+ All Categories
Home > Documents > Constantino Suazo

Constantino Suazo

Date post: 02-Apr-2018
Category:
Upload: angel-canales-alvarez
View: 223 times
Download: 0 times
Share this document with a friend

of 27

Transcript
  • 7/27/2019 Constantino Suazo

    1/27

    Geometallurgical Modelling

    of the Collahuasi Grinding Circuit

    for Mining Planning

    Constantino Suazo

    Alejandro Hofmann

    Marcelo Aguilar

    Yuan Tay

    Gustavo Bastidas

  • 7/27/2019 Constantino Suazo

    2/27

    Collahuasis value optimization is introduced in a

    simplified manner using the following graphics.

    The main idea behind the approach is to develop robust

    INTRODUCTION

    estimation of the point at which copper production per

    unit of time reaches a maximum.

  • 7/27/2019 Constantino Suazo

    3/27

    4000

    6000

    8000

    ughputtph

    THROUGHPUT AS A FUNCTION OF P80 TO FLOTATION

    In general throughput increases as

    P80 increases.

    0

    2000

    0 50 100 150 200 250 300 350

    P80, microns

    Th

    ro

    A robust grinding model should

    include variables such as:

    Geological Units Blend

    P80Grinding Circuit Features

    Maintenance Plan

  • 7/27/2019 Constantino Suazo

    4/27

    60

    80

    100

    very(%)

    RECOVERY AS A FUNCTION OF P80

    In general recovery increases as P80decreases.

    A robust flotation model should

    0

    20

    40

    P80, microns

    Rec

    include variables such as:Headgrade

    Geological Units Blend

    P80Flotation Circuit Features

  • 7/27/2019 Constantino Suazo

    5/27

    MAXIMIZING THE ECONOMIC VALUE OF THE COMPANY

    6000

    8000

    10000

    hput

    tph

    80

    100

    very(%)

    Flotation P80 Grinding P80

    0

    2000

    4000

    P80, microns

    Throu

    40

    60 Rec

    o

    Flotation P80Grinding P80

  • 7/27/2019 Constantino Suazo

    6/27

    60000

    80000

    100000

    Copper Production per unit of time

    MAXIMIZING COPPER PRODUCTION PER UNIT OF TIME

    Tonnes Copper per time: [Treatment (P80) x Headgrade (%) x Recovery(P80)]

    0

    20000

    40000

    P80, microns Business P80Flotation P80 Grinding P80

    80

    between high throughputand high recovery; however,

    it is neither flotation P80 nor

    grinding P80. It is the

    Business P80

  • 7/27/2019 Constantino Suazo

    7/27

    How is the TPH vs P80 curve built?

    6000

    8000

    10000

    ghput

    tph 80

    100

    overy(%)

    0

    2000

    4000

    P80, microns

    Thro

    u

    40

    60 Re

    c

  • 7/27/2019 Constantino Suazo

    8/27

    DEFINITION CRITERIA:

    Representative geological units.

    Grouping based on similar geologicalfeatures (mineralization, lithology, alteration).

    Intersection of these geological features.

    Mineralization Alteration

    G

    M

    U

    GEOMETALLURGICAL UNITS (GMU) DEFINITION

    Lithology

    GMU

    1

    2

    3

    45

    6

    %

    18

    26

    19

    257

    5

    Total 100

  • 7/27/2019 Constantino Suazo

    9/27

    DEFINITION OF GEOMETALLURGICAL UNITS

    DRILL HOLE CAMPAIGN

    PQ HQ Drill Cores

    ROSARIO DEPOSIT : 2,000 Mtonnes 0,85%Cu 250 ppm Mo

  • 7/27/2019 Constantino Suazo

    10/27

    Pitshell LOM 2009-2033

    DEFINITION OF GEOMETALLURGICAL UNITS

    DRILL HOLE CAMPAIGN

    SAMPLES SELECTION

    Spatial representivity

    within the Deposit

    Every 40 mt, a 8m length drill coresample was selected as a variability

    sample

  • 7/27/2019 Constantino Suazo

    11/27

    SAMPLE SELECTION PROTOCOL

    PQ Sample Selection every 2 m length

    20 cm length sample for generating one

    composite per GMU to JK Drop Weight Test

    To Assay

    To laboratorytest program

    Duplicate

    Duplicate

    1/2 To Assay

    1/4 To laboratory test program

    HQ Sample preparation

    .

  • 7/27/2019 Constantino Suazo

    12/27

    GMU

    Pit Shell

    CURRENT TESTED VARIABILITY SAMPLES

    PERIODVARIABILITY SAMPLES / GMU

    TOTAL

    1 2 3 4 5 62008-2011 37 30 33 35 12 17 164

    2012-2016 21 21 39 35 9 16 141

    2017-2021 16 10 14 15 6 10 71

    2022-2026 11 17 4 13 10 11 66

    2027-2031 9 10 11 7 4 7 48

    2032-2036 1 1 1 2 5

    2037-2041 2 5 2 7 16

    TOTAL 97 93 104 112 42 63 511

    1

    2

    3

    4

    5

    6

    The following laboratory tests were performed on

    each variability sample:

    SMC (DWI, A, b , Axb) Ball mill Wi SPI Specific gravity

    AbrasionCrush index Full JK DWT (on composite samples)

  • 7/27/2019 Constantino Suazo

    13/27

    SAMPLE TYPES

    1. COMMINUTION TEST ON EACH GMU: COMPOSITESComminution test

    Mass Required(Kg)

    Drill holediameter

    JK Drop Weight Test (SAG)

    (20cm lengthsamples every two

    meters of drillcore)

    PQ

    Composite Sample (Bond Work Index, SPI,Abrasion, Flotation test)

    ----- PQ y HQ

    SMC (DWI, A, b, Axb)

    SPI

    Ball mill Bond work index

    AbrasionSpecific gravity

    Flotation test

    511 currently

    tested

    HQ

    2. VARIABILITY TEST SAMPLES

  • 7/27/2019 Constantino Suazo

    14/27

    GRINDING TESTS RESULTS ON GMU COMPOSITE SAMPLES

    Sample A b A*b Ta Resistance to Impact

    Breakage

    Abrasion Range

    GMU 1 59.1 0.9 52.6 0.80 Medium Soft

    GMU 2 61.7 0.6 37.0 0.73 Hard Soft

    GMU 3 63.6 0.8 52.8 0.64 Medium Soft

    GMU 4 49.5 1.2 59.4 0.78 Moderately Soft Soft

    GMU 5 58.9 0.8 49.5 0.56 Medium Moderately Soft

    GMU 6 61.6 1.0 58.5 0.95 Moderately Soft Soft

    , ,

    GMU 1 12.4 59.2 13 0.1953

    GMU 2 13.7 97.6 9 0.1957

    GMU 3 11.5 48.0 12 0.2666

    GMU 4 12.6 58.8 15 0.4297

    GMU 5 11.8 42.2 12 0.2351

    GMU 6 10.9 36.5 7 0.1985

  • 7/27/2019 Constantino Suazo

    15/27

    GRINDING TESTS RESULTS ON GMU VARIABILITY SAMPLES

    Bond Work Index, Wi,

    kWh/t

    Average on

    composite sample

    Variability Samples

    Number of

    Samples

    Sample

    average

    Standard

    Deviation

    UGM1 11.5 28 11.9 1.9

    UGM2 13.7 28 12.9 2.4

    UGM3 11.5 51 11.3 1.9

    UGM4 12.6 46 12.4 2.3

    UGM5 11.8 17 10.9 1.9

    UGM6 10.9 25 11.5 1.5

    SMC, DWi

    Variability Samples

    Number of

    Samples

    Simple

    average

    Standard

    Deviation

    UGM1 87 5.1 1.5

    UGM2 50 6.6 2.1

    UGM3 133 5.6 1.7

    UGM4 138 6.8 2.0

    UGM5 37 4.0 1.8

    UGM6 56 4.6 1.7

  • 7/27/2019 Constantino Suazo

    16/27

    How is the TPH vs P80 curve built?

    SAG

    KW

    Ball Mill

    P (KW)

    Pebble

    Crusher

    P80

    JKSimMet Simulation

    Bond Equation

    tph

    tphT80

    SAG

    KW

    Ball Mill

    P (KW)

    Pebble

    Crusher

    P80

    JKSimMet Simulation

    Bond Equation

    tph

    tphT80

    1.- The instantaneous throughput was increased for each iteration.

    2.- SAG Mill was simulated using JKSimMet. For each iteration, the SAG

    mill power draw, total load and transfer size were recorded as shown inthe table below.

    3.- The transfer size and the instantaneous throughput were fed to the

    Bond equation to predict the P80.

    4.- The iterative process continued until one of the following restrictions

    were met:

    1) Maximum Power Draw = Installed Power

    2) Maximum SAG Mill Total Load = 30%

    TPH versus

    Line 1-2: 1* 32ft *15ft SAG Mill (8000 KW) + 1* 22ft*36ft Ball Mill (9700 KW)

    Line 3: 1* 40ft *22ft SAG Mill (21000 KW) + 2* 26ft*38ft Ball Mill (15500 KW)

    JKSimMet Simulations Bond Equation

    Iteration N tphPower

    Draw KWTransfer Size

    (T80 um)Ball Mill

    Power Draw (KW)P80 estimated from

    Bond Equation, microns

    1 2800 17605 3778 14812 100

    2 4300 18600 4737 14812 200

    3 4800 18900 4944 14812 241

    80 curve

  • 7/27/2019 Constantino Suazo

    17/27

    COLLAHUASI MODEL

    TRANSFER SIZE FORECASTING

    TRANSFER SIZE VALIDATION

    TRANSFER T80 SIZE LINE 3

    3,000

    4,000

    5,000

    6,000

    ferSize(microns)

    0

    1,000

    2,000

    600 1,600 2,600 3,600 4,600 5,600 6,600 7,600

    Instantaneous tph

    T80

    Tran

    GMU1GMU2

    GMU3

    GMU4

    GMU5

    GMU6

  • 7/27/2019 Constantino Suazo

    18/27

    Transfer Size Sampler (T80)

    TRANSFER SIZE VALIDATION

  • 7/27/2019 Constantino Suazo

    19/27

    TRANSFER SIZE SAMPLES

    Transfer Size

    60

    80

    100

    120

    vePassing(%)

    C1

    C2

    C3

    Blend of GMU fed to the plant during survey

    GMU %

    GMU 1 34

    GMU 2 10

    GMU 3 32

    GMU 4 3

    GMU 5 18

    GMU 6 3

    0

    20

    40

    1 10 100 1000 10000 100000

    microns (um)

    Cumulati

    C5 SAMPLE T80 (microns)

    C 1 4386

    C 2 4159

    C 3 3736

    C 4 3385

    C 5 4576

    AVERAGE 4048

  • 7/27/2019 Constantino Suazo

    20/27

    COLLAHUASI MODEL

    TRANSFER SIZE FORECASTING

    TRANSFER SIZE VALIDATION

    TRANSFER T80 SIZE LINE 3

    1,000

    2,000

    3,000

    4,000

    5,000

    6,000

    T80TransferSize

    (microns)

    GMU1

    GMU2

    GMU3

    Blend of GMU fed to the plant during survey

    Measured Modelled

    (Weighted average)

    T80 (mm) 4.05 4.02

    0

    600 1,600 2,600 3,600 4,600 5,600 6,600 7,600Instantaneous tph

    GMU4

    GMU5UGMU

    GMU %

    GMU 1 34

    GMU 2 10

    GMU 3 32

    GMU 4 3

    GMU 5 18

    GMU 6 3

  • 7/27/2019 Constantino Suazo

    21/27

    GENERAL TREATMENT CAPACITY MODEL FOR TOTAL GRINDING PLANT

    6,000

    8,000

    10,000

    12,000

    TPH

    0

    2,000

    4,000

    90 110 130 150 170 190 210 230 250 270 290 310 330 350 370 390

    P80 (microns)

    GMU 3 GMU 4

    GMU 5 GMU 6

  • 7/27/2019 Constantino Suazo

    22/27

    TREATMENT CAPACITY MODEL FOR MINING PLANNING

    Ton (P80) : Total processed tonnes per period.

    H: Total hours in the period

    m l i : rogramme ma n enance ours n gr n ng ne

    Hf l i : Un-programmed maintenance hours in grinding line iN l i : Number of shut-downs within the period

    H t : Transient time to achieve stable operation after shut downs

    PT tchp: Treatment losses due to Crusher Pebbles shut downs

    Hmchp: Crusher Pebbles Programmed maintenance hours

    Hfchp: Crusher Pebbles Un-programmed maintenance hours

  • 7/27/2019 Constantino Suazo

    23/27

    GRINDING MODEL FORECASTING CAPACITY

    800,000

    1,000,000

    1,200,000

    1,400,000

    1,600,000

    1,800,000

    tonnes

    TREATMENT FORECASTING 2007-2011

    Observed (tons) Modelled

    %Error = 4.5%

    -

    200,000

    400,000

    600,000

    1 611

    16

    21

    26

    31

    36

    41

    46

    51

    56

    61

    66

    71

    76

    81

    86

    91

    96

    101

    106

    111

    116

    121

    126

    131

    136

    141

    146

    15

    1

    15

    6

    161

    166

    weeks 2007-2011

  • 7/27/2019 Constantino Suazo

    24/27

    GRINDING MODEL FORECASTING CAPACITY

    800,000

    1,000,000

    1,200,000

    1,400,000

    1,600,000

    1,800,000

    40%

    50%

    60%

    70%

    80%

    90%

    100%

    UGMP

    roportion

    s

    TREATMENT FORECASTING 2007-2011

    GMU 6 GMU 5 GMU 4 GMU 3 GMU 2 GMU 1 Observed (tons) Modelled

    %Error = 4.5%

    -

    200,000

    400,000

    600,000

    0%

    10%

    20%

    30%

    1 611

    16

    21

    26

    31

    36

    41

    46

    51

    56

    61

    66

    71

    76

    81

    86

    91

    96

    101

    106

    111

    116

    121

    126

    131

    136

    141

    146

    151

    156

    161

    166

    weeks 2007-2011

    Tonnes

  • 7/27/2019 Constantino Suazo

    25/27

    R2 = 0.94

    800.000

    1.000.000

    1.200.000

    1.400.000

    1.600.000

    1.800.000

    Modelled(tons)

    SCATTER PLOT : MODELLED v/s OBSERVED

    -

    200.000

    400.000

    600.000

    -

    200.

    000

    400.

    000

    600.

    000

    800.

    000

    1.

    000.

    000

    1.

    200.

    000

    1.

    400.

    000

    1.

    600.

    000

    1.

    800.

    000

    Observed(Ton)

  • 7/27/2019 Constantino Suazo

    26/27

    CONCLUSIONS

    The grinding modelling currently used by Collahuasi Mining Company has beenpresented showing an updated validation of the predictive capacity of the total treatedore per week from September 2007-May 2011.

    The aim of developing a robust and accurate forecasting model has been satisfactorily

    achieved through the use of a combination of simulation and power-based modelling.

    The model has shown an average relative error of 4.6% as inferred from the statisticalanalyses using production data from the period September 2007 to June 2011

    The Collahuasi grinding modelling allows planning engineers to maximise grindingcircuit treatment capacities on the basis of appropriate blending of GMU and also on the

    basis of the concentrator's maintenance program.

  • 7/27/2019 Constantino Suazo

    27/27

    THE END


Recommended