+ All Categories
Home > Documents > Continuous Renal Replacement Therapy

Continuous Renal Replacement Therapy

Date post: 02-Feb-2016
Category:
Upload: eytan
View: 97 times
Download: 0 times
Share this document with a friend
Description:
Continuous Renal Replacement Therapy. Annual Refresher Course in CRITICAL CARE McGill Course Director: Peter Goldberg, MD Didier Payen CC Division & Dept of Anesthesiology 13/4/2000. Content. Physical principles Definitions Techniques Clinical issues - PowerPoint PPT Presentation
Popular Tags:
51
Continuous Renal Replacement Therapy Annual Refresher Course in CRITICAL CARE McGill Course Director: Peter Goldberg, MD Didier Payen CC Division & Dept of Anesthesiology 13/4/2000
Transcript
Page 1: Continuous Renal Replacement Therapy

Continuous Renal Replacement Therapy

Annual Refresher Course in CRITICAL CARE

McGillCourse Director: Peter Goldberg, MD

Didier Payen

CC Division & Dept of Anesthesiology

13/4/2000

Page 2: Continuous Renal Replacement Therapy

Content

• Physical principles

• Definitions

• Techniques

• Clinical issues

• Supportive therapy or active therapy?

– Sepsis an example

– Why?

– How?

– For what goal?

Page 3: Continuous Renal Replacement Therapy

PHYSICAL PRINCIPLES& DEFINITIONS

Page 4: Continuous Renal Replacement Therapy

<30 000 Da

>30 000 Da<65 000 Da

>65000 Da

PTM

Clearance =(C uf/C I) * Quf

Quf = C H2O x S x Ptm

All molecules lower thanPore diam cross the Mbne

CONVECTION

Page 5: Continuous Renal Replacement Therapy

<30 000 Da

>30 000 Da<65 000 Da

>65000 Da

PTM

Clearance =(C uf/C I) * Quf

Quf = C H2O x S x Ptm

All molecules lower thanPore diam cross the Mbne

CONVECTION

Page 6: Continuous Renal Replacement Therapy

<30 000 Da

>30 000 Da<65 000 Da

>65000 Da

PTM

Clearance =(C uf/C I) * Quf

Quf = C H2O x S x Ptm

All molecules lower thanPore diam cross the Mbne

CONVECTION

Page 7: Continuous Renal Replacement Therapy

<30 000 Da

>30 000 Da<65 000 Da

>65000 Da

PTM

Clearance =(C uf/C I) * Quf

Quf = C H2O x S x Ptm

All molecules lower thanPore diam cross the Mbne

CONVECTION

Page 8: Continuous Renal Replacement Therapy

<30 000 Da

>30 000 Da<65 000 Da

>65000 Da

Cd <<< Csang

Pdialysat = P blood

Progressive equilibriumof the [plasma] and [dial]

ONLY SMALL MOLECULESCROSS THE MBNE

DIFFUSION

Page 9: Continuous Renal Replacement Therapy

<30 000 Da

>30 000 Da<65 000 Da

>65000 Da

Cd <<< Csang

Progressive equilibriumof the [plasma] and [dial]

ONLY SMALL MOLECULESCROSS THE MBNE

DIFFUSION

Pdialysat = P blood

Page 10: Continuous Renal Replacement Therapy

<30 000 Da

>30 000 Da<65 000 Da

>65000 Da

Cd << Csang

Progressive equilibriumof the [plasma] and [dial]

ONLY SMALL MOLECULESCROSS THE MBNE

DIFFUSION

Pdialysat = P blood

Page 11: Continuous Renal Replacement Therapy

<30 000 Da

>30 000 Da<65 000 Da

>65000 Da

Cd < Csang

Progressive equilibriumof the [plasma] and [dial]

ONLY SMALL MOLECULESCROSS THE MBNE

DIFFUSION

Pdialysat = P blood

Page 12: Continuous Renal Replacement Therapy

<30 000 Da

>30 000 Da<65 000 Da

>65000 Da

Filtration

substitution

Blood

FILTRATION RATE0 TO 2 L/Hr

SCUF& CVVH

Page 13: Continuous Renal Replacement Therapy

DEFINITIONSBELLOMO et al. Am J Kidney Dis, 28, (Suppl 3) 1996

• SCUFSCUF: Use only for fluid control in overhydrated status

• CVVHCVVH:The ultrafiltrate produced during membrane transit is replaced in part or completely to achieve blood purification and volume control. UF is in excess if weight loss is mandatory: clearance of solutes equals UF

• CVVHDCVVHD: continuous hemodialysis. + countercurrent flow of dialysis solution. Both diffusion & convection Efficiency is limited to small molecules (low Perm filter)

• CVVHDFCVVHDF: same. Both diffusion & convection but higher dialysate flow (High Perm filter)

Page 14: Continuous Renal Replacement Therapy

SCUFSlow ContinuousUltrafiltration

Maximum Pt. Fluid removal rate = 2000 ml/h

Therapy options

PRISMA

S

Access

Return

Effluent

Page 15: Continuous Renal Replacement Therapy

CVVHContinuousVeno-Venous Hemofiltration

Maximum Pt. Fluid removal rate = 1000 ml/h

Therapy options

PRISMA

S

Access

Return

Effluent

Replacement

Page 16: Continuous Renal Replacement Therapy

CVVHDContinuousVeno-VenousHemodialysis

Maximum Pt. fluid removal rate = 1000 ml/h

Therapy Options

PRISMA

S

Access

Return

Effluent

Dialysate

Page 17: Continuous Renal Replacement Therapy

CVVHDFContinuousVeno-VenousHemodiafiltration

Maximum Pt. Fluid removal rate = 1000 ml/h

Therapy options

Replacement

PRISMA

S

Access

Return

Effluent

Dialysate

Page 18: Continuous Renal Replacement Therapy

EFFICIENCY

Page 19: Continuous Renal Replacement Therapy

Table 2.

Multiflow 100 Pre-set

Solute K under various conditions

K delivered to the patient

QdQuf

(mL/h)

(mL/h) 0 1000 2000

0 15.3 ± 0.7 28.7 ± 0.7

15.0 ± 0.8 26.3 ± 1.114.8 ± 0.3 25.5 ± 1.0

14.4 ± 0.6 24.4 ± 1.55.6 ± 2.2 15.2 ± 1.6

500 8.6 ± 0.2 23.4 ± 0.4 35.7 ± 1.0

8.7 ± 0.3 22.5 ± 0.7 33.8 ± 1.18.4 ± 0.2 21.9 ± 0.5 32.7 ± 1.2

8.4 ± 0.2 21.5 ± 1.6 34.5 ± 2.54.8 ± 0.5 11.8 ± 1.7 16.7 ± 2.3

1000 16.8 ± 0.5 31.7 ± 0.9 43.3 ± 1.7

17.1 ± 0.4 29.9 ± 1.0 40.0 ± 3.316.6 ± 0.5 28.9 ± 1.1 38.4 ± 3.4

16.9 ± 0.7 28.6 ± 1.6 37.9 ± 2.39.1 ± 1.0 14.5 ± 1.6 19.2 ± 1.2

1500 26.1 ± 0.5 38.6 ± 1.5 49.2 ± 1.3

25.5 ± 1.1 36.4 ± 1.3 44.7 ± 1.224.6 ± 0.6 34.3 ± 1.1 42.0 ± 1.2

24.8 ± 1.0 33.9 ± 1.4 39.5 ± 4.911.3 ± 0.9 15.4 ± 1.2 20.5 ± 3.2

2000 34.4 ± 1.0 46.6 ± 1.3 54.7 ± 2.1

33.3 ± 1.6 42.9 ± 2.7 49.2 ± 3.331.4 ± 1.2 39.7 ± 1.4 46.4 ± 3.2

32.0 ± 1.9 39.9 ± 2.5 43.9 ± 3.912.4 ± 1.1 15.2 ± 2.0 20.0 ± 3.5

2500 42.4 ± 1.0 52.2 ± 0.5 60.6 ± 2.6

40.5 ± 1.6 47.8 ± 1.7 54.2 ± 3.137.4 ± 1.6 43.9 ± 2.0 50.9 ± 5.3

38.8 ± 2.5 43.2 ± 3.8 53.5 ± 3.114.6 ± 1.3 16.1 ± 1.8 20.5 ± 4.3

K (mL/min); Solutes: Urea

Mean Ht: 0.287 ± 0.027 Creatinine

Mean serum tot. prot.: 45.6 ± 5.9 Urates

(n = 5 patients) PO4

β2 -M

Page 20: Continuous Renal Replacement Therapy

CLINICAL ISSUES

Page 21: Continuous Renal Replacement Therapy

CLINICAL INDICATIONS• IHD vs CRRT: no randomized trials but inferiority of IHD

manisfests itself at many levels.– Hemodynamic stability Hypotension, volume control

– Uremic control > with CRRT than IHD (Clark et al JASNephrol, 1994)

– Metabolic control: metabolic acidosis; phosphate levels

– In ICU patients

» CRRT prevents the surge in ICP

» Cardiac disease restore dry body weight, improve V flow

» Cardiac surgical patients optimization between function and preload

» Sepsis and inflammatory patients

Page 22: Continuous Renal Replacement Therapy

CRRT AND INFLAMMATIONSepsis an example

Page 23: Continuous Renal Replacement Therapy

HYPOTHESIS FOR MODS PREVENTION

HYPOTHESIS FOR MODS PREVENTION

• Control of tissue edema

• EDTX adsorption

• Immunomodulation

Page 24: Continuous Renal Replacement Therapy

CAVH after Staph Aureus in swine(Lee PA et al; Crit Care Med 1993; 21: 914-924)

CAVH after Staph Aureus in swine(Lee PA et al; Crit Care Med 1993; 21: 914-924)

• Goals: 1) CAVH impact on morbidity and mortality

2) If UF contains mediators

• Design: prospective, randomized, controlled (n=65)

• Staph aureus (8 x 10 9 CFU) over 1 hr

• Part 1: Group 1: 5.5% plasma filtration fraction

Group 2: 16.6% " " " " "

Group 3: 33.4%

Control clean UF

• Part 2: UFiltrate concentrate from each group infused into healthy pigs

Page 25: Continuous Renal Replacement Therapy

CAVH after Staph Aureus in swine(Lee PA et al; Crit Care Med 1993; 21: 914-924)

CAVH after Staph Aureus in swine(Lee PA et al; Crit Care Med 1993; 21: 914-924)

Measurements and results:

• In G 1, 2, 3, the survival rate increased in relation

to FF in comparison with control

• UF concentrate injection led to animal death

similarly to Staph aureus in control group.

• Conclusion: CAVH-improved survival rate might

be related to mediators removal

Page 26: Continuous Renal Replacement Therapy

EDTX & HEMOFILTRATION :In vivo experimental studies (1)EDTX & HEMOFILTRATION :

In vivo experimental studies (1)

• Stein et al, Intens. Care Med., 1991

– pig model, LPS injection

– membrane : polysulfone, zero balanced HF

– decrease in PVR, EVLW

==> other mechanisms than water balance

Page 27: Continuous Renal Replacement Therapy

EDTX & HEMOFILTRATION :In vivo experimental studies (2)EDTX & HEMOFILTRATION :

In vivo experimental studies (2)

• Gomez et al, Anesthesiology, 1990

– dog model, alive E coli ; in vitro study

– cuprophane membrane

– CHF reversed myocardial depression

– septic sera depressed ex vivo myocardial contraction, an

effect which is prevented by CHF ==> removal of cardio-

depressive substances

Page 28: Continuous Renal Replacement Therapy

EDTX & HEMOFILTRATION :EDTX & HEMOFILTRATION :In vivo experimental studiesIn vivo experimental studies

EDTX & HEMOFILTRATION :EDTX & HEMOFILTRATION :In vivo experimental studiesIn vivo experimental studies

Grootendorst et al, J. Crit. Care, 1993

- Endotoxin shock in pigs

- Polysulfone membrane

- Ultrafiltrate contains filtrable factors that increase Pap and depress

cardiac performance in healthy animals

Mateo et al, Am. Resp. J. Crit. Care Med., 1993, 1994

- Rabbit endotoxinic shock model

- AN 69 adapted circuit; Hemo-adsorption only; pre-EDTX injection

- No resuscitation; Ao BF, Pas, HR,

- EDTX clearance; TNF; ex vivo vascular reactivity.

Page 29: Continuous Renal Replacement Therapy

From Mateo et al AJR&CCM 1996 (Abst)From Mateo et al AJR&CCM 1996 (Abst)

1801501209060300

50

60

70

80

90

100

110

LPS

HAD + LPS

Aortic Blood Flow Velocity (%)

TIME (min)

* ** * *

*

1801501209060300

50

60

70

80

90

100

110

LPS

HAD + LPS

Mean Arterial Pressure (%)

TIME (min)

Page 30: Continuous Renal Replacement Therapy

From Mateo et al AJR&CCM 1996 (Abst)From Mateo et al AJR&CCM 1996 (Abst)

0 30 60 120 1800

1000

2000

3000

4000

5000

6000

LPS + HAD

LPS

TIME (min)

TNF- levels

*

*

**

* p < 0,05

( U.I / ML)

6000

8000

10000

LPSLPS + HAD

(E.U / ML)

0 10 60 120 1800

2000

4000

TIME (min)

* *

3000

1000

EDTX levels

Page 31: Continuous Renal Replacement Therapy

From From Mateo et al Mateo et al AJ R&CCM 1996 (Abst)AJ R&CCM 1996 (Abst)From From Mateo et al Mateo et al AJ R&CCM 1996 (Abst)AJ R&CCM 1996 (Abst)

0

20

40

60

80

100

120

140

160

180

1

Co ntro l

EDTX

EDTX + HAD

10-9M 10-8M 10-7M 10-6M 10-5M

% of KCl

*

*

*

NE

Page 32: Continuous Renal Replacement Therapy

– CLP model of acute peritonitis in pig

– 24 hrs of CAVH vs no CAVH

– ex vivo test of PMN phagocytosis for Candida (T0, T24, 48, 72H)

– hemodynamic, gazometric & biologic data

CAVH ATTENUATES PMN PHAGOCYTOSISCAVH ATTENUATES PMN PHAGOCYTOSIS

IN PORCINE MODEL OFIN PORCINE MODEL OF

PRITONITISPRITONITISA. DiScipio et al, Am J Surg. 173; 1997

Page 33: Continuous Renal Replacement Therapy

CAVH ATTENUATES PMN PHAGOCYTOSIS IN PORCINE MODEL OF PERITONITIS (A. DiScipio

et al, Am J Surg. 173; 1997)

CAVH ATTENUATES PMN PHAGOCYTOSIS IN PORCINE MODEL OF PERITONITIS (A. DiScipio

et al, Am J Surg. 173; 1997)

• RESULTS

– No difference in hemodynamic & gasometric parameters between CAVH & control

– CAVH decreases intensity of PMN phagocytosis (opsonisation) and PMN hyperactivity until the early phase of sepsis

Phagocytosis Data

Baseline Day 1 Day 2 Day 3

Phagocytosis Rates* CAVH 59 ± 9.7 52 ± 9.0 68 ± 11.8 65 ± 8.7 No CAVH 54 ± 10.1 79 ± 7.9$ 75 ± 9.0 62 ± 13.8Change in PhagocytosisRateFrom Baseline CAVH No CAVH

0 -6 ± 3.9 10 ± 5.2 8 ± 4.9 0 25 ± 3.2= 19 ± 9.3 12 ± 15.5

Page 34: Continuous Renal Replacement Therapy

Extensive activation of inflammatory responses

mediators• vasoactive• cardiodepressant

organ dysfunction

Supportive Therapies

Symptomatic Symptomatic+

Mediator Regulation (HF)

- Removal of inflammatory mediators- Fluid balance control- Metabolic status control

CHANGE IN MORTALITY ?

PEEP ventilationHemodialysis

persistant SIRS

MODS

Page 35: Continuous Renal Replacement Therapy

CONVECTIVE ELIMINATION OF CONVECTIVE ELIMINATION OF CYTOKINESCYTOKINES

CONVECTIVE ELIMINATION OF CONVECTIVE ELIMINATION OF CYTOKINESCYTOKINES

The concept of “the tip of the iceberg” (JM Cavaillon) :• Plasma elevation of cytokines ==> saturation of :

• Origin cells• Target cells• Extracellular compartment

• Plasma removal may have then small effect in term of tissue/cell levels of cytokines

Page 36: Continuous Renal Replacement Therapy

CONVECTIVE ELIMINATION OF CONVECTIVE ELIMINATION OF CYTOKINESCYTOKINES

CONVECTIVE ELIMINATION OF CONVECTIVE ELIMINATION OF CYTOKINESCYTOKINES

• No drop in serum levels of IL except IL-1

• More rapid production than elimination

• Shift of IL from the tissues to the serum

• High volume hemofiltration ?

• Coupled HVHF + HADsorption ?

Page 37: Continuous Renal Replacement Therapy

Elimination of inflammatory mediators by hemofiltrationmediator elimination change study ref.

Bacterial toxins :Endotoxin Adsorption Ex-vivo, An. Vanholder, Matéo

Lipid A Adsorption ? Ex-vivo Dinarello

Anaphylatoxins :

C3a Filtration Human Hoffmann

C5a Adsorption Human Hoffmann

Arachidonic acid derivatives :TxB2 Filtration Animal Heidemann

6-keto PGF2 Filtration An. Hum Heideman,Staubach

Cytokines :

TNF no = Human

IL-1b Filtration = Human Bellomo, Hoffmann

IL-6 no = Human Hoffmann,Millar

IL-8 Filtration ? Human Hoffmann,Millar

Myocardial depressing factor : Filtration ? An. Hum. Coraim,Gomez,Hallström

Page 38: Continuous Renal Replacement Therapy

High volume HF in severe sepsisHigh volume HF in severe sepsis(P Honoré et al . Hop St Pierre) (in press CCM)(P Honoré et al . Hop St Pierre) (in press CCM)

High volume HF in severe sepsisHigh volume HF in severe sepsis(P Honoré et al . Hop St Pierre) (in press CCM)(P Honoré et al . Hop St Pierre) (in press CCM)

• 20 Pts in refractory shock (PA<55mmHG, + Adre/Nor + Metacidosis <7.15; SIRS 3 to 4; +/- renal failure)

• Technique: HVHF, PAN; 4 hrs at 35 l/hr; Post-dilution technique followed by LVHF (2 l/hr).

• Goals: Responders ==> + 2 hrs increase about 50% for CO + 25% SvO2; + 4 hrs pHa > 7.3; Reduction 50%vasoactive drugs.

• Results: 11 responders; 9 survivors; 1 died from MOSF and 1 from Nosoc Infect; the non responders died at 80%

Page 39: Continuous Renal Replacement Therapy

Adequate biocompatibility– blood - membrane interaction

– induction of chronic inflammatory reaction

Substrate losses (glucose, amino-acids, ...)Hormones lossesHeat lossCatheter-associated complications/infectionsCostsNeed for prolonged anticoagulation

coating systems

How to limit adverse effects ?How to limit adverse effects ?

Page 40: Continuous Renal Replacement Therapy

CONTROL STUDIES

• Substances involved ?

• Mechanisms of the inflammatory reaction ?

• Before or after renal failure appearance?

• End-points : mortality ? Organ failure ? Cost/benefit ?

design?????

Page 41: Continuous Renal Replacement Therapy

PERSPECTIVESPERSPECTIVES

• Enhanced adsorption

• Definitions of cut-offs for specific molecules

• Selective or non-selective removal

• Anticoagulation coating systems

Materials

Page 42: Continuous Renal Replacement Therapy
Page 43: Continuous Renal Replacement Therapy

"Facteur Dépresseur Myocardique"L'ultrafiltrat des animaux septiques

provoque :

• in vivo un état de choc ou des effets comparables à l'endotoxinémie.

• in vitro ou ex vivo une dépression de la contraction des fibres myocardiques isolées

• Au cours de l'insuffisance cardiaque ; Coraim et al, 1995

• Au cours du choc septique ; Parillo et al , 1985; Gomez et al, 1990; Grootendorst et a l, 1993; Lee et al, 1993

• Amélioration de la survie proportinnelle à la fraction filtrée, Lee et al, 1993

Page 44: Continuous Renal Replacement Therapy

Systemic reactionSIRS (pro-inflammatory)

CARS (anti-inflammatory)

MARS (mixed)

Local pro-inflammatory

response

Local anti-inflammatory

response

Systemic spillover ofpro-inflammatory mediators

Systemic spillover ofanti-inflammatory mediators

Initial insult(bacterial, viral,traumatic, thermal)

C

Cardiovascularcompromise

(shock)SIRS

predominates

H

Homeo-stasis

CARS andSIRS

balanced

A

Apoptosis (cell death)Death with

minimalinflammation

O

Organdysfunction

SIRSpredominates

S

Suppressionof the

immunesystemCARS

predominates

from Bone

CRRT????

Page 45: Continuous Renal Replacement Therapy

HemodiafiltrationThe use of hemodialysis, hemofiltration and ultrafiltration

Page 46: Continuous Renal Replacement Therapy

DialysisThe use of diffusion (dialysis fluid) to achieve clerance

Page 47: Continuous Renal Replacement Therapy

Slow Continuous UltrafiltrationThe removal of plasma water (ultrafiltrate)

using pressures

Page 48: Continuous Renal Replacement Therapy

Hemofiltration Use of convection (solute drag)

to remove small and middle molecules

Page 49: Continuous Renal Replacement Therapy

Table 1.

Multiflow 60 Pre-set

Solute K under various conditions

K delivered to the patient

QdQuf

(mL/h)

(mL/h) 0 1000 2000

0 15.5 ± 0.3 28.5 ± 0.8

14.8 ± 0.2 26.3 ± 1.114.9 ± 0.1 26.2 ± 0.9

15.6 ± 0.1 27.2 ± 0.87.7 ± 1.6 17.4 ± 0.7

500 8.6 ± 0.2 23.2 ± 1.0 35.1 ± 1.0

8.5 ± 0.3 21.9 ± 0.4 31.9 ± 1.68.5 ± 0.1 21.8 ± 0.7 31.6 ± 1.1

8.9 ± 0.1 22.4 ± 0.7 32.5 ± 1.45.3 ± 0.7 9.3 ± 1.3 15.0 ± 1.1

1000 17.3 ± 0.2 29.8 ± 1.6 40.9 ± 0.4

16.6 ± 0.8 28.0 ± 0.7 36.5 ± 2.116.3 ± 0.3 27.1 ± 1.3 35.1 ± 1.3

17.0 ± 0.3 28.1 ± 1.3 36.2 ± 1.27.6 ± 0.7 10.7 ± 1.5 15.0 ± 1.1

1500 25.6 ± 0.6 37.8 ± 1.8 47.9 ± 2.0

23.7 ± 1.2 33.7 ± 2.0 40.7 ± 2.222.7 ± 0.5 31.8 ± 1.5 37.4 ± 2.2

23.9 ± 0.7 33.2 ± 1.5 39.7 ± 2.48.1 ± 1.1 11.8 ± 1.8 14.6 ± 0.5

2000 33.1 ± 0.9 43.8 ± 2.0 51.6 ± 1.8

30.1 ± 1.5 37.9 ± 1.4 43.3 ± 2.927.4 ± 0.8 35.0 ± 2.2 40.6 ± 2.2

29.2 ± 1.3 36.7 ± 2.2 41.8 ± 1.58.3 ± 0.8 11.6 ± 1.3 15.4 ± 1.0

2500 40.0 ± 0.4 49.0 ± 1.9 56.0 ± 1.4

35.1 ± 1.4 41.8 ± 1.4 46.8 ± 2.531.7 ± 0.7 37.6 ± 2.9 42.5 ± 1.8

33.5 ± 1.6 40.9 ± 2.9 44.9 ± 0.88.0 ± 0.7 11.7 ± 0.5 14.0 ± 1.1

K (mL/min); Solutes: Urea

Mean Ht: 0.273 ± 0.016 Creatinine

Mean serum tot. prot.: 55.2 ± 8.4 Urates

(n = 5 patients) PO4

β2 -M

Page 50: Continuous Renal Replacement Therapy
Page 51: Continuous Renal Replacement Therapy

Recommended