+ All Categories
Home > Documents > Control Design of a Distributed Parameter Fixed-Bed Reactor · 2007. 8. 24. · Control Design of a...

Control Design of a Distributed Parameter Fixed-Bed Reactor · 2007. 8. 24. · Control Design of a...

Date post: 30-Jan-2021
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
35
Control Design of a Distributed Parameter Fixed-Bed Reactor Ilyasse Aksikas and J. Fraser Forbes Department of Chemical and Material Engineering University of Alberta Canada Workshop on Control of Distributed Parameter Systems – p. 1/1
Transcript
  • Control Design of a Distributed Parameter

    Fixed-Bed Reactor

    Ilyasse Aksikas and J. Fraser Forbes

    Department of Chemical and Material Engineering

    University of Alberta

    Canada

    Workshop on Control of Distributed Parameter Systems – p. 1/19

  • Outline

    • Introduction

    • Problem Statement

    • Optimal Control Design

    • Closed-loop Nonlinear Model Analysis

    • Concluding Remarks

    Workshop on Control of Distributed Parameter Systems – p. 2/19

  • Introduction

    • Tubular Reactors :

    ⊲ Processes in (bio)chemical engineering.

    ⊲ ”Diffusion-Convection-Reaction” systems.

    ⊲ No diffusion ⇒ Plug flow reactor.

    Workshop on Control of Distributed Parameter Systems – p. 3/19

  • Introduction

    • Tubular Reactors :

    ⊲ Processes in (bio)chemical engineering.

    ⊲ ”Diffusion-Convection-Reaction” systems.

    ⊲ No diffusion ⇒ Plug flow reactor.

    • Mathematical Model :

    ⊲ Nonlinear PDE’s model⊲ Nonlinear infinite dimensional system

    Workshop on Control of Distributed Parameter Systems – p. 3/19

  • Introduction (cont.)

    • Plug Flow Reactor

    Tt = −vlTz + r(C, T ) + h(Tj − T )

    Ct = −vlCz + r(C, T )

    Workshop on Control of Distributed Parameter Systems – p. 4/19

  • Introduction (cont.)

    • Plug Flow Reactor

    Tt = −vlTz + r(C, T ) + h(Tj − T )

    Ct = −vlCz + r(C, T )

    ⊲ I. Aksikas, J.J. Winkin and D. Dochain, ”Optimal LQ-Feedback Regulation of aNonisothermal Plug Flow Reactor Model by Spectral Factoriz ation”, IEEE TAC, vol. 52, 7, 2007

    Workshop on Control of Distributed Parameter Systems – p. 4/19

  • Introduction (cont.)

    • Plug Flow Reactor

    Tt = −vlTz + r(C, T ) + h(Tj − T )

    Ct = −vlCz + r(C, T )

    ⊲ I. Aksikas, J.J. Winkin and D. Dochain, ”Optimal LQ-Feedback Regulation of aNonisothermal Plug Flow Reactor Model by Spectral Factoriz ation”, IEEE TAC, vol. 52, 7, 2007

    ⊲ I. Aksikas, J.J. Winkin and D. Dochain, ”Optimal LQ-Feedback Control for aClass of First-Order Distributed Parameter Systems”, subm itted, under revision, 2007

    Workshop on Control of Distributed Parameter Systems – p. 4/19

  • Introduction (cont.)

    • Fixed-Bed Reactor

    Workshop on Control of Distributed Parameter Systems – p. 5/19

  • Introduction (cont.)

    • Fixed-Bed Reactor

    ⊲ Assumption: [T,C]fluid phase = [T,C]solid phase

    Workshop on Control of Distributed Parameter Systems – p. 5/19

  • Introduction (cont.)

    • Fixed-Bed Reactor

    ⊲ Assumption: [T,C]fluid phase = [T,C]solid phase⊲ PDE Model

    ρbcpbTt = −ρfcpfvlTz + r(C, T ) + h(Tj − T )

    ǫCt = −vlCz + r(C, T )

    Workshop on Control of Distributed Parameter Systems – p. 5/19

  • Introduction (cont.)

    • Fixed-Bed Reactor

    ⊲ Assumption: [T,C]fluid phase = [T,C]solid phase⊲ PDE Model

    ρbcpbTt = −ρfcpfvlTz + r(C, T ) + h(Tj − T )

    ǫCt = −vlCz + r(C, T )

    ⊲ P.D. Christofides, ”Nonlinear and Robust Control of PDE Systems”, Birkh äser, 2001

    Workshop on Control of Distributed Parameter Systems – p. 5/19

  • Problem Statement

    • Objective: We want to minimize the cost function∫ ∞

    0

    {〈Cx(s), PCx(s)〉 + 〈u(s), Ru(s)〉}ds

    along the differential equation constraint{

    xt(t) = V xz(t) + Mx(t) + Nu(t)

    x(0) = x0

    ⋄ x(t) ∈ H = L2(0, 1)n and u(t) ∈ L2(0, 1)n

    ⋄ V,M ∈ IRn×n V symmetric and N ∈ IRm×n.

    Workshop on Control of Distributed Parameter Systems – p. 6/19

  • Stability Result

    Let us consider the operator

    A = V ·d·

    dz+ M · I

    defined on D(A) = {x : x is a.c , dxdz

    ∈ H ;x(0) = 0}

    A generates an exp stable C0-semigroup IF

    Workshop on Control of Distributed Parameter Systems – p. 7/19

  • Stability Result

    Let us consider the operator

    A = V ·d·

    dz+ M · I

    defined on D(A) = {x : x is a.c , dxdz

    ∈ H ;x(0) = 0}

    A generates an exp stable C0-semigroup IF

    ⋄ V diagonalizable and has identical eigenvalues.

    OR

    Workshop on Control of Distributed Parameter Systems – p. 7/19

  • Stability Result

    Let us consider the operator

    A = V ·d·

    dz+ M · I

    defined on D(A) = {x : x is a.c , dxdz

    ∈ H ;x(0) = 0}

    A generates an exp stable C0-semigroup IF

    ⋄ V diagonalizable and has identical eigenvalues.

    OR

    ⋄ The eigenvalues of V are negative.

    Workshop on Control of Distributed Parameter Systems – p. 7/19

  • Optimal Control Design

    • Operator Riccati Equation

    [A∗Qo + QoA + C∗PC − QoBR

    −1B∗Qo]x = 0,

    for all x ∈ D(A), where Qo(D(A)) ⊂ D(A∗)

    Workshop on Control of Distributed Parameter Systems – p. 8/19

  • Optimal Control Design

    • Operator Riccati Equation

    [A∗Qo + QoA + C∗PC − QoBR

    −1B∗Qo]x = 0,

    for all x ∈ D(A), where Qo(D(A)) ⊂ D(A∗)

    • If (A,B,C) exp stabilizable and exp Detectable⋄ This equation admits a unique positiveself-adjoint solution.⋄ The optimal control is given by

    uopt(t) = −R−1B∗Qox(t).

    Workshop on Control of Distributed Parameter Systems – p. 8/19

  • Optimal Control Design (cont.)

    Main Result

    If the matrix Φ is the unique positive semi-definitesolution of the MRDE

    VdΦ

    dz= M ∗Φ+ΦM+C∗

    0P0C0−ΦB0R

    −10

    B∗0Φ, Φ(1) = 0

    Then

    Qo = Φ(z)I

    is the unique self-adjoint positive semi-definite solutionof ORAE

    Workshop on Control of Distributed Parameter Systems – p. 9/19

  • Optimal Control Design (cont.)

    Cases

    • Case 1: V = vIAksikas, Winkin and Dochain, 2006

    Workshop on Control of Distributed Parameter Systems – p. 10/19

  • Optimal Control Design (cont.)

    Cases

    • Case 1: V = vIAksikas, Winkin and Dochain, 2006

    • Case 2: V = diag(v1, . . . , vn)

    Workshop on Control of Distributed Parameter Systems – p. 10/19

  • Optimal Control Design (cont.)

    Cases

    • Case 1: V = vIAksikas, Winkin and Dochain, 2006

    • Case 2: V = diag(v1, . . . , vn)

    vidφi

    dz= 2miiφi+cii−biiφ

    2

    i , φi(1) = 0,∀i = 1, . . . , n

    0 = mjiφj +φimij + cij −φibijφj, 1 < i < j < n,

    Workshop on Control of Distributed Parameter Systems – p. 10/19

  • Optimal Control Design (cont.)

    Cases

    • Case 1: V = vIAksikas, Winkin and Dochain, 2006

    • Case 2: V = diag(v1, . . . , vn)

    vidφi

    dz= 2miiφi+cii−biiφ

    2

    i , φi(1) = 0,∀i = 1, . . . , n

    0 = mjiφj +φimij + cij −φibijφj, 1 < i < j < n,

    • Case 3: V diagonalizable

    Workshop on Control of Distributed Parameter Systems – p. 10/19

  • Application to Fixed-Bed Reactor

    • PDE Model

    ρpcpbTt = −ρfcpfvlTz + k1Ce− E

    RT + h(Tj − T )

    ǫCt = −vl Cz − k0Ce− E

    RT

    • B.C and I.C

    T (0, t) = Tin, T (z, 0) = T0(z)

    C(0, t) = Cin, C(z, 0) = C0(z)

    Workshop on Control of Distributed Parameter Systems – p. 11/19

  • Linearized Model

    ẋ(t) = Ax(t) + Bu(t)

    x(0) = x0 ∈ H := L2(0, 1)2

    D(A) = {x ∈ H : x is a.c,dx

    dz∈ H and x(0) = 0}

    A =

    (

    v1d.dz

    + α1I α2I

    α3I v2d.dz

    + α4I

    )

    and B =

    (

    βI

    0

    )

    Workshop on Control of Distributed Parameter Systems – p. 12/19

  • Optimal Control Design

    Output function

    y(t) = Cx(t) =(

    w1(z)I w2(z)I)

    x(t)

    Workshop on Control of Distributed Parameter Systems – p. 13/19

  • Optimal Control Design

    Output function

    y(t) = Cx(t) =(

    w1(z)I w2(z)I)

    x(t)

    Controller

    v1dφ1dz

    = 2α1φ1 + pw2

    1− β2r−1φ2

    1, φ1(1) = 0,

    v2dφ2dz

    = 2α4φ2 + pw2

    2, φ2(1) = 0,

    0 = α3φ2 + α2φ1 + pw1w2

    =⇒ Kox = −β

    rφ1(z)x1

    Workshop on Control of Distributed Parameter Systems – p. 13/19

  • Nonlinear closed-loop stability

    I. Aksikas, J.J. Winkin and D. Dochain, 2007

    {

    ẋ(t) = A0x(t) + N0(x(t))

    x(0) = x0 ∈ D(A0) ∩ F

    • A0 dissipative and (I − λA0)−1 compact .

    • F ⊂ R(I − λA0)

    • limh→0+ d(F, x + hN0(x)) = 0, ∀x ∈ D(A)

    • A0 + N0 strictly dissipative .

    Workshop on Control of Distributed Parameter Systems – p. 14/19

  • Nonlinear closed-loop stability

    I. Aksikas, J.J. Winkin and D. Dochain, 2007

    {

    ẋ(t) = A0x(t) + N0(x(t))

    x(0) = x0 ∈ D(A0) ∩ F

    • A0 dissipative and (I − λA0)−1 compact .

    • F ⊂ R(I − λA0)

    • limh→0+ d(F, x + hN0(x)) = 0, ∀x ∈ D(A)

    • A0 + N0 strictly dissipative .

    ∀x0 ∈ D(A), x(t, x0) → ω(x0)= {x}

    Workshop on Control of Distributed Parameter Systems – p. 14/19

  • Nonlinear closed-loop stability

    Workshop on Control of Distributed Parameter Systems – p. 15/19

  • Nonlinear closed-loop stability

    Under the assumptions:⋄

    limh→0+

    h−1d(F0, θ + hq) = 0, ∀θ ∈ F0

    ⋄Nonlinearity Lipshitz Constant < β

    Workshop on Control of Distributed Parameter Systems – p. 15/19

  • Nonlinear closed-loop stability

    Under the assumptions:⋄

    limh→0+

    h−1d(F0, θ + hq) = 0, ∀θ ∈ F0

    ⋄Nonlinearity Lipshitz Constant < β

    =⇒ Asymptotic Stability

    ∀θ0 ∈ F0, θ(t, θ0) := Γ(t)θ0 −→ θe

    Workshop on Control of Distributed Parameter Systems – p. 15/19

  • Numerical Simulations

    Workshop on Control of Distributed Parameter Systems – p. 16/19

  • Numerical Simulations (cont.)

    Workshop on Control of Distributed Parameter Systems – p. 17/19

  • Numerical Simulations (cont.)

    Workshop on Control of Distributed Parameter Systems – p. 18/19

  • Concluding Remarks

    • Conclusions⋄ LQ-Controller Design⋄ Application to fixed-bed reactor

    • Perspectives : Extensions⋄ Fixed-bed reactor with diffusion⋄ Time-varying hyperbolic systems

    Workshop on Control of Distributed Parameter Systems – p. 19/19

    �f yellow Outline �f yellow Introduction�f yellow Introduction

    �f yellow Introduction (cont.)�f yellow Introduction (cont.)�f yellow Introduction (cont.)

    �f yellow Introduction (cont.)�f yellow Introduction (cont.)�f yellow Introduction (cont.)�f yellow Introduction (cont.)

    �f yellow Problem Statement�f yellow Stability Result�f yellow Stability Result�f yellow Stability Result

    �f yellow Optimal Control Design�f yellow Optimal Control Design

    �f yellow Optimal Control Design (cont.)�f yellow Optimal Control Design (cont.)�f yellow Optimal Control Design (cont.)�f yellow Optimal Control Design (cont.)�f yellow Optimal Control Design (cont.)

    �f yellow Application to Fixed-Bed Reactor{yellow Linearized Model}�f {yellow Optimal Control Design }�f {yellow Optimal Control Design }

    yellow Nonlinear closed-loop stabilityyellow Nonlinear closed-loop stability

    yellow Nonlinear closed-loop stabilityyellow Nonlinear closed-loop stabilityyellow Nonlinear closed-loop stability

    yellow Numerical Simulationsyellow Numerical Simulations (cont.)yellow Numerical Simulations (cont.)�f yellow Concluding Remarks


Recommended