+ All Categories
Home > Documents > Constructing Number Systems in Coq - uni-saarland.dehornung/BachelorThesis/finalTalk.pdf ·...

Constructing Number Systems in Coq - uni-saarland.dehornung/BachelorThesis/finalTalk.pdf ·...

Date post: 18-Sep-2018
Category:
Upload: vucong
View: 223 times
Download: 0 times
Share this document with a friend
38
Goal What we already discussed Real Numbers Conclusion Constructing Number Systems in Coq Carsten Hornung April 29, 2011 Carsten Hornung Constructing Number Systems in Coq
Transcript
Page 1: Constructing Number Systems in Coq - uni-saarland.dehornung/BachelorThesis/finalTalk.pdf · Constructing Number Systems in Coq Carsten Hornung April 29, 2011 Carsten Hornung Constructing

GoalWhat we already discussed

Real NumbersConclusion

Constructing Number Systems in Coq

Carsten Hornung

April 29, 2011

Carsten Hornung Constructing Number Systems in Coq

Page 2: Constructing Number Systems in Coq - uni-saarland.dehornung/BachelorThesis/finalTalk.pdf · Constructing Number Systems in Coq Carsten Hornung April 29, 2011 Carsten Hornung Constructing

GoalWhat we already discussed

Real NumbersConclusion

Table of contents

1 Goal

2 What we already discussedLandau’s Grundlagen der AnalysisNatural Numbers NFractionsPositive Rational NumbersDedekind Cuts

3 Real NumbersDefinitionOrderMultiplicationAdditionCompleteness

4 Conclusion

Carsten Hornung Constructing Number Systems in Coq

Page 3: Constructing Number Systems in Coq - uni-saarland.dehornung/BachelorThesis/finalTalk.pdf · Constructing Number Systems in Coq Carsten Hornung April 29, 2011 Carsten Hornung Constructing

GoalWhat we already discussed

Real NumbersConclusion

Goal of my thesis

Elegant construction of number systems in Coq

N+ → Q+ → R+ → R

Discuss the necessity of additional assumptions

Excluded middle XM - R+

Extensionality PE , FE , CE - R+

Proof irrelevance PI - R+

Strong excluded middle SXM - R

Carsten Hornung Constructing Number Systems in Coq

Page 4: Constructing Number Systems in Coq - uni-saarland.dehornung/BachelorThesis/finalTalk.pdf · Constructing Number Systems in Coq Carsten Hornung April 29, 2011 Carsten Hornung Constructing

GoalWhat we already discussed

Real NumbersConclusion

Goal of my thesis

Elegant construction of number systems in Coq

N+ → Q+ → R+ → R

Discuss the necessity of additional assumptions

Excluded middle XM - R+

Extensionality PE , FE , CE - R+

Proof irrelevance PI - R+

Strong excluded middle SXM - R

Carsten Hornung Constructing Number Systems in Coq

Page 5: Constructing Number Systems in Coq - uni-saarland.dehornung/BachelorThesis/finalTalk.pdf · Constructing Number Systems in Coq Carsten Hornung April 29, 2011 Carsten Hornung Constructing

GoalWhat we already discussed

Real NumbersConclusion

Landau’s Grundlagen der AnalysisNatural Numbers NFractionsPositive Rational NumbersDedekind Cuts

Landau’s Grundlagen der Analysis

Natural Numbers, Peano Axioms

Construction of

Fractions, Rational, Real and Complex Numbers

Basic theorems and their proofs (about 300)

Carsten Hornung Constructing Number Systems in Coq

Page 6: Constructing Number Systems in Coq - uni-saarland.dehornung/BachelorThesis/finalTalk.pdf · Constructing Number Systems in Coq Carsten Hornung April 29, 2011 Carsten Hornung Constructing

GoalWhat we already discussed

Real NumbersConclusion

Landau’s Grundlagen der AnalysisNatural Numbers NFractionsPositive Rational NumbersDedekind Cuts

Natural Numbers NN = {1, 2, 3 . . . }

Inductive nat : Type :=

| O : nat

| S : nat -> nat

O as origin or one

S as the successor function

Coercion bool → Prop, (leq : nat → nat → bool)

Carsten Hornung Constructing Number Systems in Coq

Page 7: Constructing Number Systems in Coq - uni-saarland.dehornung/BachelorThesis/finalTalk.pdf · Constructing Number Systems in Coq Carsten Hornung April 29, 2011 Carsten Hornung Constructing

GoalWhat we already discussed

Real NumbersConclusion

Landau’s Grundlagen der AnalysisNatural Numbers NFractionsPositive Rational NumbersDedekind Cuts

Fractions F

F = {x1

x2: x1, x2 ∈ N}

Definition (Equivalence of fractions)

∀x1, x2, y1, y2 ∈ N :

x1x2

∼y1y2

:⇔ x1 · y2 = y1 · x2

Definition (Order of fractions)

∀x1, x2, y1, y2 ∈ N :

x1

x2<

y1

y2:⇔ x1 · y2 < y1 · x2

Carsten Hornung Constructing Number Systems in Coq

Page 8: Constructing Number Systems in Coq - uni-saarland.dehornung/BachelorThesis/finalTalk.pdf · Constructing Number Systems in Coq Carsten Hornung April 29, 2011 Carsten Hornung Constructing

GoalWhat we already discussed

Real NumbersConclusion

Landau’s Grundlagen der AnalysisNatural Numbers NFractionsPositive Rational NumbersDedekind Cuts

Positive Rational Numbers

Definition (Positive Rational Numbers)

The (positive) Rational Numbers Q+ are defined as F modulo ∼:Q+ := F/ ∼

In other words: Let X ∈ Q+:

∀x y . x ∈ X → (y ∈ X ↔ x ∼ y)

Carsten Hornung Constructing Number Systems in Coq

Page 9: Constructing Number Systems in Coq - uni-saarland.dehornung/BachelorThesis/finalTalk.pdf · Constructing Number Systems in Coq Carsten Hornung April 29, 2011 Carsten Hornung Constructing

GoalWhat we already discussed

Real NumbersConclusion

Landau’s Grundlagen der AnalysisNatural Numbers NFractionsPositive Rational NumbersDedekind Cuts

Reducing a fraction

Let red : frac → frac be the function that reduces a fraction

Property (1)

∀x . x ∼ red x

Property (2)

∀x y . x ∼ y → red x = red y

Carsten Hornung Constructing Number Systems in Coq

Page 10: Constructing Number Systems in Coq - uni-saarland.dehornung/BachelorThesis/finalTalk.pdf · Constructing Number Systems in Coq Carsten Hornung April 29, 2011 Carsten Hornung Constructing

GoalWhat we already discussed

Real NumbersConclusion

Landau’s Grundlagen der AnalysisNatural Numbers NFractionsPositive Rational NumbersDedekind Cuts

Goal

Definition (Positive Rational Numbers)

The (positive) Rational Numbers Q+ are defined as:Q+ := {f ∈ F | red f = f }

Avoid the use of FE

The theorems about the rationals reduce to the theoremsabout fractions.

Carsten Hornung Constructing Number Systems in Coq

Page 11: Constructing Number Systems in Coq - uni-saarland.dehornung/BachelorThesis/finalTalk.pdf · Constructing Number Systems in Coq Carsten Hornung April 29, 2011 Carsten Hornung Constructing

GoalWhat we already discussed

Real NumbersConclusion

Landau’s Grundlagen der AnalysisNatural Numbers NFractionsPositive Rational NumbersDedekind Cuts

Defining red

Different possibilities to define red (gcd , first)

Prove the 2 properties of red

Property (1)

∀x . x ∼ red x

Property (2)

∀x y . x ∼ y → red x = red y

Carsten Hornung Constructing Number Systems in Coq

Page 12: Constructing Number Systems in Coq - uni-saarland.dehornung/BachelorThesis/finalTalk.pdf · Constructing Number Systems in Coq Carsten Hornung April 29, 2011 Carsten Hornung Constructing

GoalWhat we already discussed

Real NumbersConclusion

Landau’s Grundlagen der AnalysisNatural Numbers NFractionsPositive Rational NumbersDedekind Cuts

Defining red

Preliminary note

Function first : (nat → bool) → nat → nat yields to a set pand an upper bound x for the minimum the least element in p

first p x = min p

We can represent ∃y ≤ x . p y having type bool using first:

p(first p x)

Carsten Hornung Constructing Number Systems in Coq

Page 13: Constructing Number Systems in Coq - uni-saarland.dehornung/BachelorThesis/finalTalk.pdf · Constructing Number Systems in Coq Carsten Hornung April 29, 2011 Carsten Hornung Constructing

GoalWhat we already discussed

Real NumbersConclusion

Landau’s Grundlagen der AnalysisNatural Numbers NFractionsPositive Rational NumbersDedekind Cuts

Defining red

Given a fraction x = x1

x2we define

Nx := { y1 | ∃y2.x1x2

∼y1y2

}

rednumx := minNx

Dx := { y2 |x1x2

∼rednumx

y2}

reddenx := minDx

Carsten Hornung Constructing Number Systems in Coq

Page 14: Constructing Number Systems in Coq - uni-saarland.dehornung/BachelorThesis/finalTalk.pdf · Constructing Number Systems in Coq Carsten Hornung April 29, 2011 Carsten Hornung Constructing

GoalWhat we already discussed

Real NumbersConclusion

Landau’s Grundlagen der AnalysisNatural Numbers NFractionsPositive Rational NumbersDedekind Cuts

Defining red

Given a fraction x = x1

x2we define

Nx := { y1 | ∃y2.x1x2

∼y1y2

}

rednumx := min Nx

minNx := first Nx x1

Nx := { y1 | ∃y2 ≤ y1 · x2.x1x2

∼y1y2

}

Carsten Hornung Constructing Number Systems in Coq

Page 15: Constructing Number Systems in Coq - uni-saarland.dehornung/BachelorThesis/finalTalk.pdf · Constructing Number Systems in Coq Carsten Hornung April 29, 2011 Carsten Hornung Constructing

GoalWhat we already discussed

Real NumbersConclusion

Landau’s Grundlagen der AnalysisNatural Numbers NFractionsPositive Rational NumbersDedekind Cuts

Defining red

Given a fraction x = x1

x2we define

Nx := { y1 | ∃y2.x1x2

∼y1y2

}

rednumx := min Nx

minNx := first Nx x1

Nx := { y1 | ∃y2 ≤ y1 · x2.x1x2

∼y1y2

}

Carsten Hornung Constructing Number Systems in Coq

Page 16: Constructing Number Systems in Coq - uni-saarland.dehornung/BachelorThesis/finalTalk.pdf · Constructing Number Systems in Coq Carsten Hornung April 29, 2011 Carsten Hornung Constructing

GoalWhat we already discussed

Real NumbersConclusion

Landau’s Grundlagen der AnalysisNatural Numbers NFractionsPositive Rational NumbersDedekind Cuts

Defining red

Given a fraction x = x1

x2we define

Nx := { y1 | ∃y2.x1x2

∼y1y2

}

rednumx := min Nx

minNx := first Nx x1

Nx := { y1 | ∃y2 ≤ y1 · x2.x1x2

∼y1y2

}

Carsten Hornung Constructing Number Systems in Coq

Page 17: Constructing Number Systems in Coq - uni-saarland.dehornung/BachelorThesis/finalTalk.pdf · Constructing Number Systems in Coq Carsten Hornung April 29, 2011 Carsten Hornung Constructing

GoalWhat we already discussed

Real NumbersConclusion

Landau’s Grundlagen der AnalysisNatural Numbers NFractionsPositive Rational NumbersDedekind Cuts

Defining red

Given a fraction x = x1

x2we define

Dx := { y2 |x1x2

∼rednumx

y2}

reddenx := minDx

minDx := first Dx (rednumx · x2)

Carsten Hornung Constructing Number Systems in Coq

Page 18: Constructing Number Systems in Coq - uni-saarland.dehornung/BachelorThesis/finalTalk.pdf · Constructing Number Systems in Coq Carsten Hornung April 29, 2011 Carsten Hornung Constructing

GoalWhat we already discussed

Real NumbersConclusion

Landau’s Grundlagen der AnalysisNatural Numbers NFractionsPositive Rational NumbersDedekind Cuts

Defining red

Given a fraction x = x1

x2we define

Dx := { y2 |x1x2

∼rednumx

y2}

reddenx := minDx

minDx := first Dx (rednumx · x2)

Carsten Hornung Constructing Number Systems in Coq

Page 19: Constructing Number Systems in Coq - uni-saarland.dehornung/BachelorThesis/finalTalk.pdf · Constructing Number Systems in Coq Carsten Hornung April 29, 2011 Carsten Hornung Constructing

GoalWhat we already discussed

Real NumbersConclusion

Landau’s Grundlagen der AnalysisNatural Numbers NFractionsPositive Rational NumbersDedekind Cuts

Dedekind Cuts

Definition (Dedekind Cut)

A Dedekind Cut Θ is a set of positive Rational Numbers with thefollowing properties:

∃X . X ∈ Θ

∃X . X /∈ Θ

∀X Y . Y ∈ Θ → X < Y → X ∈ Θ

∀X . X ∈ Θ → ∃Y . X < Y ∧ Y ∈ Θ

Intuition: Θ = (0, θ) ∩Q where θ ∈ R+.

Carsten Hornung Constructing Number Systems in Coq

Page 20: Constructing Number Systems in Coq - uni-saarland.dehornung/BachelorThesis/finalTalk.pdf · Constructing Number Systems in Coq Carsten Hornung April 29, 2011 Carsten Hornung Constructing

GoalWhat we already discussed

Real NumbersConclusion

Landau’s Grundlagen der AnalysisNatural Numbers NFractionsPositive Rational NumbersDedekind Cuts

Dedekind Cuts

Definition (Cut Extensionality)

Two Cuts Θ and Ξ are equal if they contain the same rationalnumbers. That is,

CE := ∀Θ Ξ. (∀X . X ∈ Θ ↔ X ∈ Ξ) → Θ = Ξ

We can prove PE → FE → CE or SE → CE . Note PE → PI .

Definition (Order)

Given two Cuts Θ and Ξ we define

Θ < Ξ :⇔ Θ ( Ξ ⇔ ∃Z . Z ∈ Ξ ∧ Z /∈ Θ

Carsten Hornung Constructing Number Systems in Coq

Page 21: Constructing Number Systems in Coq - uni-saarland.dehornung/BachelorThesis/finalTalk.pdf · Constructing Number Systems in Coq Carsten Hornung April 29, 2011 Carsten Hornung Constructing

GoalWhat we already discussed

Real NumbersConclusion

DefinitionOrderMultiplicationAdditionCompleteness

Definition

Inductive real : Type :=

| Z : real

| P : cut -> real

| N : cut -> real.

Carsten Hornung Constructing Number Systems in Coq

Page 22: Constructing Number Systems in Coq - uni-saarland.dehornung/BachelorThesis/finalTalk.pdf · Constructing Number Systems in Coq Carsten Hornung April 29, 2011 Carsten Hornung Constructing

GoalWhat we already discussed

Real NumbersConclusion

DefinitionOrderMultiplicationAdditionCompleteness

Order of Real Numbers

N Θ < N Ξ := Ξ < Θ

N Θ < P Ξ := True

...

P Θ < Z := False

P Θ < P Ξ := Θ < Ξ

Carsten Hornung Constructing Number Systems in Coq

Page 23: Constructing Number Systems in Coq - uni-saarland.dehornung/BachelorThesis/finalTalk.pdf · Constructing Number Systems in Coq Carsten Hornung April 29, 2011 Carsten Hornung Constructing

GoalWhat we already discussed

Real NumbersConclusion

DefinitionOrderMultiplicationAdditionCompleteness

Multiplication

Z · η := Z

ǫ · Z := Z if ǫ 6= Z

P Θ · P Ξ := P (Θ · Ξ)

N Θ · N Ξ := P (Θ · Ξ)

N Θ · P Ξ := N (Θ · Ξ)

P Θ · N Ξ := N (Θ · Ξ)

Carsten Hornung Constructing Number Systems in Coq

Page 24: Constructing Number Systems in Coq - uni-saarland.dehornung/BachelorThesis/finalTalk.pdf · Constructing Number Systems in Coq Carsten Hornung April 29, 2011 Carsten Hornung Constructing

GoalWhat we already discussed

Real NumbersConclusion

DefinitionOrderMultiplicationAdditionCompleteness

Addition

ǫ+ Z := ǫ

Z + η := η if η 6= Z

N Θ+N Ξ := N (Θ + Ξ)

P Θ+ P Ξ := P (Θ + Ξ)

P Θ+N Ξ := Z if Θ = Ξ

P Θ+N Ξ := N (Ξ −Θ) if Θ < Ξ

P Θ+N Ξ := P (Θ− Ξ) if Θ > Ξ

N Θ+ P Ξ := P Ξ +N Θ

Carsten Hornung Constructing Number Systems in Coq

Page 25: Constructing Number Systems in Coq - uni-saarland.dehornung/BachelorThesis/finalTalk.pdf · Constructing Number Systems in Coq Carsten Hornung April 29, 2011 Carsten Hornung Constructing

GoalWhat we already discussed

Real NumbersConclusion

DefinitionOrderMultiplicationAdditionCompleteness

Addition

ǫ+ Z := ǫ

Z + η := η if η 6= Z

N Θ+N Ξ := N (Θ + Ξ)

P Θ+ P Ξ := P (Θ + Ξ)

P Θ+N Ξ := Z if Θ = Ξ

P Θ+N Ξ := N (Ξ −Θ) if Θ < Ξ

P Θ+N Ξ := P (Θ− Ξ) if Θ > Ξ

N Θ+ P Ξ := P Ξ +N Θ

Carsten Hornung Constructing Number Systems in Coq

Page 26: Constructing Number Systems in Coq - uni-saarland.dehornung/BachelorThesis/finalTalk.pdf · Constructing Number Systems in Coq Carsten Hornung April 29, 2011 Carsten Hornung Constructing

GoalWhat we already discussed

Real NumbersConclusion

DefinitionOrderMultiplicationAdditionCompleteness

Strong Excluded Middle

XM := ∀X : Prop. X ∨ ¬X

SXM := ∀X : Prop. { X }+ { ¬X }

STR := ∀Θ Ξ. { Θ < Ξ }+ { Θ = Ξ }+ { Ξ < Θ }

SXM ↔ STR

Carsten Hornung Constructing Number Systems in Coq

Page 27: Constructing Number Systems in Coq - uni-saarland.dehornung/BachelorThesis/finalTalk.pdf · Constructing Number Systems in Coq Carsten Hornung April 29, 2011 Carsten Hornung Constructing

GoalWhat we already discussed

Real NumbersConclusion

DefinitionOrderMultiplicationAdditionCompleteness

Strong Excluded Middle

XM := ∀X : Prop. X ∨ ¬X

SXM := ∀X : Prop. { X }+ { ¬X }

STR := ∀Θ Ξ. { Θ < Ξ }+ { Θ = Ξ }+ { Ξ < Θ }

SXM ↔ STR

Carsten Hornung Constructing Number Systems in Coq

Page 28: Constructing Number Systems in Coq - uni-saarland.dehornung/BachelorThesis/finalTalk.pdf · Constructing Number Systems in Coq Carsten Hornung April 29, 2011 Carsten Hornung Constructing

GoalWhat we already discussed

Real NumbersConclusion

DefinitionOrderMultiplicationAdditionCompleteness

Completeness

Given two subsets P and Q of the real numbers we define

P < Q := ∀ǫ η. ǫ ∈ P → η ∈ Q → ǫ < η

P 6= ∅ := ∃ǫ. ǫ ∈ P

P ∪ Q = R := ∀ǫ. ǫ ∈ P ∨ ǫ ∈ Q

ub P η := ∀ǫ ∈ P . ǫ ≤ η

Carsten Hornung Constructing Number Systems in Coq

Page 29: Constructing Number Systems in Coq - uni-saarland.dehornung/BachelorThesis/finalTalk.pdf · Constructing Number Systems in Coq Carsten Hornung April 29, 2011 Carsten Hornung Constructing

GoalWhat we already discussed

Real NumbersConclusion

DefinitionOrderMultiplicationAdditionCompleteness

Completeness

Theorem (Supremum Property)

Let P be a nonempty subset of the real numbers that is boundedfrom above. That is,

P 6= ∅ and ∃η. ub P η

Then there is a (unique) least upper bound ζ. This is a realnumber ζ with the following property:

ub P ζ and ∀η. ub P η → ζ ≤ η

Carsten Hornung Constructing Number Systems in Coq

Page 30: Constructing Number Systems in Coq - uni-saarland.dehornung/BachelorThesis/finalTalk.pdf · Constructing Number Systems in Coq Carsten Hornung April 29, 2011 Carsten Hornung Constructing

GoalWhat we already discussed

Real NumbersConclusion

DefinitionOrderMultiplicationAdditionCompleteness

Completeness

Theorem (Dedekind’s Fundamental Theorem)

Let P and Q be given with P < Q, P 6= ∅, Q 6= ∅, andP ∪ Q = R. Then there is a unique ζ such that

∀ǫ.(ǫ < ζ → ǫ ∈ P) ∧ (ζ < ǫ → ǫ ∈ Q)

Carsten Hornung Constructing Number Systems in Coq

Page 31: Constructing Number Systems in Coq - uni-saarland.dehornung/BachelorThesis/finalTalk.pdf · Constructing Number Systems in Coq Carsten Hornung April 29, 2011 Carsten Hornung Constructing

GoalWhat we already discussed

Real NumbersConclusion

DefinitionOrderMultiplicationAdditionCompleteness

Completeness

Theorem (Fundamental Theorem)

Let P and Q be given with P < Q, P 6= ∅ and Q 6= ∅. Then thereis a ζ such that

∀ǫ.(ǫ < ζ → ǫ /∈ Q) ∧ (ζ < ǫ → ǫ /∈ P)

If P ∪ Q = R, we can prove Dedekind’s Fundamental Theorem.

Carsten Hornung Constructing Number Systems in Coq

Page 32: Constructing Number Systems in Coq - uni-saarland.dehornung/BachelorThesis/finalTalk.pdf · Constructing Number Systems in Coq Carsten Hornung April 29, 2011 Carsten Hornung Constructing

GoalWhat we already discussed

Real NumbersConclusion

DefinitionOrderMultiplicationAdditionCompleteness

Completeness

Let P and Q be given with P < Q, P 6= ∅ and Q 6= ∅.

If neither P contains a positive number nor Q contains anegative number, we set ζ to Z.

If both P contains a positive number and Q contains anegative number, we have a contradiction.

If P contains a positive number, we construct the cut

Θ = {X | ∃ǫ ∈ P . X < ǫ}

and set ζ to P Θ. (Analogous if Q contains a negativenumber.)

Carsten Hornung Constructing Number Systems in Coq

Page 33: Constructing Number Systems in Coq - uni-saarland.dehornung/BachelorThesis/finalTalk.pdf · Constructing Number Systems in Coq Carsten Hornung April 29, 2011 Carsten Hornung Constructing

GoalWhat we already discussed

Real NumbersConclusion

DefinitionOrderMultiplicationAdditionCompleteness

Completeness

Let P and Q be given with P < Q, P 6= ∅ and Q 6= ∅.

If neither P contains a positive number nor Q contains anegative number, we set ζ to Z.

If both P contains a positive number and Q contains anegative number, we have a contradiction.

If P contains a positive number, we construct the cut

Θ = {X | ∃ǫ ∈ P . X < ǫ}

and set ζ to P Θ. (Analogous if Q contains a negativenumber.)

Carsten Hornung Constructing Number Systems in Coq

Page 34: Constructing Number Systems in Coq - uni-saarland.dehornung/BachelorThesis/finalTalk.pdf · Constructing Number Systems in Coq Carsten Hornung April 29, 2011 Carsten Hornung Constructing

GoalWhat we already discussed

Real NumbersConclusion

DefinitionOrderMultiplicationAdditionCompleteness

Completeness

Let P and Q be given with P < Q, P 6= ∅ and Q 6= ∅.

If neither P contains a positive number nor Q contains anegative number, we set ζ to Z.

If both P contains a positive number and Q contains anegative number, we have a contradiction.

If P contains a positive number, we construct the cut

Θ = {X | ∃ǫ ∈ P . X < ǫ}

and set ζ to P Θ. (Analogous if Q contains a negativenumber.)

Carsten Hornung Constructing Number Systems in Coq

Page 35: Constructing Number Systems in Coq - uni-saarland.dehornung/BachelorThesis/finalTalk.pdf · Constructing Number Systems in Coq Carsten Hornung April 29, 2011 Carsten Hornung Constructing

GoalWhat we already discussed

Real NumbersConclusion

DefinitionOrderMultiplicationAdditionCompleteness

Completeness

Landau defines Θ in a different way.

Define Θ′ to be the cut

Θ′ = {X | X ∈ P ∧ ∃ǫ ∈ P . X < ǫ}

If P ∪ Q = R we have Θ = Θ′

Carsten Hornung Constructing Number Systems in Coq

Page 36: Constructing Number Systems in Coq - uni-saarland.dehornung/BachelorThesis/finalTalk.pdf · Constructing Number Systems in Coq Carsten Hornung April 29, 2011 Carsten Hornung Constructing

GoalWhat we already discussed

Real NumbersConclusion

Differences to Landau

Proof of Peano axioms

Definition of < independent from +

Function first for Well-Ordering Principle

Definition of Rational Numbers using red

Third property of cuts

More general formulation of Dedekind’s FundamentalTheorem

Carsten Hornung Constructing Number Systems in Coq

Page 37: Constructing Number Systems in Coq - uni-saarland.dehornung/BachelorThesis/finalTalk.pdf · Constructing Number Systems in Coq Carsten Hornung April 29, 2011 Carsten Hornung Constructing

GoalWhat we already discussed

Real NumbersConclusion

Additional Assumptions

Excluded middle

Well-Ordering Principle WP ↔ XMTrichotomy for cuts TR ↔ XM

Other assumptions

Cut extensionality CE , SE → CE or PE → FE → CEStrong excluded middle or strong trichotomy for cutsSXM ↔ STR

Carsten Hornung Constructing Number Systems in Coq

Page 38: Constructing Number Systems in Coq - uni-saarland.dehornung/BachelorThesis/finalTalk.pdf · Constructing Number Systems in Coq Carsten Hornung April 29, 2011 Carsten Hornung Constructing

GoalWhat we already discussed

Real NumbersConclusion

References

E. Landau : Grundlagen der Analysis (1930)

G. Smolka, C. E. Brown : Introduction to Computational

Logic (Lecture Notes SS 2010)

Y. Bertot, P. Casteran : Interactive Theorem Proving and

Program Development: Coq’Art: The Calculus of

Inductive Constructions (2004)

J. Harrison : Theorem Proving with the Real Numbers

(1998)

Carsten Hornung Constructing Number Systems in Coq


Recommended