

035

95

+0.

098

0.09

8-0

.105

-0.0

02-0

.011

-0.0

14-0

.01

40.

0000

371

05

-0.

189

-0.0

07

0.1

050.

072

0.0

720.

359

0.30

40.

0000

4811

6+

0.09

80.

098

-0.0

98-0

.002

-0.0

11-0

.001

-0.0

01

0.00

0050

12

6-

0.20

30.

000

0.14

70

.015

0.07

20.

343

-0.0

02

0.00

0064

130.

037

+0.

126

0.12

6-0

.168

-0.0

01-0

.053

0.25

60.

256

0.00

0075

14

7-

0.34

9-0

.04

20

.217

0.14

10

.141

0.33

10.

728

0.00

0106

15

8+

0.15

40.

154

-0.1

89

0.0

00

-0.0

530.

261

0.26

10

.000

114

16

8-

0.36

3-0

.02

10

.182

0.12

40

.142

0.35

10.

361

0.00

0144

17

9+

0.14

70.

147

-0.1

75

0.0

00

-0.0

520.

247

0.24

70

.000

153

18

9-

0.35

6-0

.02

80

.203

0.13

80

.142

0.34

30.

660

0.00

0185

190.

0610

+-0

.29

40.

147

-0.2

10

-0.1

44-0

.144

0.3

020.

617

0.0

0022

82

01

0-

0.62

9-0

.04

90

.224

0.27

30

.285

0.31

30.

605

0.00

0308

21

11+

-0.2

86

0.14

0-0

.21

0-0

.129

-0.1

440.

288

0.55

50

.000

346

22

11-

0.62

2-0

.04

90

.210

0.27

90

.285

0.30

80.

742

0.00

0421

23

12

+-0

.28

60.

119

-0.1

96

-0.1

44-0

.144

0.3

120.

713

0.0

0045

72

41

2-

0.62

9-0

.06

30

.238

0.26

60

.285

0.30

20.

580

0.00

0530

250.

1013

+-0

.59

40.

126

-0.2

38

-0.2

63-0

.280

0.3

010.

562

0.0

0062

92

61

3-

1.03

4-0

.07

70

.266

0.45

80

.463

0.24

40.

582

0.00

0816

27

14

+-0

.59

40.

161

-0.2

59

-0.2

79-0

.285

0.2

850.

721

0.0

0088

92

81

4-

1.03

4-0

.08

40

.259

0.45

20

.462

0.19

90.

569

0.00

1031

29

15

+-0

.59

40.

154

-0.2

38

-0.2

55-0

.285

0.2

470.

520

0.0

0111

53

01

5-

1.04

1-0

.06

30

.259

0.46

10

.462

0.23

30.

573

0.00

1273

Exc

urs

ion

[3]

Table 9. ATC-24 based table for specimen P4_T4-01.

Page 45: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

Page 37

S

pec

imen

P4_

T4

-01

Fy =

42.0

0ks

i(a

ssu

me

d)Q

y =

5.6

0ki

ps!

y =

0.0

593

in.

En

try

Dis

pla

cem

ent

Le

vel

Pea

k D

efle

ctio

n

De

flect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

D

efle

ctio

n R

ang

e

Loa

d a

t P

eak

De

flect

ion

Ma

x. L

oad

in

Exc

urs

ion

Initi

al L

oadi

ng

Stif

fnes

sIn

itia

l Unl

oadi

ng

Stif

fne

ssH

yste

resi

s A

rea

(in.)

(+

/-)

i+i-

!/!

y!

0/!

y"

!pm

/!y

Q/Q

yQ

ma

x/Qy

K0/(

Qy/

! y)

K/(

Qy/

! y)

A/(

Qy/

! y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Exc

urs

ion

[3]

310.

2516

+-1

.97

80.

168

-0.4

33

-0.7

62-0

.773

0.2

351.

018

0.0

0205

23

21

6-

2.65

6-0

.25

90

.720

0.89

90

.918

0.15

40.

437

0.00

3704

33

17

+-2

.06

90.

440

-0.5

80

-0.8

35-0

.835

0.11

50.

512

0.0

0455

73

41

7-

2.67

0-0

.12

60

.545

0.91

80

.918

0.10

40.

496

0.00

5508

35

18

+-2

.07

60.

426

-0.5

59

-0.8

34-0

.838

0.11

80.

521

0.0

0624

43

61

8-

2.67

7-0

.11

90

.524

0.91

80

.918

0.08

80.

488

0.00

7123

370.

5019

+-4

.45

90.

419

-1.5

80

-1.2

00-1

.233

0.0

900.

404

0.0

1274

23

81

9-

5.91

3-1

.13

93

.348

1.34

81

.348

0.06

10.

632

0.02

5817

39

20

+-4

.16

52.

195

-2.9

07

-1.2

73-1

.283

0.0

490.

444

0.0

3468

54

02

0-

5.94

1-0

.69

92

.817

1.34

41

.363

0.03

50.

492

0.04

4478

41

21

+-4

.20

02.

125

-2.8

17

-1.2

90-1

.300

0.0

430.

445

0.0

5294

64

22

1-

6.01

1-0

.69

92

.865

1.32

91

.341

0.03

00.

478

0.06

2655

430.

7522

+-7

.24

02.

167

-5.3

26

-1.3

92-1

.414

0.0

370.

425

0.0

8403

14

42

2-

11.5

25

-3.1

45

10.8

540.

786

1.3

720.

054

0.40

50.

1290

214

52

3+

-11.

224

7.67

4-1

8.70

2-0

.013

-1.1

810.

116

0.00

10

.170

018

46

23

-13

.705

-11.

007

14.6

700

.007

0.03

10.

022

0.01

10

.171

063

47

24

+-1

1.26

63.

620

-14.

830

-0.0

03-0

.006

0.00

50.

000

0.1

7128

44

82

4-

13.7

40-1

1.17

524

.629

0.0

030.

006

0.01

10.

000

0.1

7161

149

0.75

25+

13.4

26

13.4

26

---

0.0

00

-0.0

020.

001

0.00

1--

-

Page 46: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

Page 38

Sp

ec

imen

P4

_T4_

FA3-

01

Fy =

42.

00

ksi

(ass

um

ed

)Q

y =

1.4

0ki

ps

!y =

0.08

26in

.

En

try

Dis

pla

cem

en

t L

eve

lP

eak

D

efle

ctio

n

Def

lect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

D

efle

ctio

n R

ang

e

Load

at P

eak

De

flect

ion

Max

. L

oad

in

Exc

urs

ion

Initi

al L

oadi

ng

Stif

fnes

sIn

itial

Unl

oadi

ng

Stif

fnes

sH

yste

resi

s A

rea

(in.)

(+

/-)

i+i-

!/! y

! 0/!

y"

!pm

/!y

Q/Q

yQ

ma

x/Qy

K0/(

Qy/

! y)

K/(

Qy/!

y)A

/(Q

y/! y

)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

10

.01

1+

-0.0

75-0

.03

0-0

.02

0-0

.032

-0.0

34

0.3

68

0.3

840

.00

0002

21

--0

.040

-0.0

350.

005

0.0

190.

086

0.9

280.

970

0.0

0001

73

2+

-0.0

90-0

.05

0-0

.01

5-0

.027

-0.0

35

0.3

13

0.2

300

.00

0019

42

--0

.100

-0.0

50

0.10

00

.077

0.0

81-0

.29

7-0

.29

00

.00

0040

53

+-0

.136

-0.0

05

-0.0

60

-0.0

39-0

.03

90

.26

20

.254

0.0

000

526

3-

-0.0

60-0

.03

50.

025

0.0

140.

081

0.8

10

-0.0

34

0.0

000

557

0.0

24

+-0

.151

-0.0

45

-0.0

80

-0.0

37-0

.03

90

.19

90

.152

0.0

000

728

4-

-0.1

25-0

.125

0.09

00

.010

0.11

70

.441

0.44

10

.000

120

95

+-0

.156

-0.0

50

-0.0

95

-0.0

33-0

.03

60

.17

90

.129

0.0

001

401

05

--0

.130

-0.1

300.

105

0.0

040.

117

0.4

500.

450

0.0

0017

911

6+

-0.2

61-0

.03

5-0

.22

6-0

.014

-0.0

35

0.0

96

0.0

340

.00

0219

12

6-

-0.2

61-0

.261

0.23

60

.007

0.11

50

.224

0.22

40

.000

230

13

0.0

37

+-0

.346

-0.0

45

-0.2

91

-0.0

31-0

.03

50

.03

40

.056

0.0

002

911

47

--0

.336

-0.3

360.

291

0.0

050.

224

0.0

940.

094

0.0

0040

11

58

+-0

.351

-0.0

55

-0.2

86

-0.0

29-0

.03

20

.02

50

.053

0.0

004

571

68

--0

.341

-0.3

410.

306

0.0

050.

222

0.0

940.

094

0.0

0055

31

79

+-0

.346

-0.0

50

-0.2

86

-0.0

23-0

.03

10

.01

80

.040

0.0

006

081

89

--0

.316

-0.3

160.

281

0.0

070.

222

0.0

930.

093

0.0

0068

01

90

.06

10

+-0

.717

-0.0

50

-0.6

62

-0.0

16-0

.03

20

.02

90

.015

0.0

008

052

01

0-

-0.7

02-0

.702

0.67

20

.003

0.44

60

.064

0.06

40

.001

069

21

11+

-0.7

17-0

.04

0-0

.67

2-0

.022

-0.0

29

0.0

21

0.0

190

.00

1183

22

11-

-0.7

02-0

.702

0.68

20

.007

0.44

60

.029

0.02

90

.001

337

23

12

+-0

.712

-0.0

30

-0.6

82

-0.0

10-0

.02

40

.01

30

.009

0.0

014

342

41

2-

-0.6

97-0

.697

0.68

20

.006

0.44

40

.028

0.02

80

.001

594

25

0.1

01

3+

-1.1

79-0

.02

5-1

.05

3-0

.089

-0.0

95

0.0

21

0.0

410

.00

1754

26

13

--1

.059

-1.0

591.

043

0.0

070.

734

0.0

080.

008

0.0

0215

32

71

4+

-1.0

89-0

.025

-1.0

08-0

.018

-0.1

040.

006

-0.0

900.

0022

712

81

4-

-1.0

19-1

.019

1.00

80

.007

0.73

20

.004

0.00

40

.002

588

29

15

+-1

.164

-0.0

25

-1.0

18

-0.0

90-0

.10

40

.00

60

.042

0.0

027

083

01

5-

-1.0

29-1

.029

1.01

30

.005

0.73

10

.008

0.00

80

.002

972

Exc

urs

ion

[3]

Table 10. ATC-24 based table for specimen P4_T4_FA3-01.

Page 47: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

Page 39

Sp

eci

me

nP

4_T

4_

FA

3-0

1F

y =

42.0

0ks

i(a

ssum

ed)

Qy =

1.4

0ki

ps

!y =

0.0

826

in.

Ent

ryD

isp

lace

me

nt

Leve

lP

eak

D

efle

ctio

n

Def

lect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

D

efle

ctio

n

Ran

ge

Loa

d a

t Pea

k D

efle

ctio

nM

ax. L

oad

in

Exc

urs

ion

Initi

al L

oadi

ng

Stif

fnes

sIn

itia

l Unl

oad

ing

Stif

fne

ssH

yste

resi

s A

rea

(in.)

(+

/-)

i+i-

!/! y

! 0/!

y"

! pm/!

yQ

/Qy

Qm

ax/Q

yK

0/(

Qy/

! y)

K/(

Qy/

! y)

A/(

Qy/

! y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11

]

Exc

urs

ion

[3]

310

.25

16+

-2.5

94-0

.02

0-1

.114

-1.0

58-1

.06

50.

003

0.84

40

.00

36

9132

16-

2.49

8-1

.104

1.73

61.

432

1.43

20.

012

1.02

70.

0107

6933

17+

-2.5

740

.607

-1.5

85-1

.158

-1.1

58

0.0

030.

786

0.0

13

872

3417

-2.

523

-0.9

581.

585

1.4

221.

433

0.01

00.

825

0.01

8281

3518

+-2

.559

0.5

97-1

.565

-1.1

71-1

.17

10.

001

0.77

90

.02

12

0836

18-

2.51

8-0

.948

0.94

31.

436

1.43

60.

008

0.89

20.

0251

5337

0.5

019

+-5

.448

0.0

05-3

.396

-1.4

83-1

.48

30.

007

1.04

80

.05

21

2838

19-

5.45

8-3

.371

6.59

21.

597

1.59

70.

011

0.98

30.

1041

3339

20+

-5.4

583

.206

-6.3

26-1

.596

-1.5

96

0.0

030.

776

0.1

51

509

4020

-5.

458

-3.1

006.

246

1.6

071.

647

0.00

10.

815

0.19

9872

4121

+-5

.408

3.1

20-6

.166

-1.6

34-1

.63

40.

004

0.85

90

.24

59

7142

21-

5.45

3-3

.025

6.09

01.

654

1.67

00.

001

0.86

60.

2931

7243

0.7

522

+-8

.358

3.0

40-8

.895

-1.7

43-1

.74

30.

003

0.87

70

.37

18

8044

22-

8.43

3-5

.845

11.7

141.

750

1.7

980.

006

0.82

80.

4819

8245

23+

-8.3

535

.854

-11.

569

-1.8

06-1

.80

60.

006

0.86

80

.58

83

8346

23-

8.42

3-5

.684

11.4

681.

815

1.8

34-0

.002

0.96

20

.697

320

4724

+-8

.358

5.7

59-1

1.46

8-1

.811

-1.8

29

0.0

030.

783

0.8

03

707

4824

-8.

423

-5.6

7411

.428

1.8

391

.846

-0.0

020.

922

0.9

1235

649

1.0

025

+-1

1.29

35

.739

-14.

253

-1.9

04-1

.90

50.

003

0.85

81

.05

55

7850

25-

11.4

13

-8.4

88

17.

062

1.9

171

.94

20.

008

0.90

71

.23

45

7451

26+

-11.

293

8.5

48-1

6.97

7-1

.938

-1.9

49

0.0

030.

846

1.4

10

592

5226

-11

.40

8-8

.41

31

6.9

271.

891

1.9

68

0.0

090.

818

1.5

89

471

5327

+-1

1.25

38

.488

-16.

841

-1.9

64-1

.96

90.

005

0.89

21

.76

55

7754

27-

11.4

18

-8.3

43

16.

851

1.9

301

.98

30.

000

0.85

61

.94

48

2955

1.2

528

+-1

4.23

38

.498

-19.

676

-2.0

30-2

.03

10.

005

0.87

32

.16

09

1956

28-

14.

393

-11.

167

22.

505

2.0

512

.06

70.

011

0.96

32

.41

69

7257

29+

-14.

213

11.3

23-2

2.43

5-2

.034

-2.0

70

0.0

060.

772

2.6

69

340

5829

-1

4.3

83-1

1.0

922

2.4

052.

061

2.0

90

0.0

060.

914

2.9

26

071

5930

+-1

4.22

311

.288

-22.

355

-2.0

38-2

.08

70.

011

0.75

73

.17

97

0160

30-

14.

388

-11.

067

22.

335

2.1

002

.10

30.

005

0.94

33

.43

68

10

Page 48: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

Page 40

Sp

ecim

enP

4_T

4_F

A3

-01

Fy =

42.0

0ks

i(a

ssu

me

d)Q

y =

1.4

0ki

ps!

y =

0.0

826

in.

En

try

Dis

pla

cem

ent

Le

vel

Pea

k D

efle

ctio

n

De

flect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

D

efle

ctio

n R

ang

e

Loa

d a

t P

eak

De

flect

ion

Ma

x. L

oad

in

Exc

urs

ion

Initi

al L

oadi

ng

Stif

fnes

sIn

itia

l Unl

oadi

ng

Stif

fne

ssH

yste

resi

s A

rea

(in.)

(+

/-)

i+i-

!/!

y!

0/!

y"

!pm

/!y

Q/Q

yQ

ma

x/Qy

K0/(

Qy/

! y)

K/(

Qy/

! y)

A/(

Qy/

! y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Exc

urs

ion

[3]

611.

5031

+-1

7.13

711

.25

3-2

5.15

9-2

.133

-2.1

450.

007

1.00

33

.732

624

62

31

-17

.383

-13

.886

28.0

341.

983

2.1

770.

009

0.45

14.

0719

296

33

2+

-17.

147

14.1

22

-27.

943

-2.1

77-2

.177

0.02

30.

900

4.4

0730

36

43

2-

17.4

08-1

3.8

1127

.903

2.1

692.

196

0.00

00.

883

4.7

4791

26

53

3+

-17.

157

14.0

62

-27.

863

-2.1

93-2

.195

0.01

50.

876

5.0

8446

96

63

3-

17.4

13-1

3.7

7627

.878

2.17

22

.208

0.00

70.

855

5.42

5560

671.

7534

+-2

0.07

214

.11

2-3

0.76

8-2

.248

-2.2

480.

039

0.94

15

.806

624

68

34

-20

.433

-16

.651

33.6

122.

271

2.2

740.

006

0.93

76.

2350

706

93

5+

-20.

067

16.9

57

-33.

547

-2.2

70-2

.278

0.08

40.

880

6.6

5727

67

03

5-

20.4

23-1

6.5

7033

.532

2.26

32

.295

0.01

30.

881

7.08

7159

71

36

+-2

0.07

716

.94

2-3

3.52

2-2

.273

-2.2

870.

082

0.91

07

.510

711

72

36

-20

.423

-16

.555

33.4

772.

305

2.3

050.

011

1.11

17.

9415

8173

2.00

37+

-23.

037

16.9

01

-36.

331

-2.3

31-2

.344

0.11

80.

917

8.4

1225

67

43

7-

23.3

43-1

9.4

1539

.221

2.36

42

.365

0.01

61.

126

8.93

3146

75

38

+-2

3.05

719

.79

1-3

9.17

1-2

.351

-2.3

530.

193

0.90

09

.446

622

76

38

-23

.348

-19

.370

39.1

512.

346

2.3

770.

030

0.88

99.

9675

767

73

9+

-23.

062

19.7

61

-39.

106

-2.3

39-2

.354

0.24

70.

870

10.

4815

537

83

9-

23.3

58

-19

.33

039

.096

2.3

78

2.3

780.

042

1.10

211

.002

794

792.

2540

+-2

6.0

27

19.7

56

-42

.021

-2.3

73-2

.402

0.2

880.

802

11.5

6482

38

04

0-

26.2

93

-22

.24

444

.915

2.3

89

2.4

270.

199

0.91

41

2.1

7867

08

14

1+

-26.

022

22.6

66

-44.

880

-2.4

19-2

.419

0.42

90.

905

12.

7851

558

24

1-

26.3

03

-22

.20

444

.855

2.3

50

2.4

340.

406

0.63

21

3.3

9962

98

34

2+

-25.

982

22.6

36

-44.

835

-2.3

82-2

.425

0.42

20.

811

14.

0057

158

44

2-

26.3

28

-22

.18

444

.820

2.4

25

2.4

300.

419

1.05

21

4.6

1986

385

2.50

43+

-28.

957

22.6

11-4

7.68

9-2

.464

-2.4

700.

432

0.87

81

5.27

3903

86

43

-29

.23

8-2

5.0

74

50.5

442

.39

22

.476

0.4

190.

864

15.

981

140

87

44

+-2

8.94

725

.45

0-5

0.49

9-2

.465

-2.4

780.

417

0.87

91

6.67

7462

88

44

-29

.26

8-2

5.0

29

50.5

792

.39

52

.401

0.4

451.

084

17.

378

948

89

45

+-2

8.98

225

.53

0-5

0.58

9-2

.400

-2.4

610.

411

0.75

81

8.06

6176

90

45

-29

.79

0-2

5.0

39

52.6

510

.33

21

.860

0.4

190.

290

18.

468

365

912.

5046

+27

.597

27.5

92-4

4.86

5-0

.001

-1.3

470.

090

0.09

01

8.65

9227

92

46

--2

9.78

5-1

7.2

83--

-0

.025

0.04

4-0

.015

0.01

0--

-

Page 49: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

Page 41

S

pe

cim

en

P4

_T4_

FT

3-0

1F

y =

42.0

0ks

i(a

ssu

me

d)Q

y =

1.02

kip

s!

y =

0.0

871

in.

Ent

ryD

isp

lace

me

nt

Leve

lP

eak

D

efle

ctio

n

Def

lect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

D

efle

ctio

n

Ra

nge

Loa

d at

Pe

ak

Def

lect

ion

Ma

x. L

oad

in

Exc

urs

ion

Initi

al L

oad

ing

Stif

fnes

sIn

itial

Unl

oad

ing

Stif

fnes

sH

yste

resi

s A

rea

(in.)

(+

/-)

i+i-

!/! y

! 0/!

y"

!p

m/!

yQ

/Qy

Qm

ax/Q

yK

0/(

Qy/!

y)K

/(Q

y/!y)

A/(

Qy/

! y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

10.

2516

+

216

-2.

023

0.0

29-0

.19

01.

596

1.6

25

0.7

020.

725

0.00

3857

317

+-2

.889

-0.1

90

-0.5

71

-1.5

26

-1.5

300

.419

0.7

620.

0077

034

17-

2.03

7-0

.738

0.56

21.

622

1.62

20

.499

0.76

80.

0120

325

18+

-2.8

84-0

.18

6-0

.56

6-1

.53

2-1

.532

0.4

120.

781

0.01

5654

618

-2.

037

-0.7

330.

547

1.62

31.

623

0.4

940.

808

0.01

9685

70.

5019

+-5

.654

-0.2

00

-2.9

08

-1.7

88

-1.7

990

.372

0.8

070.

0555

328

19-

4.85

5-3

.098

5.40

71.

773

1.77

50

.394

0.72

50

.115

048

920

+-5

.635

2.2

89-5

.37

3-1

.76

6-1

.780

0.3

920.

771

0.16

9968

1020

-4.

888

-3.0

705.

349

1.75

71.

787

0.3

830.

680

0.22

5324

1121

+-5

.640

2.2

56-5

.27

3-1

.78

9-1

.789

0.3

830.

765

0.27

8852

1221

-4.

859

-3.0

085.

245

1.79

71.

797

0.4

380.

907

0.33

2947

130.

7522

+-8

.457

2.2

32-7

.96

2-1

.85

5-1

.863

0.3

780.

805

0.42

3885

1422

-7.

686

-5.7

0610

.656

1.88

31

.887

0.34

20.

873

0.54

5740

1523

+-8

.410

4.91

6-1

0.56

1-1

.91

0-1

.911

0.3

310.

811

0.66

4781

1623

-7.

672

-5.6

3010

.452

1.92

11

.931

0.31

30.

855

0.78

5732

1724

+-8

.424

4.81

2-1

0.41

3-1

.93

7-1

.937

0.4

420.

833

0.90

5046

1824

-7.

667

-5.5

7310

.394

1.94

81

.949

0.33

20.

912

1.02

5938

191.

0025

+-1

1.19

44.

802

-13

.04

5-2

.01

2-2

.015

0.3

590.

858

1.18

6145

2025

-10

.518

-8.2

2915

.734

2.03

62

.036

0.32

70.

918

1.38

3865

2126

+-1

1.19

47.

477

-15

.67

3-2

.04

8-2

.052

0.3

740.

832

1.57

9152

2226

-10

.528

-8.1

7715

.620

2.05

72

.062

0.31

80.

938

1.77

7459

2327

+-1

1.18

97.

434

-15

.58

7-2

.05

2-2

.074

0.3

760.

810

1.97

3671

2427

-10

.537

-8.1

4315

.587

2.07

42

.077

0.27

20.

877

2.17

2596

251.

2528

+-1

4.00

27.

434

-18

.22

8-2

.12

6-2

.136

0.3

460.

845

2.41

2996

2628

-13

.345

-10.

780

20.

913

2.13

32.

148

0.3

420.

905

2.69

4694

2729

+-1

3.99

31

0.12

8-2

0.8

79

-2.1

64

-2.1

710

.388

0.8

792.

9742

6828

29-

13.3

55-1

0.72

82

0.85

12.

159

2.17

10

.283

0.90

13.

2571

9629

30+

-13.

983

10.

109

-20

.82

7-2

.18

4-2

.189

0.3

090.

910

3.53

8232

3030

-13

.359

-10.

699

20.

803

2.18

12.

184

0.2

960.

968

3.82

2055

Exc

urs

ion

[3]

AL

L D

ATA

PR

IOR

TO

EX

CU

RS

ION

16- W

AS

NO

T P

RO

PE

RLY

CO

LLE

CT

ED

Be

gin

Rep

. 1

Page 50: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

Page 42

Sp

eci

me

nP

4_T

4_

FT

3-0

1F

y =

42.0

0ks

i(a

ssum

ed)

Qy =

1.0

2ki

ps

!y =

0.0

871

in.

Ent

ryD

isp

lace

me

nt

Leve

lP

eak

D

efle

ctio

n

Def

lect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

D

efle

ctio

n

Ran

ge

Loa

d a

t Pea

k D

efle

ctio

nM

ax. L

oad

in

Exc

urs

ion

Initi

al L

oadi

ng

Stif

fnes

sIn

itia

l Unl

oad

ing

Stif

fne

ssH

yste

resi

s A

rea

(in.)

(+

/-)

i+i-

!/! y

! 0/!

y"

! pm/!

yQ

/Qy

Qm

ax/Q

yK

0/(

Qy/

! y)

K/(

Qy/

! y)

A/(

Qy/

! y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11

]

Exc

urs

ion

[3]

131

1.5

031

+-1

6.79

61

0.0

80-2

3.49

2-2

.223

-2.2

41

0.3

670.

860

4.1

50

370

3231

-1

6.2

39-1

3.4

02

26.

215

2.2

052

.24

50.

295

0.85

94

.52

28

7733

32+

-16.

791

12.

793

-26.

153

-2.2

77-2

.27

70.

380

0.94

04

.89

34

9634

32-

16.

239

-13

.34

52

6.1

292.

260

2.2

65

0.2

570.

928

5.2

67

681

3533

+-1

6.79

61

2.7

74-2

6.12

4-2

.283

-2.2

90

0.3

540.

927

5.6

40

253

3633

-1

6.2

44-1

3.3

12

26.

062

2.2

552

.28

10.

254

0.86

86

.01

56

3637

1.7

534

+-1

9.58

51

2.7

27-2

8.79

4-2

.336

-2.3

38

0.3

641.

060

6.4

37

447

3834

-1

9.1

09-1

6.0

39

31.

507

2.3

032

.33

60.

247

0.86

56

.90

71

7739

35+

-19.

613

15.

449

-31.

459

-2.3

59-2

.36

90.

390

0.87

97

.37

46

2740

35-

19.

109

-16

.00

13

1.4

262.

320

2.3

58

0.2

220.

868

7.8

47

068

4136

+-1

9.60

41

5.4

01-3

1.38

3-2

.352

-2.3

83

0.3

890.

782

8.3

16

372

4236

-1

9.0

99-1

5.9

72

31.

388

2.3

622

.37

10.

212

0.93

78

.79

03

9043

2.0

037

+-2

2.39

81

5.3

87-3

4.12

0-2

.417

-2.4

35

0.3

660.

929

9.3

12

019

4437

-21

.922

-18.

704

36.

871

2.4

282.

428

0.22

21.

037

9.8

849

1145

38+

-22.

393

18.

152

-36.

795

-2.4

52-2

.45

80.

378

0.98

010

.454

962

4638

-21

.955

-18.

633

36.

704

2.4

372.

455

0.30

50.

888

11.0

3134

747

39+

-22.

398

18.

057

-36.

657

-2.4

45-2

.47

50.

553

0.89

011

.603

338

4839

-2

1.9

26-1

8.5

95

36.

704

2.4

492

.46

70.

320

0.96

612

.18

115

349

2.2

540

+-2

5.17

21

8.0

90-3

9.46

0-2

.513

-2.5

15

0.3

851.

005

12.8

07

011

5040

-24

.682

-21.

346

42.

187

2.5

462.

548

0.27

51.

064

13.4

8785

551

41+

-25.

182

20.

817

-42.

144

-2.5

30-2

.55

00.

375

0.92

514

.164

071

5241

-24

.682

-21.

312

42.

087

2.5

912.

619

0.25

90.

998

14.8

5430

853

42+

-25.

210

20.

746

-42.

058

-2.5

88-2

.58

90.

325

1.02

515

.535

566

5442

-24

.706

-21.

293

42.

049

2.5

912.

627

0.37

50.

856

16.2

2854

655

2.5

043

+-2

8.00

42

0.7

37-4

4.72

8-2

.613

-2.6

37

0.3

280.

952

16.9

6538

056

43-

27.4

33-2

3.97

84

7.41

82.

710

2.71

50.

419

1.08

717

.765

509

5744

+-2

7.99

92

3.4

30-4

7.41

3-2

.681

-2.6

81

0.4

421.

044

18.5

5297

858

44-

27.4

19-2

3.95

94

7.35

62.

719

2.74

90.

438

0.78

919

.356

479

5945

+-2

8.00

92

3.3

83-4

7.35

1-2

.702

-2.7

08

0.4

390.

992

20.1

4578

760

45-

27.

366

-23

.95

44

7.3

412.

795

2.8

04

0.4

111.

210

20.9

51

811

Page 51: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

Page 43

Sp

ecim

enP

4_T

4_F

T3

-01

Fy =

42.0

0ks

i(a

ssu

me

d)Q

y =

1.0

2ki

ps!

y =

0.0

871

in.

En

try

Dis

pla

cem

ent

Le

vel

Pea

k D

efle

ctio

n

De

flect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

D

efle

ctio

n R

ang

e

Loa

d a

t P

eak

De

flect

ion

Ma

x. L

oad

in

Exc

urs

ion

Initi

al L

oadi

ng

Stif

fnes

sIn

itia

l Unl

oadi

ng

Stif

fne

ssH

yste

resi

s A

rea

(in.)

(+

/-)

i+i-

!/!

y!

0/!

y"

!pm

/!y

Q/Q

yQ

ma

x/Qy

K0/(

Qy/

! y)

K/(

Qy/

! y)

A/(

Qy/

! y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Exc

urs

ion

[3]

161

2.75

46+

-30.

826

23.3

59

-50.

059

-2.7

62-2

.762

0.44

31.

085

21.

7995

486

24

6-

30.0

74

-26

.69

052

.748

2.9

03

2.9

310.

444

1.09

72

2.7

1938

86

34

7+

-30.

831

26.0

43

-52.

696

-2.7

56-2

.780

0.43

21.

000

23.

6169

726

44

7-

30.0

51

-26

.63

852

.667

2.9

26

2.9

280.

422

1.25

62

4.5

3898

56

54

8+

-30.

826

26.0

10

-52.

653

-2.7

79-2

.794

0.42

51.

049

25.

4403

926

64

8-

30.0

46

-26

.61

452

.634

2.9

61

2.9

610.

437

1.24

52

6.3

6514

667

3.00

49+

-33.

097

26.0

00

-54.

971

-2.7

82-2

.861

0.46

20.

064

27.

3184

206

84

9-

32.7

73

-28

.95

157

.598

3.0

67

3.0

780.

418

1.17

62

8.3

5447

06

95

0+

-33.

106

28.6

23

-57.

617

-2.7

58-2

.847

0.39

51.

284

29.

3601

787

05

0-

32.7

54

-28

.97

057

.655

3.0

22

3.0

670.

421

1.14

33

0.3

9560

27

15

1+

-33.

097

28.6

61

-57.

560

-2.8

18-2

.883

0.38

90.

021

31.

4019

707

25

1-

32.7

54

-28

.88

557

.536

3.0

49

3.0

520.

411

1.27

63

2.4

4001

173

3.00

52+

-33.

101

28.6

42

-57.

631

-2.7

83-2

.877

0.39

01.

051

33.

4468

017

45

2-

32.7

50

-28

.97

557

.612

3.0

69

3.0

850.

347

1.23

23

4.4

8519

87

55

3+

-33.

101

28.6

13

-57.

550

-2.8

14-2

.889

0.42

10.

414

35.

4910

927

65

3-

32.7

39

-28

.92

757

.531

3.0

72

3.0

740.

362

1.44

93

6.5

2857

57

75

4+

-33.

097

28.5

85

-57.

526

-2.8

39-2

.913

0.44

90.

191

37.

5327

797

85

4-

32.7

44

-28

.93

257

.498

3.1

113

.118

0.3

491.

237

38.

568

636

793.

0055

+-3

3.10

128

.54

7-5

7.48

4-2

.841

-2.9

140.

475

0.09

23

9.57

1830

80

55

-32

.77

3-2

8.9

27

57.4

983

.14

03

.141

0.3

830.

874

40.

607

502

81

56

+-3

3.13

028

.55

1-5

7.52

6-2

.809

-2.9

110.

485

0.96

14

1.60

7855

82

56

-32

.76

8-2

8.9

61

57.5

173

.12

93

.158

0.4

431.

254

42.

643

128

83

57

+-3

3.10

628

.54

2-5

7.54

5-2

.832

-2.9

090.

425

0.11

44

3.64

0974

84

57

-32

.79

7-2

8.9

89

57.6

503

.08

23

.152

0.3

761.

073

44.

674

102

853.

0058

+28

.647

28.6

47--

--0

.005

-2.3

300.

298

0.29

8--

-

86

58

--3

3.56

30.

000

-28.

618

-3.0

67-3

.068

0.09

21.

008

0.6

3388

48

75

9+

32.3

35-2

8.6

1356

.532

3.37

03

.370

0.35

41.

438

1.68

9783

88

59

--3

3.6

1127

.89

9-5

6.64

1-3

.013

-3.0

130.

401

0.97

52

.705

969

89

60

+32

.354

-28

.727

56.7

273.

304

3.3

180.

363

1.32

03.

7334

139

06

0-

-33.

592

27.9

85

-56.

760

-2.9

75-2

.983

0.40

21.

035

4.7

3091

5

Be

gin

Re

p.

2

Page 52: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

Page 44

S

pe

cim

en

P4

_T4_

FT

3-0

1F

y =

42.0

0ks

i(a

ssu

me

d)Q

y =

1.02

kip

s!

y =

0.0

871

in.

Ent

ryD

isp

lace

me

nt

Leve

lP

eak

D

efle

ctio

n

Def

lect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

D

efle

ctio

n

Ra

nge

Loa

d at

Pe

ak

Def

lect

ion

Ma

x. L

oad

in

Exc

urs

ion

Initi

al L

oad

ing

Stif

fnes

sIn

itial

Unl

oad

ing

Stif

fnes

sH

yste

resi

s A

rea

(in.)

(+

/-)

i+i-

!/! y

! 0/!

y"

!p

m/!

yQ

/Qy

Qm

ax/Q

yK

0/(

Qy/!

y)K

/(Q

y/!y)

A/(

Qy/

! y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Exc

urs

ion

[3]

Bi

R1

913.

0061

+32

.364

-28.

761

56.

822

3.28

93.

289

0.3

761.

452

5.74

3835

9261

--3

3.67

22

8.04

3-5

6.8

89

-2.9

67

-2.9

670

.388

1.0

306.

7331

2393

62+

32.3

83-2

8.82

75

6.85

53.

258

3.26

60

.417

1.36

97.

7426

4594

62-

-33.

653

28.

004

-56

.91

7-2

.96

0-2

.960

0.4

481.

037

8.72

3560

9563

+32

.431

-28.

889

56.

975

3.25

13.

251

0.3

661.

287

9.72

9314

9663

--3

3.70

12

8.06

6-5

6.9

98

-2.9

32

-2.9

340

.384

0.9

3110

.706

065

973.

0064

+3

2.43

1-2

8.9

27

57.

008

3.23

73

.24

80

.367

1.2

7311

.70

6275

9864

--3

3.68

72

8.06

6-5

7.0

41

-2.9

35

-2.9

350

.477

0.9

8612

.676

886

9965

+32

.440

-28.

961

57.

046

3.21

33.

225

0.3

811.

306

13.6

7233

510

065

--3

3.70

12

8.06

6-5

7.0

83

-2.9

30

-2.9

350

.362

0.9

9814

.633

663

101

66+

32.4

58-2

9.02

357

.11

23.

239

3.23

90

.424

1.10

815

.625

808

102

66-

-33.

730

28.

070

-57

.15

5-2

.89

5-2

.926

0.3

350.

890

16.5

8045

310

33.

0067

+32

.464

-29.

070

57.

165

3.21

13.

224

0.3

831.

289

17.5

7161

010

467

--3

3.74

42

8.08

1-5

7.1

75

-2.8

90

-2.8

960

.367

0.9

8918

.518

769

105

68+

32.4

73-2

9.08

95

7.19

93.

214

3.23

80

.352

1.22

119

.505

850

106

68-

-33.

758

28.

094

-57

.21

2-2

.86

1-2

.874

0.2

930.

993

20.4

4371

410

769

+32

.507

-29.

099

57.

155

3.19

83.

239

0.3

581.

071

21.4

2392

410

869

--3

3.81

52

8.04

7-5

7.1

60

-2.8

54

-2.8

550

.352

0.7

2922

.352

755

109

3.00

70+

32.5

11-2

9.09

95

7.14

63.

210

3.21

90

.380

1.36

023

.328

271

110

70-

-33.

801

28.

032

-57

.17

9-2

.83

6-2

.838

0.3

560.

955

24.2

4806

811

171

+32

.535

-29.

123

57.

150

3.18

23.

212

0.3

441.

211

25.2

1658

411

271

--3

3.78

72

8.03

2-5

7.1

55

-2.8

01

-2.8

030

.373

0.8

9026

.123

988

113

72+

32.5

54-2

9.10

85

7.14

53.

169

3.18

50

.308

1.30

327

.084

225

114

72-

-33.

801

28.

028

-57

.08

4-2

.74

8-2

.759

0.3

310.

901

27.9

7927

111

53.

0073

+32

.559

-29.

037

57.

027

3.14

23.

158

0.2

931.

225

28.9

3099

511

673

--3

3.82

52

7.97

6-5

6.9

51

-2.7

07

-2.7

070

.315

0.9

3929

.813

558

117

74+

32.5

64-2

8.95

65

7.07

03.

104

3.12

70

.300

1.15

030

.756

122

118

74-

-33.

863

28.

094

-56

.96

9-2

.64

5-2

.653

0.3

220.

878

31.6

2304

411

975

+32

.549

-28.

866

56.

769

3.10

43.

104

0.2

981.

455

32.5

4890

112

075

--3

3.88

72

7.89

9-5

6.7

08

-2.5

80

-2.5

890

.427

0.8

5333

.397

944

Page 53: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

Page 45

5.3 CMU Thru-Bolt Push-Out Tests

5.3.1 Connection Failure Mechanisms

Design values for shear applied to the through-bolted masonry connection implemented in the hybrid masonry system are not clearly addressed in ACI 530, although several equations for embedded anchor bolts and headed studs are provided. These may be extended to provide an approximation of the nominal strengths and associated limit states that could be expected in a through-bolted connection.

ACI 530-08 gives an upper bound for nominal shear strength in equation 3-20. This value assumes that the factored load in shear is much greater than the factored moment (i.e. / 0.25), which can be reasonably assumed to be the case for the type of connection under investigation. For this condition, ACI 530-08 limits the maximum nominal masonry shear strength to the following:

6 (ACI 530-08 EQN 3-20) [3]

Evaluation of this equation gives the nominal upper limit shear strength for the specimens in this test as 2 6 10.5 . 7.625 . 2471 1 1000 ⁄ 47.78 , multiplying by two to account for the two potential shear failure planes in the specimen. This upper limit accounts for both masonry shear strength and the nominal shear strength provided for any reinforcement, or (ACI 530-08 EQN 3-19). Since only one #3 bar is provided in the specimen to resist shear along the two potential shear failure planes, it is more reasonable to disregard the contribution from the reinforcement and simply treat the single bar as a means to prevent brittle breakout. With that assumption, the nominal masonry shear strength is reduced only to the capacity from Vnm. This value is determined through the following:

4.0 1.75

0.25 (ACI 530-08 EQN 3-22) [4]

Where, in this case Pu = 0. Three potential assumptions can be made in order to apply and evaluate this equation for the conditions of this configuration. A conservative approach would be to assume , which is true at midspan, since 1⁄ . This equation then reduces to 2.25 . Evaluation of this equation for this experimental configuration gives the following:

2 2.25 10.5 . 7.625 . 2471 1 1000 ⁄ 17.91

Another reasonable approach is to determine the moment at a distance /2 from the support, assuming the crack initiates at mid-depth of the shear depth, dv. This results in 0.5⁄ and 3.125 . Evaluation of this equation based on the stated assumption gives a nominal masonry shear capacity equal to 24.87 kips.

One final approach considered for the evaluation of this term is in consideration of the original intent of the ⁄ ratio, a representation of the ratio of the tensile

Page 54: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

Page 46

force induced by the bending moment to the actual shear force. As the tension force causes flexural cracking, the aggregate interlock and/or mechanical state of stress will be less effective to resist shear. For these test specimens, the bending moment is actually applied to the full 32 inch depth and therefore it could be assumed that

0⁄ , giving 4 . Evaluation of this equation based on the stated assumption gives a nominal masonry shear capacity equal to 31.84 kips. By inspection, the assumption that 0.5⁄ provides the closest approximation to the actual mean maximum load, while the first approach also serves to provide a reasonable, yet slightly conservative, value as well.

In addition to shear strength, ACI 530-08 addresses bearing strength and the strength of embedded anchor bolts in shear and/or tension. The ACI 530 specified nominal bearing strength of masonry is given as 0.6 , where the bearing area, Abr, is defined in Section 1.9.5. Since the threaded rod is bearing across the entire width of the wall specimens, the provision for an increased bearing area does not apply. The average load at which initial cracks were observed in the test specimens was between 20 and 21 kips, much greater than expected according to the code-prescribed bearing capacity of 0.6 2471 10.5 . 0.75 . 1 1000 ⁄ 8.48 . Therefore, this strength value provides an extremely conservative estimate of the through bolted connection capacity.

In addition to masonry shear capacity, ACI 530-08 provides four potential limiting equations for the nominal shear strength of headed and bent-bar anchor bolts.

4 (ACI 530-08 EQN 3-6) [5]

1050 (ACI 530-08 EQN 3-7) [6]

2.0 8 (ACI 530-08 EQN 3-8) [7]

0.6 (ACI 530-08 EQN 3-9) [8]

These equations provide an assessment of the nominal shear strength of the connection as governed by masonry breakout, masonry crushing, anchor bolt pryout, and bolt shear yielding, in the order shown. Equation (7) does not apply to the through bolted connection implemented in this test, as it is dependent upon a tensile cone breakout of an embedded anchor and would be highly unlikely in this configuration. Equation (5) depends upon the failure of the projected shear area of one-half of a right circular cone. For the purposes of a through bolted connection, it will be assumed that this projected shear area is the rectangular projection at 45 degree angles from the location of the anchor bolt to the surface of the masonry (Figure 30). This gives the values as 4 21 . 7.625 . 2471 31.84 .

Page 55: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

Page 47

Figure 30. Assumed projected shear area for masonry breakout failure (in = 25.4 mm).

A complete, detailed evaluation of these equations is provided in the Appendix of this report. Table 11 summarizes the values obtained for the CMU bolt pushout test specimens along with critical points identified in the actual behavior of the test specimens for the purposes of identifying applicability of current ACI 530-08 design equations. Table 11. Summary of Applicable ACI 530-08 Design Values and Measured Test Results (kip =

4.45 kN).

By inspection, both masonry shear strength and bolt shear yielding provide conservative estimates of the capacity of the thru-bolted connection. The other two applicable limit states, masonry breakout and masonry crushing, are most likely affected by the substitution of the typical embedded connection with a thru-bolted connection, which introduces a set of completely different restraints into the connection. Because of the various additional restraints provided in this system, it appears bolt shear yielding will typically be the governing, and most predictable, limit state in determining the capacity of the masonry assembly. Masonry shear failure may have also governed the behavior of the specimens, but was limited by the presence of the vertical #5 steel located in the cells directly below the threaded rod connection, thereby confirming the importance of the end cell reinforcement in the detailing of the masonry wall.

Masonry Breakout

Masonry Crushing

Anchor Bolt Pryout

Bolt Shear Yielding

Typical Initial

Cracking Load

Mean Maximum Load prior to Failure

24.87 kips 31.84 kips 6.03 kips N/A 19.01 kips 20-21 kips 25.7 kips

Nominal Shear Strength of Anchor BoltTest Results

ACI 530-08 Prescribed Limit States

Masonry Shear

Strength, Vnm

Page 56: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

Page 48

5.3.2 Comparison of Wall Specimens (Partially vs. Fully Grouted)

Although the actual maximum loads and displacement of the various test specimens remained relatively consistent regardless of the individual designs, the actual observed behaviors varied slightly. The partially grouted specimens displayed significant propagation of mortar bed separation through almost the entire height of the specimen. In the fully grouted specimens, mortar bed separation was typically limited to only one cell and was restrained by the grout in the adjacent cell. When limiting residual damages is a design objective, fully grouted specimens provided a more desirable outcome.

Page 57: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

Page 49

6 Conclusions / Recommendations

Connection detailing often proves to be a critical aspect in achieving desirable energy dissipation levels and controlling structural response during seismic events, and each and every substantial earthquake continues to demonstrate the importance of these connections. The results from this study will serve as the basis for the further development of the connecting components to be used in the Type I Hybrid Masonry Seismic Structural System, as well as facilitate the design of the full-scale models to be tested at a later phase in the project. Based on the scope of this study and the results obtained, the following conclusions, and recommendations for further study, can be made: Connector Plate Tests:

Weld strength and detailing are critical in preventing premature failure of link connector plates.

Buckling behavior controls the maximum load for most connector plates (link and fuse) with thicknesses less than 0.5 in. (12.7 mm). The load capacity generally decreased during post-buckling displacements.

Fuse type A total energy dissipation potential increases with an in increase in

fuse aspect ratio for those aspect ratios addressed in this study.

Fuse type T is recommended in applications where all non-linear behavior is to be achieved in the connector plates due to its superior energy dissipating characteristics.

Link connectors are recommended when the non-linear behavior is to be

achieved entirely within the CMU walls.

Further testing is recommended to determine the appropriate connection geometry for attaching connector plates to the underside of the steel beam due to the significant reduction in connector capacity when a welded bent plate connection was used. Bolted connections and puddle welds may be effective in strengthening this connection. There is a need to explore other potential connection details.

CMU Thru-Bolt Push-Out Tests:

Detailing of boundary steel for thru-bolts located near the edge cell of the CMU wall may play an important role in providing adequate capacity for the connection.

Fully grouting CMU walls may play a significant role in minimizing propagation of mortar joint separation due to lateral loads on thru-bolted connections.

Page 58: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

Page 50

Bolt shear yielding and masonry shear failure may both provide a reasonable design value for the strength of the thru-bolted connection nearest to the edge of the CMU wall.

Bolt shear yielding can be a potential limit state used to determine a design value

for the strength of a thru-bolted connection away from the edge of the wall.

Further testing is recommended to investigate the effects of the interaction of a line of multiple thru-bolted connections in a single CMU wall panel, in addition to determining the appropriate restraint conditions for testing the thru-bolted connections—specifically, in the Type I hybrid system there will not be any shear reaction at the top of the wall.

Page 59: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

Page 51

7 References

Abrams (2011): Abrams, Daniel P. (2011). “NSF NEESR Research on Hybrid Masonry Structural Systems.” Proceedings to the 11th North American Masonry Conference, Minneapolis, MN, 2011.

Abrams et al (2010): Abrams, D. P., Fahnestock, L.A., Eidini, M., "Basic Mechanisms for

Hybrid Masonry Structures" Proceedings to 2010 ASCE Structures Congress, Orlando, FL, USA, 2010.

Aliaari & Memari (2007): Aliaari, M. and Memari, A. (2007). “Experimental Evaluation of

a Sacrificial Seismic Fuse Device for Masonry Infill Walls.” ASCE Journal of Architectural Engineering, June 2007, 111-125.

ASCE (2005): ASCE 7-05: Minimum Design Loads for Buildings and Other Structures.

American Society of Civil Engineers, Reston, VA, 2005. ASTM (2003): ASTM Standard E488 (2003). “Standard Test Methods for Strength of

Anchors in Concrete and Masonry Elements,” ASTM International, West Conshohocken, PA, 2003.

ASTM (2008a): ASTM Standard A370 (2008). “Standard Test Methods and Definitions

for Mechanical Testing of Steel Products,” ASTM International, West Conshohocken, PA, 2008.

ASTM (2008b): ASTM Standard C1314 (2008). “Standard Test Method for Compressive

Strength of Masonry Prisms,” ASTM International, West Conshohocken, PA, 2008.

ASTM (2008c): ASTM Standard E8 (2008). “Standard Test Methods for Tension Testing

of Metallic Materials,” ASTM International, West Conshohocken, PA, 2008. ATC (1992): Guidelines for Cyclic Seismic Testing of Components of Steel Structures.

ATC-24, Applied Technologies Council, Redwood City, California, 1992. Biggs (2006): Biggs, David T. (2006). “Hybrid Masonry Structures.” Proceedings to 10th

North American Masonry Conference, St. Louis, MO, 2006. Biggs (2011): Biggs, David T. (2011). “Using Hybrid Masonry Bracing For Steel

Frames.” Proceedings to the 11th North American Masonry Conference, Minneapolis, MN, 2011.

Bruneau & El-Bahey (2010): Bruneau, M. and El-Bahey, S. (2010). “Structural Fuses

and Concrete-Filled Steel Shapes for Seismic- and Multi-Hazard Resistant Design.” 2010 NZSEE Conference.

Page 60: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

Page 52

FEMA. (2007). “FEMA 461 – Interim Testing Protocols for Determining the Seismic Performance Characteristics of Structural and Nonstructural Components.” Applied Technology Council, Redwood City, California, 2007.

IBC (2006): International Building Code (IBC), International Code Council, Falls Church,

VA 2006. IMI (2009): IMI Technology Brief 02.13.01, Hybrid Masonry Design, International

Masonry Institute, Annapolis, MD, 2009. IMI (2010): IMI Technology Brief 02.13.02, Hybrid Masonry Construction, International

Masonry Institute, Annapolis, MD, 2010. IMI (2011a): International Masonry Institute. “Hybrid Masonry/Steel Details.” Retrieved

from http://www.imiweb.org/design_tools/structural_masonry/details_hybrid.php. IMI (2011b): Masonry Detailing Series. International Masonry Institute. Retrieved from

http://www.imiweb.org/design_tools/masonry_details/index.php MSJC (2008): MSJC 2008: The Masonry Standards Joint Committee, Building Code

Requirements and Specification for Masonry Structures. The Masonry Society, Boulder, Colorado, 2008.

NCMA (2009): NCMA TEK 14-9A 2009: NCMA TEK 14-9A, “Hybrid Concrete Masonry

Design,” National Concrete Masonry Association, Herndon, VA 2009.

Page 61: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-1

Appendices

Page 62: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-2

Appendix A: Supplier Test Report for all CMU Blocks used in this Test Series

Page 63: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-3

Appendix B: Connector Plate Hysteretic Responses

Page 64: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-4

Page 65: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-5

Page 66: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-6

Appendix C: Connector Plate Specimens ATC-24 Analysis Tables

The following ATC-24 based analysis tables were produced using a spreadsheet

to process the corrected data files for the individual connector plate test specimens. The following formula was used to distinguish the individual excursions from each other by identifying the regions in the data where load values changed from positive to zero to negative, and vice versa, thus indicating the end of one excursion and the beginning of the next.

=IF(OR(AND(AND(“n-2”>“n-1”, ABS(“n-2”-“n-1”)>J2), “n-1”>0, n<=0, OR(“n+1”<n, ABS(“n+1”-n)<J2)), AND(OR(“n-2”<“n-1”, ABS(“n-2”-“n-1”)<J2), “n-1”<0, n>=0, AND(“n+1”>n, ABS(“n+1”-n)>J2))), H16+1, H16)

[9]

The formula shown was developed to identify specific locations in the lists of data

points where the two previous values were increasing and the two subsequent values were decreasing and vice versa, as well as distinguishing between actually changes in value and noise due simply to vibrations in the testing equipment.

Table 13. Excerpt of test data and analysis used to identify critical values.

Table, an excerpt from the spreadsheet used to develop the ATC-24 based

summary for specimen P4_T2_FA2-01, is provided for the purpose of illustrating this methodology. For a specific entry in the data set, n, identified by the column labeled “Entry”, formula [10] would first determine if the load value in Column [F] of entry (n-2) was greater than the value of entry (n-1) in the same column. If this was true, then the formula would check if the absolute value of the difference of the two values was greater than some predetermined value of noise in the signal, in order to differentiate between noise and an intentional change in load. In the case of this specimen, any

Entry Time LR4 LR5Dpot‐161‐1915

MTS1Displ MTS2LoadExcursion(delta)

Excursion(force)

SelectDisplSelectedLoad

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J]

1 28.3 0.002965 ‐0.0027379 0.00041 ‐0.001282 0.00486866 0 0 0 0

2 28.35 ‐0.002224 ‐0.0065711 0.00124 ‐0.001099 0.00257903 0 0 0 0

3 28.4 ‐0.003706 ‐0.0005476 ‐0.00041 ‐0.000825 0.00028941 0 0 0 0

4 28.45 ‐0.009636 0.0021904 ‐0.00207 0.000641 ‐0.0065795 1 1 0 0

5 28.5 ‐0.002965 0.0060235 ‐0.00497 0.002472 ‐0.0134483 1 1 0 0

6 28.55 ‐0.001483 0.0071187 ‐0.00539 0.004304 ‐0.015738 1 1 0 0

7 28.6 0.001482 0.0071187 ‐0.00497 0.005403 ‐0.0172643 1 1 0 0

8 28.65 0.003706 0.0038332 ‐0.00539 0.006044 ‐0.0165011 1 1 0 0

9 28.7 0.003706 0.0060235 ‐0.0058 0.005861 ‐0.0134483 1 1 0 0

10 28.75 0.013342 0.0010952 ‐0.00539 0.00522 ‐0.0088691 1 1 0 0

11 28.8 0.013342 ‐0.0021903 ‐0.00497 0.003938 ‐0.0020002 1 1 0 0

12 28.85 0.017789 ‐0.0104042 ‐0.0029 0.002381 0.0102111 1 2 0 0

13 28.9 0.017789 ‐0.0147849 ‐0.00083 0.000183 0.0193696 1 2 0 0

14 28.95 0.022236 ‐0.0169753 0.00124 ‐0.002107 0.0262384 2 2 0 0

Page 67: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-7

change less than 0.001 was regarded as noise. This noise value was stored in cell J2 of the spreadsheet. If this criteria was met, the formula would then check that load for entry (n-1) was a positive value and that entry n was less than or equal to zero, indicating a negative slope and that the load on the specimen was approaching and either passing or arriving at zero load. If this initial set of criteria was met, the formula would then confirm that entry (n+1) was also greater than entry n, and if it was not, it would determine if this condition was not met due of noise in the data, that is, if the absolute value of the difference between the two entries was less than the noise value. If all of these conditions were met, the formula would iterate the value in cell H, signifying that a zero intercept had occurred and the test was in a new excursion.

Alternatively, for the case of a positive slope in the data, formula [10] would first determine if the load value in Column [F] of entry (n-2) was less than the value of entry (n-1) in the same column, and if it was not, it would determine if this condition was not met due of noise in the data, that is, if the absolute value of the difference between the two entries was less than the noise value. If this criteria was met, the formula would then check that load for entry (n-1) was a negative value and that entry n was greater than or equal to zero, indicating a positive slope and that the load on the specimen was approaching and either passing or arriving at zero load. If this initial set of criteria was met, the formula would then confirm that entry (n+1) was greater than entry n, and that the absolute value of the difference of the two values was greater than the noise value. If all of these conditions were met, the formula would iterate the value in cell H, signifying that a zero intercept had occurred and the test was in a new excursion. Although this formula served to identify a majority of the zero intercepts of the data, there were typically a few excursion start and end values that were not detected. In these cases, the data was manually inspected to identify their location and the excursion count was manually iterated. Once the individualized excursions were identified and separated from each other using this methodology, simple formulas were used to identify such values as the local extrema for each excursion, as well as the values at the beginning and end of each excursion. Using all of these values, simple manipulation and calculations produced the values as shown in the following summary tables for each specimen tested.

Page 68: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-8

Sp

ec

ime

nP

4_T

2-0

1F

y =

42

.00

ksi

(ass

um

ed)

Qy =

2.8

0ki

ps

! y =

0.0

594

in.

Ent

ryD

isp

lace

me

nt

Lev

elP

eak

De

flect

ion

Def

lect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

D

efle

ctio

n

Ra

nge

Lo

ad

at P

ea

k D

efle

ctio

nM

ax. L

oa

d in

E

xcu

rsio

nIn

itia

l Lo

adin

g

Stif

fne

ssIn

itial

Un

loa

din

g S

tiffn

ess

Hys

tere

sis

Are

a

(in

.) (

+/-

)i+

i-!

/!y

! 0/!

y"

! pm/!

yQ

/Qy

Qm

ax/

Qy

K0/(

Qy/

!y)

K/(

Qy/

!y)

A/(

Qy/

!y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10

][1

1]

10.

01

1+

-0.1

26

-0.0

14

-0.0

70-0

.026

-0.0

29

0.1

77

0.1

47

0.0

00

005

21

--0

.06

3-0

.06

30.

035

0.0

010

.052

0.1

40

0.1

40

0.0

00

010

32

+-0

.10

5-0

.03

5-0

.063

-0.0

25-0

.02

70

.19

50

.19

10

.00

001

44

2-

-0.0

77

-0.0

77

0.0

350

.000

0.0

51-0

.02

5-0

.025

0.0

00

017

53

+-0

.11

9-0

.04

9-0

.014

-0.0

22-0

.02

60

.17

40

.11

80

.00

002

16

3-

-0.0

70

-0.0

49

0.0

210

.001

0.0

500

.84

6-0

.007

0.0

00

023

70.

02

4+

-0.1

81

-0.0

28

-0.0

70-0

.013

-0.0

30

0.1

04

0.0

46

0.0

00

034

84

--0

.08

4-0

.08

40.

070

0.0

050

.081

0.4

94

0.4

94

0.0

00

047

95

+-0

.19

5-0

.03

5-0

.056

-0.0

25-0

.02

90

.08

80

.06

90

.00

005

810

5-

-0.0

70

-0.0

70

0.0

490

.003

0.0

820

.58

40

.58

40

.00

006

811

6+

-0.1

95

-0.0

28

-0.0

70-0

.028

-0.0

29

0.0

95

0.0

95

0.0

00

078

126

--0

.09

1-0

.08

40.

077

0.0

010

.081

0.4

99

0.0

01

0.0

00

091

130.

03

7+

-0.4

47

-0.0

14

-0.0

98-0

.032

-0.0

32

0.0

45

0.0

46

0.0

00

128

147

-0.

202

-0.0

84

0.0

490

.174

0.1

760

.61

40

.74

90

.00

016

115

8+

-0.4

40

-0.0

21

-0.0

70-0

.008

-0.0

31

0.0

29

0.0

13

0.0

00

195

168

-0.

181

-0.0

84

0.0

630

.164

0.1

760

.63

20

.81

90

.00

022

417

9+

-0.4

61

-0.0

42

-0.0

70-0

.013

-0.0

31

0.0

25

0.0

17

0.0

00

258

189

-0.

181

-0.1

120

.112

0.1

760

.176

0.6

17

0.8

15

0.0

00

309

190.

06

10

+-0

.70

5-0

.02

1-0

.070

-0.1

48-0

.15

20

.04

40

.67

60

.00

038

020

10

-0.

495

-0.0

91

0.0

630

.369

0.3

730

.62

50

.78

70

.00

045

321

11+

-0.7

05

-0.0

35

-0.0

63-0

.147

-0.1

53

0.0

36

0.7

52

0.0

00

520

2211

-0.

495

-0.0

98

0.0

700

.368

0.3

710

.62

00

.75

90

.00

058

723

12

+-0

.70

5-0

.03

5-0

.070

-0.1

41-0

.15

20

.03

50

.91

40

.00

065

324

12

-0.

502

-0.0

91

0.0

840

.357

0.3

710

.62

90

.67

60

.00

072

025

0.1

01

3+

-1.0

96

-0.0

28

-0.1

05-0

.377

-0.3

77

0.0

37

0.7

04

0.0

00

856

261

3-

0.92

1-0

.112

0.1

260

.631

0.6

310

.611

0.7

68

0.0

01

083

271

4+

-1.0

96

0.0

14

-0.0

98-0

.384

-0.3

84

0.0

33

0.7

48

0.0

01

208

281

4-

0.95

6-0

.07

70.

091

0.6

220

.628

0.5

79

0.6

94

0.0

01

340

291

5+

-1.1

03

-0.0

07

-0.0

77-0

.364

-0.3

85

0.0

26

0.6

55

0.0

01

481

301

5-

0.92

8-0

.07

70.

098

0.6

280

.628

0.6

61

0.7

73

0.0

01

676

Exc

ursi

on

[3]

Page 69: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-9

Sp

ec

ime

nP

4_T

2-0

1F

y =

42

.00

ksi

(ass

um

ed)

Qy =

2.8

0ki

ps

! y =

0.0

594

in.

Ent

ryD

isp

lace

me

nt

Lev

elP

eak

De

flect

ion

Def

lect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

D

efle

ctio

n

Ra

nge

Lo

ad

at P

ea

k D

efle

ctio

nM

ax. L

oa

d in

E

xcu

rsio

nIn

itia

l Lo

adin

g

Stif

fne

ssIn

itial

Un

loa

din

g S

tiffn

ess

Hys

tere

sis

Are

a

(in

.) (

+/-

)i+

i-!

/!y

! 0/!

y"

! pm/!

yQ

/Qy

Qm

ax/

Qy

K0/(

Qy/

!y)

K/(

Qy/

!y)

A/(

Qy/

!y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10

][1

1]

Exc

ursi

on

[3]

310.

25

16

+-2

.66

60.

00

0-0

.412

-1.1

24-1

.12

7-0

.09

11

.61

60

.00

321

632

16

-2.

847

-0.3

77

0.9

771

.310

1.3

110

.56

00

.71

60

.00

720

433

17

+-2

.67

30.

59

3-0

.970

-1.1

80-1

.19

00

.02

90

.86

50

.00

964

034

17

-2.

861

-0.3

63

0.9

561

.299

1.3

070

.26

50

.60

40

.01

235

135

18

+-2

.65

90.

58

6-0

.879

-1.1

66-1

.19

90

.03

50

.68

30

.01

466

336

18

-2.

847

-0.2

72

0.8

511

.304

1.3

040

.37

00

.63

50

.01

720

137

0.5

01

9+

-6.6

37

0.5

72

-4.0

27-1

.404

-1.4

63

0.0

39

0.5

81

0.0

36

675

381

9-

6.56

7-3

.43

37.

265

1.5

201

.521

0.4

55

0.7

78

0.0

69

950

392

0+

-6.8

18

3.7

96

-7.7

32-1

.524

-1.5

39

0.0

87

0.6

31

0.1

02

386

402

0-

6.49

0-3

.90

87.

495

1.5

471

.576

0.0

41

0.6

29

0.1

33

124

412

1+

-6.8

95

3.5

80

-7.4

60-1

.511

-1.5

22

0.1

13

0.6

71

0.1

64

429

422

1-

6.46

9-3

.87

37.

425

1.5

521

.563

0.0

79

0.7

16

0.1

94

125

430.

75

22

+-1

1.3

12

3.5

31

-11

.01

9-1

.347

-1.4

86

0.1

39

0.4

90

0.2

45

379

442

2-

10.9

00

-7.4

74

14

.41

81

.241

1.4

760

.26

50

.45

90

.30

747

845

23

+-1

1.5

14

6.9

36

-13.

608

-1.1

16-1

.18

30

.25

60

.32

40

.35

852

246

23

-10

.85

8-6

.65

71

3.1

33

1.1

091

.121

0.1

67

0.3

99

0.3

99

027

472

4+

-11

.58

46.

46

2-1

3.02

2-1

.038

-1.0

53

0.2

07

0.2

94

0.4

38

576

482

4-

10.8

58

-6.5

60

12

.95

91

.046

1.0

460

.15

40

.36

10

.47

292

049

1.0

02

5+

-15

.86

26.

38

5-1

6.56

7-0

.995

-1.0

15

0.1

89

0.2

96

0.5

23

014

502

5-

14.9

41

-10

.14

71

9.9

51

0.9

570

.989

0.1

23

0.2

50

0.5

76

584

512

6+

-15

.89

09.

76

3-1

9.76

3-0

.945

-0.9

47

0.1

33

0.2

79

0.6

28

082

522

6-

14.8

99

-9.9

72

19

.63

00

.920

0.9

370

.10

20

.25

20

.67

395

953

27

+-1

5.9

32

9.6

58

-19.

602

-0.8

93-0

.91

30

.12

40

.23

10

.721

116

542

7-

14.8

78

-9.9

30

19

.57

40

.915

0.9

150

.09

20

.30

40

.76

393

355

1.2

52

8+

-20

.14

09.

63

7-2

3.30

8-0

.908

-0.9

19

0.1

15

0.2

39

0.8

2111

056

28

-19

.05

8-1

3.6

64

26

.95

10

.886

0.9

040

.08

70

.22

50

.88

217

557

29

+-2

0.1

89

13.

25

2-2

6.86

0-0

.863

-0.8

77

0.1

13

0.2

21

0.9

42

969

582

9-

19.0

44

-13

.57

32

6.8

18

0.8

690

.870

0.0

81

0.2

66

0.9

98

420

593

0+

-20

.20

31

3.2

17

-26.

762

-0.8

48-0

.85

80

.09

40

.22

01

.05

582

560

30

-19

.01

6-1

3.5

24

26

.64

40

.841

0.8

480

.07

50

.23

11

.10

854

0

Page 70: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-10

Sp

ec

ime

nP

4_T

2-0

1F

y =

42

.00

ksi

(ass

um

ed)

Qy =

2.8

0ki

ps

! y =

0.0

594

in.

Ent

ryD

isp

lace

me

nt

Lev

elP

eak

De

flect

ion

Def

lect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

D

efle

ctio

n

Ra

nge

Lo

ad

at P

ea

k D

efle

ctio

nM

ax. L

oa

d in

E

xcu

rsio

nIn

itia

l Lo

adin

g

Stif

fne

ssIn

itial

Un

loa

din

g S

tiffn

ess

Hys

tere

sis

Are

a

(in

.) (

+/-

)i+

i-!

/!y

! 0/!

y"

! pm/!

yQ

/Qy

Qm

ax/

Qy

K0/(

Qy/

!y)

K/(

Qy/

!y)

A/(

Qy/

!y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10

][1

1]

Exc

ursi

on

[3]

611.

50

31

+-2

4.3

27

13.

09

2-3

0.41

2-0

.862

-0.8

70

0.0

90

0.2

40

1.1

75

815

623

1-

23.1

61

-17

.29

23

4.1

66

0.8

570

.862

0.0

72

0.2

56

1.2

45

248

633

2+

-24

.36

21

6.8

46

-34.

069

-0.8

44-0

.84

50

.07

60

.24

71

.31

606

664

32

-23

.15

4-1

7.1

88

34

.08

30

.826

0.8

290

.06

40

.24

01

.38

080

865

33

+-2

4.3

69

16.

86

7-3

3.99

2-0

.819

-0.8

28

0.0

73

0.2

35

1.4

48

828

663

3-

23.1

54

-17

.12

53

4.0

34

0.7

950

.806

0.0

63

0.1

94

1.5

1145

367

1.7

53

4+

-28

.58

41

6.8

95

-38.

165

-0.8

62-0

.86

70

.07

00

.23

21

.59

003

468

34

-27

.21

6-2

1.2

42

42

.03

80

.827

0.8

510

.06

10

.22

01

.67

097

169

35

+-2

8.6

12

20.

76

8-4

2.04

5-0

.837

-0.8

39

0.0

67

0.2

55

1.7

53

147

703

5-

27.1

39

-21

.24

24

1.7

52

0.8

200

.826

0.0

59

0.2

63

1.8

28

746

713

6+

-28

.66

02

0.4

75

-41.

808

-0.7

88-0

.81

20

.06

50

.23

81

.90

797

772

36

-2

7.1

11-2

1.3

05

41

.81

50

.798

0.8

070

.05

80

.25

31

.98

067

473

2.0

03

7+

-32

.74

32

0.4

75

-45.

841

-0.8

39-0

.84

30

.06

20

.23

62

.06

954

574

37

-31

.13

1-2

5.3

32

49

.86

80

.844

0.8

450

.06

00

.28

12

.15

971

975

38

+-3

2.7

78

24.

52

9-4

9.78

4-0

.822

-0.8

22

0.0

57

0.2

36

2.2

53

023

763

8-

31.1

38

-25

.24

84

9.7

91

0.7

810

.827

0.0

51

0.2

28

2.3

39

066

773

9+

-32

.82

72

4.5

29

-49.

728

-0.8

26-0

.82

60

.05

40

.23

52

.42

896

178

39

-31

.09

6-2

5.1

92

49

.67

90

.813

0.8

200

.05

10

.25

22

.51

285

979

2.0

04

0+

24.4

66

24.

46

6--

--0

.001

-0.4

53

0.0

55

0.0

55

---

Page 71: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-11

Sp

ec

ime

nP

4_T

2_

FA

2-01

Fy =

42

.00

ksi

(ass

um

ed)

Qy =

0.7

0ki

ps

! y =

0.0

732

in.

Ent

ryD

isp

lace

me

nt

Lev

elP

eak

De

flect

ion

Def

lect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

D

efle

ctio

n

Ra

nge

Lo

ad

at P

ea

k D

efle

ctio

nM

ax. L

oa

d in

E

xcu

rsio

nIn

itia

l Lo

adin

g

Stif

fne

ssIn

itial

Un

loa

din

g S

tiffn

ess

Hys

tere

sis

Are

a

(in

.) (

+/-

)i+

i-!

/!y

! 0/!

y"

! pm/!

yQ

/Qy

Qm

ax/

Qy

K0/(

Qy/

!y)

K/(

Qy/

!y)

A/(

Qy/

!y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10

][1

1]

10.

01

1+

-0.0

79

-0.0

28

-0.0

40-0

.019

-0.0

25

0.2

49

0.1

63

0.0

00

012

21

-0.

108

-0.0

40

0.0

110

.096

0.1

030

.72

30

.87

00

.00

001

93

2+

-0.0

91

-0.0

57

-0.0

17-0

.018

-0.0

22

0.2

02

0.1

54

0.0

00

021

42

-0

.11

3-0

.05

10.

040

0.1

010

.102

0.6

82

0.8

87

0.0

00

027

53

+-0

.08

5-0

.02

8-0

.057

-0.0

18-0

.02

00

.20

00

.17

80

.00

003

06

3-

0.14

7-0

.07

90.

074

0.0

160

.101

0.5

10

0.0

03

0.0

00

043

70.

02

4+

-0.1

64

-0.0

28

-0.1

02-0

.028

-0.0

41

0.1

95

0.1

96

0.0

00

052

84

-0.

175

-0.1

190.

108

0.1

410

.150

0.4

89

0.8

09

0.0

00

061

95

+-0

.17

0-0

.04

5-0

.085

-0.0

32-0

.03

80

.17

80

.18

10

.00

006

810

5-

0.17

5-0

.113

0.1

020

.140

0.1

480

.48

80

.80

30

.00

007

911

6+

-0.1

70

-0.0

34

-0.0

91-0

.028

-0.0

36

0.1

71

0.1

25

0.0

00

087

126

-0.

181

-0.1

130

.119

0.1

430

.147

0.4

75

0.8

60

0.0

00

106

130.

03

7+

-0.3

45

-0.0

28

-0.1

02-0

.154

-0.1

57

0.5

15

0.4

24

0.0

00

117

147

-0.

379

-0.1

08

0.1

020

.271

0.2

840

.55

30

.71

90

.00

014

015

8+

-0.3

40

-0.0

28

-0.1

25-0

.154

-0.1

54

0.5

110

.39

70

.00

015

316

8-

0.35

1-0

.14

70.

142

0.2

800

.282

0.5

01

0.7

56

0.0

00

172

179

+-0

.32

8-0

.02

8-0

.125

-0.1

41-0

.15

20

.52

00

.43

40

.00

017

818

9-

0.36

8-0

.12

50

.119

0.2

810

.281

0.5

16

0.7

56

0.0

00

212

190.

06

10

+-0

.67

4-0

.01

7-0

.153

-0.3

84-0

.39

20

.54

90

.73

60

.00

023

920

10

-0.

708

-0.1

30

0.0

790

.553

0.5

540

.46

30

.80

30

.00

026

421

11+

-0.6

68

-0.0

62

-0.1

08-0

.390

-0.3

90

0.5

31

0.8

22

0.0

00

269

2211

-0.

708

-0.1

47

0.1

530

.541

0.5

530

.46

20

.79

80

.00

032

123

12

+-0

.66

8-0

.01

7-0

.142

-0.3

84-0

.38

40

.47

10

.73

80

.00

035

124

12

-0.

708

-0.1

30

0.1

410

.541

0.5

520

.46

30

.80

30

.00

040

625

0.1

01

3+

-1.1

38

-0.0

28

-0.1

64-0

.708

-0.7

08

0.5

13

0.6

96

0.0

00

540

261

3-

1.18

9-0

.17

50.

181

0.9

180

.918

0.4

46

0.8

19

0.0

00

791

271

4+

-1.1

32

0.0

06

-0.1

53-0

.704

-0.7

15

0.4

69

0.7

38

0.0

00

866

281

4-

1.19

5-0

.14

10.

147

0.9

120

.916

0.4

42

0.8

42

0.0

01

013

291

5+

-1.1

32

-0.0

06

-0.1

47-0

.718

-0.7

18

0.4

67

0.7

51

0.0

01

077

301

5-

1.20

0-0

.13

00.

158

0.9

160

.916

0.4

53

0.8

16

0.0

01

259

Exc

ursi

on

[3]

Page 72: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-12

Sp

ec

ime

nP

4_T

2_

FA

2-01

Fy =

42

.00

ksi

(ass

um

ed)

Qy =

0.7

0ki

ps

! y =

0.0

732

in.

Ent

ryD

isp

lace

me

nt

Lev

elP

eak

De

flect

ion

Def

lect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

D

efle

ctio

n

Ra

nge

Lo

ad

at P

ea

k D

efle

ctio

nM

ax. L

oa

d in

E

xcu

rsio

nIn

itia

l Lo

adin

g

Stif

fne

ssIn

itial

Un

loa

din

g S

tiffn

ess

Hys

tere

sis

Are

a

(in

.) (

+/-

)i+

i-!

/!y

! 0/!

y"

! pm/!

yQ

/Qy

Qm

ax/

Qy

K0/(

Qy/

!y)

K/(

Qy/

!y)

A/(

Qy/

!y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10

][1

1]

Exc

ursi

on

[3]

310.

25

16

+-3

.05

20.

00

6-1

.132

-1.4

50-1

.45

60

.46

70

.80

40

.00

846

432

16

-3.

131

-1.1

04

2.2

481

.476

1.5

200

.37

80

.81

60

.02

278

033

17

+-3

.03

51.

13

2-2

.202

-1.4

75-1

.47

50

.40

20

.86

40

.03

506

534

17

-3.

142

-1.0

47

2.1

631

.537

1.5

400

.37

80

.90

10

.04

810

535

18

+-3

.03

51.

08

7-2

.134

-1.4

85-1

.48

50

.38

70

.84

10

.05

990

636

18

-3.

165

-1.0

42

2.1

351

.527

1.5

450

.34

30

.81

70

.07

240

837

0.5

01

9+

-6.3

92

1.0

64

-5.2

31-1

.620

-1.6

21

0.4

55

0.9

60

0.1

10

908

381

9-

6.52

8-4

.13

98.

277

1.6

761

.714

0.3

26

0.8

29

0.1

73

898

392

0+

-6.3

92

4.1

22

-8.1

30-1

.686

-1.7

02

0.4

37

0.9

72

0.2

32

617

402

0-

6.51

7-3

.98

07.

932

1.7

531

.753

0.2

83

0.9

78

0.2

93

537

412

1+

-6.3

58

3.9

35

-7.9

09-1

.722

-1.7

24

0.5

47

0.8

87

0.3

51

847

422

1-

6.51

7-3

.94

67.

870

1.7

611

.767

0.2

97

1.0

00

0.4

12

306

430.

75

22

+-9

.71

03.

91

2-1

1.0

52

-1.7

90-1

.81

30

.55

70

.85

30

.50

132

544

22

-9.

868

-7.1

22

14

.25

01

.870

1.8

710

.26

30

.96

00

.62

061

845

23

+-9

.72

17.

12

8-1

4.18

2-1

.861

-1.8

62

0.4

37

0.8

82

0.7

35

785

462

3-

9.88

5-7

.04

31

4.0

80

1.8

941

.894

0.2

47

0.9

77

0.8

54

597

472

4+

-9.7

44

7.0

09

-14.

052

-1.8

64-1

.87

90

.51

40

.81

20

.96

986

748

24

-9.

885

-7.0

32

14

.14

31

.882

1.9

050

.24

50

.89

01

.08

839

449

1.0

02

5+

-13

.06

17.

08

3-1

7.32

4-1

.944

-1.9

50

0.3

99

0.8

63

1.2

36

949

502

5-

13.3

22

-10

.23

02

0.5

46

1.9

071

.963

0.2

69

0.8

51

1.4

20

756

512

6+

-13

.07

31

0.2

98

-20.

410

-1.9

75-1

.97

70

.23

70

.90

51

.59

771

352

26

-13

.36

7-1

0.1

00

20

.20

11

.882

1.8

980

.45

00

.88

01

.77

788

753

27

+-1

3.0

73

10.

08

9-1

9.95

1-1

.893

-1.9

10

0.3

79

0.7

59

1.9

45

601

542

7-

13.4

07

-9.8

46

19

.64

01

.705

1.7

900

.41

70

.60

82

.11

208

055

1.2

52

8+

-16

.40

29.

75

5-2

2.44

3-1

.832

-1.8

35

0.3

45

0.7

75

2.2

95

381

562

8-

16.7

64

-12

.67

12

5.1

77

1.6

791

.712

0.3

19

0.6

82

2.4

99

780

572

9+

-16

.44

71

2.4

84

-24.

854

-1.7

51-1

.75

70

.24

70

.69

22

.68

292

058

29

-16

.71

9-1

2.3

31

24

.46

41

.608

1.6

260

.28

30

.57

02

.86

383

959

30

+-1

6.5

09

12.

12

1-2

4.33

4-1

.645

-1.6

60

0.2

20

0.6

59

3.0

30

748

603

0-

16.6

28

-12

.20

62

4.1

81

1.5

891

.592

0.2

41

0.6

21

3.1

97

748

Page 73: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-13

Sp

ec

ime

nP

4_T

2_

FA

2-01

Fy =

42

.00

ksi

(ass

um

ed)

Qy =

0.7

0ki

ps

! y =

0.0

732

in.

Ent

ryD

isp

lace

me

nt

Lev

elP

eak

De

flect

ion

Def

lect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

D

efle

ctio

n

Ra

nge

Lo

ad

at P

ea

k D

efle

ctio

nM

ax. L

oa

d in

E

xcu

rsio

nIn

itia

l Lo

adin

g

Stif

fne

ssIn

itial

Un

loa

din

g S

tiffn

ess

Hys

tere

sis

Are

a

(in

.) (

+/-

)i+

i-!

/!y

! 0/!

y"

! pm/!

yQ

/Qy

Qm

ax/

Qy

K0/(

Qy/

!y)

K/(

Qy/

!y)

A/(

Qy/

!y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10

][1

1]

Exc

ursi

on

[3]

611.

50

31

+-1

9.8

78

11.9

46

-27.

244

-1.6

19-1

.62

50

.19

90

.62

13

.38

087

462

31

-20

.05

9-1

5.2

69

30

.24

41

.592

1.5

940

.23

00

.61

53

.58

735

363

32

+-2

0.0

14

14.

95

8-3

0.09

7-1

.576

-1.5

78

0.1

55

0.4

81

3.7

76

820

643

2-

20.0

42

-15

.10

52

9.9

78

1.5

671

.572

0.2

02

0.6

25

3.9

70

444

653

3+

-19

.96

31

4.8

50

-29.

882

-1.4

93-1

.49

30

.14

30

.63

24

.14

699

266

33

-19

.98

0-1

5.0

26

29

.80

81

.540

1.5

400

.18

70

.73

64

.32

979

667

1.7

53

4+

-23

.26

91

4.7

43

-33.

030

-1.5

50-1

.56

20

.13

80

.53

04

.52

77

1168

34

-23

.36

0-1

8.2

76

36

.24

01

.567

1.5

770

.17

40

.59

54

.75

507

169

35

+-2

3.3

26

17.

94

7-3

6.20

0-1

.487

-1.4

90

0.1

43

0.5

82

4.9

61

738

703

5-

23.3

31

-18

.23

03

6.1

49

1.5

261

.526

0.1

56

0.7

16

5.1

77

557

713

6+

-23

.34

31

7.9

02

-36.

031

-1.4

71-1

.47

10

.12

90

.56

15

.37

685

372

36

-23

.35

4-1

8.1

113

5.9

00

1.5

141

.521

0.1

55

0.6

84

5.5

85

160

732.

00

37

+-2

6.6

83

17.

76

6-3

9.21

8-1

.505

-1.5

05

0.1

21

0.6

12

5.8

02

406

743

7-

26.6

21

-21

.44

04

2.5

92

1.5

651

.570

0.1

21

0.6

99

6.0

51

895

753

8+

-26

.70

62

1.1

40

-42.

371

-1.4

86-1

.49

30

.12

50

.59

46

.28

129

476

38

-26

.54

2-2

1.2

08

42

.28

71

.545

1.5

630

.13

60

.64

26

.52

279

677

39

+-2

6.7

06

21.

03

3-4

2.27

0-1

.473

-1.4

77

0.1

16

0.5

93

6.7

47

365

783

9-

26.5

93

-21

.22

5--

-1

.540

1.5

620

.18

60

.69

2--

-

Page 74: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-14

Sp

eci

me

nP

4_T

3-0

1F

y =

42.0

0ks

i(a

ssu

med

)Q

y =

4.20

kip

s!

y =

0.05

94in

.

Ent

ryD

isp

lace

men

t Le

vel

Pea

k D

efle

ctio

n

De

flect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

Def

lect

ion

Ran

geLo

ad a

t P

eak

De

flect

ion

Max

. Loa

d in

E

xcu

rsio

nIn

itial

Loa

ding

S

tiffn

ess

Initi

al U

nloa

ding

S

tiffn

ess

Hys

tere

sis

Are

a

(in.)

(+

/-)

i+i-

!/!

y!

0/! y

"!

pm/!

yQ

/Qy

Qm

ax/

Qy

K0/(

Qy/

! y)

K/(

Qy/

!y)

A/(

Qy/

! y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

10.

011

+-0

.049

-0.0

14

0.05

6-0

.027

-0.0

410.

483

0.27

90.

0000

002

1-

0.13

30.

056

0.07

7-0

.004

-0.0

04-0

.015

-0.0

27-0

.000

001

32

+0.

126

0.12

6-0

.091

-0.0

07-0

.043

0.19

10.

191

0.00

0004

42

-0.

133

0.05

60.

070

-0.0

01-0

.005

-0.0

22-0

.019

0.00

0002

53

+0.

112

0.11

2-0

.049

-0.0

07-0

.042

0.22

10.

221

0.00

0007

63

-0.

119

0.08

40.

035

-0.0

01-0

.004

-0.0

22-0

.017

0.00

0006

70.

024

+0.

126

0.12

6-0

.007

-0.0

06-0

.060

0.02

70.

027

0.00

0012

84

-0.

182

0.13

30.

049

0.00

40.

019

0.06

80.

020

0.00

0014

95

+0.

154

0.15

4-0

.035

-0.0

02-0

.060

0.23

30.

233

0.00

0021

105

-0.

168

0.14

70.

021

0.01

40.

018

0.06

50.

076

0.00

0021

116

+0.

161

0.16

1-0

.021

-0.0

02-0

.060

0.23

90.

239

0.00

0025

126

-0.

182

0.13

30.

028

0.01

80.

018

0.06

30.

068

0.00

0026

130.

037

+0.

195

0.16

1-0

.042

-0.0

08-0

.119

0.03

90.

000

0.00

0038

147

-0.

321

0.15

40.

056

0.09

40.

097

0.48

20.

229

0.00

0050

158

+0.

209

0.20

9-0

.070

0.00

0-0

.120

0.27

30.

273

0.00

0063

168

-0.

335

0.15

40.

063

0.09

40.

096

0.48

10.

224

0.00

0074

179

+0.

195

0.19

5-0

.070

-0.0

01-0

.120

0.27

60.

276

0.00

0089

189

-0.

328

0.17

50.

028

0.09

20.

096

0.53

90.

200

0.00

0096

190.

0610

+-0

.447

0.20

3-0

.028

-0.2

74-0

.277

0.03

80.

600

0.00

0132

2010

-0.

635

0.17

50.

063

0.26

30.

263

0.58

90.

642

0.00

0173

2111

+-0

.447

0.19

5-0

.021

-0.2

78-0

.278

0.27

10.

611

0.00

0209

2211

-0.

670

0.18

20.

056

0.26

20.

262

0.55

20.

600

0.00

0238

2312

+-0

.440

0.20

9-0

.042

-0.2

75-0

.278

0.25

60.

597

0.00

0267

2412

-0.

656

0.18

20.

049

0.26

20.

262

0.54

80.

607

0.00

0297

250.

1013

+-0

.817

0.21

7-0

.105

-0.4

74-0

.474

0.02

20.

574

0.00

0379

2613

-1.

047

0.11

20.

140

0.48

50.

485

0.53

10.

631

0.00

0511

2714

+-0

.844

0.23

7-0

.070

-0.4

75-0

.480

0.18

60.

575

0.00

0571

2814

-1.

061

0.18

20.

063

0.47

10.

484

0.53

30.

565

0.00

0651

2915

+-0

.796

0.24

4-0

.035

-0.4

80-0

.480

0.20

50.

597

0.00

0685

3015

-1.

124

0.22

30.

028

0.47

90.

484

0.53

30.

582

0.00

0730

Exc

urs

ion

[3]

Page 75: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-15

Sp

ecim

en

P4

_T3-

01

Fy =

42.0

0ks

i(a

ssu

me

d)Q

y =

4.20

kips

! y =

0.05

94in

.

En

try

Dis

pla

cem

ent

Leve

lP

eak

D

efle

ctio

n

De

flect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

Def

lect

ion

Ran

geL

oad

at

Pea

k D

efle

ctio

nM

ax.

Lo

ad in

E

xcu

rsio

nIn

itial

Loa

ding

S

tiffn

ess

Initi

al U

nloa

ding

S

tiffn

ess

Hys

tere

sis

Are

a

(in.)

(+

/-)

i+i-

!/! y

!0/

! y"

!p

m/!

yQ

/Qy

Qm

ax/

Qy

K0/(

Qy/

! y)

K/(

Qy/

! y)

A/(

Qy/

! y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Exc

urs

ion

[3]

310.

2516

+-2

.541

0.24

4-0

.391

-1.0

89-1

.089

0.03

20.

540

0.00

2424

3216

-2.

855

-0.1

40

0.83

11.

151

1.15

10.

490

0.61

10.

0053

2333

17+

-2.5

060.

670

-0.6

07-1

.128

-1.1

280.

102

0.51

70.

0071

9934

17-

2.87

60.

091

0.58

61.

149

1.15

60.

500

0.55

30.

0090

9235

18+

-2.4

920.

656

-0.5

86-1

.127

-1.1

300.

097

0.54

30.

0107

9936

18-

2.78

50.

084

0.60

01.

101

1.15

60.

448

0.61

00.

0125

2037

0.50

19+

-6.4

500.

649

-3.8

32-1

.335

-1.3

350.

096

0.42

90.

0297

2338

19-

6.69

4-3

.16

26.

889

1.43

81.

438

0.41

30.

675

0.05

9278

3920

+-6

.268

3.72

0-6

.310

-1.4

64-1

.464

0.04

30.

420

0.08

6111

4020

-6.

673

-2.5

76

6.10

81.

456

1.48

50.

395

0.54

20.

1121

7141

21+

-6.1

983.

532

-6.0

17-1

.488

-1.4

890.

033

0.54

10.

1375

2342

21-

6.68

7-2

.42

25.

905

1.48

21.

493

0.45

60.

536

0.16

2730

430.

7522

+-1

0.1

98

3.47

6-9

.682

-1.5

90-1

.590

0.02

60.

577

0.20

8293

4422

-10

.715

-6.1

77

13.1

441.

599

1.62

90.

422

0.52

60.

2717

0445

23+

-10

.14

26.

938

-12.

711

-1.6

43-1

.651

0.02

40.

522

0.33

3294

4623

-10

.708

-5.7

45

12.5

571.

656

1.65

60.

336

0.72

80.

3944

6347

24+

-10

.12

86.

785

-12

.44

6-1

.646

-1.6

650.

061

0.50

50.

4550

5648

24-

10.6

80-5

.64

712

.404

1.66

21.

662

0.31

70.

679

0.51

5344

491.

0025

+-1

4.1

70

6.71

5-1

6.7

03

-1.7

12-1

.722

0.08

60.

543

0.59

8833

5025

-14

.889

-9.9

82

20.5

151.

694

1.72

20.

098

0.52

40.

7039

1751

26+

-14

.12

110

.519

-20

.23

6-1

.757

-1.7

610.

274

0.52

80.

8066

0152

26-

14.9

45-9

.70

920

.138

1.67

81.

699

0.19

30.

550

0.90

9814

5327

+-1

4.1

42

10.4

01-2

0.0

47

-1.7

58-1

.766

0.26

30.

532

1.01

0328

5427

-15

.021

-9.6

47

19.9

071.

618

1.65

20.

204

0.45

91.

1111

6055

1.25

28+

-18

.35

810

.247

-23

.71

9-1

.730

-1.7

520.

260

0.39

91.

2330

4156

28-

19.4

33-1

3.4

5127

.041

1.46

41.

546

0.23

80.

422

1.36

8531

5729

+-1

8.5

81

13.5

77-2

6.4

76

-1.5

53-1

.565

0.17

80.

420

1.48

5566

5829

-19

.579

-12.

857

26.2

111.

363

1.38

40.

197

0.37

61.

5952

2559

30+

-18

.72

113

.332

-26

.15

5-1

.467

-1.4

700.

152

0.37

11.

6969

4960

30-

19.6

35-1

2.8

1526

.092

1.27

61.

316

0.17

00.

291

1.79

5226

Page 76: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-16

Sp

ec

ime

nP

4_

T3-

01

Fy =

42.0

0ks

i(a

ssu

me

d)Q

y =

4.20

kip

s!

y =

0.05

94in

.

En

try

Dis

pla

cem

ent

Leve

lP

eak

D

efle

ctio

n

De

flect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

Def

lect

ion

Ran

geLo

ad a

t P

eak

Def

lect

ion

Max

. Lo

ad in

E

xcu

rsio

nIn

itial

Loa

ding

S

tiffn

ess

Initi

al U

nloa

ding

S

tiffn

ess

Hys

tere

sis

Are

a

(in.)

(+

/-)

i+i-

!/!

y!

0/! y

"!

pm/!

yQ

/Qy

Qm

ax/

Qy

K0/(

Qy/

! y)

K/(

Qy/

! y)

A/(

Qy/

! y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Exc

urs

ion

[3]

611.

5031

+-2

2.9

37

13.2

62-2

9.8

68

-1.4

29-1

.429

0.17

10.

437

1.90

8733

6231

-23

.956

-16.

585

33.7

071.

275

1.27

60.

154

0.28

22.

0329

0663

32+

-23

.01

417

.094

-33

.67

9-1

.363

-1.3

800.

122

0.36

02.

1508

5364

32-

23.8

86-1

6.5

6433

.637

1.22

11.

234

0.14

10.

343

2.26

5081

6533

+-2

3.0

55

17.0

60-3

3.6

30

-1.3

33-1

.340

0.11

70.

313

2.37

5817

6633

-23

.900

-16.

550

33.6

031.

204

1.20

60.

124

0.36

62.

4839

1467

1.75

34+

-27

.18

117

.039

-37

.41

4-1

.326

-1.3

360.

115

0.33

82.

6083

6868

34-

28.1

93-2

0.3

6841

.225

1.18

71.

204

0.11

70.

287

2.74

2067

6935

+-2

7.2

72

20.8

29-4

1.2

04

-1.2

64-1

.283

0.10

60.

304

2.87

1462

7035

-28

.256

-20.

354

41.3

021.

137

1.17

20.

113

0.24

12.

9980

4571

36+

-27

.32

020

.927

-41

.31

6-1

.239

-1.2

450.

106

0.34

13.

1216

0472

36-

28.2

77-2

0.3

6841

.309

1.15

11.

153

0.10

70.

308

3.24

2840

732.

0037

+-3

1.4

25

20.9

06-4

5.0

71

-1.2

69-1

.271

0.10

10.

316

3.37

9015

7437

-32

.402

-24.

151

48.9

031.

133

1.16

10.

107

0.24

93.

5246

0875

38+

-31

.50

824

.724

-48

.91

0-1

.221

-1.2

290.

088

0.30

13.

6671

1676

38-

32.4

44-2

4.1

7248

.987

1.14

11.

141

0.10

10.

332

3.80

6504

7739

+-3

2.7

09

24.7

87--

--0

.001

-1.0

860.

091

0.00

1--

-

Page 77: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-17

Sp

ec

ime

nP

4_T

3_

FA

2-01

Fy =

42

.00

ksi

(ass

um

ed)

Qy =

1.0

5ki

ps

! y =

0.0

734

in.

Ent

ryD

isp

lace

me

nt

Lev

elP

eak

De

flect

ion

Def

lect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

D

efle

ctio

n

Ra

nge

Lo

ad

at P

ea

k D

efle

ctio

nM

ax. L

oa

d in

E

xcu

rsio

nIn

itia

l Lo

adin

g

Stif

fne

ssIn

itial

Un

loa

din

g S

tiffn

ess

Hys

tere

sis

Are

a

(in

.) (

+/-

)i+

i-!

/!y

! 0/!

y"

! pm/!

yQ

/Qy

Qm

ax/

Qy

K0/(

Qy/

!y)

K/(

Qy/

!y)

A/(

Qy/

!y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10

][1

1]

10.

01

1+

-0.0

85

-0.0

110.

079

-0.0

33-0

.03

3-0

.00

40

.26

00

.00

000

32

1-

0.19

20.

09

60.

034

0.0

440

.052

0.2

00

0.1

48

0.0

00

011

32

+0.

107

0.1

07

-0.0

45-0

.011

-0.0

32

-0.0

74

-0.0

740

.00

002

24

2-

0.10

70.

04

0-0

.091

0.0

200

.052

0.3

10

0.3

23

0.0

00

004

53

+-0

.22

6-0

.08

5-0

.045

-0.0

28-0

.03

10

.10

50

.07

40

.00

001

76

3-

-0.1

19

-0.1

190.

062

0.0

020

.050

-0.0

99

-0.0

990

.00

002

27

0.0

24

+-0

.14

7-0

.05

60.

028

-0.0

54-0

.05

4-0

.03

40

.30

20

.00

003

08

4-

0.15

3-0

.00

60.

045

0.0

890

.089

0.6

10

0.5

90

0.0

00

027

95

+-0

.15

80

.011

-0.0

28-0

.051

-0.0

52

0.2

85

0.2

75

0.0

00

036

105

-0.

147

-0.0

110.

045

0.0

900

.090

0.6

00

0.5

93

0.0

00

035

116

+-0

.16

40

.011

-0.0

17-0

.051

-0.0

52

0.2

85

0.2

73

0.0

00

043

126

-0.

147

0.0

00

0.0

230

.089

0.0

890

.62

20

.611

0.0

00

041

130.

03

7+

-0.3

110.

01

7-0

.045

-0.1

61-0

.16

1-0

.06

50

.53

20

.00

005

514

7-

0.32

8-0

.00

60.

028

0.2

090

.209

0.6

56

0.6

86

0.0

00

059

158

+-0

.32

20.

00

0-0

.034

-0.1

61-0

.16

10

.49

90

.52

70

.00

006

716

8-

0.3

11-0

.00

60.

028

0.2

040

.208

0.6

70

0.6

99

0.0

00

063

179

+-0

.31

6-0

.00

6-0

.028

-0.1

58-0

.16

10

.50

40

.54

40

.00

007

618

9-

0.3

11-0

.02

20.

051

0.2

050

.208

0.6

67

0.6

98

0.0

00

071

190.

06

10

+-0

.62

70.

02

8-0

.085

-0.3

53-0

.35

80

.12

80

.68

00

.00

009

620

10

-0.

650

-0.0

34

0.0

560

.456

0.4

560

.62

20

.74

50

.00

011

621

11+

-0.6

10

0.0

06

-0.0

79-0

.353

-0.3

53

0.4

84

0.6

75

0.0

00

128

2211

-0.

661

-0.0

40

0.0

620

.451

0.4

550

.60

40

.74

70

.00

012

823

12

+-0

.61

00

.011

-0.0

51-0

.348

-0.3

53

0.4

73

0.7

08

0.0

00

145

241

2-

0.65

6-0

.01

70.

051

0.4

540

.454

0.6

41

0.7

59

0.0

00

142

250.

10

13

+-1

.09

60.

02

8-0

.113

-0.6

64-0

.66

40

.05

40

.68

30

.00

018

526

13

-1

.11

9-0

.05

60.

102

0.7

750

.780

0.5

93

0.7

67

0.0

00

326

271

4+

-1.0

79

0.0

11-0

.062

-0.6

67-0

.67

20

.47

30

.70

80

.00

034

528

14

-1.

125

-0.0

40

0.0

850

.779

0.7

790

.59

60

.77

00

.00

039

029

15

+-1

.09

10.

03

4-0

.079

-0.6

67-0

.67

20

.46

30

.69

90

.00

041

930

15

-1

.11

9-0

.05

10.

091

0.7

700

.778

0.6

05

0.7

57

0.0

00

459

Exc

ursi

on

[3]

Page 78: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-18

Sp

ec

ime

nP

4_T

3_

FA

2-01

Fy =

42

.00

ksi

(ass

um

ed)

Qy =

1.0

5ki

ps

! y =

0.0

734

in.

Ent

ryD

isp

lace

me

nt

Lev

elP

eak

De

flect

ion

Def

lect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

D

efle

ctio

n

Ra

nge

Lo

ad

at P

ea

k D

efle

ctio

nM

ax. L

oa

d in

E

xcu

rsio

nIn

itia

l Lo

adin

g

Stif

fne

ssIn

itial

Un

loa

din

g S

tiffn

ess

Hys

tere

sis

Are

a

(in

.) (

+/-

)i+

i-!

/!y

! 0/!

y"

! pm/!

yQ

/Qy

Qm

ax/

Qy

K0/(

Qy/

!y)

K/(

Qy/

!y)

A/(

Qy/

!y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10

][1

1]

Exc

ursi

on

[3]

310.

25

16

+-2

.89

30.

02

3-0

.786

-1.4

17-1

.43

20

.06

90

.73

20

.00

582

532

16

-2.

967

-0.7

52

1.7

291

.396

1.4

300

.55

70

.79

10

.01

645

233

17

+-2

.89

90.

96

1-1

.678

-1.4

22-1

.42

20

.36

50

.74

30

.02

570

134

17

-2.

990

-0.7

06

1.6

561

.438

1.4

430

.57

10

.81

20

.03

515

735

18

+-2

.87

10.

92

7-1

.588

-1.4

28-1

.42

80

.37

40

.77

80

.04

398

836

18

-3.

001

-0.6

50

1.5

711

.450

1.4

500

.56

60

.79

20

.05

301

337

0.5

01

9+

-6.1

94

0.9

04

-4.6

34-1

.573

-1.5

73

0.3

73

0.7

50

0.0

87

190

381

9-

6.32

4-3

.71

37.

663

1.5

641

.627

0.5

19

0.7

20

0.1

42

396

392

0+

-6.1

37

3.9

33

-7.4

20-1

.665

-1.6

65

0.2

88

0.7

61

0.1

95

045

402

0-

6.34

1-3

.45

97.

302

1.6

601

.679

0.5

28

0.7

91

0.2

48

091

412

1+

-6.1

43

3.8

37

-7.2

62-1

.694

-1.6

94

0.3

17

0.7

24

0.3

00

502

422

1-

6.35

2-3

.40

87.

222

1.6

941

.694

0.5

12

0.8

64

0.3

53

182

430.

75

22

+-9

.46

03.

80

9-1

0.36

5-1

.782

-1.7

96

0.3

20

0.7

37

0.4

35

735

442

2-

9.70

4-6

.53

91

3.6

37

1.8

111

.816

0.5

06

0.8

92

0.5

44

258

452

3+

-9.4

66

7.0

70

-13.

484

-1.8

29-1

.84

60

.24

20

.71

50

.65

213

346

23

-9.

749

-6.3

86

13

.30

31

.787

1.8

460

.57

70

.70

30

.76

049

747

24

+-9

.44

96.

88

3-1

3.29

2-1

.865

-1.8

66

0.3

09

0.7

74

0.8

68

599

482

4-

9.68

7-6

.39

71

3.2

81

1.8

311

.858

0.4

97

0.7

78

0.9

76

797

491.

00

25

+-1

2.7

61

6.8

78

-16.

468

-1.9

41-1

.94

30

.27

30

.76

71

.11

810

550

25

-13

.06

6-9

.56

21

9.5

88

1.9

551

.959

0.4

80

0.9

23

1.2

89

614

512

6+

-12

.75

51

0.0

03

-19.

486

-1.9

87-1

.98

70

.27

90

.77

81

.46

099

652

26

-13

.07

7-9

.46

01

9.4

69

1.9

811

.981

0.4

81

0.9

52

1.6

33

208

532

7+

-12

.74

49.

99

2-1

9.45

8-2

.005

-2.0

05

0.2

86

0.7

88

1.8

05

471

542

7-

13.0

72

-9.4

32

19

.45

21

.926

1.9

910

.47

40

.77

81

.97

790

255

1.2

52

8+

-16

.11

21

0.0

03

-22.

640

-2.0

64-2

.07

30

.28

10

.74

92

.18

650

256

28

-16

.44

6-1

2.6

20

25

.87

82

.070

2.0

730

.45

40

.92

72

.42

706

857

29

+-1

6.1

07

13.

23

0-2

5.77

6-2

.104

-2.1

13

0.2

71

0.7

71

2.6

68

864

582

9-

16.4

40

-12

.54

02

5.7

54

2.0

882

.091

0.4

73

0.9

61

2.9

10

586

593

0+

-16

.11

21

3.2

02

-25.

776

-2.1

22-2

.12

90

.24

60

.76

13

.15

368

660

30

-16

.45

1-1

2.5

52

25

.74

82

.090

2.1

010

.44

50

.89

93

.39

608

3

Page 79: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-19

Sp

ec

ime

nP

4_T

3_

FA

2-01

Fy =

42

.00

ksi

(ass

um

ed)

Qy =

1.0

5ki

ps

! y =

0.0

734

in.

Ent

ryD

isp

lace

me

nt

Lev

elP

eak

De

flect

ion

Def

lect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

D

efle

ctio

n

Ra

nge

Lo

ad

at P

ea

k D

efle

ctio

nM

ax. L

oa

d in

E

xcu

rsio

nIn

itia

l Lo

adin

g

Stif

fne

ssIn

itial

Un

loa

din

g S

tiffn

ess

Hys

tere

sis

Are

a

(in

.) (

+/-

)i+

i-!

/!y

! 0/!

y"

! pm/!

yQ

/Qy

Qm

ax/

Qy

K0/(

Qy/

!y)

K/(

Qy/

!y)

A/(

Qy/

!y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10

][1

1]

Exc

ursi

on

[3]

611.

50

31

+-1

9.5

14

13.

17

9-2

9.12

2-2

.178

-2.1

86

0.2

39

0.5

50

3.6

78

162

623

1-

19.8

48

-15

.92

03

2.3

21

2.1

512

.175

0.2

68

0.8

09

3.9

93

727

633

2+

-19

.43

51

6.3

72

-32.

366

-2.2

21-2

.22

10

.26

60

.89

14

.311

794

643

2-

19.8

37

-15

.98

83

2.2

19

2.1

542

.190

0.1

98

0.8

19

4.6

28

884

653

3+

-19

.44

11

6.1

91

-32.

038

-2.2

28-2

.23

90

.35

20

.84

64

.94

804

366

33

-19

.84

2-1

5.8

41

32

.20

72

.186

2.1

990

.18

60

.87

55

.26

529

667

1.7

53

4+

-22

.70

71

6.3

38

-35.

446

-2.2

90-2

.29

00

.22

20

.93

65

.62

512

268

34

-23

.25

6-1

9.0

74

38

.69

02

.254

2.2

670

.21

00

.88

66

.01

989

069

35

+-2

2.6

96

19.

58

8-3

8.56

5-2

.323

-2.3

25

0.1

77

0.9

16

6.4

16

753

703

5-

23.2

73

-18

.95

53

8.5

32

2.2

142

.290

0.3

62

0.6

92

6.8

1188

771

36

+-2

2.6

85

19.

57

1-3

8.46

4-2

.339

-2.3

40

0.3

61

0.9

09

7.2

08

298

723

6-

23.2

44

-18

.87

63

8.4

07

2.2

372

.298

0.3

79

0.8

00

7.6

01

492

732.

00

37

+-2

6.0

53

19.

51

4-4

1.59

5-2

.355

-2.3

67

0.3

85

0.9

13

8.0

38

077

743

7-

26.6

13

-22

.04

64

4.8

10

2.3

132

.340

0.3

61

0.9

83

8.5

05

751

753

8+

-26

.05

92

2.7

41

-44.

556

-2.2

90-2

.31

60

.39

00

.88

58

.97

093

576

38

-26

.59

0-2

1.7

92

44

.38

62

.268

2.3

140

.32

20

.91

89

.42

320

777

39

+-2

6.0

64

22.

58

9-4

4.17

7-2

.220

-2.2

62

0.3

99

0.8

02

9.8

72

418

783

9-

26.5

90

-21

.56

64

4.1

04

2.2

902

.293

0.2

89

1.0

25

10.

30

71

40

792.

25

40

+-2

9.3

59

22.

51

5-4

7.20

6-2

.288

-2.2

88

0.3

39

0.8

53

10.

78

17

01

804

0-

29.9

19

-24

.67

45

0.4

50

2.3

192

.346

0.2

67

0.8

98

11.2

77

936

814

1+

-29

.36

52

5.7

48

-50.

258

-2.2

55-2

.28

30

.34

40

.81

411

.77

351

682

41

-29

.91

3-2

4.4

93

50

.25

82

.277

2.3

400

.24

50

.97

61

2.2

5511

183

42

+-2

9.3

82

25.

76

5-5

0.23

6-2

.269

-2.2

70

0.3

23

0.8

14

12

.738

111

844

2-

29.9

07

-24

.44

85

0.1

96

2.2

912

.312

0.2

48

0.9

79

13.

20

86

35

852.

50

43

+-3

2.6

60

25.

72

5-5

3.38

3-2

.350

-2.3

54

0.3

24

0.8

47

13.

72

40

55

864

3-

33.1

80

-27

.64

75

6.5

71

2.3

552

.355

0.2

53

1.3

94

14.

26

14

57

874

4+

-32

.68

22

8.9

35

-56.

537

-2.3

06-2

.31

40

.31

90

.82

71

4.8

03

17

388

44

-33

.18

5-2

7.5

90

56

.52

62

.308

2.3

270

.23

51

.01

41

5.3

29

10

589

45

+-3

2.6

93

28.

91

8-5

6.39

6-2

.298

-2.3

01

0.3

09

0.8

25

15.

85

88

10

904

5-

33.1

63

-27

.48

35

6.3

39

2.2

232

.316

0.2

49

0.8

65

16.

37

27

39

Page 80: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-20

Sp

ec

ime

nP

4_T

3_

FA

2-0

1F

y =

42

.00

ksi

(ass

um

ed)

Qy =

1.0

5ki

ps!

y =

0.07

34in

.

Ent

ryD

ispl

ace

me

nt

Lev

elP

ea

k D

efle

ctio

n

Def

lect

ion

at

Sta

rt o

f E

xcur

sio

n

Pla

stic

D

efle

ctio

n R

an

ge

Loa

d a

t P

eak

D

efle

ctio

nM

ax.

Lo

ad

in

Exc

urs

ion

Initi

al L

oa

din

g

Stif

fne

ssIn

itial

Un

loa

din

g

Stif

fnes

sH

yste

resi

s A

rea

(in

.) (

+/-

)i+

i-!

/!y

! 0/!

y"

!p

m/!

yQ

/Qy

Qm

ax/

Qy

K0/(

Qy/

!y)

K/(

Qy/

!y)

A/(

Qy/!

y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10

][1

1]

Exc

ursi

on

[3]

912

.75

46

+-3

6.0

22

28.

845

-59.

617

-2.3

66

-2.3

68

0.3

05

0.8

83

16.

935

18

992

46

-3

6.3

73

-30

.755

62.7

762

.31

42

.37

30.

22

30

.92

01

7.51

31

75

934

7+

-36

.17

53

1.9

93-6

3.5

73-1

.78

4-2

.07

20.

32

60

.69

61

8.09

28

89

944

7-

36.

67

2-3

1.5

5864

.703

1.4

87

2.0

68

0.1

70

0.6

90

18.

642

31

995

48

+-3

6.7

62

33.

123

-69.

812

-0.0

20

-1.0

32

0.2

16

0.0

00

18.

837

82

496

48

--3

6.6

72

-36

.672

49.4

780

.00

20

.15

60.

12

60

.12

61

8.86

04

54

972

.75

49

+3

7.1

24

12.

925

---

-0.0

16

-0.0

22

0.0

01

0.0

07

---

Page 81: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-21

Sp

eci

men

P4_

T4-

01F

y =

42.0

0ks

i(a

ssum

ed)

Qy =

5.6

0ki

ps

!y =

0.0

593

in.

Ent

ryD

isp

lace

me

nt

Leve

lP

eak

D

efle

ctio

n

Def

lect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

D

efle

ctio

n

Ran

ge

Loa

d a

t Pea

k D

efle

ctio

nM

ax. L

oad

in

Exc

urs

ion

Initi

al L

oadi

ng

Stif

fnes

sIn

itia

l Unl

oad

ing

Stif

fne

ssH

yste

resi

s A

rea

(in.)

(+

/-)

i+i-

!/! y

! 0/!

y"

! pm/!

yQ

/Qy

Qm

ax/Q

yK

0/(

Qy/

! y)

K/(

Qy/

! y)

A/(

Qy/

! y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11

]

10

.01

1+

0.1

120

.112

-0.0

28-0

.004

-0.0

09

-0.0

65

-0.0

65

0.0

00

007

21

-0.

182

0.0

980.

035

0.0

310.

051

0.28

90

.115

0.00

0012

32

+0

.112

0.1

12-0

.021

-0.0

02-0

.00

8-0

.04

7-0

.04

70

.00

00

134

2-

0.17

50

.105

0.02

10.

047

0.05

10.

293

0.20

20.

0000

185

3+

0.1

260

.126

-0.0

28-0

.002

-0.0

07

-0.0

40

-0.0

40

0.0

00

018

63

-0.

203

0.1

120.

007

0.0

150.

051

0.35

6-0

.00

60

.000

022

70

.02

4+

0.0

910

.091

-0.0

91-0

.002

-0.0

11-0

.04

1-0

.04

10

.00

00

248

4-

0.19

60

.007

0.11

90.

066

0.07

30.

366

0.25

00.

0000

359

5+

0.0

980

.098

-0.1

05-0

.002

-0.0

11-0

.01

4-0

.01

40

.00

00

3710

5-

0.18

9-0

.007

0.10

50.

072

0.07

20.

359

0.30

40.

0000

4811

6+

0.0

980

.098

-0.0

98-0

.002

-0.0

11-0

.00

1-0

.00

10

.00

00

5012

6-

0.20

30

.000

0.14

70.

015

0.07

20.

343

-0.0

02

0.0

0006

413

0.0

37

+0

.126

0.1

26-0

.168

-0.0

01-0

.05

30.

256

0.25

60

.00

00

7514

7-

0.34

9-0

.042

0.21

70.

141

0.14

10.

331

0.72

80.

0001

0615

8+

0.1

540

.154

-0.1

890.

000

-0.0

53

0.2

610.

261

0.0

001

1416

8-

0.36

3-0

.021

0.18

20.

124

0.14

20.

351

0.36

10.

0001

4417

9+

0.1

470

.147

-0.1

750.

000

-0.0

52

0.2

470.

247

0.0

00

153

189

-0.

356

-0.0

280.

203

0.1

380.

142

0.34

30.

660

0.00

0185

190

.06

10+

-0.2

940

.147

-0.2

10-0

.144

-0.1

44

0.3

020.

617

0.0

00

228

2010

-0.

629

-0.0

490.

224

0.2

730.

285

0.31

30.

605

0.00

0308

2111

+-0

.286

0.1

40-0

.210

-0.1

29-0

.14

40.

288

0.55

50

.00

03

4622

11-

0.62

2-0

.049

0.21

00.

279

0.28

50.

308

0.74

20.

0004

2123

12+

-0.2

860

.119

-0.1

96-0

.144

-0.1

44

0.3

120.

713

0.0

00

457

2412

-0.

629

-0.0

630.

238

0.2

660.

285

0.30

20.

580

0.00

0530

250

.10

13+

-0.5

940

.126

-0.2

38-0

.263

-0.2

80

0.3

010.

562

0.0

00

629

2613

-1.

034

-0.0

770.

266

0.4

580.

463

0.24

40.

582

0.00

0816

2714

+-0

.594

0.1

61-0

.259

-0.2

79-0

.28

50.

285

0.72

10

.00

08

8928

14-

1.03

4-0

.084

0.25

90.

452

0.46

20.

199

0.56

90.

0010

3129

15+

-0.5

940

.154

-0.2

38-0

.255

-0.2

85

0.2

470.

520

0.0

0111

530

15-

1.04

1-0

.063

0.25

90.

461

0.46

20.

233

0.57

30.

0012

73

Exc

urs

ion

[3]

Page 82: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-22

Sp

eci

men

P4_

T4-

01F

y =

42.0

0ks

i(a

ssum

ed)

Qy =

5.6

0ki

ps

!y =

0.0

593

in.

Ent

ryD

isp

lace

me

nt

Leve

lP

eak

D

efle

ctio

n

Def

lect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

D

efle

ctio

n

Ran

ge

Loa

d a

t Pea

k D

efle

ctio

nM

ax. L

oad

in

Exc

urs

ion

Initi

al L

oadi

ng

Stif

fnes

sIn

itia

l Unl

oad

ing

Stif

fne

ssH

yste

resi

s A

rea

(in.)

(+

/-)

i+i-

!/! y

! 0/!

y"

! pm/!

yQ

/Qy

Qm

ax/Q

yK

0/(

Qy/

! y)

K/(

Qy/

! y)

A/(

Qy/

! y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11

]

Exc

urs

ion

[3]

310

.25

16+

-1.9

780

.168

-0.4

33-0

.762

-0.7

73

0.2

351.

018

0.0

02

052

3216

-2.

656

-0.2

590.

720

0.8

990.

918

0.15

40.

437

0.00

3704

3317

+-2

.069

0.4

40-0

.580

-0.8

35-0

.83

50.

115

0.51

20

.00

45

5734

17-

2.67

0-0

.126

0.54

50.

918

0.91

80.

104

0.49

60.

0055

0835

18+

-2.0

760

.426

-0.5

59-0

.834

-0.8

38

0.11

80.

521

0.0

06

244

3618

-2

.677

-0.1

190

.524

0.9

180

.91

80.

088

0.48

80

.00

71

2337

0.5

019

+-4

.459

0.4

19-1

.580

-1.2

00-1

.23

30.

090

0.40

40

.01

27

4238

19-

5.91

3-1

.139

3.34

81.

348

1.34

80.

061

0.63

20.

0258

1739

20+

-4.1

652

.195

-2.9

07-1

.273

-1.2

83

0.0

490.

444

0.0

34

685

4020

-5.

941

-0.6

992.

817

1.3

441.

363

0.03

50.

492

0.04

4478

4121

+-4

.200

2.1

25-2

.817

-1.2

90-1

.30

00.

043

0.44

50

.05

29

4642

21-

6.01

1-0

.699

2.86

51.

329

1.34

10.

030

0.47

80.

0626

5543

0.7

522

+-7

.240

2.1

67-5

.326

-1.3

92-1

.41

40.

037

0.42

50

.08

40

3144

22-

11.5

25

-3.1

45

10.

854

0.7

861

.37

20.

054

0.40

50

.12

90

2145

23+

-11.

224

7.6

74-1

8.70

2-0

.013

-1.1

81

0.11

60.

001

0.1

7001

846

23-

13.7

05-1

1.00

71

4.67

00.

007

0.03

10.

022

0.0

110.

1710

6347

24+

-11.

266

3.6

20-1

4.83

0-0

.003

-0.0

06

0.0

050.

000

0.1

71

284

4824

-13

.740

-11.

175

24.

629

0.0

030.

006

0.01

10.

000

0.1

716

1149

0.7

525

+1

3.4

261

3.4

26--

-0.

000

-0.0

02

0.0

010.

001

---

Page 83: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-23

Sp

ec

ime

nP

4_T

4-0

2F

y =

42

.00

ksi

(ass

um

ed)

Qy =

5.6

0ki

ps

! y =

0.0

593

in.

Ent

ryD

isp

lace

me

nt

Lev

elP

eak

De

flect

ion

Def

lect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

D

efle

ctio

n

Ra

nge

Lo

ad

at P

ea

k D

efle

ctio

nM

ax. L

oa

d in

E

xcu

rsio

nIn

itia

l Lo

adin

g

Stif

fne

ssIn

itial

Un

loa

din

g S

tiffn

ess

Hys

tere

sis

Are

a

(in

.) (

+/-

)i+

i-!

/!y

! 0/!

y"

! pm/!

yQ

/Qy

Qm

ax/

Qy

K0/(

Qy/

!y)

K/(

Qy/

!y)

A/(

Qy/

!y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10

][1

1]

10.

01

1+

0.09

1-0

.06

30.

091

0.0

340

.037

0.2

28

0.3

77

0.0

00

004

21

--0

.12

60.

00

0-0

.098

0.0

050

.008

-0.0

50

-0.0

580

.00

000

13

2+

0.09

1-0

.07

00.

091

0.0

300

.037

0.2

31

0.3

57

0.0

00

005

42

--0

.12

6-0

.00

7-0

.084

0.0

070

.008

-0.0

60

-0.0

700

.00

000

25

3+

0.08

4-0

.07

00

.112

0.0

350

.036

0.2

19

0.3

56

0.0

00

009

63

--0

.19

60.

05

6-0

.231

0.0

050

.009

0.0

27

-0.0

340

.00

000

47

0.0

24

+-0

.15

4-0

.15

40.

189

0.0

090

.056

0.1

68

0.1

68

0.0

00

014

84

--0

.21

00.

00

7-0

.203

0.0

060

.008

-0.0

27

-0.0

370

.00

000

89

5+

0.15

4-0

.14

70.

182

0.0

540

.055

0.1

74

0.3

72

0.0

00

017

105

--0

.20

30.

00

7-0

.182

0.0

070

.009

-0.0

28

-0.0

430

.00

001

211

6+

0.13

3-0

.12

60.

175

0.0

540

.055

0.1

85

0.3

73

0.0

00

022

126

--0

.25

90.

04

2-0

.301

0.0

010

.008

-0.0

03

-0.0

030

.00

001

613

0.0

37

+-0

.39

8-0

.28

7-0

.063

-0.0

25-0

.02

80

.04

70

.05

00

.00

001

914

7-

-0.3

36

-0.3

36

0.0

630

.001

0.1

18

0.0

63

0.0

63

0.0

00

039

158

+-0

.39

1-0

.29

4-0

.042

-0.0

26-0

.02

70

.04

70

.04

40

.00

004

116

8-

-0.3

56

-0.3

36

-0.0

210

.003

0.1

18

0.0

68

-0.0

080

.00

004

617

9+

-0.4

61

-0.3

84

-0.0

07-0

.022

-0.0

27

0.0

39

0.0

32

0.0

00

047

189

--0

.37

0-0

.37

00.

077

0.0

000

.11

80

.06

10

.06

10

.00

008

119

0.0

61

0+

-0.6

43

-0.2

94

-0.0

63-0

.126

-0.1

26

0.3

55

0.4

53

0.0

00

092

201

0-

0.60

1-0

.33

60.

049

0.2

390

.246

0.0

52

0.4

46

0.0

00

126

2111

+-0

.62

9-0

.30

0-0

.028

-0.1

27-0

.12

90

.38

90

.42

20

.00

013

122

11-

0.60

1-0

.30

80.

035

0.2

460

.246

0.0

57

0.4

48

0.0

00

142

231

2+

-0.6

22

-0.2

87

-0.0

35-0

.127

-0.1

29

0.3

68

0.4

46

0.0

00

153

241

2-

0.59

4-0

.32

20.

028

0.2

340

.245

0.0

56

0.4

63

0.0

00

164

250.

10

13

+-1

.00

6-0

.30

0-0

.056

-0.2

77-0

.27

70

.36

20

.43

50

.00

019

826

13

-1.

020

-0.3

42

0.0

770

.417

0.4

170

.03

00

.46

30

.00

027

627

14

+-0

.99

9-0

.28

7-0

.042

-0.2

80-0

.28

30

.34

20

.43

90

.00

029

728

14

-1.

020

-0.3

22

0.0

350

.412

0.4

160

.03

00

.46

50

.00

033

229

15

+-0

.99

2-0

.29

4-0

.056

-0.2

76-0

.28

30

.34

70

.44

00

.00

035

230

15

-1.

027

-0.3

28

0.0

140.

411

0.4

150

.02

80

.44

90

.00

038

5

Exc

ursi

on

[3]

Page 84: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-24

Sp

ec

ime

nP

4_T

4-0

2F

y =

42

.00

ksi

(ass

um

ed)

Qy =

5.6

0ki

ps

! y =

0.0

593

in.

Ent

ryD

isp

lace

me

nt

Lev

elP

eak

De

flect

ion

Def

lect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

D

efle

ctio

n

Ra

nge

Lo

ad

at P

ea

k D

efle

ctio

nM

ax. L

oa

d in

E

xcu

rsio

nIn

itia

l Lo

adin

g

Stif

fne

ssIn

itial

Un

loa

din

g S

tiffn

ess

Hys

tere

sis

Are

a

(in

.) (

+/-

)i+

i-!

/!y

! 0/!

y"

! pm/!

yQ

/Qy

Qm

ax/

Qy

K0/(

Qy/

!y)

K/(

Qy/

!y)

A/(

Qy/

!y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10

][1

1]

Exc

ursi

on

[3]

310.

25

16

+-2

.67

0-0

.33

6-0

.175

-0.8

32-0

.83

60

.57

00

.40

10

.00

112

232

16

-2.

635

-0.5

03

0.4

540

.999

1.0

010

.02

90

.47

80

.00

265

333

17

+-2

.67

0-0

.09

1-0

.300

-0.8

62-0

.86

70

.28

50

.40

80

.00

317

734

17

-2.

705

-0.3

91

0.2

451

.000

1.0

000

.02

40

.44

70

.00

377

035

18

+-2

.58

6-0

.17

5-0

.210

-0.8

65-0

.86

80

.29

80

.41

40

.00

412

536

18

-2.

719

-0.3

70

0.1

960

.994

0.9

990

.02

10

.42

10

.00

460

837

0.5

01

9+

-5.7

59

-0.1

68

-1.6

07-1

.470

-1.4

70

0.2

95

0.4

50

0.0

12

249

381

9-

5.99

7-1

.76

13.

166

1.5

141

.532

0.0

19

0.4

87

0.0

26

722

392

0+

-5.7

24

1.3

70

-2.9

49-1

.478

-1.4

80

0.3

00

0.4

70

0.0

37

766

402

0-

6.05

9-1

.55

82.

865

1.5

271

.538

0.0

18

0.4

48

0.0

49

022

412

1+

-5.7

17

1.3

07

-2.7

96-1

.481

-1.4

81

0.2

54

0.4

49

0.0

59

060

422

1-

5.98

9-1

.46

82.

712

1.5

131

.534

0.0

14

0.4

89

0.0

69

437

430.

75

22

+-9

.18

31.

25

8-5

.689

-1.6

04-1

.611

0.2

48

0.4

50

0.0

96

095

442

2-

9.36

5-4

.41

78.

352

1.6

221

.646

0.0

33

0.4

60

0.1

35

282

452

3+

-9.3

30

3.9

28

-8.2

12-1

.625

-1.6

33

0.2

35

0.4

28

0.1

71

033

462

3-

10.1

76

-4.2

77

8.5

681

.672

1.6

810

.02

90

.52

50

.21

067

047

24

+-9

.37

94.

27

0-8

.387

-1.6

09-1

.611

0.4

56

0.4

35

0.2

47

006

482

4-

10.2

25

-4.1

168.

373

1.6

551

.657

0.0

26

0.5

41

0.2

83

292

491.

00

25

+-1

3.4

82

4.2

14

-11

.88

1-1

.624

-1.6

26

0.1

99

0.4

24

0.3

37

891

502

5-

14.2

92

-7.6

46

15

.74

61

.697

1.6

990

.03

40

.53

90

.40

714

651

26

+-1

4.0

41

8.0

65

-15.

984

-1.3

61-1

.45

70

.00

10

.33

50

.46

984

152

26

-14

.58

6-7

.911

15

.99

11

.457

1.4

750

.04

10

.38

70

.52

885

853

27

+-1

4.3

34

8.0

58

-15.

977

-1.1

66-1

.16

7-0

.00

10

.31

70

.57

495

354

27

-14

.92

1-7

.911

16

.03

91

.279

1.2

830

.04

40

.36

60

.62

028

155

1.2

52

8+

-18

.611

8.1

14-1

9.74

3-1

.107

-1.1

09

-0.0

04

0.2

58

0.6

71

425

562

8-

19.3

80

-11

.62

32

3.9

65

1.11

41

.11

40

.04

90

.33

30

.73

414

857

29

+-1

8.9

89

12.

33

5-2

4.45

4-0

.850

-0.8

54

0.0

110

.23

60

.78

103

158

29

-19

.86

3-1

2.0

98

25

.55

80

.785

0.7

870

.05

30

.25

00

.82

345

059

30

+-1

9.4

36

13.

44

7-2

7.27

1-0

.588

-0.5

88

0.0

09

0.2

53

0.8

59

631

603

0-

20.2

12

-13

.79

62

8.8

78

0.5

440

.544

0.0

46

0.2

30

0.8

87

868

Page 85: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-25

Sp

ec

ime

nP

4_T

4-0

2F

y =

42

.00

ksi

(ass

um

ed)

Qy =

5.6

0ki

ps

! y =

0.0

593

in.

Ent

ryD

isp

lace

me

nt

Lev

elP

eak

De

flect

ion

Def

lect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

D

efle

ctio

n

Ra

nge

Lo

ad

at P

ea

k D

efle

ctio

nM

ax. L

oa

d in

E

xcu

rsio

nIn

itia

l Lo

adin

g

Stif

fne

ssIn

itial

Un

loa

din

g S

tiffn

ess

Hys

tere

sis

Are

a

(in

.) (

+/-

)i+

i-!

/!y

! 0/!

y"

! pm/!

yQ

/Qy

Qm

ax/

Qy

K0/(

Qy/

!y)

K/(

Qy/

!y)

A/(

Qy/

!y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10

][1

1]

Exc

ursi

on

[3]

611.

25

31

+-1

9.7

99

15.

05

4-3

1.04

5-0

.364

-0.3

66

0.0

30

0.1

56

0.9

09

109

623

1-

20.5

19

-15

.97

03

3.4

56

0.3

010

.312

0.0

36

0.1

72

0.9

26

051

633

2+

-20

.07

21

7.4

65

-35.

483

-0.1

98-0

.20

00

.02

40

.13

50

.93

663

864

32

-20

.74

3-1

7.9

96

37

.39

80

.134

0.1

400

.04

60

.14

20

.94

554

965

33

+-2

0.3

17

19.

36

6-3

8.85

1-0

.084

-0.0

85

0.0

43

0.1

17

0.9

49

349

663

3-

20.9

60

-19

.47

13

9.7

67

0.0

430

.044

0.0

40

0.1

01

0.9

53

388

671.

25

34

+20

.29

62

0.2

68

---

-0.0

01-0

.00

50

.00

80

.00

7--

-

Page 86: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-26

Sp

ec

ime

nP

4_

T4

-B-0

1F

y =

42

.00

ksi

(ass

um

ed)

Qy =

5.6

0ki

ps

! y =

0.0

593

in.

Ent

ryD

isp

lace

me

nt

Lev

elP

eak

De

flect

ion

Def

lect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

D

efle

ctio

n

Ra

nge

Lo

ad

at P

ea

k D

efle

ctio

nM

ax. L

oa

d in

E

xcu

rsio

nIn

itia

l Lo

adin

g

Stif

fne

ssIn

itial

Un

loa

din

g S

tiffn

ess

Hys

tere

sis

Are

a

(in

.) (

+/-

)i+

i-!

/!y

! 0/!

y"

! pm/!

yQ

/Qy

Qm

ax/

Qy

K0/(

Qy/

!y)

K/(

Qy/

!y)

A/(

Qy/

!y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10

][1

1]

10.

01

1+

-0.1

68

-0.0

21

0.0

35-0

.003

-0.0

20

0.0

01

-0.0

01-0

.00

000

12

1-

0.09

80.

03

5-0

.028

0.0

130

.015

0.1

38

0.1

45

-0.0

00

002

32

+-0

.12

60.

00

70.

007

-0.0

19-0

.02

00

.16

30

.17

5-0

.00

000

34

2-

0.09

10.

03

5-0

.028

0.0

130

.014

0.1

39

0.1

49

-0.0

00

004

53

+-0

.12

60.

00

70.

007

-0.0

19-0

.02

00

.16

00

.16

7-0

.00

000

56

3-

0.10

50.

04

9-0

.028

0.0

140

.014

0.1

36

0.1

45

-0.0

00

006

70.

02

4+

-0.1

75

0.0

21

0.0

00-0

.029

-0.0

29

0.0

36

0.1

65

-0.0

00

007

84

-0.

168

0.0

35

-0.0

070

.024

0.0

240

.14

40

.13

9-0

.00

000

79

5+

-0.1

75

0.0

14

0.0

14-0

.027

-0.0

29

0.1

47

0.1

66

-0.0

00

008

105

-0.

182

0.0

49

-0.0

210

.023

0.0

230

.13

80

.14

0-0

.00

001

011

6+

-0.1

75

0.0

14

0.0

00-0

.027

-0.0

29

0.1

48

0.1

65

-0.0

000

1112

6-

0.18

90.

04

9-0

.021

0.0

230

.023

0.1

33

0.1

29

-0.0

000

1113

0.0

37

+-0

.36

30.

03

5-0

.098

-0.0

45-0

.04

70

.06

80

.13

00

.00

000

214

7-

0.37

7-0

.03

50.

091

0.0

490

.050

0.1

06

0.1

33

0.0

00

013

158

+-0

.35

60.

04

2-0

.119

-0.0

46-0

.04

60

.12

20

.13

50

.00

002

616

8-

0.37

7-0

.04

90

.112

0.0

460

.049

0.1

01

0.1

37

0.0

00

034

179

+-0

.35

60.

04

9-0

.126

-0.0

46-0

.04

60

.11

70

.13

50

.00

004

818

9-

0.38

4-0

.05

60.

126

0.0

490

.049

0.1

00

0.1

33

0.0

00

055

190.

06

10

+-0

.74

80.

04

2-0

.189

-0.0

88-0

.08

80

.06

50

.13

90

.00

008

520

10

-0.

797

-0.1

190.

217

0.1

040

.104

0.0

82

0.1

49

0.0

00

115

2111

+-0

.73

40.

07

0-0

.189

-0.0

88-0

.09

00

.10

00

.14

40

.00

014

322

11-

0.80

4-0

.09

10.

203

0.1

030

.103

0.0

78

0.1

47

0.0

00

161

231

2+

-0.7

34

0.0

98

-0.2

10-0

.088

-0.0

90

0.1

06

0.1

41

0.0

00

183

241

2-

0.86

0-0

.09

10.

161

0.1

020

.103

0.0

76

0.1

31

0.0

00

194

250.

10

13

+-1

.25

10.

05

6-0

.210

-0.1

53-0

.15

30

.05

10

.14

60

.00

024

326

13

-1.

370

-0.1

40

0.3

000

.172

0.1

730

.07

30

.15

70

.00

031

427

14

+-1

.24

40.

14

7-0

.272

-0.1

56-0

.15

60

.09

90

.14

50

.00

036

428

14

-1.

377

-0.1

05

0.2

660

.171

0.1

720

.06

90

.15

20

.00

041

029

15

+-1

.23

70.

14

0-0

.252

-0.1

54-0

.15

60

.09

40

.14

20

.00

045

330

15

-1.

384

-0.0

84

0.2

450

.170

0.1

720

.07

00

.15

00

.00

049

2

Exc

ursi

on

[3]

Page 87: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-27

Sp

ec

ime

nP

4_

T4

-B-0

1F

y =

42

.00

ksi

(ass

um

ed)

Qy =

5.6

0ki

ps

! y =

0.0

593

in.

Ent

ryD

isp

lace

me

nt

Lev

elP

eak

De

flect

ion

Def

lect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

D

efle

ctio

n

Ra

nge

Lo

ad

at P

ea

k D

efle

ctio

nM

ax. L

oa

d in

E

xcu

rsio

nIn

itia

l Lo

adin

g

Stif

fne

ssIn

itial

Un

loa

din

g S

tiffn

ess

Hys

tere

sis

Are

a

(in

.) (

+/-

)i+

i-!

/!y

! 0/!

y"

! pm/!

yQ

/Qy

Qm

ax/

Qy

K0/(

Qy/

!y)

K/(

Qy/

!y)

A/(

Qy/

!y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10

][1

1]

Exc

ursi

on

[3]

310.

25

16

+-3

.43

20.

12

6-0

.860

-0.3

60-0

.36

10

.14

40

.15

60

.00

125

132

16

-3.

585

-0.7

13

1.3

280

.381

0.3

810

.06

40

.14

80

.00

242

333

17

+-3

.42

50.

61

5-1

.174

-0.3

69-0

.37

10

.07

30

.15

40

.00

331

834

17

-3.

620

-0.5

31

1.1

670

.377

0.3

790

.06

30

.14

60

.00

419

135

18

+-3

.41

80.

60

8-1

.160

-0.3

71-0

.37

10

.07

80

.14

80

.00

504

136

18

-3.

634

-0.5

24

1.1

950

.378

0.3

780

.05

90

.14

60

.00

595

437

0.5

01

9+

-7.3

87

0.6

36

-3.7

95-0

.524

-0.5

24

0.0

69

0.1

74

0.0

1146

838

19

-7.

506

-3.1

45

6.3

180

.518

0.5

200

.08

10

.16

70

.01

991

839

20

+-7

.36

63.

14

5-6

.045

-0.5

19-0

.52

00

.07

10

.15

80

.02

747

540

20

-7.

513

-2.8

93

5.9

330

.512

0.5

120

.07

30

.15

40

.03

479

141

21

+-7

.38

03.

02

6-5

.871

-0.5

14-0

.51

40

.06

80

.16

30

.04

194

542

21

-7.

534

-2.8

10

5.8

360

.503

0.5

060

.07

00

.14

90

.04

888

543

0.7

52

2+

-11

.46

22.

99

8-9

.316

-0.5

65-0

.56

50

.06

00

.17

10

.06

277

444

22

-11

.67

8-6

.33

21

2.6

78

0.5

570

.560

0.0

74

0.1

64

0.0

811

67

452

3+

-11

.46

96.

32

5-1

2.40

5-0

.559

-0.5

59

0.0

70

0.1

65

0.0

98

364

462

3-

11.6

92

-6.0

66

12

.33

50

.551

0.5

520

.06

60

.16

80

.11

506

447

24

+-1

1.4

83

6.2

34

-12.

259

-0.5

51-0

.55

10

.06

80

.16

50

.13

158

348

24

-11

.69

2-6

.011

12

.26

60

.542

0.5

460

.06

40

.16

20

.14

758

549

1.0

02

5+

-15

.55

76.

22

7-1

5.99

1-0

.586

-0.5

86

0.0

55

0.1

64

0.1

711

54

502

5-

15.8

58

-9.7

43

19

.70

90

.581

0.5

810

.06

00

.17

30

.19

975

251

26

+-1

5.5

85

9.9

45

-19.

548

-0.5

72-0

.57

20

.06

30

.15

30

.22

757

352

26

-15

.87

9-9

.58

91

9.4

92

0.5

670

.568

0.0

64

0.1

66

0.2

54

649

532

7+

-15

.58

59.

88

9-1

9.45

0-0

.556

-0.5

59

0.0

58

0.1

50

0.2

81

600

542

7-

15.9

07

-9.5

47

19

.40

80

.556

0.5

570

.05

60

.16

00

.30

780

155

1.2

52

8+

-19

.74

49.

85

4-2

3.23

1-0

.582

-0.5

82

0.0

57

0.1

45

0.3

41

853

562

8-

20.1

00

-13

.34

22

7.0

61

0.5

710

.582

0.0

54

0.1

47

0.3

81

087

572

9+

-19

.70

91

3.6

91

-26.

991

-0.5

58-0

.55

80

.05

50

.15

90

.41

947

758

29

-20

.11

4-1

3.2

51

26

.89

30

.566

0.5

660

.05

20

.16

30

.45

670

959

30

+-1

9.7

37

13.

59

3-2

6.78

8-0

.536

-0.5

36

0.0

54

0.1

61

0.4

93

608

603

0-

20.1

56

-13

.17

42

6.7

67

0.5

480

.550

0.0

50

0.1

52

0.5

29

501

Page 88: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-28

Sp

ec

ime

nP

4_

T4

-B-0

1F

y =

42

.00

ksi

(ass

um

ed)

Qy =

5.6

0ki

ps

! y =

0.0

593

in.

Ent

ryD

isp

lace

me

nt

Lev

elP

eak

De

flect

ion

Def

lect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

D

efle

ctio

n

Ra

nge

Lo

ad

at P

ea

k D

efle

ctio

nM

ax. L

oa

d in

E

xcu

rsio

nIn

itia

l Lo

adin

g

Stif

fne

ssIn

itial

Un

loa

din

g S

tiffn

ess

Hys

tere

sis

Are

a

(in

.) (

+/-

)i+

i-!

/!y

! 0/!

y"

! pm/!

yQ

/Qy

Qm

ax/

Qy

K0/(

Qy/

!y)

K/(

Qy/

!y)

A/(

Qy/

!y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10

][1

1]

Exc

ursi

on

[3]

611.

50

31

+-2

3.8

81

13.

57

2-3

0.63

2-0

.549

-0.5

49

0.0

50

0.1

60

0.5

72

570

623

1-

24.3

98

-17

.02

53

4.0

29

0.5

290

.530

0.0

50

0.1

39

0.6

19

918

633

2+

-23

.93

71

6.9

90

-33.

875

-0.5

22-0

.52

30

.05

10

.15

10

.66

595

864

32

-24

.39

8-1

6.8

64

33

.51

20

.521

0.5

210

.04

00

.13

20

.70

910

865

33

+-2

3.9

37

16.

63

3-3

3.35

8-0

.504

-0.5

04

0.0

39

0.1

55

0.7

51

662

663

3-

24.4

54

-16

.69

03

3.2

32

0.5

130

.514

0.0

35

0.0

90

0.7

92

363

671.

75

34

+-2

8.1

23

16.

53

6-3

7.16

7-0

.499

-0.5

05

0.0

37

0.1

42

0.8

40

226

683

4-

28.6

54

-20

.59

64

1.0

46

0.5

360

.536

0.0

38

0.1

36

0.8

92

310

693

5+

-28

.19

32

0.4

14

-40.

759

-0.4

64-0

.46

50

.03

90

.11

50

.94

256

170

35

-28

.68

9-2

0.3

31

40

.73

10

.518

0.5

180

.03

40

.11

90

.99

269

371

36

+-2

8.2

42

20.

35

2-4

0.48

7-0

.443

-0.4

46

0.0

34

0.0

92

1.0

39

597

723

6-

28.7

38

-20

.11

44

0.3

96

0.5

030

.503

0.0

33

0.1

29

1.0

87

437

732.

00

37

+-3

2.3

94

20.

26

8-4

4.16

3-0

.447

-0.4

48

0.0

31

0.0

98

1.1

38

134

743

7-

32.9

04

-23

.86

74

8.2

09

0.5

280

.528

0.0

29

0.1

33

1.1

95

342

753

8+

-32

.40

02

4.3

28

-48.

028

-0.4

19-0

.42

00

.03

00

.10

21

.24

881

576

38

-32

.93

2-2

3.6

71

47

.96

50

.510

0.5

130

.02

90

.12

11

.30

256

677

39

+-3

2.4

77

24.

27

9-4

7.72

7-0

.371

-0.3

72

0.0

28

0.0

84

1.3

52

552

783

9-

32.9

80

-23

.43

44

7.8

46

0.5

000

.500

0.0

25

0.1

24

1.4

02

033

792.

25

40

+-3

6.7

13

24.

37

0-5

1.69

0-0

.319

-0.3

20

0.0

27

0.0

72

1.4

50

306

804

0-

37.0

13

-27

.29

95

5.9

39

0.5

180

.518

0.0

18

0.1

33

1.5

04

317

814

1+

-36

.78

92

8.6

19

-56.

212

-0.2

45-0

.24

60

.02

40

.05

51

.54

795

382

41

-37

.03

4-2

7.5

71

56

.21

90

.487

0.4

910

.01

40

.12

11

.59

201

283

42

+-3

6.9

22

28.

63

3-5

6.73

6-0

.200

-0.2

02

0.0

20

0.0

49

1.6

26

545

844

2-

37.1

04

-28

.07

45

6.7

43

0.4

500

.450

0.0

17

0.1

28

1.6

64

957

852.

25

43

+-3

6.9

78

28.

64

7-5

7.27

4-0

.170

-0.1

70

0.0

20

0.0

41

1.6

94

024

864

3-

37

.111

-28

.60

65

7.6

23

0.4

220

.423

0.0

12

0.1

23

1.7

27

836

874

4+

-37

.01

32

8.9

90

-58.

280

-0.1

30-0

.13

70

.01

50

.03

51

.75

233

988

44

-37

.12

5-2

9.2

56

58

.60

20

.397

0.3

970

.01

00

.12

61

.78

168

789

45

+-3

7.0

55

29.

31

8-5

9.22

4-0

.111

-0.1

12

0.0

13

0.0

30

1.8

02

243

904

5-

37.2

72

-29

.87

75

9.7

76

0.3

810

.388

0.0

10

0.0

72

1.8

29

373

Page 89: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-29

Sp

ec

ime

nP

4_

T4

-B-0

1F

y =

42

.00

ksi

(ass

um

ed)

Qy =

5.6

0ki

ps

! y =

0.0

593

in.

Ent

ryD

isp

lace

me

nt

Lev

elP

eak

De

flect

ion

Def

lect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

D

efle

ctio

n

Ra

nge

Lo

ad

at P

ea

k D

efle

ctio

nM

ax. L

oa

d in

E

xcu

rsio

nIn

itia

l Lo

adin

g

Stif

fne

ssIn

itial

Un

loa

din

g S

tiffn

ess

Hys

tere

sis

Are

a

(in

.) (

+/-

)i+

i-!

/!y

! 0/!

y"

! pm/!

yQ

/Qy

Qm

ax/

Qy

K0/(

Qy/

!y)

K/(

Qy/

!y)

A/(

Qy/

!y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10

][1

1]

Exc

ursi

on

[3]

912.

25

46

+-3

7.0

69

29.

87

7-6

0.21

6-0

.098

-0.0

98

0.0

12

0.0

38

1.8

47

349

924

6-

37.2

16

-30

.311

60

.34

20

.386

0.3

860

.00

90

.11

51

.87

291

893

47

+-3

7.0

83

30.

00

3-6

0.48

2-0

.093

-0.0

94

0.0

13

0.0

34

1.8

88

796

944

7-

37.1

46

-30

.44

46

0.7

12

0.3

850

.385

0.0

09

0.1

04

1.9

12

442

954

8+

-37

.11

83

0.2

27

-60.

594

-0.0

89-0

.09

00

.01

60

.03

21

.92

729

796

48

-37

.23

7-3

0.3

25

60

.41

90

.386

0.3

860

.00

80

.10

01

.94

926

097

2.2

54

9+

-37

.06

93

0.0

59

-60.

671

-0.0

84-0

.08

50

.01

50

.04

11

.96

317

998

49

-37

.25

1-3

0.5

83

60

.72

00

.376

0.3

760

.00

60

.12

81

.98

311

699

50

+-3

7.1

60

30.

10

1-6

0.81

7-0

.082

-0.0

83

0.0

16

0.0

33

1.9

96

126

100

50

-37

.20

9-3

0.6

95

61

.14

60

.352

0.3

530

.00

60

.09

72

.01

330

81

015

1+

-37

.16

73

0.4

37

-60.

873

-0.0

81-0

.08

10

.01

70

.03

22

.02

550

01

025

1-

37.2

79

-30

.40

96

2.5

72

0.2

690

.326

0.0

04

0.0

84

2.0

41

906

103

2.5

05

2+

-37

.25

13

2.1

28

-54.

926

-0.0

74-0

.08

00

.02

10

.03

42

.05

239

81

045

2-

37.3

56

-22

.78

45

5.2

54

0.2

450

.249

0.0

01

0.0

85

2.0

64

052

105

53

+-3

7.2

58

32.

43

5-5

2.34

7-0

.080

-0.0

89

0.0

26

0.0

33

2.0

76

257

106

53

-37

.39

1-1

9.8

77

52

.59

90

.224

0.2

270

.00

30

.07

32

.08

502

11

075

4+

-37

.26

53

2.7

01

-52.

424

-0.0

82-0

.08

60

.02

60

.03

52

.09

671

21

085

4-

37.3

83

-19

.69

55

2.8

71

0.2

090

.209

0.0

01

0.0

59

2.1

04

358

109

MA

NU

AL

55

+-3

8.1

24

33.

14

8-5

3.66

8-0

.081

-0.0

85

0.0

19

0.0

45

2.1

15

802

110

55

-45

.35

8-2

0.4

36

62.

117

0.1

510

.194

0.0

01

0.0

04

2.1

28

443

111

56

+41

.56

34

1.5

63

-56.

561

0.0

00-0

.09

80

.00

80

.00

82

.14

569

411

25

6-

37.4

67

-14

.68

44

8.5

66

0.11

10

.123

0.0

01

0.0

02

2.1

51

239

113

57

+-3

8.6

07

33.

22

5-5

1.54

3-0

.076

-0.0

83

-0.0

01

0.0

20

2.1

63

451

114

57

-42

.78

6-1

8.2

06

60

.49

60

.012

0.0

850

.00

1-0

.001

2.1

68

776

115

MA

NU

AL

58

+42

.21

34

2.2

13

---

0.0

00-0

.04

80

.00

10

.00

1--

-

Page 90: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-30

Sp

ec

ime

nP

4_

T4

-B-0

2F

y =

42

.00

ksi

(ass

um

ed)

Qy =

5.6

0ki

ps

! y =

0.0

593

in.

Ent

ryD

isp

lace

me

nt

Lev

elP

eak

De

flect

ion

Def

lect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

D

efle

ctio

n

Ra

nge

Lo

ad

at P

ea

k D

efle

ctio

nM

ax. L

oa

d in

E

xcu

rsio

nIn

itia

l Lo

adin

g

Stif

fne

ssIn

itial

Un

loa

din

g S

tiffn

ess

Hys

tere

sis

Are

a

(in

.) (

+/-

)i+

i-!

/!y

! 0/!

y"

! pm/!

yQ

/Qy

Qm

ax/

Qy

K0/(

Qy/

!y)

K/(

Qy/

!y)

A/(

Qy/

!y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10

][1

1]

10.

01

1+

-0.1

12

0.0

21

-0.0

63-0

.005

-0.0

06

-0.0

05

0.0

45

0.0

00

001

21

-0.

105

-0.0

21

0.0

350

.013

0.0

130

.11

20

.12

50

.00

000

13

2+

-0.1

19

0.0

00

-0.0

49-0

.006

-0.0

06

0.0

42

0.0

42

0.0

00

001

42

-0

.11

2-0

.02

10.

042

0.0

130

.013

0.1

13

0.1

21

0.0

00

001

53

+-0

.11

9-0

.03

50.

000

-0.0

05-0

.00

50

.04

10

.04

00

.00

000

16

3-

0.12

6-0

.02

80.

063

0.0

130

.013

0.0

99

0.1

07

0.0

00

001

70.

02

4+

-0.1

89

0.0

21

-0.0

91-0

.010

-0.0

110

.00

90

.04

70

.00

000

38

4-

0.17

5-0

.05

60.

063

0.0

190

.021

0.1

01

0.1

16

0.0

00

002

95

+-0

.17

5-0

.01

4-0

.021

-0.0

11-0

.011

0.0

50

0.0

48

0.0

00

004

105

-0.

168

-0.0

14

0.0

070

.021

0.0

210

.11

40

.12

30

.00

000

311

6+

-0.1

82

-0.0

14

-0.0

28-0

.009

-0.0

110

.04

90

.04

90

.00

000

412

6-

0.17

5-0

.01

40.

042

0.0

190

.020

0.1

14

0.1

17

0.0

00

003

130.

03

7+

-0.3

77

0.0

14

-0.1

12-0

.030

-0.0

30

-0.0

06

0.0

79

0.0

00

006

147

-0.

370

-0.0

77

0.1

120

.045

0.0

460

.10

60

.12

40

.00

000

615

8+

-0.3

91

0.0

21

-0.1

47-0

.030

-0.0

31

0.0

78

0.0

81

0.0

00

007

168

-0.

384

-0.0

98

0.1

190

.045

0.0

460

.09

70

.12

00

.00

000

617

9+

-0.3

91

-0.0

07

-0.1

12-0

.031

-0.0

31

0.0

83

0.0

78

0.0

00

006

189

-0.

391

-0.0

98

0.1

330

.045

0.0

460

.09

60

.12

70

.00

000

519

0.0

61

0+

-0.7

69

0.0

28

-0.1

68-0

.072

-0.0

73

-0.0

08

0.1

19

0.0

00

010

201

0-

0.78

3-0

.12

60.

189

0.0

970

.098

0.0

93

0.1

33

0.0

00

018

2111

+-0

.73

40.

04

9-0

.336

-0.0

70-0

.07

00

.07

00

.12

10

.00

002

722

11-

0.82

5-0

.24

50.

300

0.0

970

.097

0.0

52

0.1

03

0.0

00

017

231

2+

-0.7

20

0.0

35

-0.1

61-0

.069

-0.0

70

0.0

75

0.1

22

0.0

00

020

241

2-

0.80

4-0

.09

80.

133

0.0

970

.097

0.0

89

0.1

26

0.0

00

019

250.

10

13

+-1

.29

30.

04

2-0

.210

-0.1

33-0

.13

40

.02

00

.12

90

.00

004

226

13

-1.

349

-0.1

61

0.2

380

.163

0.1

640

.09

40

.13

20

.00

008

227

14

+-1

.29

30.

05

6-0

.224

-0.1

35-0

.13

50

.07

20

.12

90

.00

010

028

14

-1.

370

-0.1

54

0.2

310

.164

0.1

640

.08

10

.13

90

.00

012

329

15

+-1

.32

10.

03

5-0

.196

-0.1

35-0

.13

50

.07

30

.12

20

.00

013

430

15

-1.

370

-0.1

26

0.2

100

.162

0.1

640

.08

20

.13

60

.00

015

5

Exc

ursi

on

[3]

Page 91: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-31

Sp

ec

ime

nP

4_

T4

-B-0

2F

y =

42

.00

ksi

(ass

um

ed)

Qy =

5.6

0ki

ps

! y =

0.0

593

in.

Ent

ryD

isp

lace

me

nt

Lev

elP

eak

De

flect

ion

Def

lect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

D

efle

ctio

n

Ra

nge

Lo

ad

at P

ea

k D

efle

ctio

nM

ax. L

oa

d in

E

xcu

rsio

nIn

itia

l Lo

adin

g

Stif

fne

ssIn

itial

Un

loa

din

g S

tiffn

ess

Hys

tere

sis

Are

a

(in

.) (

+/-

)i+

i-!

/!y

! 0/!

y"

! pm/!

yQ

/Qy

Qm

ax/

Qy

K0/(

Qy/

!y)

K/(

Qy/

!y)

A/(

Qy/

!y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10

][1

1]

Exc

ursi

on

[3]

310.

25

16

+-3

.411

0.0

63

-0.7

20-0

.325

-0.3

25

0.0

48

0.1

35

0.0

00

695

321

6-

3.52

9-0

.61

51.

111

0.3

650

.366

0.0

74

0.1

56

0.0

01

669

331

7+

-3.4

04

0.4

61

-0.9

93-0

.331

-0.3

31

0.0

55

0.1

34

0.0

02

323

341

7-

3.54

3-0

.50

31.

027

0.3

620

.365

0.0

74

0.1

43

0.0

03

080

351

8+

-3.4

18

0.5

45

-1.0

27-0

.331

-0.3

32

0.0

34

0.1

26

0.0

03

717

361

8-

3.60

6-0

.46

10.

978

0.3

640

.364

0.0

82

0.1

28

0.0

04

433

370.

50

19

+-7

.24

10.

49

6-3

.292

-0.4

81-0

.48

10

.05

60

.13

90

.00

914

638

19

-7.

429

-2.7

68

5.8

010

.508

0.5

080

.07

80

.15

90

.01

671

739

20

+-7

.35

23.

01

9-5

.668

-0.4

81-0

.48

50

.03

90

.13

10

.02

340

840

20

-7.

443

-2.6

07

5.6

050

.507

0.5

070

.08

30

.16

30

.03

018

341

21

+-7

.33

82.

99

1-5

.542

-0.4

84-0

.48

40

.03

20

.17

10

.03

667

942

21

-7.

471

-2.5

30

5.4

160

.503

0.5

030

.07

80

.16

00

.04

327

043

0.7

52

2+

-11

.40

62.

86

5-8

.967

-0.5

44-0

.54

40

.03

10

.14

20

.05

629

044

22

-11

.54

6-6

.08

01

2.4

68

0.5

600

.562

0.0

67

0.1

73

0.0

74

268

452

3+

-11

.40

66.

36

7-1

2.41

2-0

.536

-0.5

36

0.0

67

0.1

58

0.0

91

237

462

3-

11.5

53

-6.0

25

12

.42

60

.545

0.5

470

.04

80

.16

30

.10

803

447

24

+-1

1.4

20

6.4

02

-12.

349

-0.5

26-0

.52

60

.03

20

.14

50

.12

435

948

24

-11

.60

1-5

.92

01

2.2

17

0.5

230

.533

0.0

50

0.1

42

0.1

40

502

491.

00

25

+-1

5.4

46

6.2

90

-16

.11

6-0

.562

-0.5

62

0.0

62

0.1

61

0.1

63

581

502

5-

15.7

74

-9.8

12

19

.84

10

.555

0.5

550

.03

40

.17

60

.19

213

951

26

+-1

5.4

74

10.

02

2-1

9.70

2-0

.547

-0.5

47

0.0

61

0.1

52

0.2

19

425

522

6-

15.8

09

-9.6

66

19

.66

00

.529

0.5

340

.03

60

.15

60

.24

624

453

27

+-1

5.4

80

9.9

73

-19.

583

-0.5

34-0

.53

40

.05

60

.15

30

.27

255

654

27

-15

.86

5-9

.59

61

9.5

62

0.5

110

.518

0.0

29

0.1

16

0.2

98

348

551.

25

28

+-1

9.5

69

9.9

45

-23.

371

-0.5

54-0

.55

60

.05

30

.15

20

.33

113

856

28

-20

.00

2-1

3.4

12

27

.18

70

.535

0.5

350

.04

90

.16

00

.36

903

057

29

+-1

9.6

32

13.

78

9-2

7.09

6-0

.525

-0.5

26

0.0

64

0.1

45

0.4

05

648

582

9-

20.0

44

-13

.29

32

7.0

19

0.5

080

.508

0.0

49

0.1

47

0.4

41

516

593

0+

-19

.64

61

3.7

05

-26.

907

-0.5

01-0

.50

20

.05

10

.14

00

.47

634

160

30

-20

.07

9-1

3.1

67

26

.77

50

.479

0.4

870

.04

70

.12

40

.51

036

2

Page 92: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-32

Sp

ec

ime

nP

4_

T4

-B-0

2F

y =

42

.00

ksi

(ass

um

ed)

Qy =

5.6

0ki

ps

! y =

0.0

593

in.

Ent

ryD

isp

lace

me

nt

Lev

elP

eak

De

flect

ion

Def

lect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

D

efle

ctio

n

Ra

nge

Lo

ad

at P

ea

k D

efle

ctio

nM

ax. L

oa

d in

E

xcu

rsio

nIn

itia

l Lo

adin

g

Stif

fne

ssIn

itial

Un

loa

din

g S

tiffn

ess

Hys

tere

sis

Are

a

(in

.) (

+/-

)i+

i-!

/!y

! 0/!

y"

! pm/!

yQ

/Qy

Qm

ax/

Qy

K0/(

Qy/

!y)

K/(

Qy/

!y)

A/(

Qy/

!y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10

][1

1]

Exc

ursi

on

[3]

611.

50

31

+-2

3.7

06

13.

58

6-3

0.59

7-0

.510

-0.5

10

0.0

44

0.1

51

0.5

50

298

623

1-

24.2

09

-16

.99

73

4.4

41

0.4

940

.495

0.0

44

0.1

31

0.5

94

782

633

2+

-23

.78

31

7.4

09

-34.

267

-0.4

84-0

.48

40

.04

40

.12

50

.63

758

964

32

-24

.26

5-1

6.8

36

34

.17

60

.459

0.4

640

.04

20

.11

60

.67

937

865

33

+-2

3.8

18

17

.311

-34.

092

-0.4

61-0

.46

10

.03

20

.13

60

.71

999

066

33

-24

.28

6-1

6.7

52

33

.84

00

.429

0.4

290

.04

00

.11

90

.75

904

867

1.7

53

4+

-27

.90

71

7.0

81

-37.

628

-0.4

72-0

.47

20

.03

70

.11

90

.80

337

768

34

-28

.48

7-2

0.5

19

41

.28

30

.428

0.4

280

.03

70

.10

40

.85

028

869

35

+-2

7.9

77

20.

75

0-4

1.06

0-0

.435

-0.4

36

0.0

35

0.1

12

0.8

95

491

703

5-

28.4

45

-20

.26

14

0.7

73

0.4

000

.400

0.0

31

0.1

01

0.9

38

875

713

6+

-28

.02

52

0.4

77

-40.

529

-0.4

04-0

.40

40

.03

20

.10

90

.98

019

372

36

-28

.53

6-2

0.0

30

40

.30

50

.360

0.3

610

.02

70

.09

01

.01

991

273

2.0

03

7+

-32

.15

62

0.2

54

-44.

037

-0.4

15-0

.41

50

.02

80

.10

11

.06

232

774

37

-32

.77

8-2

3.7

55

47

.77

60

.306

0.3

090

.02

70

.07

61

.10

620

175

38

+-3

2.3

38

23.

99

3-4

7.51

0-0

.381

-0.3

81

0.0

19

0.0

75

1.1

46

183

763

8-

32.9

46

-23

.47

6-0

.112

0.2

39-0

.32

30

.02

10

.05

41

.21

060

777

39

+32

.99

4-2

3.5

46

48

.46

80

.206

0.2

070

.01

60

.05

01

.23

545

478

39

--3

7.6

63

24.

91

5-6

2.19

4-0

.158

-0.2

17

0.0

12

0.0

01

1.2

59

048

792.

25

40

+-3

7.3

00

-37

.30

05

8.6

58

0.0

010

.025

0.0

03

0.0

03

1.2

60

521

804

0-

37.7

19

21.

38

6--

--0

.002

-0.0

03

-0.0

01

0.0

01

---

Page 93: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-33

Sp

ec

ime

nP

4_T

4_

FA

1-01

Fy =

42

.00

ksi

(ass

um

ed)

Qy =

1.4

0ki

ps

! y =

0.0

571

in.

Ent

ryD

isp

lace

me

nt

Lev

elP

eak

De

flect

ion

Def

lect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

D

efle

ctio

n

Ra

nge

Lo

ad

at P

ea

k D

efle

ctio

nM

ax. L

oa

d in

E

xcu

rsio

nIn

itia

l Lo

adin

g

Stif

fne

ssIn

itial

Un

loa

din

g S

tiffn

ess

Hys

tere

sis

Are

a

(in

.) (

+/-

)i+

i-!

/!y

! 0/!

y"

! pm/!

yQ

/Qy

Qm

ax/

Qy

K0/(

Qy/

!y)

K/(

Qy/

!y)

A/(

Qy/

!y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10

][1

1]

10.

01

1+

-0.0

44

0.0

15

-0.0

07-0

.043

-0.0

59

1.0

81

1.1

67

0.0

00

000

21

-0.

138

0.0

29

-0.0

650

.083

0.0

890

.47

40

.55

7-0

.00

002

23

2+

0.09

4-0

.01

50.

036

-0.0

66-0

.06

6-0

.59

3-0

.572

-0.0

00

026

42

-0.

167

0.0

07

0.1

240

.070

0.0

840

.32

60

.26

30

.00

000

55

3+

0.10

20.

10

2-0

.051

-0.0

05-0

.06

50

.27

10

.27

10

.00

001

46

3-

0.13

10.

07

3-0

.036

0.0

760

.081

0.5

56

0.6

27

0.0

00

006

70.

02

4+

0.22

50.

03

6-0

.065

-0.0

09-0

.10

2-0

.06

00

.00

20

.00

002

48

4-

0.24

00.

00

00.

131

0.1

020

.102

0.3

45

0.3

28

0.0

00

056

95

+-0

.10

90.

10

9-0

.131

-0.0

90-0

.10

20

.33

80

.83

90

.00

008

610

5-

0.24

00.

00

00

.116

0.0

980

.098

0.3

27

0.3

12

0.0

00

119

116

+-0

.11

60.

10

9-0

.131

-0.0

79-0

.10

00

.30

50

.71

60

.00

015

012

6-

0.24

00.

00

00.

131

0.0

960

.096

0.3

37

0.3

28

0.0

00

180

130.

03

7+

-0.2

90

0.1

16-0

.174

-0.2

13-0

.21

90

.30

70

.74

80

.00

023

514

7-

0.45

0-0

.02

90

.211

0.2

030

.203

0.3

67

0.4

22

0.0

00

293

158

+-0

.29

80.

17

4-0

.196

-0.2

19-0

.21

90

.32

10

.72

20

.00

037

216

8-

0.45

8-0

.00

70.

203

0.2

020

.202

0.3

63

0.4

04

0.0

00

435

179

+-0

.28

30.

16

7-0

.196

-0.2

11-0

.21

70

.36

90

.76

20

.00

049

918

9-

0.45

80.

01

50.

160

0.2

010

.201

0.3

90

0.4

05

0.0

00

560

190.

06

10

+-0

.62

50.

16

0-0

.189

-0.4

32-0

.43

80

.41

70

.73

80

.00

067

220

10

-0.

864

-0.0

07

0.2

320

.471

0.4

790

.35

90

.76

60

.00

079

421

11+

-0.6

54

0.1

96

-0.1

81-0

.399

-0.4

37

0.3

32

0.6

10

0.0

00

911

2211

-0.

864

0.0

51

0.1

310

.465

0.4

800

.37

00

.69

90

.00

100

023

12

+-0

.63

20.

18

1-0

.218

-0.4

21-0

.43

70

.33

40

.68

50

.00

110

124

12

-0.

871

0.0

00

0.2

320

.479

0.4

790

.33

40

.51

60

.00

117

225

0.1

01

3+

-1.1

47

0.2

18

-0.2

62-0

.770

-0.7

70

0.1

73

0.7

53

0.0

01

375

261

3-

1.42

3-0

.04

40.

262

0.8

370

.848

0.3

23

0.7

31

0.0

01

602

271

4+

-1.1

40

0.1

74

-0.2

11-0

.781

-0.7

81

0.3

41

0.7

55

0.0

01

796

281

4-

1.44

5-0

.02

20.

254

0.8

430

.846

0.3

07

0.7

89

0.0

01

991

291

5+

-1.1

55

0.2

03

-0.2

47-0

.781

-0.7

83

0.3

22

0.7

34

0.0

02

183

301

5-

1.44

5-0

.01

50.

254

0.8

460

.846

0.3

03

0.7

30

0.0

02

352

Exc

ursi

on

[3]

Page 94: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-34

Sp

ec

ime

nP

4_T

4_

FA

1-01

Fy =

42

.00

ksi

(ass

um

ed)

Qy =

1.4

0ki

ps

! y =

0.0

571

in.

Ent

ryD

isp

lace

me

nt

Lev

elP

eak

De

flect

ion

Def

lect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

D

efle

ctio

n

Ra

nge

Lo

ad

at P

ea

k D

efle

ctio

nM

ax. L

oa

d in

E

xcu

rsio

nIn

itia

l Lo

adin

g

Stif

fne

ssIn

itial

Un

loa

din

g S

tiffn

ess

Hys

tere

sis

Are

a

(in

.) (

+/-

)i+

i-!

/!y

! 0/!

y"

! pm/!

yQ

/Qy

Qm

ax/

Qy

K0/(

Qy/

!y)

K/(

Qy/

!y)

A/(

Qy/

!y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10

][1

1]

Exc

ursi

on

[3]

310.

25

16

+-3

.47

90.

21

8-1

.547

-1.4

35-1

.43

50

.69

70

.78

40

.00

864

832

16

-3.

747

-1.3

22

2.9

411

.414

1.4

680

.26

00

.73

20

.01

935

733

17

+-3

.48

61.

59

0-2

.890

-1.4

54-1

.45

60

.23

70

.79

80

.02

910

934

17

-3.

769

-1.2

64

2.8

321

.453

1.4

930

.23

50

.71

60

.03

900

735

18

+-3

.48

61.

53

2-2

.767

-1.4

64-1

.46

70

.23

90

.75

00

.04

839

736

18

-3.

762

-1.2

42

2.7

671

.493

1.5

040

.23

60

.69

90

.05

792

937

0.5

01

9+

-7.7

70

1.5

10

-6.7

97-1

.563

-1.5

84

0.2

45

0.7

42

0.0

87

924

381

9-

8.02

5-5

.28

71

0.7

33

1.6

321

.674

0.2

41

0.6

97

0.1

35

585

392

0+

-7.6

98

5.4

39

-10.

457

-1.6

82-1

.69

20

.22

70

.78

90

.18

137

440

20

-7.

981

-4.9

89

10

.29

81

.728

1.7

410

.21

90

.97

00

.22

815

541

21

+-7

.74

15.

27

9-1

0.18

1-1

.698

-1.7

31

0.2

26

0.6

62

0.2

74

143

422

1-

8.01

0-4

.87

31

0.1

31

1.7

061

.765

0.2

23

0.6

77

0.3

20

790

430.

75

22

+-1

1.9

75

5.2

36

-14.

234

-1.8

29-1

.83

00

.22

51

.03

30

.39

112

944

22

-12

.48

3-8

.97

61

8.2

71

1.8

741

.900

0.2

32

0.5

10

0.4

85

100

452

3+

-11

.99

79.

25

9-1

8.07

5-1

.834

-1.9

03

0.2

18

0.4

01

0.5

77

625

462

3-

12.3

24

-8.8

09

18

.03

21

.851

1.9

390

.22

10

.67

00

.67

219

447

24

+-1

1.9

31

9.1

86

-18.

017

-1.9

27-1

.93

00

.21

50

.80

70

.76

539

748

24

-12

.30

9-8

.79

41

7.9

73

1.8

801

.954

0.2

110

.69

40

.86

028

849

1.0

02

5+

-16

.17

29.

15

7-2

2.01

8-2

.000

-2.0

03

0.2

03

0.8

94

0.9

80

584

502

5-

16.6

37

-12

.86

12

6.1

50

2.0

582

.064

0.2

13

0.8

57

1.1

28

849

512

6+

-16

.14

31

3.2

53

-25.

984

-2.0

37-2

.06

00

.20

00

.79

31

.27

547

752

26

-16

.63

0-1

2.7

30

25

.92

52

.094

2.0

940

.21

20

.94

71

.42

494

053

27

+-1

6.1

29

13.

17

3-2

5.88

9-2

.080

-2.0

81

0.1

93

0.9

07

1.5

72

572

542

7-

16.6

52

-12

.70

12

5.8

53

2.0

572

.108

0.2

03

0.5

82

1.7

22

608

551.

25

28

+-2

0.4

72

13.

12

2-2

9.94

1-2

.121

-2.1

42

0.2

01

0.7

66

1.8

99

657

562

8-

20.9

73

-16

.78

23

4.11

02

.106

2.1

970

.20

20

.69

52

.10

776

357

29

+-2

0.4

93

17.

30

5-3

4.03

0-2

.180

-2.1

85

0.1

82

0.8

02

2.3

13

972

582

9-

20.9

73

-16

.70

33

3.9

79

2.2

092

.221

0.2

07

0.8

32

2.5

23

564

593

0+

-20

.43

51

7.2

47

-33.

899

-2.1

96-2

.20

10

.17

10

.81

82

.73

059

260

30

-20

.95

8-1

6.6

37

33

.83

42

.165

2.2

320

.18

80

.71

92

.94

053

7

Page 95: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-35

Sp

ec

ime

nP

4_T

4_

FA

1-01

Fy =

42

.00

ksi

(ass

um

ed)

Qy =

1.4

0ki

ps

! y =

0.0

571

in.

Ent

ryD

isp

lace

me

nt

Lev

elP

eak

De

flect

ion

Def

lect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

D

efle

ctio

n

Ra

nge

Lo

ad

at P

ea

k D

efle

ctio

nM

ax. L

oa

d in

E

xcu

rsio

nIn

itia

l Lo

adin

g

Stif

fne

ssIn

itial

Un

loa

din

g S

tiffn

ess

Hys

tere

sis

Are

a

(in

.) (

+/-

)i+

i-!

/!y

! 0/!

y"

! pm/!

yQ

/Qy

Qm

ax/

Qy

K0/(

Qy/

!y)

K/(

Qy/

!y)

A/(

Qy/

!y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10

][1

1]

Exc

ursi

on

[3]

611.

50

31

+-2

4.6

62

17.

18

2-3

7.98

0-2

.248

-2.2

55

0.1

79

0.8

25

3.1

78

608

623

1-

25.1

77

-20

.79

14

2.2

36

2.2

012

.307

0.1

99

1.0

15

3.4

50

380

633

2+

-24

.65

52

1.4

16

-42

.11

2-2

.284

-2.2

87

0.1

50

0.8

87

3.7

19

218

643

2-

25.2

93

-20

.66

84

2.0

32

2.2

452

.323

0.1

96

0.6

76

3.9

91

995

653

3+

-24

.65

52

1.3

36

-41.

996

-2.2

74-2

.29

90

.15

00

.77

94

.26

148

166

33

-25

.28

6-2

0.6

31

41

.95

32

.319

2.3

310

.20

70

.80

94

.53

470

367

1.7

53

4+

-29

.02

62

1.3

00

-46.

237

-2.3

01-2

.35

10

.17

00

.68

64

.83

692

068

34

-29

.65

1-2

4.9

45

50

.46

42

.388

2.3

960

.25

00

.81

55

.17

515

969

35

+-2

8.9

25

25.

49

7-5

0.24

6-2

.368

-2.3

73

0.2

31

0.8

21

5.5

08

650

703

5-

29.6

43

-24

.73

45

0.2

39

2.4

072

.407

0.2

83

1.0

31

5.8

47

433

713

6+

-28

.94

62

5.4

61

-50.

181

-2.3

78-2

.37

80

.26

60

.82

16

.18

101

372

36

-29

.65

8-2

4.7

05

50

.09

32

.332

2.4

090

.33

40

.67

96

.51

965

773

2.0

03

7+

-33

.21

62

5.3

59

-54.

233

-2.4

23-2

.42

50

.33

20

.80

96

.88

624

774

37

-33

.97

9-2

8.8

59

58

.57

52

.434

2.4

660

.38

90

.77

47

.29

104

975

38

+-3

3.2

46

29.

68

7-5

8.48

8-2

.435

-2.4

37

0.3

59

0.7

99

7.6

89

608

763

8-

34.0

37

-28

.78

75

8.4

52

2.4

542

.468

0.3

99

0.6

54

8.0

94

557

773

9+

-33

.23

82

9.6

51

-58.

459

-2.4

30-2

.43

30

.36

60

.95

28

.49

182

378

39

-34

.00

1-2

8.7

87

58

.43

72

.462

2.4

660

.38

80

.83

08

.89

577

279

2.2

54

0+

-37

.50

82

9.6

15

-62.

642

-2.4

32-2

.47

70

.35

60

.66

69

.32

545

880

40

-38

.21

3-3

2.9

91

66

.89

02

.513

2.5

150

.39

70

.90

09

.79

517

681

41

+-3

7.8

50

33.

88

5-6

8.16

9-1

.439

-2.3

03

0.3

92

0.5

40

10.

23

94

17

824

1-

38.8

74

-34

.26

97

0.2

82

0.6

332

.164

0.2

89

0.3

111

0.5

86

48

383

42

+35

.99

03

5.9

90

-51.

480

-0.0

03-0

.25

30

.12

90

.12

91

0.6

17

90

784

42

-39

.16

4-1

5.5

26

15

.56

20

.010

0.0

46-0

.01

20

.00

81

0.6

25

08

785

2.2

54

3+

0.09

40.

02

9--

--0

.001

0.0

070

.07

6-0

.016

---

Page 96: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-36

Sp

ec

ime

nP

4_T

4_

FA

2-01

Fy =

42

.00

ksi

(ass

um

ed)

Qy =

1.4

0ki

ps

! y =

0.0

734

in.

Ent

ryD

isp

lace

me

nt

Lev

elP

eak

De

flect

ion

Def

lect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

D

efle

ctio

n

Ra

nge

Lo

ad

at P

ea

k D

efle

ctio

nM

ax. L

oa

d in

E

xcu

rsio

nIn

itia

l Lo

adin

g

Stif

fne

ssIn

itial

Un

loa

din

g S

tiffn

ess

Hys

tere

sis

Are

a

(in

.) (

+/-

)i+

i-!

/!y

! 0/!

y"

! pm/!

yQ

/Qy

Qm

ax/

Qy

K0/(

Qy/

!y)

K/(

Qy/

!y)

A/(

Qy/

!y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10

][1

1]

10.

01

1+

-0.1

19

-0.0

51

0.0

170

.051

0.1

00-0

.57

9-0

.549

-0.0

00

028

21

-0.

079

-0.0

11-0

.011

0.1

780

.185

1.7

54

2.1

65

-0.0

00

029

32

+-0

.11

3-0

.03

40

.011

0.0

490

.104

-0.5

85

-0.7

21-0

.00

003

54

2-

0.08

5-0

.02

30.

006

0.1

760

.183

1.5

88

2.0

23

-0.0

00

038

53

+-0

.10

7-0

.04

00.

006

0.0

540

.105

-0.6

49

-0.6

29-0

.00

005

56

3-

-0.1

24

-0.0

17

-0.0

060.

112

0.1

820

.78

9-0

.001

-0.0

00

055

70.

02

4+

-0.1

58

-0.0

34

0.0

060

.020

0.1

000

.12

4-0

.141

-0.0

00

067

84

-0.

136

-0.0

06

-0.0

280

.218

0.2

220

.83

41

.50

9-0

.00

008

69

5+

-0.1

64

-0.0

45

0.0

060

.019

0.1

000

.09

8-0

.156

-0.0

00

098

105

-0.

130

-0.0

11-0

.017

0.2

230

.223

0.8

24

1.5

26

-0.0

00

103

116

+-0

.15

8-0

.04

50.

017

0.0

190

.101

0.1

06

-0.1

48-0

.000

113

126

--0

.17

5-0

.02

3-0

.152

0.0

070

.222

0.7

13

-0.0

40-0

.00

018

313

0.0

37

+-0

.32

2-0

.20

90.

023

-0.0

60-0

.06

00

.15

50

.13

9-0

.00

019

114

7-

0.3

11-0

.17

50.

000

0.3

390

.342

0.7

110

.65

9-0

.00

019

315

8+

-0.3

16

-0.1

98

0.0

34-0

.060

-0.0

60

0.1

54

0.1

43

-0.0

00

201

168

-0.

299

-0.1

52

-0.0

230

.339

0.3

430

.70

10

.71

2-0

.00

024

417

9+

-0.3

33

-0.2

09

0.0

40-0

.056

-0.0

60

0.1

55

0.1

50

-0.0

00

254

189

-0.

299

-0.1

47

-0.0

110

.342

0.3

420

.69

00

.73

3-0

.00

028

619

0.0

61

0+

-0.5

65

-0.1

86

-0.0

06-0

.230

-0.2

36

0.6

45

0.7

45

-0.0

00

288

201

0-

0.59

9-0

.15

80

.011

0.5

780

.578

0.7

29

0.7

65

-0.0

00

271

2111

+-0

.55

9-0

.16

4-0

.023

-0.2

27-0

.23

30

.611

0.6

80

-0.0

00

280

2211

-0.

610

-0.1

81

0.0

170

.578

0.5

780

.69

10

.78

0-0

.00

028

123

12

+-0

.58

7-0

.19

80.

028

-0.2

32-0

.23

40

.60

60

.67

1-0

.00

031

024

12

-0.

632

-0.1

58

-0.0

060

.577

0.5

770

.69

00

.73

3-0

.00

036

925

0.1

01

3+

-1.0

05

-0.1

92

0.0

17-0

.527

-0.5

27

0.6

07

0.7

25

-0.0

00

420

261

3-

1.06

2-0

.15

80.

006

0.8

930

.896

0.6

49

0.7

50

-0.0

00

405

271

4+

-0.9

94

-0.1

81

0.0

51-0

.528

-0.5

29

0.5

80

0.7

08

-0.0

00

449

281

4-

1.07

3-0

.12

4-0

.034

0.8

890

.893

0.5

70

0.7

41

-0.0

00

492

291

5+

-0.9

99

-0.1

81

0.0

17-0

.515

-0.5

30

0.5

82

0.6

96

-0.0

00

540

301

5-

1.09

0-0

.15

80.

017

0.8

920

.892

0.6

47

0.7

29

-0.0

00

581

Exc

ursi

on

[3]

Page 97: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-37

Sp

ec

ime

nP

4_T

4_

FA

2-01

Fy =

42

.00

ksi

(ass

um

ed)

Qy =

1.4

0ki

ps

! y =

0.0

734

in.

Ent

ryD

isp

lace

me

nt

Lev

elP

eak

De

flect

ion

Def

lect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

D

efle

ctio

n

Ra

nge

Lo

ad

at P

ea

k D

efle

ctio

nM

ax. L

oa

d in

E

xcu

rsio

nIn

itia

l Lo

adin

g

Stif

fne

ssIn

itial

Un

loa

din

g S

tiffn

ess

Hys

tere

sis

Are

a

(in

.) (

+/-

)i+

i-!

/!y

! 0/!

y"

! pm/!

yQ

/Qy

Qm

ax/

Qy

K0/(

Qy/

!y)

K/(

Qy/

!y)

A/(

Qy/

!y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10

][1

1]

Exc

ursi

on

[3]

310.

25

16

+-2

.61

4-0

.16

4-0

.384

-1.3

95-1

.39

50

.55

30

.75

80

.00

226

832

16

-2.

919

-0.5

36

1.4

511

.423

1.4

480

.68

60

.79

50

.01

216

433

17

+-2

.61

40.

90

4-1

.412

-1.4

01-1

.40

10

.40

90

.73

30

.02

003

934

17

-2.

948

-0.4

91

1.3

841

.459

1.4

630

.66

50

.811

0.0

28

589

351

8+

-2.6

14

0.8

53

-1.3

55-1

.406

-1.4

06

0.4

24

0.7

52

0.0

36

177

361

8-

2.94

2-0

.48

61.

355

1.4

631

.463

0.6

36

0.7

95

0.0

44

322

370.

50

19

+-5

.87

30.

84

1-4

.359

-1.5

62-1

.56

20

.44

20

.77

40

.07

681

938

19

-6.

183

-3.4

90

7.3

921

.630

1.6

330

.56

40

.81

30

.13

091

439

20

+-5

.79

93.

89

1-7

.138

-1.6

70-1

.67

00

.33

80

.83

40

.18

326

640

20

-6.

183

-3.2

36

7.0

591

.660

1.6

610

.53

80

.87

00

.23

513

641

21

+-5

.79

43.

82

3-7

.036

-1.6

84-1

.68

40

.31

70

.82

90

.28

647

342

21

-6.

172

-3.1

74

6.9

461

.681

1.6

810

.53

10

.88

60

.33

712

443

0.7

52

2+

-9.1

31

3.7

55

-10.

085

-1.7

63-1

.77

50

.31

90

.76

00

.41

805

544

22

-9.

526

-6.3

19

13

.17

41

.793

1.7

950

.52

80

.82

60

.52

422

445

23

+-9

.06

36.

85

5-1

3.03

9-1

.816

-1.8

30

0.2

79

1.2

58

0.6

30

783

462

3-

9.50

4-6

.17

21

2.9

54

1.8

301

.830

0.5

06

0.8

50

0.7

36

573

472

4+

-9.0

92

6.7

65

-12.

886

-1.8

48-1

.85

30

.27

90

.76

80

.84

331

448

24

-9.

515

-6.0

93

12

.87

51

.810

1.8

440

.50

80

.74

30

.94

900

249

1.0

02

5+

-12

.40

66.

75

4-1

6.20

7-1

.923

-1.9

24

0.2

77

0.7

89

1.0

89

100

502

5-

12.8

41

-9.4

36

19

.36

91

.938

1.9

400

.29

80

.84

01

.25

761

551

26

+-1

2.3

84

9.9

16

-19.

154

-1.9

71-1

.97

10

.23

70

.82

11

.42

779

552

26

-12

.83

0-9

.23

31

9.0

81

1.9

631

.964

0.4

85

0.5

89

1.5

96

640

532

7+

-12

.37

29.

81

4-1

9.01

3-1

.990

-1.9

90

0.2

55

0.8

58

1.7

67

446

542

7-

12.8

19

-9.1

93

19

.02

41

.966

1.9

770

.48

90

.79

91

.93

651

655

1.2

52

8+

-15

.71

59.

79

7-2

2.19

8-2

.038

-2.0

48

0.2

46

0.8

36

2.1

43

474

562

8-

16.1

90

-12

.38

42

5.4

05

2.0

542

.057

0.4

84

0.9

80

2.3

81

339

572

9+

-15

.71

01

3.0

10

-25.

315

-2.0

80-2

.08

80

.20

50

.75

22

.62

205

258

29

-16

.20

1-1

2.2

88

25

.26

42

.064

2.0

790

.49

60

.77

42

.86

122

459

30

+-1

5.6

81

12.

96

0-2

5.22

5-2

.102

-2.1

04

0.1

89

0.8

46

3.1

03

047

603

0-

16.2

01

-12

.25

92

5.2

13

2.0

912

.091

0.4

82

0.8

46

3.3

42

918

Page 98: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-38

Sp

ec

ime

nP

4_T

4_

FA

2-01

Fy =

42

.00

ksi

(ass

um

ed)

Qy =

1.4

0ki

ps

! y =

0.0

734

in.

Ent

ryD

isp

lace

me

nt

Lev

elP

eak

De

flect

ion

Def

lect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

D

efle

ctio

n

Ra

nge

Lo

ad

at P

ea

k D

efle

ctio

nM

ax. L

oa

d in

E

xcu

rsio

nIn

itia

l Lo

adin

g

Stif

fne

ssIn

itial

Un

loa

din

g S

tiffn

ess

Hys

tere

sis

Are

a

(in

.) (

+/-

)i+

i-!

/!y

! 0/!

y"

! pm/!

yQ

/Qy

Qm

ax/

Qy

K0/(

Qy/

!y)

K/(

Qy/

!y)

A/(

Qy/

!y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10

][1

1]

Exc

ursi

on

[3]

611.

50

31

+-1

9.0

07

12.

93

7-2

8.47

7-2

.151

-2.1

53

0.1

83

0.8

07

3.6

23

127

623

1-

19.5

33

-15

.52

33

1.7

13

2.1

602

.162

0.4

72

0.8

64

3.9

36

662

633

2+

-19

.00

21

6.1

73

-31.

617

-2.1

82-2

.18

60

.17

80

.82

54

.25

349

764

32

-19

.52

1-1

5.4

22

31

.57

22

.179

2.1

790

.48

30

.89

44

.56

864

165

33

+-1

8.9

91

16.

13

3-3

1.67

9-2

.198

-2.2

00

0.1

64

0.8

39

4.8

86

740

663

3-

19.5

38

-15

.52

33

1.6

45

2.1

422

.190

0.3

14

0.7

66

5.2

02

687

671.

75

34

+-2

2.3

00

16.

111

-34.

920

-2.2

23-2

.24

30

.13

60

.84

65

.56

110

068

34

-22

.89

8-1

8.7

87

38

.12

82

.239

2.2

520

.30

20

.81

45

.95

426

369

35

+-2

2.2

77

19.

32

9-3

8.10

5-2

.270

-2.2

71

0.1

70

0.9

54

6.3

511

98

703

5-

22.8

93

-18

.77

03

8.0

43

2.2

302

.264

0.2

32

0.7

78

6.7

46

141

713

6+

-22

.28

81

9.2

39

-37.

964

-2.2

79-2

.28

10

.21

90

.89

67

.14

425

172

36

-22

.88

1-1

8.7

14

37

.99

22

.264

2.2

720

.19

40

.83

77

.53

973

873

2.0

03

7+

-25

.59

21

9.2

79

-41.

262

-2.3

19-2

.31

90

.17

50

.88

07

.97

938

874

37

-26

.23

5-2

1.9

55

44

.52

02

.329

2.3

300

.22

20

.85

88

.45

582

875

38

+-2

5.6

03

22.

54

8-4

4.44

7-2

.336

-2.3

38

0.1

63

0.8

27

8.9

35

040

763

8-

26.1

62

-21

.88

74

4.3

51

2.2

962

.338

0.1

87

0.8

24

9.4

1195

877

39

+-2

5.5

97

22.

44

1-4

4.32

8-2

.333

-2.3

45

0.2

68

0.8

57

9.8

92

030

783

9-

26.2

30

-21

.86

54

4.3

79

2.3

282

.340

0.1

45

0.8

21

10.

37

01

31

792.

25

40

+-2

8.9

12

22.

47

5-4

7.58

6-2

.376

-2.3

77

0.3

40

0.9

26

10.

89

26

73

804

0-

29.5

78

-25

.08

45

0.8

50

2.3

692

.392

0.1

85

0.8

61

11.4

53

616

814

1+

-28

.91

82

5.7

50

-50.

856

-2.3

74-2

.38

60

.27

10

.89

61

2.0

16

65

482

41

-29

.57

3-2

5.0

95

50

.81

62

.388

2.3

880

.13

00

.95

91

2.5

78

08

183

42

+-2

8.9

23

25.

71

0-5

0.79

4-2

.379

-2.3

86

0.3

32

0.9

12

13.

141

10

984

42

-29

.55

6-2

5.0

67

50

.80

02

.384

2.3

860

.12

10

.69

81

3.7

01

99

785

2.5

04

3+

-32

.26

62

5.7

22

-54.

075

-2.3

99-2

.41

50

.37

80

.89

71

4.3

07

39

286

43

-32

.88

2-2

8.3

42

57

.32

22

.389

2.4

430

.18

00

.79

71

4.9

51

79

287

44

+-3

2.2

78

28.

95

7-5

7.27

1-2

.404

-2.4

09

0.4

02

0.9

42

15.

59

49

67

884

4-

32.8

82

-28

.30

25

7.2

48

2.3

672

.412

0.2

16

0.8

08

16.

23

62

28

894

5+

-32

.95

52

8.9

35

-59.

072

-0.8

78-2

.18

30

.40

50

.45

51

6.7

70

36

190

45

-33

.44

7-3

0.1

15

61

.29

20

.710

1.5

650

.09

80

.46

81

7.1

52

28

891

2.5

04

6+

31.1

54

31.

15

4-5

9.63

7-0

.002

-0.3

58

0.1

95

0.1

95

17.

23

28

41

924

6-

33.8

08

-28

.511

---

-0.0

15-0

.02

10

.00

00

.00

7--

-

Page 99: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-39

Sp

eci

me

nP

4_T

4_

FA

3-0

1F

y =

42.0

0ks

i(a

ssum

ed)

Qy =

1.4

0ki

ps

!y =

0.0

826

in.

Ent

ryD

isp

lace

me

nt

Leve

lP

eak

D

efle

ctio

n

Def

lect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

D

efle

ctio

n

Ran

ge

Loa

d a

t Pea

k D

efle

ctio

nM

ax. L

oad

in

Exc

urs

ion

Initi

al L

oadi

ng

Stif

fnes

sIn

itia

l Unl

oad

ing

Stif

fne

ssH

yste

resi

s A

rea

(in.)

(+

/-)

i+i-

!/! y

! 0/!

y"

! pm/!

yQ

/Qy

Qm

ax/Q

yK

0/(

Qy/

! y)

K/(

Qy/

! y)

A/(

Qy/

! y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11

]

10

.01

1+

-0.0

75-0

.03

0-0

.020

-0.0

32-0

.03

40.

368

0.38

40

.00

00

022

1-

-0.0

40-0

.03

50

.005

0.0

190

.08

60.

928

0.97

00

.00

00

173

2+

-0.0

90-0

.05

0-0

.015

-0.0

27-0

.03

50.

313

0.23

00

.00

00

194

2-

-0.1

00-0

.050

0.10

00.

077

0.08

1-0

.297

-0.2

90

0.00

0040

53

+-0

.136

-0.0

05

-0.0

60-0

.039

-0.0

39

0.2

620.

254

0.0

00

052

63

--0

.060

-0.0

350.

025

0.0

140.

081

0.81

0-0

.03

40

.000

055

70

.02

4+

-0.1

51-0

.04

5-0

.080

-0.0

37-0

.03

90.

199

0.15

20

.00

00

728

4-

-0.1

25-0

.12

50

.090

0.0

100.

117

0.4

410.

441

0.0

00

120

95

+-0

.156

-0.0

50

-0.0

95-0

.033

-0.0

36

0.1

790.

129

0.0

00

140

105

--0

.130

-0.1

30

0.1

050.

004

0.11

70.

450

0.45

00

.00

01

7911

6+

-0.2

61-0

.03

5-0

.226

-0.0

14-0

.03

50.

096

0.03

40

.00

02

1912

6-

-0.2

61-0

.26

10

.236

0.0

070.

115

0.2

240.

224

0.0

00

230

130

.03

7+

-0.3

46-0

.04

5-0

.291

-0.0

31-0

.03

50.

034

0.05

60

.00

02

9114

7-

-0.3

36-0

.33

60

.291

0.0

050

.22

40.

094

0.09

40

.00

04

0115

8+

-0.3

51-0

.05

5-0

.286

-0.0

29-0

.03

20.

025

0.05

30

.00

04

5716

8-

-0.3

41-0

.34

10

.306

0.0

050

.22

20.

094

0.09

40

.00

05

5317

9+

-0.3

46-0

.05

0-0

.286

-0.0

23-0

.03

10.

018

0.04

00

.00

06

0818

9-

-0.3

16-0

.31

60

.281

0.0

070

.22

20.

093

0.09

30

.00

06

8019

0.0

610

+-0

.717

-0.0

50

-0.6

62-0

.016

-0.0

32

0.0

290.

015

0.0

00

805

2010

--0

.702

-0.7

02

0.6

720.

003

0.4

46

0.0

640.

064

0.0

01

069

2111

+-0

.717

-0.0

40

-0.6

72-0

.022

-0.0

29

0.0

210.

019

0.0

011

8322

11-

-0.7

02-0

.70

20

.682

0.0

070

.44

60.

029

0.02

90

.00

13

3723

12+

-0.7

12-0

.03

0-0

.682

-0.0

10-0

.02

40.

013

0.00

90

.00

14

3424

12-

-0.6

97-0

.69

70

.682

0.0

060

.44

40.

028

0.02

80

.00

15

9425

0.1

013

+-1

.179

-0.0

25

-1.0

53-0

.089

-0.0

95

0.0

210.

041

0.0

01

754

2613

--1

.059

-1.0

59

1.0

430.

007

0.7

34

0.0

080.

008

0.0

02

153

2714

+-1

.089

-0.0

25

-1.0

08-0

.018

-0.1

04

0.0

06-0

.09

00

.00

22

7128

14-

-1.0

19-1

.01

91

.008

0.0

070

.73

20.

004

0.00

40

.00

25

8829

15+

-1.1

64-0

.02

5-1

.018

-0.0

90-0

.10

40.

006

0.04

20

.00

27

0830

15-

-1.0

29-1

.02

91

.013

0.0

050

.73

10.

008

0.00

80

.00

29

72

Exc

urs

ion

[3]

Page 100: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-40

Sp

eci

me

nP

4_T

4_

FA

3-0

1F

y =

42.0

0ks

i(a

ssum

ed)

Qy =

1.4

0ki

ps

!y =

0.0

826

in.

Ent

ryD

isp

lace

me

nt

Leve

lP

eak

D

efle

ctio

n

Def

lect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

D

efle

ctio

n

Ran

ge

Loa

d a

t Pea

k D

efle

ctio

nM

ax. L

oad

in

Exc

urs

ion

Initi

al L

oadi

ng

Stif

fnes

sIn

itia

l Unl

oad

ing

Stif

fne

ssH

yste

resi

s A

rea

(in.)

(+

/-)

i+i-

!/! y

! 0/!

y"

! pm/!

yQ

/Qy

Qm

ax/Q

yK

0/(

Qy/

! y)

K/(

Qy/

! y)

A/(

Qy/

! y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11

]

Exc

urs

ion

[3]

310

.25

16+

-2.5

94-0

.02

0-1

.114

-1.0

58-1

.06

50.

003

0.84

40

.00

36

9132

16-

2.49

8-1

.104

1.73

61.

432

1.43

20.

012

1.02

70.

0107

6933

17+

-2.5

740

.607

-1.5

85-1

.158

-1.1

58

0.0

030.

786

0.0

13

872

3417

-2.

523

-0.9

581.

585

1.4

221.

433

0.01

00.

825

0.01

8281

3518

+-2

.559

0.5

97-1

.565

-1.1

71-1

.17

10.

001

0.77

90

.02

12

0836

18-

2.51

8-0

.948

0.94

31.

436

1.43

60.

008

0.89

20.

0251

5337

0.5

019

+-5

.448

0.0

05-3

.396

-1.4

83-1

.48

30.

007

1.04

80

.05

21

2838

19-

5.45

8-3

.371

6.59

21.

597

1.59

70.

011

0.98

30.

1041

3339

20+

-5.4

583

.206

-6.3

26-1

.596

-1.5

96

0.0

030.

776

0.1

51

509

4020

-5.

458

-3.1

006.

246

1.6

071.

647

0.00

10.

815

0.19

9872

4121

+-5

.408

3.1

20-6

.166

-1.6

34-1

.63

40.

004

0.85

90

.24

59

7142

21-

5.45

3-3

.025

6.09

01.

654

1.67

00.

001

0.86

60.

2931

7243

0.7

522

+-8

.358

3.0

40-8

.895

-1.7

43-1

.74

30.

003

0.87

70

.37

18

8044

22-

8.43

3-5

.845

11.7

141.

750

1.7

980.

006

0.82

80.

4819

8245

23+

-8.3

535

.854

-11.

569

-1.8

06-1

.80

60.

006

0.86

80

.58

83

8346

23-

8.42

3-5

.684

11.4

681.

815

1.8

34-0

.002

0.96

20

.697

320

4724

+-8

.358

5.7

59-1

1.46

8-1

.811

-1.8

29

0.0

030.

783

0.8

03

707

4824

-8.

423

-5.6

7411

.428

1.8

391

.846

-0.0

020.

922

0.9

1235

649

1.0

025

+-1

1.29

35

.739

-14.

253

-1.9

04-1

.90

50.

003

0.85

81

.05

55

7850

25-

11.4

13

-8.4

88

17.

062

1.9

171

.94

20.

008

0.90

71

.23

45

7451

26+

-11.

293

8.5

48-1

6.97

7-1

.938

-1.9

49

0.0

030.

846

1.4

10

592

5226

-11

.40

8-8

.41

31

6.9

271.

891

1.9

68

0.0

090.

818

1.5

89

471

5327

+-1

1.25

38

.488

-16.

841

-1.9

64-1

.96

90.

005

0.89

21

.76

55

7754

27-

11.4

18

-8.3

43

16.

851

1.9

301

.98

30.

000

0.85

61

.94

48

2955

1.2

528

+-1

4.23

38

.498

-19.

676

-2.0

30-2

.03

10.

005

0.87

32

.16

09

1956

28-

14.

393

-11.

167

22.

505

2.0

512

.06

70.

011

0.96

32

.41

69

7257

29+

-14.

213

11.3

23-2

2.43

5-2

.034

-2.0

70

0.0

060.

772

2.6

69

340

5829

-1

4.3

83-1

1.0

922

2.4

052.

061

2.0

90

0.0

060.

914

2.9

26

071

5930

+-1

4.22

311

.288

-22.

355

-2.0

38-2

.08

70.

011

0.75

73

.17

97

0160

30-

14.

388

-11.

067

22.

335

2.1

002

.10

30.

005

0.94

33

.43

68

10

Page 101: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-41

Sp

eci

me

nP

4_T

4_

FA

3-0

1F

y =

42.0

0ks

i(a

ssum

ed)

Qy =

1.4

0ki

ps

!y =

0.0

826

in.

Ent

ryD

isp

lace

me

nt

Leve

lP

eak

D

efle

ctio

n

Def

lect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

D

efle

ctio

n

Ran

ge

Loa

d a

t Pea

k D

efle

ctio

nM

ax. L

oad

in

Exc

urs

ion

Initi

al L

oadi

ng

Stif

fnes

sIn

itia

l Unl

oad

ing

Stif

fne

ssH

yste

resi

s A

rea

(in.)

(+

/-)

i+i-

!/! y

! 0/!

y"

! pm/!

yQ

/Qy

Qm

ax/Q

yK

0/(

Qy/

! y)

K/(

Qy/

! y)

A/(

Qy/

! y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11

]

Exc

urs

ion

[3]

611

.50

31+

-17.

137

11.2

53-2

5.15

9-2

.133

-2.1

45

0.0

071.

003

3.7

32

624

6231

-1

7.3

83-1

3.8

86

28.

034

1.9

832

.17

70.

009

0.45

14

.07

19

2963

32+

-17.

147

14.

122

-27.

943

-2.1

77-2

.17

70.

023

0.90

04

.40

73

0364

32-

17.

408

-13.

811

27.

903

2.1

692

.19

60.

000

0.88

34

.74

79

1265

33+

-17.

157

14.

062

-27.

863

-2.1

93-2

.19

50.

015

0.87

65

.08

44

6966

33-

17.

413

-13

.77

62

7.8

782.

172

2.2

08

0.0

070.

855

5.4

25

560

671

.75

34+

-20.

072

14

.112

-30.

768

-2.2

48-2

.24

80.

039

0.94

15

.80

66

2468

34-

20.

433

-16

.65

13

3.6

122.

271

2.2

74

0.0

060.

937

6.2

35

070

6935

+-2

0.06

71

6.9

57-3

3.54

7-2

.270

-2.2

78

0.0

840.

880

6.6

57

276

7035

-2

0.4

23-1

6.5

70

33.

532

2.2

632

.29

50.

013

0.88

17

.08

71

5971

36+

-20.

077

16.

942

-33.

522

-2.2

73-2

.28

70.

082

0.91

07

.51

0711

7236

-20

.423

-16.

555

33.

477

2.3

052.

305

0.01

11.

111

7.94

1581

732

.00

37+

-23.

037

16.

901

-36.

331

-2.3

31-2

.34

40.

118

0.91

78

.41

22

5674

37-

23.

343

-19

.41

53

9.2

212.

364

2.3

65

0.0

161.

126

8.9

33

146

7538

+-2

3.05

71

9.7

91-3

9.17

1-2

.351

-2.3

53

0.1

930.

900

9.4

46

622

7638

-2

3.3

48-1

9.3

70

39.

151

2.3

462

.37

70.

030

0.88

99

.96

75

7677

39+

-23.

062

19.

761

-39.

106

-2.3

39-2

.35

40.

247

0.87

010

.481

553

7839

-23

.358

-19.

330

39.

096

2.3

782.

378

0.04

21.

102

11.0

0279

479

2.2

540

+-2

6.02

71

9.7

56-4

2.02

1-2

.373

-2.4

02

0.2

880.

802

11.5

6482

380

40-

26.2

93-2

2.24

44

4.91

52.

389

2.42

70.

199

0.91

412

.178

670

8141

+-2

6.02

22

2.6

66-4

4.88

0-2

.419

-2.4

19

0.4

290.

905

12.7

8515

582

41-

26.3

03-2

2.20

44

4.85

52.

350

2.43

40.

406

0.63

213

.399

629

8342

+-2

5.98

22

2.6

36-4

4.83

5-2

.382

-2.4

25

0.4

220

.811

14.0

0571

584

42-

26.3

28-2

2.18

44

4.82

02.

425

2.43

00.

419

1.05

214

.619

863

852

.50

43+

-28.

957

22

.611

-47.

689

-2.4

64-2

.47

00.

432

0.87

815

.273

903

8643

-2

9.2

38-2

5.0

74

50.

544

2.3

922

.47

60.

419

0.86

415

.98

114

087

44+

-28.

947

25.

450

-50.

499

-2.4

65-2

.47

80.

417

0.87

916

.677

462

8844

-29

.268

-25.

029

50.

579

2.3

952.

401

0.44

51.

084

17.3

7894

889

45+

-28.

982

25.

530

-50.

589

-2.4

00-2

.46

10.

411

0.75

818

.066

176

9045

-29

.790

-25.

039

52.

651

0.3

321.

860

0.41

90.

290

18.4

6836

591

2.5

046

+2

7.5

972

7.5

92-4

4.86

5-0

.001

-1.3

47

0.0

900.

090

18.6

5922

792

46-

-29.

785

-17

.28

3--

-0.

025

0.0

44

-0.0

15

0.01

0--

-

Page 102: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-42

Sp

ec

ime

nP

4_T

4_

FA

2-P

-01

Fy =

42

.00

ksi

(ass

um

ed)

Qy =

1.4

0ki

ps

! y =

0.0

826

in.

Ent

ryD

isp

lace

me

nt

Lev

elP

eak

De

flect

ion

Def

lect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

D

efle

ctio

n

Ra

nge

Lo

ad

at P

ea

k D

efle

ctio

nM

ax. L

oa

d in

E

xcu

rsio

nIn

itia

l Lo

adin

g

Stif

fne

ssIn

itial

Un

loa

din

g S

tiffn

ess

Hys

tere

sis

Are

a

(in

.) (

+/-

)i+

i-!

/!y

! 0/!

y"

! pm/!

yQ

/Qy

Qm

ax/

Qy

K0/(

Qy/

!y)

K/(

Qy/

!y)

A/(

Qy/

!y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10

][1

1]

10.

01

1+

-0.1

15

-0.0

35

-0.0

10-0

.041

-0.0

46

0.3

67

0.3

26

0.0

00

000

21

-0.

050

-0.0

30

0.0

050

.059

0.0

590

.80

90

.88

6-0

.00

000

13

2+

-0.1

10

-0.0

40

-0.0

05-0

.040

-0.0

44

0.3

43

0.3

60

-0.0

00

004

42

-0.

045

-0.0

20

-0.0

050

.057

0.0

570

.90

31

.03

9-0

.00

000

35

3+

-0.1

20

-0.0

30

-0.0

10-0

.041

-0.0

43

0.3

41

0.3

45

-0.0

00

004

63

-0.

040

-0.0

30

-0.0

050

.057

0.0

570

.78

20

.84

6-0

.00

000

37

0.0

24

+-0

.17

1-0

.06

0-0

.025

-0.0

65-0

.06

50

.35

70

.32

10

.00

000

68

4-

0.09

5-0

.07

00.

040

0.0

880

.088

0.5

15

0.8

70

0.0

00

013

95

+-0

.16

6-0

.05

5-0

.040

-0.0

59-0

.06

20

.33

80

.31

40

.00

002

410

5-

0.10

0-0

.09

00.

050

0.0

880

.088

0.4

97

0.8

12

0.0

00

029

116

+-0

.17

6-0

.05

0-0

.060

-0.0

57-0

.06

20

.31

80

.25

60

.00

004

212

6-

0.10

5-0

.08

00.

075

0.0

890

.089

0.4

76

0.7

63

0.0

00

048

130.

03

7+

-0.3

26

-0.0

20

-0.1

25-0

.113

-0.1

15

0.3

39

0.2

98

0.0

00

095

147

-0.

246

-0.1

25

0.1

000

.180

0.1

800

.37

50

.65

10

.00

013

415

8+

-0.3

26

-0.0

30

-0.1

20-0

.112

-0.1

13

0.3

33

0.2

96

0.0

00

172

168

-0.

251

-0.1

36

0.1

150

.179

0.1

790

.36

50

.66

30

.00

020

617

9+

-0.3

26

-0.0

45

-0.1

00-0

.106

-0.1

14

0.3

36

0.3

23

0.0

00

241

189

-0.

256

-0.1

36

0.1

250

.179

0.1

790

.36

60

.64

40

.00

027

019

0.0

61

0+

-0.6

22

-0.0

15

-0.1

60-0

.274

-0.2

74

-0.0

110

.57

90

.00

031

320

10

-0.

557

-0.1

41

0.1

150

.365

0.3

650

.35

20

.64

90

.00

039

121

11+

-0.5

97

-0.0

35

-0.1

05-0

.268

-0.2

75

0.3

45

0.5

92

0.0

00

434

2211

-0.

557

-0.1

25

0.1

050

.364

0.3

640

.35

70

.66

20

.00

047

623

12

+-0

.60

7-0

.03

0-0

.115

-0.2

74-0

.27

40

.33

70

.58

70

.00

05

1124

12

-0.

572

-0.1

25

0.1

150

.361

0.3

640

.35

60

.64

20

.00

054

525

0.1

01

3+

-0.9

83

-0.0

05

-0.1

91-0

.468

-0.4

73

0.0

00

0.6

32

0.0

00

707

261

3-

0.98

3-0

.18

10.

196

0.6

080

.608

0.3

49

0.6

51

0.0

01

012

271

4+

-0.9

78

-0.0

10

-0.1

36-0

.488

-0.4

96

0.3

35

0.6

09

0.0

01

075

281

4-

0.97

8-0

.12

00.

120

0.6

060

.606

0.3

56

0.6

55

0.0

011

65

291

5+

-0.9

78

-0.0

10

-0.1

30-0

.487

-0.4

96

0.3

48

0.6

12

0.0

01

205

301

5-

0.98

8-0

.12

00.

130

0.6

040

.604

0.3

58

0.6

42

0.0

01

278

Exc

ursi

on

[3]

Page 103: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-43

Sp

ec

ime

nP

4_T

4_

FA

2-P

-01

Fy =

42

.00

ksi

(ass

um

ed)

Qy =

1.4

0ki

ps

! y =

0.0

826

in.

Ent

ryD

isp

lace

me

nt

Lev

elP

eak

De

flect

ion

Def

lect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

D

efle

ctio

n

Ra

nge

Lo

ad

at P

ea

k D

efle

ctio

nM

ax. L

oa

d in

E

xcu

rsio

nIn

itia

l Lo

adin

g

Stif

fne

ssIn

itial

Un

loa

din

g S

tiffn

ess

Hys

tere

sis

Are

a

(in

.) (

+/-

)i+

i-!

/!y

! 0/!

y"

! pm/!

yQ

/Qy

Qm

ax/

Qy

K0/(

Qy/

!y)

K/(

Qy/

!y)

A/(

Qy/

!y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10

][1

1]

Exc

ursi

on

[3]

310.

25

16

+-2

.56

40.

00

0-0

.717

-1.1

04-1

.10

9-0

.04

00

.63

80

.00

486

732

16

-2.

594

-0.6

97

1.2

741

.209

1.2

240

.34

90

.65

80

.01

324

133

17

+-2

.61

40.

56

2-1

.204

-1.1

57-1

.15

70

.30

20

.68

50

.01

953

334

17

-2.

589

-0.6

22

1.1

891

.214

1.2

310

.33

80

.68

00

.02

643

135

18

+-2

.54

40.

55

7-1

.159

-1.1

57-1

.15

70

.28

90

.66

10

.03

221

736

18

-2.

614

-0.5

77

1.1

441

.233

1.2

330

.32

90

.68

90

.03

869

137

0.5

01

9+

-5.4

63

0.5

52

-3.7

37-1

.325

-1.3

25

0.2

82

0.6

67

0.0

67

479

381

9-

5.56

9-3

.16

16.

376

1.3

671

.387

0.3

76

0.7

08

0.1

16

638

392

0+

-5.4

13

3.2

01

-6.2

06-1

.394

-1.4

05

0.2

90

0.6

33

0.1

62

750

402

0-

5.55

3-2

.99

06.

105

1.4

291

.432

0.2

61

0.7

76

0.2

09

791

412

1+

-5.4

08

3.0

95

-6.0

45-1

.413

-1.4

30

0.3

06

0.6

28

0.2

55

321

422

1-

5.55

9-2

.94

56.

035

1.4

151

.445

0.2

61

0.6

67

0.3

01

818

430.

75

22

+-8

.36

83.

06

5-8

.794

-1.5

12-1

.51

60

.30

00

.67

00

.37

590

644

22

-8.

544

-5.7

29

11.6

04

1.5

281

.541

0.2

48

0.7

62

0.4

75

613

452

3+

-8.3

23

5.8

60

-11

.46

8-1

.551

-1.5

55

0.2

87

0.6

83

0.5

72

690

462

3-

8.53

8-5

.58

911

.38

81

.535

1.5

630

.25

30

.71

60

.67

167

547

24

+-8

.35

35.

79

9-1

1.3

93

-1.5

67-1

.57

40

.30

30

.65

40

.76

921

548

24

-8.

528

-5.5

84

11.3

78

1.5

671

.574

0.2

40

0.7

61

0.8

68

156

491.

00

25

+-1

1.3

03

5.7

69

-14.

203

-1.6

33-1

.63

80

.29

50

.64

50

.99

739

650

25

-11

.55

9-8

.41

31

7.0

42

1.6

421

.646

0.2

48

0.7

49

1.1

56

305

512

6+

-11

.27

88.

62

9-1

6.98

7-1

.669

-1.6

69

0.3

03

0.6

88

1.3

13

245

522

6-

11.5

43

-8.3

43

16

.88

71

.632

1.6

640

.23

60

.67

91

.47

190

353

27

+-1

1.2

73

8.5

44

-16.

866

-1.6

73-1

.68

30

.39

50

.72

01

.62

966

054

27

-11

.55

4-8

.31

81

6.8

91

1.6

591

.671

0.2

34

0.7

03

1.7

88

629

551.

25

28

+-1

4.2

68

8.5

54

-19.

701

-1.7

34-1

.73

40

.29

60

.67

01

.98

011

656

28

-14

.52

8-1

1.1

17

22

.58

11

.716

1.7

300

.24

20

.77

22

.20

320

757

29

+-1

4.2

63

11.4

38

-22.

510

-1.7

50-1

.75

30

.29

60

.67

62

.42

512

658

29

-14

.53

4-1

1.0

52

22

.49

51

.724

1.7

370

.23

60

.77

42

.64

766

459

30

+-1

4.2

68

11.4

18

-22.

490

-1.7

60-1

.76

00

.26

90

.67

72

.86

926

760

30

-14

.52

8-1

1.0

52

22

.48

51

.643

1.7

300

.22

50

.54

43

.09

089

0

Page 104: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-44

Sp

ec

ime

nP

4_T

4_

FA

2-P

-01

Fy =

42

.00

ksi

(ass

um

ed)

Qy =

1.4

0ki

ps

! y =

0.0

826

in.

Ent

ryD

isp

lace

me

nt

Lev

elP

eak

De

flect

ion

Def

lect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

D

efle

ctio

n

Ra

nge

Lo

ad

at P

ea

k D

efle

ctio

nM

ax. L

oa

d in

E

xcu

rsio

nIn

itia

l Lo

adin

g

Stif

fne

ssIn

itial

Un

loa

din

g S

tiffn

ess

Hys

tere

sis

Are

a

(in

.) (

+/-

)i+

i-!

/!y

! 0/!

y"

! pm/!

yQ

/Qy

Qm

ax/

Qy

K0/(

Qy/

!y)

K/(

Qy/

!y)

A/(

Qy/

!y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10

][1

1]

Exc

ursi

on

[3]

611.

50

31

+-1

7.2

28

11.4

18

-25.

360

-1.7

90-1

.79

90

.25

30

.68

53

.34

731

562

31

-17

.66

9-1

3.9

37

28

.75

11

.340

1.6

570

.21

40

.58

03

.63

027

963

32

+-1

7.2

43

14.

79

4-2

8.57

6-1

.783

-1.7

90

0.2

06

0.6

63

3.9

14

165

643

2-

17.8

90

-13

.76

12

9.2

53

0.5

241

.051

0.2

01

0.2

82

4.0

80

378

653

3+

-17

.32

81

5.4

67

-29.

529

-1.5

21-1

.52

40

.08

60

.65

64

.24

270

166

33

-18

.00

5-1

4.0

52

29

.91

50

.163

0.3

790

.24

60

.11

04

.30

176

667

1.5

03

4+

-17

.51

41

5.8

38

-31.

204

-0.9

27-0

.93

00

.04

40

.63

74

.35

465

768

34

-18

.08

5-1

5.3

66

---

0.0

02-0

.25

50

.08

10

.01

7--

-

Page 105: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-45

Sp

ec

ime

nP

4_T

4_

FS

-01

Fy =

42

.00

ksi

(ass

um

ed)

Qy =

4.9

0ki

ps

! y =

0.0

623

in.

Ent

ryD

isp

lace

me

nt

Lev

elP

eak

De

flect

ion

Def

lect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

D

efle

ctio

n

Ra

nge

Lo

ad

at P

ea

k D

efle

ctio

nM

ax. L

oa

d in

E

xcu

rsio

nIn

itia

l Lo

adin

g

Stif

fne

ssIn

itial

Un

loa

din

g S

tiffn

ess

Hys

tere

sis

Are

a

(in

.) (

+/-

)i+

i-!

/!y

! 0/!

y"

! pm/!

yQ

/Qy

Qm

ax/

Qy

K0/(

Qy/

!y)

K/(

Qy/

!y)

A/(

Qy/

!y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10

][1

1]

10.

01

1+

0.04

70.

00

00.

047

-0.0

01-0

.02

4-0

.09

5-0

.019

-0.0

00

003

21

-0.

200

0.0

73

0.1

200

.007

0.0

090

.03

10

.01

80

.00

000

13

2+

0.14

60.

14

6-0

.060

-0.0

01-0

.02

6-0

.04

4-0

.044

0.0

00

003

42

-0.

200

0.1

06

0.0

270

.008

0.0

080

.02

90

.02

60

.00

000

55

3+

0.10

60.

10

6-0

.033

-0.0

01-0

.02

6-0

.08

6-0

.086

0.0

00

007

63

-0.

206

0.0

93

0.0

530

.008

0.0

080

.02

50

.02

00

.00

000

97

0.0

24

+0.

160

0.1

33

-0.0

73-0

.002

-0.0

38

-0.0

10

-0.0

220

.00

001

58

4-

0.23

90.

08

00.

053

0.0

160

.017

0.0

50

0.0

45

0.0

00

018

95

+0.

100

0.1

00

-0.0

47-0

.001

-0.0

37

0.3

47

0.3

47

0.0

00

022

105

-0.

253

0.0

73

0.0

400

.015

0.0

170

.04

60

.04

20

.00

002

611

6+

0.10

60.

10

6-0

.060

-0.0

01-0

.03

70

.24

60

.24

60

.00

003

112

6-

0.25

30.

08

60.

040

0.0

160

.016

0.0

46

0.0

37

0.0

00

035

130.

03

7+

0.13

30.

10

6-0

.053

-0.0

01-0

.09

00

.00

9-0

.002

0.0

00

036

147

-0.

353

0.0

60

0.0

800

.079

0.0

790

.31

50

.18

40

.00

005

615

8+

-0.1

13

0.1

06

-0.0

60-0

.089

-0.0

92

0.3

84

0.5

81

0.0

00

075

168

-0.

373

0.0

80

0.0

470

.076

0.0

790

.26

90

.20

60

.00

008

717

9+

-0.1

33

0.1

00

-0.0

47-0

.092

-0.0

92

0.3

76

0.5

39

0.0

00

100

189

-0.

426

0.0

80

0.0

800

.063

0.0

790

.24

10

.09

50

.00

012

119

0.0

61

0+

-0.4

06

0.1

46

-0.0

93-0

.210

-0.2

17

0.0

18

0.5

05

0.0

00

153

201

0-

0.72

50.

05

30

.113

0.1

940

.213

0.2

50

0.4

41

0.0

00

204

2111

+-0

.40

60.

14

6-0

.087

-0.2

12-0

.21

90

.35

10

.53

40

.00

023

722

11-

0.72

50.

10

60.

047

0.2

110

.212

0.2

66

0.5

07

0.0

00

272

231

2+

-0.3

93

0.1

13-0

.040

-0.2

16-0

.22

00

.38

40

.47

60

.00

030

824

12

-0.

745

0.1

06

0.0

530

.212

0.2

120

.26

90

.48

70

.00

034

425

0.1

01

3+

-0.7

85

0.1

33

-0.0

67-0

.370

-0.3

80

0.0

09

0.4

39

0.0

00

427

261

3-

1.15

80.

07

30

.113

0.3

860

.388

0.2

38

0.5

07

0.0

00

537

271

4+

-0.7

85

0.1

46

-0.0

87-0

.382

-0.3

84

0.3

59

0.4

80

0.0

00

606

281

4-

1.17

10.

06

60.

106

0.3

700

.387

0.1

99

0.4

60

0.0

00

680

291

5+

-0.7

79

0.1

60

-0.0

93-0

.384

-0.3

84

0.3

50

0.4

69

0.0

00

744

301

5-

1.17

80.

09

30.

093

0.3

710

.387

0.2

00

0.4

40

0.0

00

810

Exc

ursi

on

[3]

Page 106: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-46

Sp

ec

ime

nP

4_T

4_

FS

-01

Fy =

42

.00

ksi

(ass

um

ed)

Qy =

4.9

0ki

ps

! y =

0.0

623

in.

Ent

ryD

isp

lace

me

nt

Lev

elP

eak

De

flect

ion

Def

lect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

D

efle

ctio

n

Ra

nge

Lo

ad

at P

ea

k D

efle

ctio

nM

ax. L

oa

d in

E

xcu

rsio

nIn

itia

l Lo

adin

g

Stif

fne

ssIn

itial

Un

loa

din

g S

tiffn

ess

Hys

tere

sis

Are

a

(in

.) (

+/-

)i+

i-!

/!y

! 0/!

y"

! pm/!

yQ

/Qy

Qm

ax/

Qy

K0/(

Qy/

!y)

K/(

Qy/

!y)

A/(

Qy/

!y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10

][1

1]

Exc

ursi

on

[3]

310.

25

16

+-2

.62

20.

16

0-0

.765

-0.8

05-0

.81

00

.12

80

.45

00

.00

313

432

16

-2.

994

-0.6

06

1.4

440

.821

0.8

210

.17

90

.54

60

.00

692

833

17

+-2

.64

20.

81

2-1

.431

-0.8

09-0

.80

90

.32

20

.46

30

.01

033

634

17

-3.

041

-0.6

06

1.4

170

.823

0.8

250

.14

60

.50

00

.01

373

735

18

+-2

.61

50.

79

2-1

.517

-0.8

12-0

.81

30

.32

30

.52

70

.01

691

236

18

-3.

074

-0.7

19

1.5

110

.819

0.8

270

.10

00

.38

50

.02

017

837

0.5

01

9+

-6.4

88

0.7

85

-4.8

11-0

.924

-0.9

24

0.2

99

0.4

52

0.0

35

515

381

9-

6.90

7-4

.03

28.

005

0.9

910

.991

0.1

110

.26

60

.06

123

939

20

+-6

.38

13.

97

2-7

.612

-0.9

97-0

.99

70

.30

30

.45

20

.08

547

240

20

-6.

780

-3.6

20

7.4

461

.022

1.0

240

.11

70

.47

20

.10

983

841

21

+-6

.33

53.

81

9-7

.333

-1.0

15-1

.01

50

.28

40

.46

70

.13

344

942

21

-6.

787

-3.5

13

7.2

861

.028

1.0

330

.11

90

.47

00

.15

737

243

0.7

52

2+

-10

.22

73.

77

3-1

0.84

6-1

.074

-1.0

81

0.2

85

0.4

05

0.1

95

979

442

2-

10.6

73

-7.0

60

14

.53

21

.088

1.1

210

.12

50

.41

00

.24

894

545

23

+-1

0.1

67

7.4

66

-14.

299

-1.1

22-1

.12

20

.11

60

.44

40

.30

043

046

23

-10

.64

0-6

.80

01

4.1

46

1.1

231

.141

0.1

05

0.4

50

0.3

52

629

472

4+

-10

.06

17.

31

3-1

4.03

3-1

.101

-1.1

34

0.0

81

0.7

84

0.4

03

796

482

4-

10.6

13

-6.6

94

13

.92

01

.128

1.1

480

.09

30

.46

40

.45

560

449

1.0

02

5+

-14

.06

67.

21

3-1

7.68

0-1

.177

-1.1

77

0.0

77

0.4

45

0.5

23

485

502

5-

14.6

92

-10

.44

72

1.4

12

1.1

681

.201

0.0

45

0.3

85

0.6

08

659

512

6+

-14

.04

71

0.9

59

-21.

206

-1.1

90-1

.19

30

.22

80

.43

20

.69

124

552

26

-14

.72

5-1

0.2

47

20

.92

01

.175

1.1

860

.20

30

.43

20

.77

387

253

27

+-1

4.1

93

10.

66

6-2

0.70

7-1

.153

-1.1

64

0.2

25

0.3

58

0.8

52

194

542

7-

14.6

59

-10

.02

12

0.2

68

1.1

401

.141

0.2

10

0.4

28

0.9

28

069

551.

25

28

+-1

8.2

58

10.

23

4-2

3.64

8-1

.141

-1.1

42

0.1

90

0.2

99

1.0

15

389

562

8-

18.4

85

-13

.40

12

6.5

69

1.0

941

.11

90

.16

60

.32

21

.11

277

757

29

+-1

8.4

31

13.

15

5-2

6.27

0-1

.092

-1.0

93

0.1

47

0.3

12

1.2

0111

258

29

-18

.43

8-1

3.1

15

25

.92

41

.052

1.0

670

.14

00

.30

01

.28

740

359

30

+-1

8.5

25

12.

77

5-2

5.85

1-1

.041

-1.0

42

0.1

31

0.2

96

1.3

67

584

603

0-

18.3

45

-13

.04

22

5.6

64

0.9

991

.032

0.1

30

0.3

42

1.4

47

200

Page 107: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-47

Sp

ec

ime

nP

4_T

4_

FS

-01

Fy =

42

.00

ksi

(ass

um

ed)

Qy =

4.9

0ki

ps

! y =

0.0

623

in.

Ent

ryD

isp

lace

me

nt

Lev

elP

eak

De

flect

ion

Def

lect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

D

efle

ctio

n

Ra

nge

Lo

ad

at P

ea

k D

efle

ctio

nM

ax. L

oa

d in

E

xcu

rsio

nIn

itia

l Lo

adin

g

Stif

fne

ssIn

itial

Un

loa

din

g S

tiffn

ess

Hys

tere

sis

Are

a

(in

.) (

+/-

)i+

i-!

/!y

! 0/!

y"

! pm/!

yQ

/Qy

Qm

ax/

Qy

K0/(

Qy/

!y)

K/(

Qy/

!y)

A/(

Qy/

!y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10

][1

1]

Exc

ursi

on

[3]

611.

50

31

+-2

2.5

90

12.

62

2-2

9.24

4-1

.021

-1.0

21

0.1

17

0.2

78

1.5

36

850

623

1-

22.2

64

-16

.59

53

2.5

84

1.0

101

.014

0.1

19

0.3

39

1.6

37

553

633

2+

-22

.67

01

5.9

69

-32.

478

-0.9

73-0

.98

30

.09

90

.24

71

.73

110

564

32

-22

.311

-16

.48

23

2.3

85

0.9

480

.979

0.1

110

.23

61

.82

492

965

33

+-2

2.7

17

15.

86

3-3

2.37

1-0

.919

-0.9

57

0.0

98

0.1

28

1.9

13

221

663

3-

22.2

84

-16

.50

23

2.3

05

0.9

430

.959

0.1

00

0.2

77

2.0

02

713

671.

75

34

+-2

6.6

36

15.

80

3-3

5.95

1-0

.955

-0.9

56

0.0

95

0.2

62

2.1

01

089

683

4-

26.2

23

-20

.12

83

9.4

71

0.9

670

.970

0.0

89

0.3

20

2.2

12

201

693

5+

-26

.67

61

9.3

10

-39.

351

-0.9

20-0

.92

60

.09

20

.23

52

.31

626

670

35

-26

.21

6-2

0.0

35

39

.33

10

.942

0.9

420

.08

20

.35

82

.42

145

371

36

+-2

6.7

16

19.

29

0-3

9.29

1-0

.908

-0.9

09

0.0

96

0.2

69

2.5

22

183

723

6-

26.1

96

-19

.98

83

9.3

05

0.9

270

.927

0.0

80

0.3

48

2.6

24

172

732.

00

37

+-3

0.6

08

19.

29

6-4

2.93

1-0

.917

-0.9

21

0.0

87

0.2

58

2.7

34

479

743

7-

30.0

16

-23

.62

24

6.51

10

.927

0.9

420

.07

90

.30

32

.85

755

375

38

+-3

0.6

68

22.

87

0-4

6.49

8-0

.896

-0.9

01

0.0

90

0.2

58

2.9

74

425

763

8-

30.0

29

-23

.61

54

6.5

44

0.9

180

.925

0.0

75

0.3

56

3.0

92

979

773

9+

-30

.67

52

2.9

29

-46.

551

-0.8

79-0

.88

90

.08

10

.30

63

.20

638

478

39

-30

.00

3-2

3.5

95

46.

511

0.8

970

.912

0.0

79

0.2

99

3.3

21

559

792.

25

40

+-3

4.6

01

22.

90

9-5

0.22

4-0

.904

-0.9

05

0.0

77

0.2

69

3.4

45

318

804

0-

33.7

09

-27

.29

55

3.8

57

0.9

270

.934

0.0

79

0.3

51

3.5

81

683

814

1+

-34

.64

02

6.5

36

-53.

784

-0.8

91-0

.89

70

.07

40

.211

3.7

13

001

824

1-

33.6

82

-27

.22

15

3.6

91

0.8

990

.933

0.0

77

0.2

67

3.8

46

691

834

2+

-34

.64

02

6.4

63

-53.

751

-0.8

78-0

.88

00

.07

70

.25

53

.97

516

484

42

-33

.70

9-2

7.2

75

53

.82

40

.898

0.9

140

.07

50

.31

44

.10

604

485

43

+26

.53

62

6.5

36

---

0.0

00-0

.57

80

.07

40

.07

4--

-

Page 108: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-48

Sp

ec

ime

nP

4_T

4_

FT

2-01

Fy =

42

.00

ksi

(ass

um

ed)

Qy =

1.1

5ki

ps

! y =

0.0

768

in.

Ent

ryD

isp

lace

me

nt

Lev

elP

eak

De

flect

ion

Def

lect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

D

efle

ctio

n

Ra

nge

Lo

ad

at P

ea

k D

efle

ctio

nM

ax. L

oa

d in

E

xcu

rsio

nIn

itia

l Lo

adin

g

Stif

fne

ssIn

itial

Un

loa

din

g S

tiffn

ess

Hys

tere

sis

Are

a

(in

.) (

+/-

)i+

i-!

/!y

! 0/!

y"

! pm/!

yQ

/Qy

Qm

ax/

Qy

K0/(

Qy/

!y)

K/(

Qy/

!y)

A/(

Qy/

!y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10

][1

1]

10.

01

1+

-0.1

08

0.0

00

-0.0

43-0

.040

-0.0

46

0.3

77

0.3

15

0.0

00

004

21

-0.

059

-0.0

32

0.0

000

.068

0.0

730

.80

61

.011

0.0

00

009

32

+-0

.10

3-0

.04

90.

005

-0.0

40-0

.04

20

.35

80

.31

60

.00

00

114

2-

0.05

9-0

.03

80.

005

0.0

670

.072

0.7

76

1.0

33

0.0

00

015

53

+-0

.10

8-0

.04

3-0

.005

-0.0

44-0

.04

40

.35

90

.34

70

.00

001

76

3-

-0.1

30

-0.0

43

0.0

380

.008

0.0

710

.76

10

.00

40

.00

002

27

0.0

24

+-0

.16

2-0

.02

7-0

.081

-0.0

43-0

.05

20

.26

40

.18

90

.00

004

58

4-

0.1

13

-0.0

81

0.0

430

.096

0.1

020

.41

60

.83

10

.00

007

19

5+

-0.1

67

-0.0

43

-0.0

76-0

.050

-0.0

50

0.2

49

0.2

23

0.0

00

091

105

-0.

108

-0.0

92

0.0

700

.104

0.1

040

.38

90

.90

40

.00

012

211

6+

-0.1

67

-0.0

54

-0.0

49-0

.050

-0.0

50

0.2

48

0.2

23

0.0

00

142

126

--0

.11

9-0

.10

30.

103

0.0

050

.102

0.3

86

0.0

04

0.0

00

173

130.

03

7+

-0.3

13

-0.0

22

-0.1

08-0

.129

-0.1

35

0.4

16

0.3

99

0.0

00

205

147

-0.

259

-0.1

08

0.0

860

.198

0.2

190

.47

50

.70

90

.00

025

315

8+

-0.3

29

-0.0

32

-0.0

92-0

.122

-0.1

36

0.3

77

0.3

13

0.0

00

302

168

-0.

270

-0.1

03

0.1

030

.215

0.2

190

.46

00

.74

80

.00

035

417

9+

-0.3

13

-0.0

22

-0.0

97-0

.128

-0.1

34

0.4

110

.411

0.0

00

381

189

-0.

270

-0.1

130

.113

0.2

180

.218

0.4

65

0.7

48

0.0

00

432

190.

06

10

+-0

.62

1-0

.011

-0.1

19-0

.341

-0.3

41

0.4

110

.54

20

.00

046

620

10

-0.

594

-0.1

03

0.0

920

.447

0.4

540

.44

30

.80

90

.00

056

821

11+

-0.6

26

-0.0

32

-0.1

13-0

.340

-0.3

43

0.4

24

0.7

12

0.0

00

630

2211

-0.

599

-0.1

24

0.1

240

.446

0.4

540

.43

80

.78

40

.00

074

923

12

+-0

.66

4-0

.02

7-0

.119

-0.3

42-0

.34

20

.43

00

.64

50

.00

078

624

12

-0.

605

-0.1

190.

130

0.4

500

.452

0.4

26

0.8

09

0.0

00

864

250.

10

13

+-1

.04

20.

00

0-0

.140

-0.6

28-0

.63

4-0

.03

10

.79

60

.00

098

626

13

-1.

037

-0.1

30

0.1

460

.748

0.7

650

.45

30

.76

80

.00

115

927

14

+-1

.04

2-0

.011

-0.1

30-0

.631

-0.6

37

0.3

98

0.7

08

0.0

01

231

281

4-

1.13

9-0

.119

0.1

190

.759

0.7

630

.39

70

.60

80

.00

147

029

15

+-1

.03

7-0

.011

-0.1

40-0

.634

-0.6

38

0.4

06

0.7

27

0.0

01

538

301

5-

1.05

8-0

.13

00.

124

0.7

570

.763

0.4

05

0.7

89

0.0

01

676

Exc

ursi

on

[3]

Beg

in R

ep.

1

Page 109: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-49

Sp

ec

ime

nP

4_T

4_

FT

2-01

Fy =

42

.00

ksi

(ass

um

ed)

Qy =

1.1

5ki

ps

! y =

0.0

768

in.

Ent

ryD

isp

lace

me

nt

Lev

elP

eak

De

flect

ion

Def

lect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

D

efle

ctio

n

Ra

nge

Lo

ad

at P

ea

k D

efle

ctio

nM

ax. L

oa

d in

E

xcu

rsio

nIn

itia

l Lo

adin

g

Stif

fne

ssIn

itial

Un

loa

din

g S

tiffn

ess

Hys

tere

sis

Are

a

(in

.) (

+/-

)i+

i-!

/!y

! 0/!

y"

! pm/!

yQ

/Qy

Qm

ax/

Qy

K0/(

Qy/

!y)

K/(

Qy/

!y)

A/(

Qy/

!y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10

][1

1]

Exc

ursi

on

[3]

Bi

R1

310.

25

16

+-2

.711

0.0

11-0

.626

-1.5

05-1

.50

5-0

.01

70

.82

20

.00

592

732

16

-2.

776

-0.6

26

1.2

911

.482

1.5

380

.34

10

.69

20

.01

447

033

17

+-2

.73

20.

63

7-1

.264

-1.4

70-1

.48

60

.34

80

.74

70

.02

170

434

17

-2.

792

-0.6

16

1.2

531

.535

1.5

350

.33

60

.88

10

.02

948

035

18

+-2

.72

70.

62

1-1

.242

-1.4

78-1

.48

60

.34

60

.77

30

.03

645

336

18

-2.

797

-0.6

10

1.2

311

.531

1.5

360

.32

80

.84

40

.04

391

737

0.5

01

9+

-5.8

86

0.5

99

-4.1

47-1

.613

-1.6

16

0.3

66

0.8

83

0.0

79

055

381

9-

6.01

0-3

.54

27.

160

1.6

101

.616

0.2

99

0.9

00

0.1

35

317

392

0+

-5.8

69

3.5

91

-7.0

74-1

.619

-1.6

26

0.3

39

0.7

95

0.1

87

809

402

0-

6.1

12

-3.4

61

7.0

091

.648

1.6

570

.28

70

.69

10

.24

114

841

21

+-5

.86

43.

52

1-6

.944

-1.6

62-1

.66

40

.33

80

.80

80

.29

298

342

21

-5.

994

-3.4

18

6.8

901

.682

1.6

830

.28

20

.88

50

.34

582

143

0.7

52

2+

-9.0

12

3.4

50

-9.8

87-1

.757

-1.7

58

0.3

23

0.9

50

0.4

28

735

442

2-

9.19

6-6

.40

41

2.9

16

1.7

281

.799

0.2

78

0.8

69

0.5

40

255

452

3+

-9.0

28

6.4

85

-12.

813

-1.7

88-1

.80

90

.36

10

.79

80

.64

964

946

23

-9.

163

-6.3

18

12

.80

31

.740

1.8

310

.27

81

.09

20

.76

14

1147

24

+-9

.01

76.

45

8-1

2.77

6-1

.835

-1.8

37

0.2

19

0.8

54

0.8

71

384

482

4-

9.17

9-6

.29

11

2.6

95

1.8

441

.845

0.2

82

0.9

29

0.9

83

241

491.

00

25

+-1

2.1

55

6.3

88

-15.

735

-1.9

04-1

.90

40

.34

80

.82

91

.12

752

350

25

-12

.39

8-9

.32

51

8.7

96

1.9

311

.933

0.2

84

1.0

07

1.3

05

246

512

6+

-12

.15

59.

43

9-1

8.71

0-1

.934

-1.9

44

0.3

85

0.8

30

1.4

80

656

522

6-

12.4

03

-9.2

66

18

.68

81

.953

1.9

560

.31

20

.81

41

.65

958

553

27

+-1

2.1

60

9.4

01

-18.

634

-1.9

62-1

.96

20

.37

10

.89

81

.83

602

454

27

-12

.40

3-9

.22

31

8.6

18

1.9

691

.969

0.2

64

0.9

94

2.0

15

463

551.

25

28

+-1

5.3

62

9.3

63

-21.

626

-2.0

22-2

.02

30

.37

70

.83

32

.22

897

156

28

-15

.62

1-1

2.2

57

24

.76

32

.046

2.0

460

.27

81

.01

02

.47

985

357

29

+-1

5.3

51

12.

48

9-2

4.70

3-2

.056

-2.0

60

0.3

54

0.8

49

2.7

28

336

582

9-

15.6

21

-12

.19

22

4.6

66

2.0

282

.068

0.2

75

0.8

67

2.9

80

974

593

0+

-15

.37

31

2.4

41

-24.

612

-2.0

74-2

.07

60

.35

10

.78

93

.23

094

760

30

-15

.62

1-1

2.1

60

24

.57

92

.042

2.0

810

.30

20

.87

63

.48

459

7

Page 110: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-50

Sp

ec

ime

nP

4_T

4_

FT

2-01

Fy =

42

.00

ksi

(ass

um

ed)

Qy =

1.1

5ki

ps

! y =

0.0

768

in.

Ent

ryD

isp

lace

me

nt

Lev

elP

eak

De

flect

ion

Def

lect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

D

efle

ctio

n

Ra

nge

Lo

ad

at P

ea

k D

efle

ctio

nM

ax. L

oa

d in

E

xcu

rsio

nIn

itia

l Lo

adin

g

Stif

fne

ssIn

itial

Un

loa

din

g S

tiffn

ess

Hys

tere

sis

Are

a

(in

.) (

+/-

)i+

i-!

/!y

! 0/!

y"

! pm/!

yQ

/Qy

Qm

ax/

Qy

K0/(

Qy/

!y)

K/(

Qy/

!y)

A/(

Qy/

!y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10

][1

1]

Exc

ursi

on

[3]

Bi

R1

611.

50

31

+-1

8.5

42

12.

40

3-2

7.68

4-2

.129

-2.1

29

0.3

76

0.8

48

3.7

74

574

623

1-

18.8

94

-15

.26

53

0.7

94

2.1

262

.152

0.3

93

0.8

76

4.1

04

922

633

2+

-18

.51

01

5.5

08

-30.

697

-2.1

63-2

.16

30

.34

90

.89

84

.43

230

564

32

-18

.91

0-1

5.1

73

30

.66

52

.164

2.1

690

.31

00

.93

34

.76

522

565

33

+-1

8.5

10

15.

48

1-3

0.67

6-2

.168

-2.1

76

0.3

54

0.8

45

5.0

94

394

663

3-

18.9

10

-15

.17

33

0.6

49

2.1

802

.180

0.2

51

0.9

89

5.4

28

646

671.

75

34

+-2

1.6

47

15.

43

8-3

3.69

4-2

.225

-2.2

27

0.3

50

0.8

66

5.7

99

732

683

4-

22.1

33

-18

.23

53

6.8

26

2.2

342

.239

0.4

14

0.9

64

6.2

16

130

693

5+

-21

.65

81

8.5

70

-36.

750

-2.2

50-2

.25

00

.34

80

.78

56

.62

670

270

35

-22

.11

7-1

8.1

48

36

.68

52

.192

2.2

510

.28

70

.83

27

.04

494

771

36

+-2

1.6

58

18.

49

9-3

6.64

8-2

.260

-2.2

60

0.3

36

0.8

83

7.4

57

110

723

6-

22.1

22

-18

.13

23

6.6

48

2.2

002

.265

0.2

87

0.8

30

7.8

76

359

732.

00

37

+-2

4.8

60

18.

48

9-3

9.71

5-2

.303

-2.3

04

0.3

31

0.9

22

8.3

32

191

743

7-

25.3

19

-21

.22

14

2.8

36

2.3

052

.310

0.3

86

1.0

26

8.8

35

924

753

8+

-24

.88

22

1.5

93

-42.

765

-2.3

26-2

.32

70

.37

20

.93

09

.33

374

776

38

-25

.33

0-2

1.1

50

42

.72

22

.318

2.3

240

.31

71

.011

9.8

39

261

773

9+

-24

.88

22

1.5

56

-42.

787

-2.3

28-2

.33

30

.37

20

.89

51

0.3

38

17

678

39

-25

.33

5-2

1.2

10

42

.78

22

.338

2.3

380

.20

80

.98

61

0.8

44

34

279

2.2

54

0+

-28

.07

82

1.5

34

-45.

789

-2.3

62-2

.36

30

.34

30

.89

711

.38

773

880

40

-28

.47

8-2

4.2

34

48

.93

22

.326

2.4

040

.38

20

.81

411

.981

138

814

1+

-28

.06

22

4.6

60

-48.

889

-2.3

91-2

.39

30

.22

90

.90

51

2.5

67

18

482

41

-28

.47

2-2

4.2

28

48

.85

12

.426

2.4

300

.41

70

.99

71

3.1

62

86

783

42

+-2

8.0

62

24.

59

0-4

8.78

1-2

.394

-2.4

16

0.2

77

0.8

48

13.

74

90

43

844

2-

28.4

67

-24

.18

54

8.5

92

2.4

562

.456

0.4

37

1.0

06

14.

34

44

38

852.

50

43

+-3

1.2

37

24.

39

0-5

1.67

0-2

.451

-2.4

76

0.2

34

0.8

15

14.

97

59

72

864

3-

31.5

88

-27

.25

85

4.7

58

2.4

512

.523

0.4

27

0.8

61

15.

66

04

82

874

4+

-31

.26

92

7.4

79

-54.

747

-2.5

16-2

.51

60

.40

50

.89

01

6.3

32

33

588

44

-31

.49

1-2

7.2

41

54

.67

72

.575

2.5

870

.44

00

.98

21

7.0

15

31

989

45

+-3

1.2

80

27.

42

5-5

4.62

8-2

.542

-2.5

43

0.4

02

0.8

32

17.

68

28

95

904

5-

31.4

32

-27

.18

75

4.5

85

2.4

302

.608

0.4

32

0.5

68

18.

36

29

07

Page 111: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-51

Sp

ec

ime

nP

4_T

4_

FT

2-01

Fy =

42

.00

ksi

(ass

um

ed)

Qy =

1.1

5ki

ps

! y =

0.0

768

in.

Ent

ryD

isp

lace

me

nt

Lev

elP

eak

De

flect

ion

Def

lect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

D

efle

ctio

n

Ra

nge

Lo

ad

at P

ea

k D

efle

ctio

nM

ax. L

oa

d in

E

xcu

rsio

nIn

itia

l Lo

adin

g

Stif

fne

ssIn

itial

Un

loa

din

g S

tiffn

ess

Hys

tere

sis

Are

a

(in

.) (

+/-

)i+

i-!

/!y

! 0/!

y"

! pm/!

yQ

/Qy

Qm

ax/

Qy

K0/(

Qy/

!y)

K/(

Qy/

!y)

A/(

Qy/

!y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10

][1

1]

Exc

ursi

on

[3]

Bi

R1

912.

75

46

+-3

4.4

93

27.

37

1-5

7.65

8-2

.585

-2.5

87

0.4

30

0.8

67

19.

07

51

94

924

6-

34.3

20

-30

.27

16

0.5

95

2.6

972

.697

0.4

20

1.2

35

19.

84

14

30

934

7+

-34

.56

33

0.3

08

-60.

503

-2.6

07-2

.60

90

.43

60

.86

92

0.5

92

22

594

47

-34

.27

7-3

0.1

95

60

.39

02

.681

2.7

190

.43

20

.97

82

1.3

50

50

295

48

+-3

4.6

17

30.

17

3-6

0.30

4-2

.514

-2.6

04

0.4

18

0.6

33

22.

09

33

32

964

8-

34.2

61

-30

.11

46

0.2

01

2.7

152

.716

0.4

02

1.1

94

22.

84

71

91

973.

00

49

+-3

7.1

82

30.

07

6-6

2.86

8-2

.595

-2.6

85

0.3

89

1.1

97

23.

62

55

76

984

9-

37.2

09

-32

.80

36

5.7

03

2.7

622

.819

0.3

99

1.0

04

24.

45

82

66

995

0+

-37

.25

23

2.9

00

-65.

676

-2.6

22-2

.70

90

.43

11

.01

72

5.2

71

52

21

005

0-

37.1

60

-32

.75

46

5.5

41

2.8

132

.814

0.3

57

1.2

23

26.

10

17

86

101

51

+-3

7.2

04

32.

77

6-6

5.46

0-2

.645

-2.7

25

0.4

07

0.1

82

26.

90

79

61

102

51

-37

.16

0-3

2.6

73

65

.41

72

.814

2.8

400

.33

00

.99

42

7.7

31

85

01

033.

00

52

+-3

7.2

15

32.

73

8-6

5.49

8-2

.616

-2.7

35

0.3

83

0.0

52

28.

53

38

49

104

52

-39

.82

8-3

2.7

33

68

.41

42

.970

2.9

700

.32

01

.49

92

9.4

02

85

41

055

3+

-37

.29

03

5.6

54

-68.

382

-2.6

33-2

.72

50

.40

20

.04

63

0.2

41

80

51

065

3-

39.8

39

-32

.70

06

8.3

77

2.9

632

.963

0.3

22

1.3

12

31.

10

05

29

107

54

+-3

7.2

47

35.

65

4-6

8.36

5-2

.603

-2.7

12

0.3

59

0.0

22

31.

93

20

24

108

54

-39

.83

3-3

2.6

84

68

.32

82

.947

2.9

470

.30

41

.45

03

2.7

82

77

81

093.

00

55

+35

.63

23

5.6

32

---

-0.0

03-2

.10

60

.37

30

.37

3--

-

110

55

--3

7.6

65

-0.0

22

-32.

354

-2.7

12-2

.72

20

.61

60

.76

00

.47

492

311

15

6+

36.2

45

-32

.34

86

4.5

29

2.8

872

.912

0.2

88

1.4

61

1.2

26

666

112

56

--3

7.6

65

32.

14

9-6

4.46

5-2

.702

-2.7

02

0.4

08

0.8

04

2.0

06

256

113

57

+36

.20

2-3

2.3

05

64

.47

02

.791

2.9

090

.29

21

.66

22

.74

246

811

45

7-

-37

.71

33

2.1

43

-64.

485

-2.6

35-2

.69

80

.38

60

.75

63

.511

731

115

3.0

05

8+

36.2

94

-32

.32

16

4.4

96

2.9

022

.902

0.2

80

1.8

71

4.2

39

232

116

58

--3

7.7

03

32.

16

5-6

4.49

1-2

.671

-2.6

77

0.3

54

0.8

08

4.9

99

264

117

59

+36

.30

5-3

2.3

00

64

.50

22

.832

2.8

910

.28

41

.46

75

.72

325

311

85

9-

-37

.71

33

2.1

80

-64.

496

-2.6

83-2

.68

60

.34

60

.82

36

.48

203

711

96

0+

36.3

43

-32

.30

56

4.5

23

2.8

642

.880

0.2

81

2.2

94

7.2

03

277

120

60

--3

7.7

30

32.

21

3-6

4.53

4-2

.677

-2.6

93

0.3

37

0.8

08

7.9

55

346

Be g

in R

ep.

2

Page 112: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-52

Sp

ec

ime

nP

4_T

4_

FT

2-01

Fy =

42

.00

ksi

(ass

um

ed)

Qy =

1.1

5ki

ps

! y =

0.0

768

in.

Ent

ryD

isp

lace

me

nt

Lev

elP

eak

De

flect

ion

Def

lect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

D

efle

ctio

n

Ra

nge

Lo

ad

at P

ea

k D

efle

ctio

nM

ax. L

oa

d in

E

xcu

rsio

nIn

itia

l Lo

adin

g

Stif

fne

ssIn

itial

Un

loa

din

g S

tiffn

ess

Hys

tere

sis

Are

a

(in

.) (

+/-

)i+

i-!

/!y

! 0/!

y"

! pm/!

yQ

/Qy

Qm

ax/

Qy

K0/(

Qy/

!y)

K/(

Qy/

!y)

A/(

Qy/

!y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10

][1

1]

Exc

ursi

on

[3]

Bi

R1

121

3.0

06

1+

36.4

07

-32

.30

56

4.5

56

2.8

682

.870

0.3

00

1.9

67

8.6

74

629

122

61

--3

7.7

35

32.

24

0-6

4.54

5-2

.686

-2.6

93

0.3

41

0.7

81

9.4

21

506

123

62

+36

.45

6-3

2.2

83

64

.60

42

.716

2.8

440

.29

51

.52

81

0.1

4111

61

246

2-

-37

.76

73

2.2

88

-64.

599

-2.6

82-2

.69

20

.33

30

.75

81

0.8

78

72

41

256

3+

36.5

25

-32

.28

96

4.6

90

2.7

492

.780

0.3

00

1.5

71

11.5

89

371

126

63

--3

7.8

00

32.

38

1-6

4.70

2-2

.655

-2.6

56

0.3

10

0.7

90

12.

31

31

56

127

3.0

06

4+

36.9

20

-32

.30

06

7.0

23

1.11

72

.209

0.2

87

0.9

03

12.

96

28

90

128

64

--3

7.9

99

34.

70

6-6

8.48

5-1

.908

-1.9

08

0.2

57

0.6

60

13.

38

96

97

129

65

+-3

3.7

52

-33

.75

26

1.8

63

0.0

010

.634

0.2

25

0.2

25

13.

48

61

94

130

65

--3

8.4

96

28.

13

3--

--0

.042

-0.1

77

-0.0

01

0.0

10

---

Page 113: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-53

Sp

eci

me

nP

4_T

4_

FT

3-0

1F

y =

42.0

0ks

i(a

ssum

ed)

Qy =

1.0

2ki

ps

!y =

0.0

871

in.

Ent

ryD

isp

lace

me

nt

Leve

lP

eak

D

efle

ctio

n

Def

lect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

D

efle

ctio

n

Ran

ge

Loa

d a

t Pea

k D

efle

ctio

nM

ax. L

oad

in

Exc

urs

ion

Initi

al L

oadi

ng

Stif

fnes

sIn

itia

l Unl

oad

ing

Stif

fne

ssH

yste

resi

s A

rea

(in.)

(+

/-)

i+i-

!/! y

! 0/!

y"

! pm/!

yQ

/Qy

Qm

ax/Q

yK

0/(

Qy/

! y)

K/(

Qy/

! y)

A/(

Qy/

! y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11

]

10

.25

16+

216

-2.

023

0.0

29-0

.190

1.5

961

.625

0.70

20.

725

0.00

3857

317

+-2

.889

-0.1

90

-0.5

71-1

.526

-1.5

30

0.4

190.

762

0.0

07

703

417

-2.

037

-0.7

380.

562

1.6

221.

622

0.49

90.

768

0.01

2032

518

+-2

.884

-0.1

86

-0.5

66-1

.532

-1.5

32

0.4

120.

781

0.0

15

654

618

-2.

037

-0.7

330.

547

1.6

231.

623

0.49

40.

808

0.01

9685

70

.50

19+

-5.6

54-0

.20

0-2

.908

-1.7

88-1

.79

90.

372

0.80

70

.05

55

328

19-

4.85

5-3

.098

5.40

71.

773

1.77

50.

394

0.72

50

.11

5048

920

+-5

.635

2.2

89-5

.373

-1.7

66-1

.78

00.

392

0.77

10

.16

99

6810

20-

4.88

8-3

.070

5.34

91.

757

1.78

70.

383

0.68

00.

2253

2411

21+

-5.6

402

.256

-5.2

73-1

.789

-1.7

89

0.3

830.

765

0.2

78

852

1221

-4.

859

-3.0

085.

245

1.7

971.

797

0.43

80.

907

0.33

2947

130

.75

22+

-8.4

572

.232

-7.9

62-1

.855

-1.8

63

0.3

780.

805

0.4

23

885

1422

-7

.686

-5.7

06

10.

656

1.8

831

.88

70.

342

0.87

30

.54

57

4015

23+

-8.4

104

.916

-10.

561

-1.9

10-1

.911

0.3

310

.811

0.6

64

781

1623

-7

.672

-5.6

30

10.

452

1.9

211

.93

10.

313

0.85

50

.78

57

3217

24+

-8.4

244

.812

-10.

413

-1.9

37-1

.93

70.

442

0.83

30

.90

50

4618

24-

7.6

67-5

.57

31

0.3

941.

948

1.9

49

0.3

320.

912

1.0

25

938

191

.00

25+

-11.

194

4.8

02-1

3.04

5-2

.012

-2.0

15

0.3

590.

858

1.1

86

145

2025

-1

0.5

18-8

.22

91

5.7

342.

036

2.0

36

0.3

270.

918

1.3

83

865

2126

+-1

1.19

47

.477

-15.

673

-2.0

48-2

.05

20.

374

0.83

21

.57

91

5222

26-

10.

528

-8.1

77

15.

620

2.0

572

.06

20.

318

0.93

81

.77

74

5923

27+

-11.

189

7.4

34-1

5.58

7-2

.052

-2.0

74

0.3

760.

810

1.9

73

671

2427

-1

0.5

37-8

.14

31

5.5

872.

074

2.0

77

0.2

720.

877

2.1

72

596

251

.25

28+

-14.

002

7.4

34-1

8.22

8-2

.126

-2.1

36

0.3

460.

845

2.4

12

996

2628

-1

3.3

45-1

0.7

80

20.

913

2.1

332

.14

80.

342

0.90

52

.69

46

9427

29+

-13.

993

10.

128

-20.

879

-2.1

64-2

.17

10.

388

0.87

92

.97

42

6828

29-

13.

355

-10

.72

82

0.8

512.

159

2.1

71

0.2

830.

901

3.2

57

196

2930

+-1

3.98

31

0.1

09-2

0.82

7-2

.184

-2.1

89

0.3

090.

910

3.5

38

232

3030

-1

3.3

59-1

0.6

99

20.

803

2.1

812

.18

40.

296

0.96

83

.82

20

55

Exc

urs

ion

[3]

ALL

DA

TA P

RIO

R T

O E

XC

UR

SIO

N 1

6- WA

S N

OT

PR

OP

ER

LY C

OL

LE

CT

ED

Beg

in R

ep

. 1

Page 114: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-54

Sp

eci

me

nP

4_T

4_

FT

3-0

1F

y =

42.0

0ks

i(a

ssum

ed)

Qy =

1.0

2ki

ps

!y =

0.0

871

in.

Ent

ryD

isp

lace

me

nt

Leve

lP

eak

D

efle

ctio

n

Def

lect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

D

efle

ctio

n

Ran

ge

Loa

d a

t Pea

k D

efle

ctio

nM

ax. L

oad

in

Exc

urs

ion

Initi

al L

oadi

ng

Stif

fnes

sIn

itia

l Unl

oad

ing

Stif

fne

ssH

yste

resi

s A

rea

(in.)

(+

/-)

i+i-

!/! y

! 0/!

y"

! pm/!

yQ

/Qy

Qm

ax/Q

yK

0/(

Qy/

! y)

K/(

Qy/

! y)

A/(

Qy/

! y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11

]

Exc

urs

ion

[3]

131

1.5

031

+-1

6.79

61

0.0

80-2

3.49

2-2

.223

-2.2

41

0.3

670.

860

4.1

50

370

3231

-1

6.2

39-1

3.4

02

26.

215

2.2

052

.24

50.

295

0.85

94

.52

28

7733

32+

-16.

791

12.

793

-26.

153

-2.2

77-2

.27

70.

380

0.94

04

.89

34

9634

32-

16.

239

-13

.34

52

6.1

292.

260

2.2

65

0.2

570.

928

5.2

67

681

3533

+-1

6.79

61

2.7

74-2

6.12

4-2

.283

-2.2

90

0.3

540.

927

5.6

40

253

3633

-1

6.2

44-1

3.3

12

26.

062

2.2

552

.28

10.

254

0.86

86

.01

56

3637

1.7

534

+-1

9.58

51

2.7

27-2

8.79

4-2

.336

-2.3

38

0.3

641.

060

6.4

37

447

3834

-1

9.1

09-1

6.0

39

31.

507

2.3

032

.33

60.

247

0.86

56

.90

71

7739

35+

-19.

613

15.

449

-31.

459

-2.3

59-2

.36

90.

390

0.87

97

.37

46

2740

35-

19.

109

-16

.00

13

1.4

262.

320

2.3

58

0.2

220.

868

7.8

47

068

4136

+-1

9.60

41

5.4

01-3

1.38

3-2

.352

-2.3

83

0.3

890.

782

8.3

16

372

4236

-1

9.0

99-1

5.9

72

31.

388

2.3

622

.37

10.

212

0.93

78

.79

03

9043

2.0

037

+-2

2.39

81

5.3

87-3

4.12

0-2

.417

-2.4

35

0.3

660.

929

9.3

12

019

4437

-2

1.9

22-1

8.7

04

36.

871

2.4

282

.42

80.

222

1.03

79

.88

4911

4538

+-2

2.39

31

8.1

52-3

6.79

5-2

.452

-2.4

58

0.3

780.

980

10.4

5496

246

38-

21.9

55-1

8.63

33

6.70

42.

437

2.45

50.

305

0.88

811

.031

347

4739

+-2

2.39

81

8.0

57-3

6.65

7-2

.445

-2.4

75

0.5

530.

890

11.6

0333

848

39-

21.

926

-18

.59

53

6.7

042.

449

2.4

67

0.3

200.

966

12.1

811

53

492

.25

40+

-25.

172

18.

090

-39.

460

-2.5

13-2

.51

50.

385

1.00

512

.80

701

150

40-

24.6

82-2

1.34

64

2.18

72.

546

2.54

80.

275

1.06

413

.487

855

5141

+-2

5.18

22

0.8

17-4

2.14

4-2

.530

-2.5

50

0.3

750.

925

14.1

6407

152

41-

24.6

82-2

1.31

24

2.08

72.

591

2.61

90.

259

0.99

814

.854

308

5342

+-2

5.21

02

0.7

46-4

2.05

8-2

.588

-2.5

89

0.3

251.

025

15.5

3556

654

42-

24.7

06-2

1.29

34

2.04

92.

591

2.62

70.

375

0.85

616

.228

546

552

.50

43+

-28.

004

20.

737

-44.

728

-2.6

13-2

.63

70.

328

0.95

216

.965

380

5643

-27

.433

-23.

978

47.

418

2.7

102.

715

0.41

91.

087

17.7

6550

957

44+

-27.

999

23.

430

-47.

413

-2.6

81-2

.68

10.

442

1.04

418

.552

978

5844

-27

.419

-23.

959

47.

356

2.7

192.

749

0.43

80.

789

19.3

5647

959

45+

-28.

009

23.

383

-47.

351

-2.7

02-2

.70

80.

439

0.99

220

.145

787

6045

-2

7.3

66-2

3.9

54

47.

341

2.7

952

.80

40.

411

1.21

020

.95

181

1

Page 115: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-55

Sp

eci

me

nP

4_T

4_

FT

3-0

1F

y =

42.0

0ks

i(a

ssum

ed)

Qy =

1.0

2ki

ps

!y =

0.0

871

in.

Ent

ryD

isp

lace

me

nt

Leve

lP

eak

D

efle

ctio

n

Def

lect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

D

efle

ctio

n

Ran

ge

Loa

d a

t Pea

k D

efle

ctio

nM

ax. L

oad

in

Exc

urs

ion

Initi

al L

oadi

ng

Stif

fnes

sIn

itia

l Unl

oad

ing

Stif

fne

ssH

yste

resi

s A

rea

(in.)

(+

/-)

i+i-

!/! y

! 0/!

y"

! pm/!

yQ

/Qy

Qm

ax/Q

yK

0/(

Qy/

! y)

K/(

Qy/

! y)

A/(

Qy/

! y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11

]

Exc

urs

ion

[3]

161

2.7

546

+-3

0.82

62

3.3

59-5

0.05

9-2

.762

-2.7

62

0.4

431.

085

21.7

9954

862

46-

30.0

74-2

6.69

05

2.74

82.

903

2.93

10.

444

1.09

722

.719

388

6347

+-3

0.83

12

6.0

43-5

2.69

6-2

.756

-2.7

80

0.4

321.

000

23.6

1697

264

47-

30.0

51-2

6.63

85

2.66

72.

926

2.92

80.

422

1.25

624

.538

985

6548

+-3

0.82

62

6.0

10-5

2.65

3-2

.779

-2.7

94

0.4

251.

049

25.4

4039

266

48-

30.0

46-2

6.61

45

2.63

42.

961

2.96

10.

437

1.24

526

.365

146

673

.00

49+

-33.

097

26.

000

-54.

971

-2.7

82-2

.86

10.

462

0.06

427

.318

420

6849

-32

.773

-28.

951

57.

598

3.0

673.

078

0.41

81.

176

28.3

5447

069

50+

-33.

106

28.

623

-57.

617

-2.7

58-2

.84

70.

395

1.28

429

.360

178

7050

-32

.754

-28.

970

57.

655

3.0

223.

067

0.42

11.

143

30.3

9560

271

51+

-33.

097

28.

661

-57.

560

-2.8

18-2

.88

30.

389

0.02

131

.401

970

7251

-3

2.7

54-2

8.8

85

57.

536

3.0

493

.05

20.

411

1.27

632

.44

001

173

3.0

052

+-3

3.10

12

8.6

42-5

7.63

1-2

.783

-2.8

77

0.3

901.

051

33.4

4680

174

52-

32.7

50-2

8.97

55

7.61

23.

069

3.08

50.

347

1.23

234

.485

198

7553

+-3

3.10

12

8.6

13-5

7.55

0-2

.814

-2.8

89

0.4

210.

414

35.4

9109

276

53-

32.7

39-2

8.92

75

7.53

13.

072

3.07

40.

362

1.44

936

.528

575

7754

+-3

3.09

72

8.5

85-5

7.52

6-2

.839

-2.9

13

0.4

490.

191

37.5

3277

978

54-

32.

744

-28

.93

25

7.4

983.

111

3.11

80.

349

1.23

738

.568

636

793

.00

55+

-33.

101

28.

547

-57.

484

-2.8

41-2

.91

40.

475

0.09

239

.571

830

8055

-32

.773

-28.

927

57.

498

3.1

403.

141

0.38

30.

874

40.6

0750

281

56+

-33.

130

28.

551

-57.

526

-2.8

09-2

.911

0.4

850.

961

41.6

0785

582

56-

32.7

68-2

8.96

15

7.51

73.

129

3.15

80.

443

1.25

442

.643

128

8357

+-3

3.10

62

8.5

42-5

7.54

5-2

.832

-2.9

09

0.4

250

.11

443

.640

974

8457

-32

.797

-28.

989

57.

650

3.0

823.

152

0.37

61.

073

44.6

7410

285

3.0

058

+2

8.6

472

8.6

47--

--0

.005

-2.3

30

0.2

980.

298

---

8658

--3

3.56

30

.000

-28.

618

-3.0

67-3

.06

80.

092

1.00

80

.63

38

8487

59+

32.

335

-28

.61

35

6.5

323.

370

3.3

70

0.3

541.

438

1.6

89

783

8859

--3

3.6

112

7.8

99-5

6.64

1-3

.013

-3.0

13

0.4

010.

975

2.7

05

969

8960

+3

2.3

54-2

8.7

27

56.

727

3.3

043

.31

80.

363

1.32

03

.73

34

1390

60-

-33.

592

27.

985

-56.

760

-2.9

75-2

.98

30.

402

1.03

54

.73

09

15

Beg

in R

ep

. 2

Page 116: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-56

Sp

eci

me

nP

4_T

4_

FT

3-0

1F

y =

42.0

0ks

i(a

ssum

ed)

Qy =

1.0

2ki

ps

!y =

0.0

871

in.

Ent

ryD

isp

lace

me

nt

Leve

lP

eak

D

efle

ctio

n

Def

lect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

D

efle

ctio

n

Ran

ge

Loa

d a

t Pea

k D

efle

ctio

nM

ax. L

oad

in

Exc

urs

ion

Initi

al L

oadi

ng

Stif

fnes

sIn

itia

l Unl

oad

ing

Stif

fne

ssH

yste

resi

s A

rea

(in.)

(+

/-)

i+i-

!/! y

! 0/!

y"

! pm/!

yQ

/Qy

Qm

ax/Q

yK

0/(

Qy/

! y)

K/(

Qy/

! y)

A/(

Qy/

! y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11

]

Exc

urs

ion

[3]

191

3.0

061

+3

2.3

64-2

8.7

61

56.

822

3.2

893

.28

90.

376

1.45

25

.74

38

3592

61-

-33.

672

28.

043

-56.

889

-2.9

67-2

.96

70.

388

1.03

06

.73

31

2393

62+

32.

383

-28

.82

75

6.8

553.

258

3.2

66

0.4

171.

369

7.7

42

645

9462

--3

3.65

32

8.0

04-5

6.91

7-2

.960

-2.9

60

0.4

481.

037

8.7

23

560

9563

+3

2.4

31-2

8.8

89

56.

975

3.2

513

.25

10.

366

1.28

79

.72

93

1496

63-

-33.

701

28.

066

-56.

998

-2.9

32-2

.93

40.

384

0.93

110

.706

065

973

.00

64+

32.4

31-2

8.92

75

7.00

83.

237

3.24

80.

367

1.27

311

.706

275

9864

--3

3.68

72

8.0

66-5

7.04

1-2

.935

-2.9

35

0.4

770.

986

12.6

7688

699

65+

32.4

40-2

8.96

15

7.04

63.

213

3.22

50.

381

1.30

613

.672

335

100

65-

-33.

701

28.

066

-57.

083

-2.9

30-2

.93

50.

362

0.99

814

.633

663

101

66+

32.4

58-2

9.02

35

7.11

23.

239

3.23

90.

424

1.10

815

.625

808

102

66-

-33.

730

28.

070

-57.

155

-2.8

95-2

.92

60.

335

0.89

016

.580

453

103

3.0

067

+3

2.4

64-2

9.0

70

57.

165

3.2

113

.22

40.

383

1.28

917

.571

610

104

67-

-33.

744

28.

081

-57.

175

-2.8

90-2

.89

60.

367

0.98

918

.518

769

105

68+

32.4

73-2

9.08

95

7.19

93.

214

3.23

80.

352

1.22

119

.505

850

106

68-

-33.

758

28.

094

-57.

212

-2.8

61-2

.87

40.

293

0.99

320

.443

714

107

69+

32.5

07-2

9.09

95

7.15

53.

198

3.23

90.

358

1.07

121

.423

924

108

69-

-33.

815

28.

047

-57.

160

-2.8

54-2

.85

50.

352

0.72

922

.352

755

109

3.0

070

+32

.511

-29.

099

57.

146

3.2

103.

219

0.38

01.

360

23.3

2827

111

070

--3

3.80

12

8.0

32-5

7.17

9-2

.836

-2.8

38

0.3

560.

955

24.2

4806

811

171

+32

.535

-29.

123

57.

150

3.1

823.

212

0.34

41

.211

25.2

1658

411

271

--3

3.78

72

8.0

32-5

7.15

5-2

.801

-2.8

03

0.3

730.

890

26.1

2398

811

372

+32

.554

-29.

108

57.

145

3.1

693.

185

0.30

81.

303

27.0

8422

511

472

--3

3.80

12

8.0

28-5

7.08

4-2

.748

-2.7

59

0.3

310.

901

27.9

7927

111

53

.00

73+

32.5

59-2

9.03

75

7.02

73.

142

3.15

80.

293

1.22

528

.930

995

116

73-

-33.

825

27.

976

-56.

951

-2.7

07-2

.70

70.

315

0.93

929

.813

558

117

74+

32.5

64-2

8.95

65

7.07

03.

104

3.12

70.

300

1.15

030

.756

122

118

74-

-33.

863

28.

094

-56.

969

-2.6

45-2

.65

30.

322

0.87

831

.623

044

119

75+

32.5

49-2

8.86

65

6.76

93.

104

3.10

40.

298

1.45

532

.548

901

120

75-

-33.

887

27.

899

-56.

708

-2.5

80-2

.58

90.

427

0.85

333

.397

944

Page 117: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-57

Sp

eci

me

nP

4_T

4_

FT

3-0

1F

y =

42.0

0ks

i(a

ssum

ed)

Qy =

1.0

2ki

ps

!y =

0.0

871

in.

Ent

ryD

isp

lace

me

nt

Leve

lP

eak

D

efle

ctio

n

Def

lect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

D

efle

ctio

n

Ran

ge

Loa

d a

t Pea

k D

efle

ctio

nM

ax. L

oad

in

Exc

urs

ion

Initi

al L

oadi

ng

Stif

fnes

sIn

itia

l Unl

oad

ing

Stif

fne

ssH

yste

resi

s A

rea

(in.)

(+

/-)

i+i-

!/! y

! 0/!

y"

! pm/!

yQ

/Qy

Qm

ax/Q

yK

0/(

Qy/

! y)

K/(

Qy/

! y)

A/(

Qy/

! y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11

]

Exc

urs

ion

[3]

112

13

.00

76+

32.5

49-2

8.78

55

6.71

33.

122

3.12

50.

255

1.43

534

.306

424

122

76-

-33.

906

27.

908

-56.

593

-2.5

31-2

.54

00.

289

0.84

735

.137

361

123

77+

32.5

87-2

8.67

05

6.74

62.

968

2.96

90.

255

1.26

636

.008

727

124

77-

-33.

930

28.

061

-56.

622

-2.4

51-2

.46

10.

350

0.83

136

.810

764

125

78+

33.0

35-2

8.54

25

9.33

01.

045

2.04

60.

233

0.44

337

.486

857

126

78-

-33.

977

30.

769

-59.

373

-2.3

14-2

.31

60.

212

0.81

538

.096

306

127

3.0

079

+33

.210

-28.

594

59.

797

0.2

670.

550

0.18

30.

417

38.3

0467

812

879

--3

4.25

83

1.2

02-3

1.93

0-1

.095

-1.4

19

0.0

650.

758

38.5

1840

612

980

+-0

.738

-0.7

23

-0.0

100.

000

-0.0

01

-0.0

32

-0.0

22

38.5

1840

613

080

--0

.742

-0.7

19

---

0.0

00-0

.00

20.

016

0.00

1--

-

Page 118: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-58

Sp

ecim

enP

4_T

4_F

T3

-B-0

1F

y =

42.0

0ks

i(a

ssum

ed)

Qy =

1.02

kip

s! y

=0

.087

1in

.

Ent

ryD

isp

lace

me

nt

Leve

lP

eak

De

flect

ion

De

flect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

Def

lect

ion

Ran

ge

Loa

d a

t P

eak

Def

lect

ion

Max

. Loa

d in

E

xcu

rsio

nIn

itial

Loa

ding

S

tiffn

ess

Initi

al U

nlo

adi

ng

Stif

fne

ssH

yste

resi

s A

rea

(in.

) (+

/-)

i+i-

!/!

y!

0/!

y"

!p

m/!

yQ

/Qy

Qm

ax/

Qy

K0/(

Qy/

! y)

K/(

Qy/

! y)

A/(

Qy/

! y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10

][1

1]

10.

011

+-0

.13

30

.00

00.

024

-0.0

42

-0.0

420

.20

30

.29

50

.00

00

02

21

-0.

081

0.04

8-0

.071

0.0

220

.027

0.28

70

.32

1-0

.000

007

32

+-0

.152

-0.0

33

0.0

71-0

.040

-0.0

400.

223

0.2

52

-0.0

0002

14

2-

0.06

20.

043

-0.0

330.

023

0.0

260.

391

0.4

92

-0.0

0002

65

3+

-0.1

000.

005

0.0

19-0

.041

-0.0

410.

342

0.3

57

-0.0

0002

66

3-

0.06

70.

038

-0.0

240.

023

0.0

260.

348

0.3

80

-0.0

0002

97

0.02

4+

-0.1

810.

000

0.0

00-0

.046

-0.0

49-0

.131

0.2

40

-0.0

0001

88

4-

0.12

40.

028

0.0

190.

046

0.0

500.

393

0.3

63

-0.0

0001

49

5+

-0.1

950.

024

0.0

95-0

.046

-0.0

460.

127

0.1

34

-0.0

0001

21

05

-0.

138

0.12

4-0

.186

0.0

140

.050

0.07

40

.09

8-0

.000

076

116

+-0

.162

-0.0

62

0.1

00-0

.044

-0.0

460.

222

0.2

40

-0.0

0007

81

26

-0.

119

0.03

3-0

.010

0.0

470

.051

0.42

50

.43

9-0

.000

083

13

0.03

7+

-0.3

140.

000

0.0

24-0

.106

-0.1

08-0

.175

0.3

20

-0.0

0007

21

47

-0.

276

0.02

8-0

.005

0.1

270

.127

0.51

40

.49

0-0

.000

080

15

8+

-0.2

950.

009

0.0

10-0

.108

-0.1

080.

293

0.3

34

-0.0

0007

51

68

-0.

271

0.03

30.

000

0.1

260

.126

0.52

40

.48

3-0

.000

084

17

9+

-0.3

050.

014

0.0

00-0

.108

-0.1

080.

290

0.3

42

-0.0

0007

71

89

-0.

266

0.02

4-0

.005

0.1

260

.126

0.50

80

.49

6-0

.000

088

19

0.0

61

0+

-0.6

000.

014

-0.0

10-0

.240

-0.2

420.

326

0.4

70

-0.0

0007

32

010

-0.

566

0.02

40.

000

0.2

790

.281

0.50

30

.52

2-0

.000

060

21

11+

-0.6

000.

009

0.0

05-0

.239

-0.2

410.

269

0.4

59

-0.0

0005

82

211

-0.

566

0.02

80.

000

0.2

780

.281

0.5

110

.57

9-0

.000

018

23

12+

-0.5

950.

019

-0.0

24-0

.238

-0.2

410.

245

0.5

08

-0.0

0000

62

412

-0.

566

0.01

40.

005

0.2

790

.281

0.46

50

.52

6-0

.000

021

25

0.1

01

3+

-1.0

090.

009

-0.0

19-0

.415

-0.4

150.

222

0.4

47

0.0

000

162

613

-0

.98

00

.00

50.

000

0.4

860

.49

10

.50

10

.53

50

.00

00

64

27

14+

-1.0

140.

005

-0.0

10-0

.415

-0.4

150.

266

0.4

40

0.0

000

732

814

-0

.96

60

.00

90.

005

0.4

840

.48

90

.48

30

.65

10

.00

00

48

29

15+

-1.0

090.

009

-0.0

14-0

.415

-0.4

150.

253

0.4

51

0.0

000

453

015

-0

.98

00

.00

00.

014

0.4

830

.48

80

.46

50

.54

40

.00

00

57

Exc

ursi

on

[3]

Page 119: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-59

Sp

ecim

enP

4_T

4_F

T3

-B-0

1F

y =

42.0

0ks

i(a

ssum

ed)

Qy =

1.02

kip

s! y

=0

.087

1in

.

Ent

ryD

isp

lace

me

nt

Leve

lP

eak

De

flect

ion

De

flect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

Def

lect

ion

Ran

ge

Loa

d a

t P

eak

Def

lect

ion

Max

. Loa

d in

E

xcu

rsio

nIn

itial

Loa

ding

S

tiffn

ess

Initi

al U

nloa

din

g S

tiffn

ess

Hys

tere

sis

Are

a

(in.

) (+

/-)

i+i-

!/!

y!

0/!

y"

!p

m/!

yQ

/Qy

Qm

ax/

Qy

K0/(

Qy/

! y)

K/(

Qy/

! y)

A/(

Qy/

! y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10

][1

1]

Exc

ursi

on

[3]

31

0.2

51

6+

-2.5

560.

005

-0.1

48-1

.081

-1.0

830.

064

0.4

81

0.0

010

383

216

-2

.50

3-0

.13

80.

252

1.1

92

1.2

03

0.4

71

0.5

52

0.0

02

87

73

317

+-2

.565

0.08

6-0

.186

-1.0

98-1

.099

0.22

80

.48

50

.00

3781

34

17-

2.5

32

-0.0

81

0.1

861.

19

91

.20

10

.46

90

.52

10

.00

50

67

35

18+

-2.5

610.

086

-0.1

95-1

.098

-1.0

980.

226

0.4

82

0.0

059

053

618

-2

.53

2-0

.09

50.

195

1.2

00

1.2

00

0.3

66

0.5

51

0.0

07

12

63

70

.50

19

+-5

.269

0.08

6-1

.437

-1.7

46-1

.746

0.25

40

.511

0.0

247

563

819

-5

.26

4-1

.34

22.

870

1.7

34

1.7

34

0.4

07

0.6

94

0.0

56

19

03

920

+-5

.212

1.50

9-2

.832

-1.7

10-1

.717

0.20

40

.54

50

.08

4170

40

20-

5.2

64

-1.3

09

2.9

221.

69

91

.73

20

.39

10

.57

80

.11

26

07

41

21+

-5.2

161.

609

-2.9

17-1

.705

-1.7

150.

156

0.5

37

0.1

397

794

221

-5

.26

9-1

.30

92.

932

1.7

16

1.7

31

0.3

65

0.6

23

0.1

67

21

54

30

.75

22

+-8

.029

1.60

4-5

.449

-1.8

06-1

.811

0.15

00

.56

10

.22

9592

44

22-

8.1

10

-3.8

41

8.0

911

.754

1.7

85

0.3

45

0.5

67

0.3

18

16

14

523

+-8

.020

4.22

6-8

.001

-1.8

23-1

.825

0.13

40

.59

80

.40

4358

46

23-

8.0

96

-3.7

55

7.8

961.

81

41

.81

40

.34

30

.66

70

.48

86

97

47

24+

-8.0

294.

131

-7.8

53-1

.837

-1.8

440.

140

0.5

62

0.5

731

284

824

-8

.08

6-3

.70

37.

805

1.8

12

1.8

33

0.3

32

0.6

20

0.6

56

06

64

91

.00

25

+-1

0.8

04

4.0

79

-10

.41

8-1

.91

8-1

.928

0.1

32

0.5

80

0.7

78

05

45

025

-10

.980

-6.3

20

13.

017

1.9

221

.934

0.38

40

.60

90

.93

0202

51

26+

-10

.80

46

.65

8-1

2.8

79

-1.9

65

-1.9

680

.12

50

.59

51

.08

19

55

52

26-

10.9

66-6

.20

61

2.90

71.

962

1.9

660.

331

0.6

64

1.2

323

755

327

+-1

0.8

04

6.6

87

-12

.83

1-1

.98

4-1

.984

0.1

15

0.5

88

1.3

83

54

85

427

-10

.951

-6.1

161

2.66

51.

974

1.9

840.

348

0.6

52

1.5

331

255

51

.25

28

+-1

3.5

98

6.5

44

-15

.33

0-2

.04

7-2

.048

0.1

21

0.6

03

1.7

24

46

65

628

-13

.835

-8.7

76

17.

990

2.0

432

.060

0.33

80

.65

11

.95

0830

57

29+

-13

.61

29

.19

5-1

7.8

90

-2.0

76

-2.0

840

.11

50

.62

52

.17

67

15

58

29-

13.8

07-8

.68

11

7.81

02.

061

2.0

820.

329

0.5

94

2.4

017

685

930

+-1

3.6

07

9.1

14

-17

.75

2-2

.09

0-2

.101

0.1

16

0.6

20

2.6

27

13

36

030

-13

.812

-8.6

34

17.

719

2.0

942

.095

0.30

30

.73

82

.85

1790

Page 120: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-60

Sp

ecim

enP

4_T

4_F

T3

-B-0

1F

y =

42.0

0ks

i(a

ssum

ed)

Qy =

1.02

kip

s! y

=0

.087

1in

.

Ent

ryD

isp

lace

me

nt

Leve

lP

eak

De

flect

ion

De

flect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

Def

lect

ion

Ran

ge

Loa

d a

t P

eak

Def

lect

ion

Max

. Loa

d in

E

xcu

rsio

nIn

itial

Loa

ding

S

tiffn

ess

Initi

al U

nloa

din

g S

tiffn

ess

Hys

tere

sis

Are

a

(in.

) (+

/-)

i+i-

!/!

y!

0/!

y"

!p

m/!

yQ

/Qy

Qm

ax/

Qy

K0/(

Qy/

! y)

K/(

Qy/

! y)

A/(

Qy/

! y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10

][1

1]

Exc

ursi

on

[3]

61

1.5

03

1+

-16

.37

79

.05

2-2

0.3

08

-2.1

32

-2.1

530

.11

50

.63

73

.12

01

02

62

31-

16.6

96-1

1.2

42

22.

978

2.1

592

.167

0.32

50

.65

03

.42

6508

63

32+

-16

.36

311

.72

2-2

2.9

50

-2.1

75

-2.1

940

.10

70

.65

23

.73

211

06

432

-16

.686

-11

.24

22

2.92

12.

162

2.1

880.

238

0.6

06

4.0

377

176

533

+-1

6.3

72

11.6

46

-22

.74

0-2

.20

3-2

.210

0.1

12

0.6

84

4.3

43

53

76

633

-16

.682

-11

.08

52

2.70

72.

180

2.2

030.

317

0.6

19

4.6

484

406

71

.75

34

+-1

9.1

23

11.5

99

-25

.47

7-2

.26

3-2

.263

0.1

08

0.6

59

4.9

99

02

16

834

-19

.504

-13

.86

42

8.08

02.

259

2.2

630.

165

0.6

68

5.3

895

776

935

+-1

9.1

37

14

.18

8-2

7.8

04

-2.2

93

-2.2

960

.12

20

.66

25

.77

95

01

70

35-

19.4

56-1

3.6

02

27.

752

2.2

542

.281

0.30

50

.61

46

.16

8415

71

36+

-19.

137

14.1

16

-27

.86

1-2

.302

-2.3

120.

106

0.6

59

6.5

581

037

236

-19

.499

-13

.73

12

7.79

02.

284

2.2

960.

134

0.6

29

6.9

458

297

32

.00

37

+-2

1.9

50

14

.05

0-3

0.4

36

-2.3

67

-2.3

700

.09

60

.70

47

.38

27

95

74

37-

22.2

50-1

6.3

72

33.

125

2.3

332

.352

0.12

60

.66

27

.85

9353

75

38+

-21

.97

41

6.7

29

-33

.01

6-2

.38

6-2

.396

0.1

05

0.6

07

8.3

36

311

76

38-

22.2

21-1

6.2

63

32.

925

2.3

542

.359

0.13

90

.77

78

.81

0138

77

39+

-21

.96

51

6.6

48

-32

.72

1-2

.40

9-2

.412

0.1

02

0.6

37

9.2

86

28

87

839

-22

.240

-16

.06

33

2.66

82.

361

2.3

620.

275

0.7

45

9.7

586

047

92

.25

40

+-2

4.7

68

16

.58

6-3

5.2

86

-2.4

65

-2.4

650

.09

20

.68

61

0.2

83

86

28

040

-25

.006

-18

.68

13

7.91

82.

419

2.4

190.

290

0.7

46

10.8

4631

08

141

+-2

4.7

87

19

.22

8-3

7.7

61

-2.4

59

-2.4

720

.11

50

.64

411

.411

543

82

41-

25.0

20-1

8.5

14

37.

699

2.4

082

.429

0.37

30

.68

411

.972

312

83

42+

-24

.82

01

9.1

80

-37

.87

0-2

.47

3-2

.474

0.1

07

0.5

82

12

.53

48

54

84

42-

25.0

06-1

8.6

66

37.

775

2.3

902

.427

0.16

60

.65

913

.093

288

85

2.5

04

3+

-27

.60

41

9.0

94

-40

.48

3-2

.51

3-2

.525

0.0

96

0.6

65

13

.70

48

27

86

43-

27.8

18-2

1.3

79

43.

144

2.4

672

.477

0.13

70

.74

114

.354

473

87

44+

-27

.62

32

1.7

36

-43

.04

8-2

.51

8-2

.520

0.1

04

0.6

77

15

.00

62

75

88

44-

27.7

61-2

1.3

03

42.

953

2.4

862

.486

0.1

15

0.8

29

15.6

5245

28

945

+-2

7.6

38

21

.64

1-4

2.9

06

-2.5

15

-2.5

250

.09

20

.63

91

6.2

99

95

69

045

-27

.776

-21

.25

54

2.82

52.

494

2.4

940.

102

0.8

02

16.9

4223

3

Page 121: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-61

Sp

ecim

enP

4_T

4_F

T3

-B-0

1F

y =

42.0

0ks

i(a

ssum

ed)

Qy =

1.02

kip

s! y

=0

.087

1in

.

Ent

ryD

isp

lace

me

nt

Leve

lP

eak

De

flect

ion

De

flect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

Def

lect

ion

Ran

ge

Loa

d a

t P

eak

Def

lect

ion

Max

. Loa

d in

E

xcu

rsio

nIn

itial

Loa

ding

S

tiffn

ess

Initi

al U

nloa

din

g S

tiffn

ess

Hys

tere

sis

Are

a

(in.

) (+

/-)

i+i-

!/!

y!

0/!

y"

!p

m/!

yQ

/Qy

Qm

ax/

Qy

K0/(

Qy/

! y)

K/(

Qy/

! y)

A/(

Qy/

! y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10

][1

1]

Exc

ursi

on

[3]

91

2.7

54

6+

-30

.42

22

1.5

50

-45

.53

3-2

.56

4-2

.568

0.0

87

0.6

91

17

.63

65

15

92

46-

30.5

03-2

3.9

68

48.

098

2.4

822

.524

0.10

30

.66

818

.369

422

93

47+

-30

.45

124

.111

-47

.97

9-2

.56

5-2

.565

0.1

01

0.6

98

19

.10

00

37

94

47-

30.5

17-2

3.8

59

47.

960

2.5

102

.512

0.08

80

.78

819

.824

802

95

48+

-30

.47

42

4.0

78

-47

.89

8-2

.55

7-2

.557

0.1

16

0.6

99

20

.54

82

76

96

48-

30.4

84-2

3.7

97

47.

855

2.5

012

.501

0.07

30

.85

721

.266

836

97

3.0

04

9+

-33

.03

02

4.0

39

-50

.53

5-2

.51

7-2

.587

0.2

26

0.7

41

22

.03

58

15

98

49-

33.1

92-2

6.4

72

53.

214

2.5

262

.534

0.07

50

.79

222

.842

855

99

50+

-33

.03

02

6.7

28

-53

.09

5-2

.51

6-2

.575

0.2

14

0.9

24

23

.64

82

25

100

50-

33.1

49-2

6.3

43

53.

038

2.5

042

.514

0.06

90

.82

324

.442

822

101

51+

-33

.04

92

6.6

48

-52

.94

3-2

.48

8-2

.543

0.2

13

1.0

02

25

.23

89

17

102

51-

33.1

44-2

6.2

72

52.

872

2.4

592

.483

0.08

60

.75

626

.020

578

103

3.00

52+

-33

.04

92

6.5

81

-52

.79

6-2

.46

8-2

.522

0.2

13

0.9

29

26

.80

46

63

104

52-

33.1

34-2

6.2

00

52.

677

2.4

282

.453

0.10

50

.72

92

7.5

7151

110

553

+-3

3.04

426

.457

-52

.58

6-2

.450

-2.4

890.

209

-0.4

06

28.3

4228

710

653

-33

.139

-26

.11

95

2.56

72.

424

2.4

240.

120

0.8

12

29.0

9253

010

754

+-3

3.0

44

26

.42

9-5

2.4

77

-2.4

22

-2.4

730

.20

70

.68

12

9.8

50

87

010

854

-33

.092

-26

.02

95

2.38

62.

399

2.4

000.

165

0.7

28

30.5

8183

210

93.

0055

+-3

3.0

78

26

.32

9-5

2.3

34

-2.3

63

-2.4

360

.21

20

.69

93

1.3

27

33

811

055

-33

.087

-25

.97

25

2.37

22.

331

2.3

540.

175

0.6

91

32.0

3921

611

156

+-3

3.0

73

26

.37

2-5

2.3

01

-2.3

55

-2.4

120

.19

30

.84

83

2.7

68

13

011

256

-33

.063

-25

.90

55

2.25

82.

269

2.2

690.

167

0.7

83

33.4

5523

411

357

+-3

3.0

59

26

.32

9-5

2.2

77

-2.3

43

-2.3

970

.18

40

.90

43

4.1

67

98

811

457

-33

.049

-25

.92

45

2.21

02.

165

2.1

650.

160

0.7

76

34.8

2921

911

53.

0058

+-3

3.1

01

26

.27

2-5

2.2

72

-2.3

05

-2.3

630

.18

20

.86

53

5.5

19

83

811

658

-33

.030

-25

.97

75

2.16

32.

038

2.0

410.

157

0.7

04

36.1

5162

511

759

+-3

3.1

20

26

.17

2-5

2.1

77

-2.2

66

-2.3

290

.16

00

.74

33

6.8

17

65

111

859

-33

.049

-25

.99

15

1.63

91.

689

1.7

520.

155

0.5

65

37.3

9625

811

960

+-3

3.1

30

25

.62

4-5

1.6

72

-2.2

60

-2.3

020

.12

70

.67

33

7.9

83

57

712

060

-33

.149

-26

.01

05

1.89

61.

375

1.4

120.

170

0.4

45

38.4

6935

7

Page 122: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-62

Sp

ecim

enP

4_T

4_F

T3

-B-0

1F

y =

42.0

0ks

i(a

ssum

ed)

Qy =

1.02

kip

s! y

=0

.087

1in

.

Ent

ryD

isp

lace

me

nt

Leve

lP

eak

De

flect

ion

De

flect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

Def

lect

ion

Ran

ge

Loa

d a

t P

eak

Def

lect

ion

Max

. Loa

d in

E

xcu

rsio

nIn

itial

Loa

ding

S

tiffn

ess

Initi

al U

nloa

din

g S

tiffn

ess

Hys

tere

sis

Are

a

(in.

) (+

/-)

i+i-

!/!

y!

0/!

y"

!p

m/!

yQ

/Qy

Qm

ax/

Qy

K0/(

Qy/

! y)

K/(

Qy/

! y)

A/(

Qy/

! y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10

][1

1]

Exc

ursi

on

[3]

121

3.00

61+

-33

.13

02

5.8

72

-51

.95

3-2

.19

1-2

.237

0.1

08

0.9

07

38

.96

29

81

122

61-

33.3

16-2

6.0

58

52.

467

1.0

001

.092

0.12

20

.33

539

.355

441

123

62+

-33

.14

42

6.3

91

-52

.38

2-2

.13

3-2

.171

0.0

89

0.7

51

39

.74

60

98

124

62-

33.4

82-2

5.9

72

53.

310

0.7

050

.747

0.10

40

.61

040

.028

634

125

63+

-33

.17

32

7.3

19

-53

.60

0-1

.94

3-1

.977

0.0

69

0.8

03

40

.34

03

36

126

63-

33.8

49-2

6.2

62

54.

357

0.5

540

.600

0.08

20

.23

940

.558

927

127

3.00

64+

-33.

211

28

.06

6-5

4.8

52

-1.7

92

-1.8

180

.05

60

.75

24

0.8

32

13

312

864

-33

.991

-26

.77

25

5.46

60.

435

0.4

830.

077

0.2

43

41

.011

447

129

65+

-33

.23

02

8.6

85

-56

.54

6-1

.79

2-1

.800

0.0

50

0.2

10

41

.26

27

99

130

65-

33.8

96-2

7.8

38

57.

017

0.3

710

.407

0.15

10

.25

141

.410

469

131

66+

-33.

311

29

.16

1-5

7.6

74

-1.5

89

-1.6

040

.04

30

.10

24

1.6

111

31

132

66-

33.9

01-2

8.4

90

---

0.0

700

.310

0.19

40

.16

9--

-

Page 123: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-63

Sp

ec

ime

nP

4_T

6_

FA

2-01

Fy =

42

.00

ksi

(ass

um

ed)

Qy =

2.1

0ki

ps

! y =

0.0

734

in.

Ent

ryD

isp

lace

me

nt

Lev

elP

eak

De

flect

ion

Def

lect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

D

efle

ctio

n

Ra

nge

Lo

ad

at P

ea

k D

efle

ctio

nM

ax. L

oa

d in

E

xcu

rsio

nIn

itia

l Lo

adin

g

Stif

fne

ssIn

itial

Un

loa

din

g S

tiffn

ess

Hys

tere

sis

Are

a

(in

.) (

+/-

)i+

i-!

/!y

! 0/!

y"

! pm/!

yQ

/Qy

Qm

ax/

Qy

K0/(

Qy/

!y)

K/(

Qy/

!y)

A/(

Qy/

!y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10

][1

1]

10.

01

1+

-0.1

24

0.0

06

0.0

06-0

.009

-0.0

57

0.0

16

-0.0

01-0

.00

001

21

-0.

079

0.0

34

-0.0

510

.028

0.0

330

.34

30

.37

8-0

.00

001

32

+-0

.10

2-0

.03

40.

045

-0.0

41-0

.05

50

.44

40

.48

5-0

.00

002

42

-0.

090

0.0

28

-0.0

450

.032

0.0

320

.34

10

.38

6-0

.00

003

53

+-0

.10

2-0

.02

80.

034

-0.0

51-0

.05

50

.47

30

.52

8-0

.00

003

63

-0.

079

0.0

34

-0.0

560

.032

0.0

320

.34

40

.39

5-0

.00

004

70.

02

4+

-0.1

47

-0.0

110.

034

-0.0

82-0

.08

20

.01

00

.54

4-0

.00

005

84

-0

.11

30.

03

4-0

.034

0.0

550

.062

0.5

10

0.5

40

-0.0

000

59

5+

-0.1

53

-0.0

23

0.0

56-0

.074

-0.0

82

0.5

65

0.5

21

-0.0

000

610

5-

0.12

40.

04

5-0

.045

0.0

610

.061

0.4

81

0.5

02

-0.0

000

711

6+

-0.1

53

-0.0

28

0.0

51-0

.081

-0.0

81

0.5

41

0.5

32

-0.0

000

812

6-

0.10

70.

03

4-0

.034

0.0

440

.062

0.5

05

0.5

18

-0.0

000

913

0.0

37

+-0

.25

4-0

.00

60.

017

-0.1

48-0

.14

80

.05

70

.59

2-0

.00

010

147

-0.

237

0.0

45

-0.0

680

.154

0.1

630

.81

20

.58

0-0

.00

018

158

+-0

.21

5-0

.04

50.

057

-0.1

42-0

.14

40

.74

50

.61

4-0

.00

015

168

-0.

271

0.0

40

-0.0

170

.163

0.1

630

.69

70

.66

2-0

.00

018

179

+-0

.26

6-0

.00

60.

023

-0.1

42-0

.14

40

.52

20

.52

7-0

.00

019

189

-0.

260

0.0

34

-0.0

340

.162

0.1

620

.73

00

.66

5-0

.00

021

190.

06

10

+-0

.55

4-0

.011

0.0

28-0

.334

-0.3

34

0.0

37

0.6

60

-0.0

002

320

10

-0.

554

0.0

28

-0.0

340

.376

0.3

760

.70

30

.70

3-0

.00

027

2111

+-0

.53

1-0

.04

50.

051

-0.3

27-0

.33

50

.61

60

.66

6-0

.00

031

2211

-0.

559

0.0

17

-0.0

110

.367

0.3

760

.68

80

.68

2-0

.00

035

231

2+

-0.5

43

-0.0

23

0.0

34-0

.326

-0.3

34

0.6

09

0.6

51

-0.0

003

924

12

-0.

565

0.0

22

-0.0

220

.375

0.3

750

.69

60

.67

9-0

.00

042

250.

10

13

+-0

.90

40.

00

0-0

.011

-0.5

76-0

.57

6-0

.00

20

.70

4-0

.00

043

261

3-

0.96

10

.011

0.0

000

.654

0.6

610

.68

60

.69

7-0

.00

042

271

4+

-0.8

93

-0.0

06

0.0

23-0

.576

-0.5

76

0.5

90

0.6

79

-0.0

004

528

14

-0.

989

0.0

22

0.0

000

.660

0.6

600

.68

60

.68

2-0

.00

049

291

5+

-0.8

99

0.0

00

0.0

11-0

.573

-0.5

75

0.5

84

0.6

66

-0.0

005

230

15

-0.

983

0.0

22

0.0

060

.657

0.6

600

.69

00

.69

4-0

.00

055

Exc

ursi

on

[3]

Page 124: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-64

Sp

ec

ime

nP

4_T

6_

FA

2-01

Fy =

42

.00

ksi

(ass

um

ed)

Qy =

2.1

0ki

ps

! y =

0.0

734

in.

Ent

ryD

isp

lace

me

nt

Lev

elP

eak

De

flect

ion

Def

lect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

D

efle

ctio

n

Ra

nge

Lo

ad

at P

ea

k D

efle

ctio

nM

ax. L

oa

d in

E

xcu

rsio

nIn

itia

l Lo

adin

g

Stif

fne

ssIn

itial

Un

loa

din

g S

tiffn

ess

Hys

tere

sis

Are

a

(in

.) (

+/-

)i+

i-!

/!y

! 0/!

y"

! pm/!

yQ

/Qy

Qm

ax/

Qy

K0/(

Qy/

!y)

K/(

Qy/

!y)

A/(

Qy/

!y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10

][1

1]

Exc

ursi

on

[3]

310.

25

16

+-2

.39

10.

01

7-0

.384

-1.3

37-1

.33

80

.06

10

.75

20.

00

21

832

16

-2.

662

-0.3

62

1.0

511

.381

1.3

810

.60

40

.81

50.

00

84

033

17

+-2

.43

60.

65

5-1

.012

-1.3

24-1

.32

40

.47

20

.68

00.

01

34

434

17

-2.

673

-0.3

45

1.0

851

.385

1.3

850

.59

60

.76

00.

01

89

735

18

+-2

.41

30.

71

2-1

.051

-1.3

23-1

.32

60

.29

40

.71

40.

02

39

036

18

-2.

679

-0.3

33

0.9

891

.385

1.3

850

.59

40

.78

00.

02

92

337

0.5

01

9+

-5.6

74

0.6

27

-3.9

16-1

.482

-1.4

92

0.4

76

0.7

31

0.0

57

51

381

9-

5.94

0-3

.27

26.

833

1.5

741

.578

0.4

99

0.7

37

0.1

04

43

392

0+

-5.5

95

3.5

32

-6.5

50-1

.599

-1.5

99

0.4

02

0.7

54

0.1

48

59

402

0-

5.91

7-2

.99

06.

409

1.6

141

.631

0.5

22

0.6

48

0.1

93

16

412

1+

-5.5

89

3.4

02

-6.3

30-1

.623

-1.6

29

0.3

98

0.7

17

0.2

36

83

422

1-

5.89

4-2

.90

56.

268

1.6

481

.648

0.5

51

0.7

71

0.2

80

80

430.

75

22

+-8

.87

83.

34

6-9

.359

-1.7

42-1

.74

60

.42

70

.77

40.

35

30

344

22

-9.

201

-5.9

91

12

.37

11

.771

1.7

850

.47

20

.71

80.

44

91

045

23

+-8

.84

56.

36

3-1

2.23

0-1

.796

-1.8

01

0.3

34

0.7

36

0.5

44

17

462

3-

9.17

2-5

.86

61

2.1

73

1.8

001

.816

0.4

75

0.7

40

0.6

39

78

472

4+

-8.8

16

6.2

96

-12.

083

-1.8

22-1

.82

20

.31

00

.76

10.

73

50

548

24

-9.

172

-5.7

81

12

.04

31

.821

1.8

280

.48

30

.76

20.

83

03

949

1.0

02

5+

-12

.07

16.

23

3-1

5.14

0-1

.903

-1.9

04

0.3

44

0.8

49

0.9

57

65

502

5-

12.5

57

-8.8

84

18

.28

81

.908

1.9

390

.43

10

.69

51.

112

92

512

6+

-11

.53

59.

38

7-1

7.65

5-1

.941

-1.9

43

0.2

93

0.8

29

1.2

62

76

522

6-

12.6

59

-8.2

68

17

.76

81

.963

1.9

640

.42

70

.75

91.

41

52

253

27

+-1

1.5

23

9.4

72

-17.

683

-1.9

64-1

.96

40

.25

20

.79

71.

56

70

854

27

-12

.72

7-8

.19

51

7.7

17

1.9

361

.976

0.4

30

0.6

33

1.7

20

21

551.

25

28

+-1

4.7

84

9.5

00

-20.

933

-2.0

36-2

.03

60

.22

70

.83

01.

90

77

356

28

-15

.94

3-1

1.4

16

23

.95

62

.053

2.0

720

.42

80

.69

52.

12

58

557

29

+-1

4.7

79

12.

52

9-2

3.86

0-2

.055

-2.0

80

0.1

87

0.7

55

2.3

44

69

582

9-

15.9

09

-11

.30

92

3.7

53

2.0

892

.095

0.4

10

0.7

35

2.5

63

73

593

0+

-14

.80

11

2.4

33

-23.

781

-2.0

73-2

.09

70

.19

40

.75

02.

78

38

060

30

-15

.89

2-1

1.3

43

23

.78

12

.105

2.1

050

.37

90

.75

03.

00

33

0

Page 125: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-65

Sp

ec

ime

nP

4_T

6_

FA

2-01

Fy =

42

.00

ksi

(ass

um

ed)

Qy =

2.1

0ki

ps

! y =

0.0

734

in.

Ent

ryD

isp

lace

me

nt

Lev

elP

eak

De

flect

ion

Def

lect

ion

at

Sta

rt o

f E

xcu

rsio

n

Pla

stic

D

efle

ctio

n

Ra

nge

Lo

ad

at P

ea

k D

efle

ctio

nM

ax. L

oa

d in

E

xcu

rsio

nIn

itia

l Lo

adin

g

Stif

fne

ssIn

itial

Un

loa

din

g S

tiffn

ess

Hys

tere

sis

Are

a

(in

.) (

+/-

)i+

i-!

/!y

! 0/!

y"

! pm/!

yQ

/Qy

Qm

ax/

Qy

K0/(

Qy/

!y)

K/(

Qy/

!y)

A/(

Qy/

!y)

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10

][1

1]

Exc

ursi

on

[3]

611.

50

31

+-1

8.1

35

12

.411

-26.

918

-2.1

58-2

.16

00

.16

10

.82

63.

26

07

962

31

-19

.19

2-1

4.4

79

29

.98

72

.166

2.1

930

.39

30

.71

53.

55

13

263

32

+-1

8.1

19

15.

48

5-2

9.92

4-2

.179

-2.1

95

0.1

67

0.8

10

3.8

42

79

643

2-

19.1

75

-14

.43

42

9.8

79

2.2

102

.212

0.3

30

0.7

83

4.1

34

58

653

3+

-18

.13

01

5.4

34

-29.

857

-2.2

07-2

.21

00

.17

20

.86

24.

42

75

566

33

-19

.18

1-1

4.4

00

29

.83

42

.221

2.2

210

.35

00

.81

84.

72

01

767

1.7

53

4+

-21

.43

01

5.4

17

-33.

078

-2.2

64-2

.26

40

.15

50

.80

95.

05

31

268

34

-22

.47

6-1

7.6

38

36

.23

12

.267

2.2

980

.32

60

.70

75.

42

12

069

35

+-2

1.4

19

18.

56

5-3

6.16

9-2

.269

-2.2

94

0.1

84

0.7

25

5.7

90

56

703

5-

22.3

74

-17

.57

03

6.11

82

.310

2.3

110

.28

40

.74

46.

15

92

671

36

+-2

1.4

53

18.

53

7-3

6.1

13

-2.3

05-2

.30

50

.19

70

.81

56.

52

98

672

36

-22

.47

6-1

7.5

42

36

.06

22

.315

2.3

180

.27

90

.77

36.

90

02

473

2.0

03

7+

-24

.77

01

8.5

03

-39.

289

-2.3

50-2

.35

20

.20

50

.83

97.

31

30

874

37

-25

.82

7-2

0.7

63

42

.48

82

.380

2.3

910

.31

20

.76

37.

76

31

575

38

+-2

4.7

70

21.

71

3-4

2.42

0-2

.374

-2.3

75

0.2

78

0.8

58

8.2

14

37

763

8-

25.8

27

-20

.70

14

2.3

80

2.3

952

.398

0.2

59

0.7

81

8.6

65

99

773

9+

-24

.78

72

1.6

67

-42.

403

-2.3

80-2

.38

20

.25

90

.89

29.

118

56

783

9-

25.8

55

-20

.71

84

2.3

86

2.3

832

.396

0.2

19

0.7

48

9.5

70

15

792.

25

40

+-2

8.1

61

21.

65

1-4

5.64

1-2

.416

-2.4

22

0.3

09

0.8

28

10.

06

608

804

0-

29.1

22

-23

.97

34

8.9

13

2.4

272

.436

0.2

74

0.7

82

10.

59

863

814

1+

-28

.12

22

4.9

11-4

8.86

2-2

.436

-2.4

37

0.3

05

1.0

72

11.1

338

382

41

-29

.15

0-2

3.9

34

49

.04

92

.306

2.3

120

.19

50

.80

311

.65

941

834

2+

-28

.20

62

5.0

98

-49.

026

-2.4

09-2

.42

80

.36

50

.82

11

2.1

918

984

42

-29

.91

3-2

3.9

17

50

.95

90

.862

1.9

350

.13

60

.41

01

2.6

104

185

2.2

54

3+

-28

.30

82

7.0

25

-50.

976

-2.3

17-2

.32

50

.21

00

.84

41

3.0

235

886

43

-30

.61

9-2

3.9

34

52

.55

30

.049

0.6

610

.20

30

.03

71

3.1

413

187

44

+-2

9.9

13

28.

59

6-5

8.02

9-0

.086

-0.4

40

0.0

18

0.2

54

13

.211

95

884

4-

-29

.42

1-2

9.4

21

35

.70

00

.000

0.0

120

.01

30

.01

31

3.2

132

989

45

+30

.67

66.

29

0--

--0

.009

-0.0

12

-0.0

01

0.0

02

---

Page 126: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-66

Appendix D: Tapered Fuse Design Procedure

The procedure outlined here shows the process used to design the fuse width at the top and bottom of the fuse section such that the extreme fibers yield at an equal horizontal force. For these fuses, the procedure relies on a triangular moment diagram increasing linearly from zero at the location of the center of the slotted hole (bolt through masonry) to a maximum at the welded connection to the test setup.

Calculate the stress at the top of the fuse, , and the stress at the bottom of the fuse, , in terms of, and , the width at the top and bottom of the fuse, respectively, by Equation 8. Refer to Figure 31 for the fuse dimensions referenced in the provided equations.

6

6

[10a]

6

6

[10b]

Setting equal to and solving for the ratio of the fuse widths gives Equation 9.

[11]

Equation 9 is valid for any orientation of the fuse, with “top” and “bottom” in reference to the fuse’s orientation in the actual hybrid masonry assembly. Setting a top fuse width,

, equal to 2 inches, for a 4 inch fuse length and the bolt through the masonry at 12

inches from the bottom of the fuse gives 2" 8"/12" 1.633 in. (41.5 mm). This is the width of the bottom of the fuse detail for specimen P4_T4_FT2-01: a tapered fuse with an aspect ratio, ⁄ , equal to 2. The length of the fuse detail is 4 inches (101.6 mm) and the largest width of the tapered fuse is 2 inches (50.8 mm). Similarly, specimen P4_T4_FT3-01 has a 6 inch (152.4 mm) fuse length ( ⁄ = 3) which gives

Figure 31. Tapered fuse design dimensions.

Page 127: CONNECTOR DEVELOPMENT FOR HYBRID MASONRY SEISMIC ...

A-67

2" 6"/12" 1.414 in. (35.9 mm) - the width of the bottom of the fuse detail.


Recommended