+ All Categories
Home > Documents > CONTRIBUTION OF ION MOBILITY FOR STRUCTURAL … · 2015-09-21 · o DAN isomers – Crown ether ......

CONTRIBUTION OF ION MOBILITY FOR STRUCTURAL … · 2015-09-21 · o DAN isomers – Crown ether ......

Date post: 08-Apr-2019
Category:
Upload: doanminh
View: 217 times
Download: 0 times
Share this document with a friend
20
CONTRIBUTION OF ION MOBILITY FOR STRUCTURAL ANALYSIS AND ANALYTICAL CHEMISTRY: THE USE OF PROBE LIGANDS AND SELECTIVE IMS SHIFT REAGENTS C. Kune , J. Far, C. Delvaux, G. Eppe, E. De Pauw 1
Transcript

CONTRIBUTION OF ION MOBILITY FOR STRUCTURAL ANALYSIS AND ANALYTICAL CHEMISTRY:

THE USE OF PROBE LIGANDS AND SELECTIVE IMS SHIFT REAGENTS

C. Kune, J. Far, C. Delvaux, G. Eppe, E. De Pauw

1

Plan:

1/ Concept of specific coordination complex formation with probe ligands

2/ Specificity depending on the presence of chemical function

• Proline/Valine model

• Contaminant of Selenomethionine – intramolecular oxidation

3/ Specificity depending on the steric hindrance o DAN isomers – Crown ether model

o Isomers ratio determination of two isobaric selenium compounds

4/ Specificity depending on the polarity – differential induce folding

o DAN isomers – Cyclodextrin model

2

Plan:

1/ Concept of specific coordination complex formation

2/ Specificity depending on the presence of chemical function

• Proline/Valine model

• Contaminant of Selenomethionine – intramolecular oxidation

3/ Specificity depending on the steric hindrance o DAN isomers – Crown ether model

o Isomers ratio determination of two isobaric selenium compounds

4/ Specificity depending on the polarity – differential induce folding

o DAN isomers – Cyclodextrin model

3

Structural elucidation

• Structural elucidation by ion mobility mass spectrometry (IMMS):

• Structural elucidation by computational chemistry

Not optimized

3D structure

Structure 1

Structure 2

Structure 3

CCS 1

CCS 2

CCS 3

Comparison Structure determination

IMS Quad. TOF MS

MSMS spectra Fragmentation CCS determination:

Information about 3D structure

m/z determination: Empirical formula

4

Structural elucidation with probe ligands

• Probe ligands : Molecules which interact with target ion to form specific complexes depending on their physicochemical properties

• Confirmation of physicochemical properties:

Such as the presence of chemical moeities

Such as steric hindrance

Such as polarity

• Formation of complexes with different CCS

Application as Selective Shift Reagent

5

Plan:

1/ Concept of specific coordination complex formation

2/ Specificity depending on the presence of chemical function

• Proline/Valine model

• Contaminant of Selenomethionine – intramolecular oxidation

3/ Specificity depending on the steric hindrance o DAN isomers – Crown ether model

o Isomers ratio determination of two isobaric selenium compounds

4/ Specificity depending on the polarity – differential induce folding

o DAN isomers – Cyclodextrin model

6

Time (ms) 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

%

0

100 5.70

2.12

5.21

Ligand used:

18-crown-6 ether

m/z 112 116 120

%

0

100

117.0746

116.0739

m/z 414 418 422

%

0

100 418.1847

420.1987 421.2030

Selective to carboxylic

acid

%

m/z 378 382 386

0

100 382.2555

383.2563

Selective to priminary

amino group

Specific coordination complex depending on the chemical functions:

Proline Valine model

Controlled ligand Specificity: Important IMS shift provided by crown ether complexation Selective shift Reagent (SSR)

Crown ether Selective to primary amino group

Crown ether + K+

Selective to carboxylate group

K+

7

m/z 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240

%

0

100 198,0047

180,9789

152,0004 108,9567 134,9710

C H 3 Se

O H

O

N H 3 +

Mass spectrum of SeMet (5ppm) (Synapt G2 as "QTOF MS ")

Exact mass: 198.0033uma Δm = 7.07ppm

Detection of isobaric compounds

m/z 195,960 196,000 196,040

100 196.0050

195.9897

%

0

Specific coordination complex depending on the chemical functions:

Application as SSR Se isotope pattern

…confirmed by high resolution mass spectrometry

0

%

100

C5H12NO278Se+

196,00434

195,97 195,99 196,01 196,03 m/z

195,98797

78Se isotope of SeMet

8

SeMet Contaminant

…with Se isotopic pattern

Exact mass univoque empiric formula for m/z = 196 ion Higher Double Bound Equivalent (DBE) value Double bound or ring formation ?

C5H10NO280Se+

Overlapping on the Se isotopic pattern Orthogonal separation required

0,02 a.m.u

Use the difference in chemical group Probe ligands

18-Crown-6 Ether Selective to primary amino group • Support the expected structure of 196 ion

• Remove the interferences from SeMet

Free interferences MS2 spectra of 196 ion

2,00 2,25 2,50 2,75 3,00 3,25 3,50

%

0

100

2,84

SeMet

Time (ms)

(Aire: 2,05e5)

2,56

196 ion

m/z 176 180 184 188 192 196 200 204

%

0

100 180,9789

195,9897

%

0

100

198,0047

176 180 184 188 192 196 200 204 m/z

dt = 2,56ms dt = 2,84ms

Separation by IMS-MS Separation by ion mobility spectrometry

intramolecular oxidation hypothesis

2,44

181 ion

Se N +

C H 3

O H

O

H XIC m/z 196

181 ion fragment (ammonium loss)

Unable to obtain MS2 spectra of 196 ion without

interference from SeMet or in-source fragment

Selenomethionine m/z: 196 ion

Specific coordination complex depending on the chemical functions:

Application as SSR for Selenomethionine

196,0043

9

Interferences free MS2 spectra of 196 ion

Time (ms)

2,55ms: Spectra of 196 ions without interferences

Time (ms)

0,00 1,00 2,00 3,00 4,00 5,00 6,00 7,00

%

0

100

5.05

6.02

4.01

1.95

2.82

3.52

4.23

Complexes with 18-crown-6 ether

(drift time of 196 ion) SeMet with low

concentration of 18-crown-6 ether (1:10)

0,00 1,00 2,00 3,00 4,00 5,00 6,00 7,00

%

0

100

2.88

2.44

4.28

6.02

(SeMet + 18-Crown-6 Ether)+ SeMet+

(181 ion)+

2,55ms: Spectra of 196 ions and Fragments of SeMet

(Free 18-Crown-6 Ether)+

(SeMet + 18-Crown-6 Ether)+ SeMet with High concentration of 18-crown-6 ether (1:50)

(Free 18-Crown-6 Ether)+

Specific coordination complex depending on the chemical functions: Application as SSR for Selenomethionine

10

• Fragments of 196 ions: o Confirme the structure of 196 ion Formation of 5-membered ring compounds

o Differ from those of SeMet

%

0

100 167.9572

121.9495

94.9394

149.9448

195.9870

80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 m/z

240

Se N H +

O H

O

C H 3

Exact mass : 167.9564uma Δm = 4.76ppm

CH2

NH+Se

O

Exact mass : 149.9458uma Δm = 6.67ppm

Se N +

H

C H 2

Exact mass : 121.9509uma Δm = 11.5ppm Se

H

N+

H

Exact mass : 94.9352uma Δm = 44ppm

Se N +

C H 3

O H

O

H

Exact mass : 195.9877uma Δm = 3.57ppm

C H 3 Se

C H +

O H

O

C H 3 Se

N H 2 +

Se +

C H 2

C H 3

Se

C H 2 +

C H 3

Exact mass : 134.9713uma Δm = 2.2ppm

Exact mass : 151.9978uma Δm = 17.1ppm

Exact mass: 108.9556uma Δm = 10.1ppm

Exact mass : 180.9768uma Δm = 11.6ppm

m/z 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240

%

0

100 (4.74e5 cps)

198.0047

180.9789

152.0004 108.9567 134.9710

C H 3 Se

O H

O

N H 3 +

Exact mass : 198.0033uma Δm = 7.07ppm

Specific coordination complex depending on the chemical functions: Application as SSR for Selenomethionine

11

Plan:

1/ Concept of specific coordination complex formation

2/ Specificity depending on the presence of chemical function

• Proline/Valine model

• Contaminant of Selenomethionine – intramolecular oxidation

3/ Specificity depending on the steric hindrance o DAN isomers – Crown ether model

o Isomers ratio determination of two isobaric selenium compounds

4/ Specificity depending on the polarity – differential induce folding

o DAN isomers – Cyclodextrin model

12

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00

%

0

100 9.28

3.09

5.43

Time (ms) 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00

%

0

100 5.43

2.98

9.33

Time (ms)

1,5

-DA

N

1,8

-DA

N

SSR used:

Dibenzo 24-crown-8 ether

Controlled Stoechiometry: Application as Selective shift Reagent (SSR)

2 priminary amino groups available

Only one primary amino group available

Specific coordination complex depending on the steric hindrance:

Diaminonaphtalen isomers / Crown Ethers model

13

Specific coordination complex:

100

m/z 668 672 676

%

0

667.2

129

671.1

658

669.1

625

dt

= 1

1.1

8m

s

0

100

50 100 150 200 250 300 350 m/z

359.0510

181.9814

271.0294 176.0618

%

m/z 355 359 363

%

0

100 355.0919

359.0

408

357.0

305

dt

= 6

.07m

s

0

100

50 100 150 200 250 300 350

135.9698 181.9814

336.1176 MS

/MS

%

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

Complexed isomer B

11.18

6.07 Isomer A

13%

87%

Good agreement with theoretical values obtained by computational chemistry and isomer ratio determined from raw data by Dernovics and coworkers

Travelling wave ion mobility did not successfully separate the native isomers of 2,3-DHP-selenocystathionine The use of a nitrobenzo 15-crown-5 ether as SSR allowed to perform the separation and quantification of the isomer ratio (87% - 13% ).

MS

/MS

Far and coworkers, Anal. Chem (2014) Vol.86, Issue 22, : 11246-11254

14

Plan:

1/ Concept of specific coordination complex formation

2/ Specificity depending on the presence of chemical function

• Proline/Valine model

• Contaminant of Selenomethionine – intramolecular oxidation

3/ Specificity depending on the steric hindrance o DAN isomers – Crown ether model

o Isomers ratio determination of two isobaric selenium compounds

4/ Specificity depending on the polarity – differential induce folding

o DAN isomers – Cyclodextrin model

15

Specific coordination complex depending on the polarity: DAN-Cyclodextrin model

%

0

100 2.09

15.21

2.00 6.00 10.00 14.00 18.00 Time (ms)

m/z 1290 1294 1298

1293.4863

1297.4518

%

0

100

m/z 155 159 163

%

0

100 159.0936

160.0932

1,5

-DA

N

%

0

100 x 50 2.20

15.44

2.00 6.00 10.00 14.00 18.00 Time (ms)

m/z 1290 1294 1298

%

0

100 1297.4518

1293.4863

m/z 155 159 163

%

0

100 159.0936

160.0988

1,8

-DA

N

Time (ms)

%

0

100 2.32

14.44

2.00 6.00 10.00 14.00 18.00

m/z 1290 1294 1298

1293.4863

1297.4518

%

0

100

m/z 155 159 163

%

0

100 159.0936

160.0988

2,3

-DA

N

Controlled folding: Application as Selective Shift Reagent (SSR)

2,3-DAN: Exclusion 1,5-DAN:

Inclusion

16

Conclusion and perspectives

• Confirmation of hypothetical structure o Probe physicochemical properties

• As chemical functions, steric hindrance, polarity, pi stacking

• Use as Selective Shift Reagent o Allow a control of the arrival time distribution of ion

• Separation of isomers

• Obtention of interference free MS2 spectra

• Perspectives: o Use ligands to probe the three dimensional structural of larger (bio)molecules

• As peptide, protein, DNA

17

Aknowledgement:

• Laboratory of Mass Spectrometry

o Docteur Johann Far Professeur Gauthier Eppe

o Cédric Delvaux Professeur Edwin De Pauw

• Laboratory of Theoritical Physical Chemistry o Professeur Françoise Remacle

18

Thanks for your attention

19

20


Recommended