+ All Categories
Home > Documents > Consequences of ICAO’s aviation and climate change policy Paul Peeters.pdf · Consequences of...

Consequences of ICAO’s aviation and climate change policy Paul Peeters.pdf · Consequences of...

Date post: 29-Apr-2018
Category:
Upload: hakhuong
View: 216 times
Download: 0 times
Share this document with a friend
29
Consequences of ICAO’s aviation and climate change policy Paul Peeters (1) (2) (3) (1) NHTV Centre for Sustainable Tourism & Transport, Breda, NL (www.cstt.nl; [email protected]) (2) Faculty of Technology, Policy and Management, Delft University of Technology, Delft, The Netherlands (3) Environmental Sciences, Wageningen University, Wageningen, The Netherlands Changes in tourism Vakantiebeurs Utrecht, 11 th of January 2017
Transcript

Consequences of ICAO’s aviation and climate

change policy

Paul Peeters(1) (2) (3)(1)NHTV Centre for Sustainable Tourism & Transport, Breda, NL

(www.cstt.nl; [email protected])(2)Faculty of Technology, Policy and Management, Delft University of Technology, Delft, The Netherlands

(3)Environmental Sciences, Wageningen University, Wageningen, The Netherlands

Changes in tourismVakantiebeurs

Utrecht, 11th of January 2017

2

Options to Reduce Aviation’s CO2 Emissions

• Technology and Standards• Sustainable Alternative Fuels (SAF)• Global Market Based Measures (GMBM):

– Emission charges– Emissions trading– Offsetting

3

Options to Reduce Aviation’s CO2 Emissions

• Technology and Standards CO2 standard• Sustainable Alternative Fuels (SAF)• Global Market Based Measures (GMBM):

– Emission charges– Emissions trading– CORSIA

4

CORSIA (former GMBM)• Carbon Offsetting and Reduction Scheme for

International Aviation (CORSIA)• Airlines buy carbon offsets for every

additional ton of CO2 above 2020 emissions.• Three groups of countries based on global

national income (GNI) per capita and revenue ton kms (RTKs)

• Phased introduction: – 2021: rich or high level RTK– 2026: medium plus rich incl. low level RTK– never: LDC’s (Least developed Countries)

5

CORSIA countries

6

Effects of CORSIA

7Source: ICCT policy summary CORSIA.

A problem: no offsets after 2070

0

5000

10000

15000

20000

25000

1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

CO2em

ission

s(Mton)

Reference A1_High_Def_Unl

A2_Low_Def_Unl A1_High_Inc_Unl

A2_Low_Dec_Pam Globalemissions(ParijsAgreedat2.0°C)

Globalemissions(ParijsAmbiMonat1.5°C)

8

A fuel (or CO2) standard: EU Car inspired

Zervas, E. (2010). Analysis of the CO2 emissions and of the other characteristics of the European market of new passenger cars. 1. Analysis of general data and analysis per country. Energy Policy, 38(10), 5413-5425.

Impr

ovin

g ef

ficie

ncy

9

The CO2 standard Metric Value

Reference Geometric Factor RGF:

The measured Specific Air Range (SAR):

Aircraft fuel efficiency and aviation total emissions

0

100

200

300

400

500

600

700

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1940 1960 1980 2000 2020 2040 2060

Glo

bal a

viat

ion

emis

sion

s (M

ton/

yr)

Ener

gy In

tens

ity E

I(M

J/as

k)

Year of market introduction

Long haul aircraft fuel efficiency

IPCC values

Sigmoidal regression

Additional jet airliners

Global aviation emissions

11

And being an consultant at ICAO for an NGO…

• ICAO CAEP/10 – Working Group 3 CO2 Task Group3rd Meeting

• Madrid, SpainMonday 9th to Friday 13th September 2013

12

Albritton, D., et al. (1997). Global atmospheric effects of aviation. Report of the Proceedings of the symposium held on 15-19 April 1996 in Virginia beach Virginia, USA. WashingtonPenner, J. E., Lister, D. H., Griggs, D. J., Dokken, D. J., & McFarland, M. (1999). Aviation and the global atmosphere; a special report of IPCC working groups I and III. In. Cambridge: Cambridge University Press.

Kar, R., Bonnefoy, P. A., & Hansman, R. J. (2010). Dynamics of Implementation of Mitigating Measures to Reduce CO2 Emissions from Commercial Aviation. Cambridge (MA): M. M. I. o. Technology).

Babikian, R., Lukachko, S. P., & Waitz, I. A. (2002). The historical fuel efficiency characteristics of regional aircraft from technological, operational, and cost perspectives. Journal of Air Transport Management, 8, 389-400.

Lee, J. J., Lukachko, S. P., & Waitz, I. A. (2004). Aircraft and energy use. In C. J. Cleveland (Ed.), Encyclopedia of energy (Vol. 1, pp. 29-38). Amsterdam: Elsevier.

Rutherford and Zeinali (2009) – Efficiency Trends for Newly Delivered Aircraft.

MDG. (2012). MDG trends assessment: ICAO.

The MVdb BAU trend for MV normalised to 100t

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1950 1960 1970 1980 1990 2000 2010 2020 2030

MV

norm

alis

ed fo

r 100

t

All MVdb plus >45t PA Sigm. log. 5 regression

20

0

20

40

60

80

100

120

140

1940 1960 1980 2000 2020 2040 2060

Jets (IPCC)

Sigmoidal regressionA380

A350

B787

Nolte et al. (2012): 2020Nolte et al. (2012): 2030

Peeters, P. M., & Middel, J. (2007). Historical and future development of air transport fuel efficiency. In R. Sausen, A. Blum, D. S. Lee & C. Brüning (Eds.), Proceedings of an International Conference on Transport, Atmosphere and Climate (TAC); Oxford, United Kingdom, 26th to 29th June 2006 (pp. 42-47). Oberpfaffenhoven: DLR Institut für Physic der Atmosphäre.

Trends in scenario studies• Out of over a hundred

scenarios studied not one assumes fuel efficiency to go backwards over the next decades/century.

• This means that a CO2standard set at a constant level for a longer period (6-9 years like for noise/NOx) has diminishing meaning for future aircraft.

ICCAIA. (2009). Fuel Consumption Scenarios CAEP8-WG3-IP6-xx Appendix. Arlington, VA: ICCAIA.

Trends in scenarios (cont.)

Stringency development

0

0.2

0.4

0.6

0.8

1

1.2

2015 2020 2025 2030 2035 2040 2045 2050 2055

"Stringency development"

"MV trend development"

… and then a group process started….

My PhD research: The GTTMdyn

• Results based on dynamic Global Tourism & Transport Model (GTTMdyn)

• System dynamics based (Powersim Studio 10SR5)• Scope:

– all overnight travel (leisure, business, visiting friend&relatives)

– Basic transport modes (air, car, other)– Volumes (trips, pkm), economics, CO2 emissions,

radiative forcing– Runs from 1900 up to 2100– Policies: technology, transport speed and cost, taxes,

subsidies, infrastructure investments, biofuels, behavioural parameters

24

The ICAO scenario

25

0.0

500.0

1000.0

1500.0

2000.0

2500.0

3000.0

3500.0

4000.0

4500.0

1990 2003 2017 2031 2044 2058 2072 2085 2099

CO2em

issions(M

ton)

Reference ICAO_CO2standard ICAOGMBM ICAOSAF ICAO_Basic

CO2 standard decided

• Implementation in 2020• Option 3: effective in 2026• SO’s: 7 (in production types) and 8.5 (new

types)• The European and US role: the KC46

tanker issue.

26

Some other scenarios

27

0

2000

4000

6000

8000

10000

1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090

CO2em

issions(M

ton/year)

Reference2100 WorstCaseICAOAmbition ICAOSubsidisedICAOAmbitionBudgetNeutral UltimateModalShiftUltimateMitigation EconomicMitigation

Characteristics Economic Mitigation scenario in 2100• Emissions 95.5% down• Global trips, nights and

revenues as in Reference

• Average distance -40%• HSR share to 35%

(pkm)• Aviation:

– 80% pkm of 2020– 130% revenues of 2020– fleet at 11,000 aircraft

28

Modal split trips

01 Jan 1900 01 Jan 1950 01 Jan 2000 01 Jan 2050 01 Jan 21000

50

100%

*Air *Car Other Car Air

Non-commercial use only!

Modal split distance

01 Jan 1900 01 Jan 1950 01 Jan 2000 01 Jan 2050 01 Jan 21000

50

100%

*Air *Car Other Car Air

Non-commercial use only!

Conclusions• 2016 ICAO Assembly decisions set a

framework but almost ineffective and not in line with Paris goals

• CORSIA may cost couple of € per trip• CORSIA is not reducing aviation’s emissions• Offsetting by TO’s??• CO2 standard, if effective, safes cost!• Unlimited growth of aviation cannot be

reconciled with Paris climate goals.

29


Recommended