+ All Categories
Home > Documents > Controlling Pest by Integrated Pest Management: A ...

Controlling Pest by Integrated Pest Management: A ...

Date post: 17-Mar-2022
Category:
Upload: others
View: 12 times
Download: 0 times
Share this document with a friend
18
International Journal of Mathematical, Engineering and Management Sciences Vol. 5, No. 4, 769-786, 2020 https://doi.org/10.33889/IJMEMS.2020.5.4.061 769 Controlling Pest by Integrated Pest Management: A Dynamical Approach Vandana Kumari Department of Mathematics, Amity Institute of Applied Science, Amity University, Sector-125, Noida, U.P., India. E-mail: [email protected] Sudipa Chauhan Department of Mathematics, Amity Institute of Applied Science, Amity University,Sector-125, Noida, U.P., India. Corresponding author: [email protected] Joydip Dhar Mathematical Modelling and Simulation Laboratory, Atal Bihari Vajpayee Indian Institute of Information Technology and Management, Gwalior, M.P., India. E-mail: [email protected] (Received August 28, 2019; Accepted January 28, 2020) Abstract Integrated Pest Management technique is used to formulate a mathematical model by using biological and chemical control impulsively. The uniform boundedness and the existence of pest extinction and nontrivial equilibrium points is discussed. Further, local stability of pest extinction equilibrium point is studied and it has been derived that if โ‰ค , the pest extinction equilibrium point is locally stable and for > , the system is permanent. It has also been obtained that how delay helps in eradicating pest population more quickly. Finally, analytic results have been validated numerically. Keywords- Plant-pest-natural enemy, Boundedness, Local stability, Permanence. 1. Introduction Plants as we all know conflict between and pests has been a root cause of concern in our ecology from almost two decades. Rescuing crops from predator pests such as insects has become a tedious task for farmers. With the advent in science and technology, effective measures have been discovered to deal with predator pest effectively like introducing natural enemies and chemical pesticides in relevent environment. It is a well known fact that excessive use of chemical pesticide such as organochlorine (DDT and toxaphene) is hazardous both for animals and human being as studied by authors (James, 1997). Therefore, Integrated pest management came into scenario in which selective pesticides control pests as natural predators when regulation through biological means fails. Many biological food web models to control pests have been discussed by many scholars (Changguo et al., 2009; Liu et al., 2013; Jatav et al., 2014; Song et al., 2014) where they took assumptions of either impulsive release of natural enemies or chemical pesticides. Authors (Jatav and Dhar, 2014) studied a model in which they formulated a mathematical model and obtained a threshold value below which pests gets eradicated. Later, many more IPM approach
Transcript
Page 1: Controlling Pest by Integrated Pest Management: A ...

International Journal of Mathematical, Engineering and Management Sciences

Vol. 5, No. 4, 769-786, 2020

https://doi.org/10.33889/IJMEMS.2020.5.4.061

769

Controlling Pest by Integrated Pest Management: A Dynamical

Approach

Vandana Kumari

Department of Mathematics,

Amity Institute of Applied Science,

Amity University, Sector-125, Noida, U.P., India.

E-mail: [email protected]

Sudipa Chauhan Department of Mathematics,

Amity Institute of Applied Science,

Amity University,Sector-125, Noida, U.P., India.

Corresponding author: [email protected]

Joydip Dhar Mathematical Modelling and Simulation Laboratory,

Atal Bihari Vajpayee Indian Institute of Information Technology and Management,

Gwalior, M.P., India.

E-mail: [email protected]

(Received August 28, 2019; Accepted January 28, 2020)

Abstract

Integrated Pest Management technique is used to formulate a mathematical model by using biological and chemical

control impulsively. The uniform boundedness and the existence of pest extinction and nontrivial equilibrium points is

discussed. Further, local stability of pest extinction equilibrium point is studied and it has been derived that if ๐‘‡ โ‰ค ๐‘‡๐‘š๐‘Ž๐‘ฅ,

the pest extinction equilibrium point is locally stable and for ๐‘‡ > ๐‘‡๐‘š๐‘Ž๐‘ฅ , the system is permanent. It has also been

obtained that how delay helps in eradicating pest population more quickly. Finally, analytic results have been validated

numerically.

Keywords- Plant-pest-natural enemy, Boundedness, Local stability, Permanence.

1. Introduction Plants as we all know conflict between and pests has been a root cause of concern in our ecology

from almost two decades. Rescuing crops from predator pests such as insects has become a tedious

task for farmers. With the advent in science and technology, effective measures have been

discovered to deal with predator pest effectively like introducing natural enemies and chemical

pesticides in relevent environment. It is a well known fact that excessive use of chemical pesticide

such as organochlorine (DDT and toxaphene) is hazardous both for animals and human being as

studied by authors (James, 1997). Therefore, Integrated pest management came into scenario in

which selective pesticides control pests as natural predators when regulation through biological

means fails. Many biological food web models to control pests have been discussed by many

scholars (Changguo et al., 2009; Liu et al., 2013; Jatav et al., 2014; Song et al., 2014) where they

took assumptions of either impulsive release of natural enemies or chemical pesticides. Authors

(Jatav and Dhar, 2014) studied a model in which they formulated a mathematical model and

obtained a threshold value below which pests gets eradicated. Later, many more IPM approach

Page 2: Controlling Pest by Integrated Pest Management: A ...

International Journal of Mathematical, Engineering and Management Sciences

Vol. 5, No. 4, 769-786, 2020

https://doi.org/10.33889/IJMEMS.2020.5.4.061

770

inclined models were proposed where impulsive control strategies for pest eradication were

introduced and to name a few are (Tang et al., 2005; Akman et al., 2015; El-Shafie, 2018; Paez

Chavez et al., 2018). They studied various prospect of IPM method and its application. Scholars

(Zhang et al., 2004) did comparison between IPM method and classical method for pest control and

obtained that IPM strategy is better than any classical method to control pests. Recently, Yu et al.

(2019) introduced IPM method for predatorโ€“prey model with Allee effect and stochastic effect

respectively where they obtained thresholds based on biological and chemical control. However,

in all the papers discussed above no-one discussed significanlty about delays, in particularly

gestation delay which in a real situation always exist.

Hence, keeping in mind the above alma matter, we have formulated our model in reference to the

previous models and studied the dynamics of the new system with delay. The highlight of the paper

is that how delay parameter helps in reducing the pest population more quickly in comparison to

the system without delay. The results would be extremely beneficial for those crops where pest

population are growing exponentially due to favourable habitable condition. A relevent biological

example to our model is as follows:

Australian herb is always at the verge of being attacked by green Lacewing Larvae, which is a well

known pest. Encapsulating biological controls like mealy bugs followed by chemical control such

as chlorothalonil has shown remarkable results which advocates our approach of hybrid technique.

The organisation of the paper is as follows: In Section 2, 3 model formulation and preliminary

lemmas are discussed. In Section 4, local stability of pest extinction is achieved followed by

permanence in Section 5. Finally, in the last two sections numerical simulation is done for

validation of analtical results with conclusion.

2. Mathematical Model We have proposed our mathematical model by the following set of differential equations:

๐‘‘๐‘

๐‘‘๐‘ก= ๐‘(๐‘Ÿ โˆ’ ๐‘) โˆ’ ๐‘Ž1๐‘๐‘ž

๐‘‘๐‘ž

๐‘‘๐‘ก= ๐‘Ž1๐‘1๐‘๐‘ž โˆ’ ๐‘Ž2๐‘ž(๐‘ก โˆ’ ๐œ)๐‘Ÿ2(๐‘ก โˆ’ ๐œ)๐‘’

โˆ’๐‘‘1๐œ โˆ’ ๐ท๐‘ž

๐‘‘๐‘Ÿ1

๐‘‘๐‘ก= ๐‘Ž2๐‘2๐‘ž(๐‘ก โˆ’ ๐œ)๐‘Ÿ2(๐‘ก โˆ’ ๐œ)๐‘’

โˆ’๐‘‘1๐œ โˆ’ (๐ท3 + ๐œ‡0)๐‘Ÿ1

๐‘‘๐‘Ÿ2

๐‘‘๐‘ก= ๐œ‡0๐‘Ÿ1 โˆ’ ๐ท3๐‘Ÿ2

}

๐‘ก โ‰  ๐‘›๐‘‡ (1)

๐‘(๐‘ก+) = ๐‘

๐‘ž(๐‘ก+) = (1 โˆ’ ๐›ฟ)๐‘ž

๐‘Ÿ1(๐‘ก+) = ๐‘Ÿ1 + ๐œ‡1

๐‘Ÿ2(๐‘ก+) = ๐‘Ÿ2 + ๐œ‡2

}

= ๐‘›๐‘‡ (2)

The model completes with the following initial conditions:

๐‘(๐œƒ) = ๐œ™1(๐œƒ), ๐‘ž(๐œƒ) = ๐œ™2(๐œƒ), ๐‘Ÿ1 = ๐œ“1(๐œƒ), ๐‘Ÿ2 = ๐œ“2(๐œƒ) , ๐œ™๐‘–(0) > 0 , ๐œ“๐‘–(0) > 0 , ๐œƒ โˆˆ [โˆ’๐œ, 0] ,

(๐‘– = 1,2) , where (๐œ™1, ๐œ™2, ๐œ“1, ๐œ“2) โˆˆ ๐ถ([โˆ’๐œ, 0], โ„+4 , the Banach space of continuous

functions mapping on the interval [โˆ’๐œ, 0]into โ„+4 . The graphical representation of the model is

Page 3: Controlling Pest by Integrated Pest Management: A ...

International Journal of Mathematical, Engineering and Management Sciences

Vol. 5, No. 4, 769-786, 2020

https://doi.org/10.33889/IJMEMS.2020.5.4.061

771

as follows in Figure 1. Negative and positive sign represents outgoing and incoming rates.

Figure 1. Graphical representation of model

The parameters/variables used in the model are explained in detail in Table 1 mentioned below and

for convenience ๐‘ก is removed from the variables throughout the paper.

Table. 1 Meaning of parameters /variables

Parameters/Variables Meaning

๐‘Ÿ1(๐‘ก) Immature natural enemy

๐‘Ÿ growth rate of plant population

๐‘Ÿ2(t) Mature natural enemy

๐œ Time delay

๐‘(๐‘ก) Plant population

๐‘Ž1 Rate at which plant population is decreasing to pest population

๐‘1 Growth rate of pest population

D Mortality Rate

๐‘Ž2 Rate at which pest population is decreasing

๐‘2 Rate at immature natural enemy population

๐œ‡0 Mortality rate of immature natural enemy

๐ท3 Mortality rate of mature natural enemy

๐‘‡ Period of impulse

๐œ‡1 Amount of pulse release of immature natural enemy

๐œ‡2 Amount of pulse release of mature natural enemy

0 โ‰ค ๐›ฟ < 1 harvesting rate of pest through chemical pesticide

๐‘ž(๐‘ก) Pest population

3. Preliminary Lemmas In this section, we have given a few Lemmas, which will be useful for our main result.

Lemma 3.1 Let us consider the system

๐‘คโ€ฒ(๐‘ก) = ๐‘ โˆ’ ๐‘๐‘ค(๐‘ก), ๐‘ก โ‰  ๐‘›๐‘‡,

(3)

๐‘ค(๐‘ก+) = ๐‘ค(๐‘ก) + ๐œ‡, ๐‘ก = ๐‘›๐‘‡, ๐‘› = 1,2,3โ€ฆ. (4)

Then the system has a positive periodic solution ๏ฟฝฬƒ๏ฟฝ(๐‘ก)and for any solution ๐‘ค(๐‘ก) of the system

(3),we have,

|๐‘ค(๐‘ก) โˆ’ ๏ฟฝฬƒ๏ฟฝ(๐‘ก)| โ†’ 0,

for ๐‘ก โ†’ โˆž, where, for

๐‘ก โˆˆ (๐‘›๐‘ก, (๐‘› + 1)๐‘‡], ๏ฟฝฬƒ๏ฟฝ(๐‘ก) =๐‘

๐‘+๐œ‡๐‘’๐‘ฅ๐‘(โˆ’๐‘(๐‘กโˆ’๐‘›๐‘‡))

1โˆ’๐‘’๐‘ฅ๐‘(โˆ’๐‘๐‘‡) with ๏ฟฝฬƒ๏ฟฝ(0+) =

๐‘

๐‘+

๐œ‡

1โˆ’๐‘’๐‘ฅ๐‘(โˆ’๐‘๐‘‡).

Page 4: Controlling Pest by Integrated Pest Management: A ...

International Journal of Mathematical, Engineering and Management Sciences

Vol. 5, No. 4, 769-786, 2020

https://doi.org/10.33889/IJMEMS.2020.5.4.061

772

The boundedness is given lemma 3.2.

Lemma 3.2 There exists a constant ๐‘€ > 0 s.t ๐‘(๐‘ก) โ‰ค ๐‘€, ๐‘ž(๐‘ก) โ‰ค ๐‘€, ๐‘Ÿ1(๐‘ก) โ‰ค ๐‘€, ๐‘Ÿ2(๐‘ก) โ‰ค ๐‘€, for (1 โˆ’ 2) with t being sufficiently large where

๐‘€ =๐‘€0

๏ฟฝฬƒ๏ฟฝ+(๐œ‡1 + ๐œ‡2)๐‘’๐‘ฅ๐‘(๏ฟฝฬ…๏ฟฝ๐‘ก)

๐‘’๐‘ฅ๐‘(๏ฟฝฬ…๏ฟฝ๐‘ก) โˆ’ 1> 0.

Now, we will discuss the pest extinction case and our impulsive system (1 โˆ’ 2) reduces to:

๐‘‘๐‘Ÿ1(๐‘ก)

๐‘‘๐‘ก= โˆ’(๐ท3 + ๐œ‡0)๐‘Ÿ1(๐‘ก)

๐‘‘๐‘Ÿ2(๐‘ก)

๐‘‘๐‘ก= ๐œ‡0๐‘Ÿ1(๐‘ก) โˆ’ ๐ท3๐‘Ÿ2(๐‘ก)

}

๐‘ก โ‰  ๐‘›๐‘‡, (5)

๐‘Ÿ1(๐‘ก+) = ๐‘Ÿ1 + ๐œ‡1

๐‘Ÿ2(๐‘ก+) = ๐‘Ÿ2 + ๐œ‡2 } ๐‘ก = ๐‘›๐‘‡, (6)

For the system (5 โˆ’ 6), we integrate it over the interval (๐‘›๐‘‡, (๐‘› + 1)๐‘‡] , and by means of

stroboscopic mapping we get, ๐‘Ÿ1((๐‘› + 1)๐‘‡+) = ๐‘’๐‘ฅ๐‘( โˆ’ (๐ท3 + ยต0)๐‘‡) ๐‘Ÿ1(๐‘›๐‘‡

+) + ๐œ‡1

Thus the corresponding periodic solution of (5 โˆ’ 6) in ๐‘ก โˆˆ (๐‘›๐‘‡, (๐‘› + 1)๐‘‡] is,

๏ฟฝฬƒ๏ฟฝ1(๐‘ก) =๐œ‡1๐‘’๐‘ฅ๐‘(โˆ’(๐ท3 + ๐œ‡0)(๐‘ก โˆ’ ๐‘›๐‘‡))

1 โˆ’ ๐‘’๐‘ฅ๐‘(โˆ’(๐ท3 + ๐œ‡0)๐‘‡)

with

๏ฟฝฬƒ๏ฟฝ1(0+) =

๐œ‡11 โˆ’ ๐‘’๐‘ฅ๐‘(โˆ’(๐ท3 + ๐œ‡0)๐‘‡)

and is stable globally. Substituting ๏ฟฝฬƒ๏ฟฝ1(๐‘ก) into (5 โˆ’ 6), we obtain the following subsystem:

๐‘‘๐‘Ÿ2(๐‘ก)

๐‘‘๐‘ก= ๐œ‡0๏ฟฝฬƒ๏ฟฝ1(๐‘ก) โˆ’ ๐ท3๐‘Ÿ2(๐‘ก), ๐‘ก โ‰  ๐‘›๐‘‡

๐‘Ÿ2(๐‘ก+) = ๐‘Ÿ2 + ๐œ‡2, ๐‘ก = ๐‘›๐‘‡

} (7)

Further, integrating (7) in the interval (๐‘›๐‘‡, (๐‘› + 1)๐‘‡], we get,

๏ฟฝฬƒ๏ฟฝ2(๐‘ก) =โˆ’๐œ‡1๐‘’๐‘ฅ๐‘(โˆ’(๐ท3 + ๐œ‡0)(๐‘ก โˆ’ ๐‘›๐‘‡))

1 โˆ’ ๐‘’๐‘ฅ๐‘(โˆ’(๐ท3 + ๐œ‡0)๐‘‡)+(๐œ‡1 + ๐œ‡2)๐‘’๐‘ฅ๐‘(โˆ’๐ท3(๐‘ก โˆ’ ๐‘›๐‘‡))

1 โˆ’ ๐‘’๐‘ฅ๐‘(โˆ’๐ท3๐‘‡),

with initial value

๏ฟฝฬƒ๏ฟฝ2(0+) =

โˆ’๐œ‡11 โˆ’ ๐‘’๐‘ฅ๐‘(โˆ’(๐ท3 + ๐œ‡0)๐‘‡)

+(๐œ‡1 + ๐œ‡2)

1 โˆ’ ๐‘’๐‘ฅ๐‘(โˆ’๐ท3๐‘‡),

Page 5: Controlling Pest by Integrated Pest Management: A ...

International Journal of Mathematical, Engineering and Management Sciences

Vol. 5, No. 4, 769-786, 2020

https://doi.org/10.33889/IJMEMS.2020.5.4.061

773

which is stable globally.

Moreover, due to the absence of pest, the subsystem of (1 โˆ’ 2) can also be considered as follows:

๐‘‘๐‘(๐‘ก)

๐‘‘๐‘ก= ๐‘(๐‘Ÿ โˆ’ ๐‘) (8)

With ๐‘ = 0 as unstable equilibrium and ๐‘ = ๐‘Ÿ as globally stable. Therefore, the two periodic

solutions of (1 โˆ’ 2) are (0,0, ๏ฟฝฬƒ๏ฟฝ1, ๏ฟฝฬƒ๏ฟฝ2) and (๐‘Ÿ, 0, ๏ฟฝฬƒ๏ฟฝ1, ๏ฟฝฬƒ๏ฟฝ2).

4. Local Stability of Pest Extinction Case

This section will discuss the local stability analysis of the equilibrium point with pest population.

Theorem 4.1 Let (๐‘, ๐‘ž, ๐‘Ÿ1, ๐‘Ÿ2) be a solution of (1 โˆ’ 2), Then

(i) (0,0, ๏ฟฝฬƒ๏ฟฝ1, ๏ฟฝฬƒ๏ฟฝ2) is unstable.

(ii) (๐‘Ÿ, 0, ๏ฟฝฬƒ๏ฟฝ1, ๏ฟฝฬƒ๏ฟฝ2) is locally asymptotically stable iff ๐‘‡ โ‰ค ๐‘‡๐‘š๐‘Ž๐‘ฅ, where

๐‘‡๐‘š๐‘Ž๐‘ฅ =1

(๐‘Ž1๐‘1 โˆ’ ๐‘‘){๐‘™๐‘œ๐‘”

1

(1 โˆ’ ๐›ฟ)+ ๐‘’โˆ’๐‘‘1๐œ๐‘Ž2(

๐ท3๐œ‡2 + ๐œ‡0(๐œ‡1 + ๐œ‡2)

๐ท3(๐ท3 + ๐œ‡0))}, ๐‘Ž1๐‘1 > ๐‘‘ (9)

Proof: (i) Here, we define,

๐‘ = ๐œ™1 , ๐‘ž = ๐œ™2 , ๐‘Ÿ1 = ๏ฟฝฬƒ๏ฟฝ1 + ๐œ™3, ๐‘Ÿ2 = ๏ฟฝฬƒ๏ฟฝ2 + ๐œ™4

where, ๐œ™1(๐‘ก), ๐œ™2(๐‘ก), ๐œ™3(๐‘ก), ๐œ™4(๐‘ก)are perturbation in ๐‘, ๐‘ž, ๐‘Ÿ1, ๐‘Ÿ2 then the systemโ€™s linearized

form becomes:

๐‘‘๐œ™1(๐‘ก)

๐‘‘๐‘ก= โˆ’๐‘Ÿ๐œ™1(๐‘ก)

๐‘‘๐œ™2(๐‘ก)

๐‘‘๐‘ก= โˆ’(๐ท + ๐‘Ž2๏ฟฝฬƒ๏ฟฝ2(๐‘ก)๐‘’

โˆ’๐‘‘1๐œ)๐œ™2(๐‘ก)

๐‘‘๐œ™3(๐‘ก)

๐‘‘๐‘ก= ๐‘Ž2๐‘2๐œ™2(๐‘ก)๏ฟฝฬƒ๏ฟฝ2(๐‘ก)๐‘’

โˆ’๐‘‘1๐œ โˆ’ (๐ท3 + ๐œ‡0)๐œ™3(๐‘ก)

๐‘‘๐œ™4(๐‘ก)

๐‘‘๐‘ก= ๐œ‡0๐œ™3(๐‘ก) โˆ’ ๐ท3๐œ™4(๐‘ก)

}

๐‘ก โ‰  ๐‘›๐‘‡ (10)

๐œ™1(๐‘ก+) = ๐œ™1(๐‘ก)

๐œ™2(๐‘ก+) = (1 โˆ’ ๐›ฟ)๐œ™2(๐‘ก)

๐œ™3(๐‘ก+) = ๐œ™3(๐‘ก) + ๐œ‡1

๐œ™4(๐‘ก+) = ๐œ™4(๐‘ก) + ๐œ‡2

}

= ๐‘›๐‘‡ (11)

Let ๐œ™(๐‘ก) be the fundamental matrix of (10 โˆ’ 11), then ๐œ™(๐‘ก) must satisfy,

Page 6: Controlling Pest by Integrated Pest Management: A ...

International Journal of Mathematical, Engineering and Management Sciences

Vol. 5, No. 4, 769-786, 2020

https://doi.org/10.33889/IJMEMS.2020.5.4.061

774

๐‘‘๐œ™(๐‘ก)

๐‘‘๐‘ก=

[ ๐‘Ÿ 0 0 00 โˆ’(๐ท + ๐‘Ž2๏ฟฝฬƒ๏ฟฝ2(๐‘ก)๐‘’

โˆ’๐‘‘1๐œ) 0 0

0 ๐‘Ž2๐‘2๏ฟฝฬƒ๏ฟฝ2(๐‘ก)๐‘’โˆ’๐‘‘1๐œ โˆ’(๐ท3 + ๐œ‡0) 0

0 0 ๐œ‡0 โˆ’๐ท3]

๐œ™(๐‘ก) = ๐ด๐œ™(๐‘ก) (12)

Thus, the monodromy matrix of (10 โˆ’ 11) is

๐‘€ =

[ 1 0 0 00 1 โˆ’ ๐›ฟ 0 00 0 1 00 0 0 1

]

๐œ™(๐‘ก)

From (12), we get ๐œ™(๐‘ก) = ๐œ™(0)๐‘’๐‘ฅ๐‘ (โˆซ๐‘‡

0๐ด๐‘‘๐‘ก), where ๐œ™(0) is an identity matrix and hence

the eigen values corresponding to matrix ๐‘€ are as follows:

๐œ†3 = ๐‘’๐‘ฅ๐‘ (โˆ’(๐ท3 + ๐œ‡0))๐‘‡ < 1, ๐œ†4 = ๐‘’๐‘ฅ๐‘(โˆ’๐ท3๐‘‡) < 1, ๐œ†1 = ๐‘’๐‘ฅ๐‘(๐‘Ÿ๐‘‡) > 1,

๐œ†2 = (1 โˆ’ ๐›ฟ)๐‘’๐‘ฅ๐‘โˆซ๐‘‡

0

(โˆ’(๐ท + ๐‘Ž2๏ฟฝฬƒ๏ฟฝ2(๐‘ก)๐‘’โˆ’๐‘‘1๐œ)) ๐‘‘๐‘ก < 1.

Therefore, according to the Floquet theory (Bainov and Sineonov, 1993) the pest eradication

periodic solution is unstable as |๐œ†1| > 1.

Remark 1: The effect of delay can be easily seen in the value of ๐‘‡๐‘š๐‘Ž๐‘ฅ which helps in reducing its

value.

(ii) The local stability of (๐‘Ÿ, 0, ๏ฟฝฬƒ๏ฟฝ1(๐‘ก), ๏ฟฝฬƒ๏ฟฝ2(๐‘ก)) is proved in the similar fashion. We define ๐‘ = ๐‘Ÿ +๐œ™1(๐‘ก), ๐‘ž = ๐œ™2(๐‘ก), ๐‘Ÿ1 = ๏ฟฝฬƒ๏ฟฝ1(๐‘ก) + ๐œ™3(๐‘ก), ๐‘Ÿ2 = ๏ฟฝฬƒ๏ฟฝ2(๐‘ก) + ๐œ™4(๐‘ก) and the system (1 โˆ’ 2)โ€ฒ๐‘  linearized

form is as follows:

๐‘‘๐œ™1(๐‘ก)

๐‘‘๐‘ก= โˆ’๐‘Ÿ๐œ™1(๐‘ก) โˆ’ ๐‘Ž1๐œ™2

๐‘‘๐œ™2(๐‘ก)

๐‘‘๐‘ก= (๐‘Ž1๐‘1 โˆ’ ๐ท โˆ’ ๐‘Ž2๏ฟฝฬƒ๏ฟฝ2(๐‘ก)๐‘’

โˆ’๐‘‘1๐œ)๐œ™2(๐‘ก)

๐‘‘๐œ™3(๐‘ก)

๐‘‘๐‘ก= ๐‘Ž2๐‘2๐œ™2(๐‘ก)๏ฟฝฬƒ๏ฟฝ2(๐‘ก)๐‘’

โˆ’๐‘‘1๐œ โˆ’ (๐ท3 + ๐œ‡0)๐œ™3(๐‘ก)

๐‘‘๐œ™4(๐‘ก)

๐‘‘๐‘ก= ๐œ‡0๐œ™3(๐‘ก) โˆ’ ๐ท3๐œ™4(๐‘ก)

}

๐‘ก โ‰  ๐‘›๐‘‡ (13)

๐œ™1(๐‘ก+) = ๐œ™1(๐‘ก),

๐œ™2(๐‘ก+) = (1 โˆ’ ๐›ฟ)๐œ™2(๐‘ก)

๐œ™3(๐‘ก+) = ๐œ™3(๐‘ก) + ๐œ‡1

๐œ™4(๐‘ก+) = ๐œ™4(๐‘ก) + ๐œ‡2

}

๐‘ก = ๐‘›๐‘‡ (14)

Page 7: Controlling Pest by Integrated Pest Management: A ...

International Journal of Mathematical, Engineering and Management Sciences

Vol. 5, No. 4, 769-786, 2020

https://doi.org/10.33889/IJMEMS.2020.5.4.061

775

Let ๐œ™(๐‘ก) be the fundamental matrix of (13 โˆ’ 14), then ๐œ™(๐‘ก) must satisfy

๐‘‘๐œ™(๐‘ก)

๐‘‘๐‘ก=

[ โˆ’๐‘Ÿ โˆ’๐‘Ž1 0 0

0 ๐‘Ž1๐‘1 โˆ’ ๐ท โˆ’ ๐‘Ž2๏ฟฝฬƒ๏ฟฝ2(๐‘ก)๐‘’โˆ’๐‘‘1๐œ 0 0

0 ๐‘Ž2๐‘2๏ฟฝฬƒ๏ฟฝ2(๐‘ก)๐‘’โˆ’๐‘‘1๐œ โˆ’(๐ท3 + ๐œ‡0) 0

0 0 ๐œ‡0 โˆ’๐ท3]

๐œ™(๐‘ก)

๐‘‘๐œ™(๐‘ก)

๐‘‘๐‘ก= ๐ด๐œ™(๐‘ก) (15)

Thus, the monodromy matrix of (13 โˆ’ 14) is

๐‘€ =

[ 1 0 0 00 1 โˆ’ ๐›ฟ 0 00 0 1 00 0 0 1

]

๐œ™(๐‘ก).

From (15) , we get ๐œ™(๐‘ก) = ๐œ™(0)๐‘’๐‘ฅ๐‘(โˆซ๐‘‡

0๐ด๐‘‘๐‘ก), where๐œ™(0) is an identity matrix. Then the

characteristic values obtained for ๐‘€ are as follows:

๐œ†1 = ๐‘’๐‘ฅ๐‘(โˆ’๐‘Ÿ๐‘‡) < 1, ๐œ†2 = (1 โˆ’ ๐›ฟ)๐‘’๐‘ฅ๐‘โˆซ๐‘‡

0

(๐‘Ž1๐‘1 โˆ’ ๐ท โˆ’ ๐‘Ž2๏ฟฝฬƒ๏ฟฝ2(๐‘ก)๐‘’โˆ’๐‘‘1๐œ) < 1,

๐œ†3 = ๐‘’๐‘ฅ๐‘((โˆ’(๐ท3 + ๐œ‡0) โˆ’ ๐œ†)๐‘‡) < 1, ๐œ†4 = ๐‘’๐‘ฅ๐‘(โˆ’๐ท3๐‘‡) < 1.

Therefore, pest eradication periodic solution of (1 โˆ’ 2) is locally asymptotically stable as per

Floquet theory (Bainov and Sineonov, 1993) if and only if |๐œ†2| โ‰ค 1 which implies ๐‘‡ โ‰ค ๐‘‡๐‘š๐‘Ž๐‘ฅ.

Hence, the theorem is proved.

5. Permanence In this section, we will discuss permanence of system (1 โˆ’ 2).

Theorem 5.1 The system (1-2) is permanent if ๐‘‡ > ๐‘‡๐‘š๐‘Ž๐‘ฅ.

Proof. Suppose (๐‘, ๐‘ž, ๐‘Ÿ1, ๐‘Ÿ2) is the solution of the system (1 โˆ’ 2), ๐‘ก being removed for

convenience, We have already proved that ๐‘(๐‘ก) โ‰ค ๐‘€, ๐‘ž(๐‘ก) โ‰ค ๐‘€, ๐‘Ÿ1(๐‘ก) โ‰ค ๐‘€ and ๐‘Ÿ2(๐‘ก) โ‰ค ๐‘€ โˆ€

๐‘ก. From, (1 โˆ’ 2) we have ๐‘‘๐‘

๐‘‘๐‘กโ‰ฅ ๐‘(๐‘Ÿ โˆ’ ๐‘Ž1๐‘€โˆ’ ๐‘) which implies that ๐‘(๐‘ก) > ๐‘Ÿ โˆ’ ๐‘Ž1๐‘€ โ‰œ ๐‘š1

for all large t. For small ๐œ–4 > 0, we choose ๐‘š1 = 1 โˆ’ ๐œ– > 0 and also define,

๐‘š2 =โˆ’๐œ‡1๐‘’๐‘ฅ๐‘(โˆ’(๐ท3 + ๐œ‡0)(๐‘ก โˆ’ ๐‘›๐‘‡))

1 โˆ’ ๐‘’๐‘ฅ๐‘(โˆ’(๐ท3 + ๐œ‡0)๐‘‡)โˆ’ ๐œ–4 > 0,

Page 8: Controlling Pest by Integrated Pest Management: A ...

International Journal of Mathematical, Engineering and Management Sciences

Vol. 5, No. 4, 769-786, 2020

https://doi.org/10.33889/IJMEMS.2020.5.4.061

776

๐‘š3 =โˆ’๐œ‡1๐‘’๐‘ฅ๐‘(โˆ’(๐ท3 + ๐œ‡0)(๐‘ก โˆ’ ๐‘›๐‘‡))

1 โˆ’ ๐‘’๐‘ฅ๐‘(โˆ’(๐ท3 + ๐œ‡0)๐‘‡)+(๐œ‡1 + ๐œ‡2)๐‘’๐‘ฅ๐‘(โˆ’๐ท3(๐‘ก โˆ’ ๐‘›๐‘‡))

1 โˆ’ ๐‘’๐‘ฅ๐‘(โˆ’๐ท3๐‘‡)โˆ’๐œ–4๐œ‡0๐ท3

โˆ’ ๐œ–4 > 0.

Now, the system (1 โˆ’ 2) can be rewritten as:

๐‘‘๐‘Ÿ1(๐‘ก)

๐‘‘๐‘ก= โˆ’(๐ท3 + ๐œ‡0)๐‘Ÿ1(๐‘ก)

๐‘‘๐‘Ÿ2(๐‘ก)

๐‘‘๐‘ก= ๐œ‡0๐‘Ÿ1(๐‘ก) โˆ’ ๐ท3๐‘Ÿ2(๐‘ก)

}

๐‘ก โ‰  ๐‘›๐‘‡, (16)

๐‘Ÿ1(๐‘ก+) = ๐‘Ÿ1 + ๐œ‡1

๐‘Ÿ2(๐‘ก+) = ๐‘Ÿ2 + ๐œ‡2 } ๐‘ก = ๐‘›๐‘‡. (17)

The system (16 โˆ’ 17) is same as (5 โˆ’ 6), using same technique, we can easily find that ๐‘Ÿ1(๐‘ก) >๐‘š2 and ๐‘Ÿ2(๐‘ก) > ๐‘š3 โˆ€ t. Hence, for proving the permanence we have only have to prove ๐‘š4 >0, such that ๐‘ž(๐‘ก) โ‰ฅ ๐‘š4โˆ€ t which will be done in two steps.

Step 1: Let ๐‘ž(๐‘ก) โ‰ฅ ๐‘š4 is false โˆƒ a ๐‘ก1 โˆˆ (0,โˆž) s.t ๐‘ž(๐‘ก) < ๐‘š4 โˆ€ ๐‘ก > ๐‘ก1. Using this

supposition, we get subsystem of (1 โˆ’ 2):

๐‘‘๐‘Ÿ1(๐‘ก)

๐‘‘๐‘กโ‰ค ๐‘Ž2๐‘2๐‘€๐‘š4๐‘’

โˆ’๐‘‘1๐œ โˆ’ (๐ท3 + ๐œ‡0)๐‘Ÿ1, ๐‘ก โ‰  ๐‘›๐‘‡

๐‘Ÿ1(๐‘ก+) = ๐‘Ÿ1(๐‘ก) + ๐œ‡1, ๐‘ก = ๐‘›๐‘‡, ๐‘› = 1,2,3โ€ฆโ€ฆ.

Let us assume the comparison system:

๐‘‘๏ฟฝฬ…๏ฟฝ1(๐‘ก)

๐‘‘๐‘กโ‰ค ๐‘Ž2๐‘2๐‘€๐‘š4๐‘’

โˆ’๐‘‘1๐œ โˆ’ (๐ท3 + ๐œ‡0)๏ฟฝฬ…๏ฟฝ1(๐‘ก), ๐‘ก โ‰  ๐‘›๐‘‡

๏ฟฝฬ…๏ฟฝ1(๐‘ก+) = ๏ฟฝฬ…๏ฟฝ1(๐‘ก) + ๐œ‡1, ๐‘ก = ๐‘›๐‘‡, ๐‘› = 1,2,3. . . .

} (18)

Using lemma 3.1, equation (18) has periodic solution

(๐‘ก)๏ฟฝฬƒฬ…๏ฟฝ1 =๐‘Ž2๐‘2๐‘š4๐‘€๐‘’๐‘ฅ๐‘(โˆ’๐‘‘1๐œ)

๐ท3 + ๐œ‡0+๐œ‡1๐‘’๐‘ฅ๐‘(โˆ’(๐ท3 + ๐œ‡0)(๐‘ก โˆ’ ๐‘›๐‘‡))

1 โˆ’ ๐‘’๐‘ฅ๐‘(โˆ’(๐ท3 + ๐œ‡0)๐‘‡)

which is globally asymptotically stable. Then, โˆƒ an ๐œ–5 > 0 s.t

๐‘Ÿ1(๐‘ก) โ‰ค ๏ฟฝฬƒฬ…๏ฟฝ1(๐‘ก) <๐‘Ž2๐‘2๐‘š4๐‘€๐‘’๐‘ฅ๐‘(โˆ’๐‘‘1๐œ)

๐ท3 + ๐œ‡0+๐œ‡1 exp(โˆ’(๐ท3 + ๐œ‡0)(๐‘ก โˆ’ ๐‘›๐‘‡))

1 โˆ’ exp(โˆ’(๐ท3 + ๐œ‡0)๐‘‡)+ ๐œ–5 > 0.

For sufficiently large ๐‘ก. Thus we find the following subsystem of (1 โˆ’ 2):

Page 9: Controlling Pest by Integrated Pest Management: A ...

International Journal of Mathematical, Engineering and Management Sciences

Vol. 5, No. 4, 769-786, 2020

https://doi.org/10.33889/IJMEMS.2020.5.4.061

777

๐‘‘๐‘Ÿ2(๐‘ก)

๐‘‘๐‘ก= ๐œ‡0 (

๐‘Ž2๐‘2๐‘š4๐‘€๐‘’๐‘ฅ๐‘(โˆ’๐‘‘1๐œ)

๐ท3 + ๐œ‡0+๐œ‡1 exp(โˆ’(๐ท3 + ๐œ‡0)(๐‘ก โˆ’ ๐‘›๐‘‡))

1 โˆ’ exp(โˆ’(๐ท3 + ๐œ‡0)๐‘‡)+ ๐œ–5) โˆ’ ๐ท3๐‘Ÿ2, ๐‘ก โ‰  ๐‘›๐‘‡

๐‘Ÿ2(๐‘ก+) = ๐‘Ÿ2 + ๐œ‡2, ๐‘ก = ๐‘›๐‘‡, ๐‘› = 1,2,3. . . . . . .

}

(19)

Consider the comparison system (19) as follows:

๐‘‘๏ฟฝฬ…๏ฟฝ 2(๐‘ก)

๐‘‘๐‘ก= ๐œ‡0(

๐‘Ž2๐‘2๐‘š4๐‘€๐‘’๐‘ฅ๐‘(โˆ’๐‘‘1๐œ)

๐ท3 + ๐œ‡0+๐œ‡1๐‘’๐‘ฅ๐‘(โˆ’(๐ท3 + ๐œ‡0)(๐‘ก โˆ’ ๐‘›๐‘‡))

1 โˆ’ ๐‘’๐‘ฅ๐‘(โˆ’(๐ท3 + ๐œ‡0)๐‘‡)+ ๐œ–5)(๐‘ก) โˆ’ ๐ท3๏ฟฝฬ…๏ฟฝ2(๐‘ก), ๐‘ก โ‰  ๐‘›๐‘‡

๏ฟฝฬ…๏ฟฝ2(๐‘ก+) = ๏ฟฝฬ…๏ฟฝ2(๐‘ก) + ๐œ‡2, ๐‘ก = ๐‘›๐‘‡, ๐‘› = 1,2,3. . . . . . .

}

(20)

Similarly, system (20) also has a periodic solution

๐‘Ÿ2(๐‘ก) < ๏ฟฝฬƒฬ…๏ฟฝ2(๐‘ก) <โˆ’๐œ‡1๐‘’๐‘ฅ๐‘(โˆ’(๐ท3 + ๐œ‡0)(๐‘ก โˆ’ ๐‘›๐‘‡))

1 โˆ’ ๐‘’๐‘ฅ๐‘(โˆ’(๐ท3 + ๐œ‡0)๐‘‡)+(๐œ‡1 + ๐œ‡2)๐‘’๐‘ฅ๐‘(โˆ’๐ท3(๐‘ก โˆ’ ๐‘›๐‘‡))

1 โˆ’ ๐‘’๐‘ฅ๐‘(โˆ’๐ท3๐‘‡)

+๐œ‡0๐ท3(๐‘Ž2๐‘2๐‘š4๐‘€๐‘’๐‘ฅ๐‘(โˆ’๐‘‘1๐œ)

(๐ท3 + ๐œ‡0)+ ๐œ–5)

๏ฟฝฬƒฬ…๏ฟฝ2(๐‘ก) <โˆ’๐œ‡1 exp(โˆ’(๐ท3 + ๐œ‡0)(๐‘ก โˆ’ ๐‘›๐‘‡))

1 โˆ’ exp(โˆ’(๐ท3 + ๐œ‡0)๐‘‡)+(๐œ‡1 + ๐œ‡2) exp(โˆ’๐ท3(๐‘ก โˆ’ ๐‘›๐‘‡))

1 โˆ’ exp(โˆ’๐ท3๐‘‡)

+๐œ‡0

๐ท3(๐‘Ž2๐‘2๐‘š4๐‘€๐‘’๐‘ฅ๐‘(โˆ’๐‘‘1๐œ)

(๐ท3 + ๐œ‡0)๐œ–5) (21)

which is globally asymptotically stable and โˆƒ an ๐œ–6 > 0 s.t

๐‘Ÿ2(๐‘ก) < ๏ฟฝฬƒฬ…๏ฟฝ2(๐‘ก) <โˆ’๐œ‡1๐‘’๐‘ฅ๐‘(โˆ’(๐ท3 + ๐œ‡0)(๐‘ก โˆ’ ๐‘›๐‘‡))

1 โˆ’ ๐‘’๐‘ฅ๐‘(โˆ’(๐ท3 + ๐œ‡0)๐‘‡)+(๐œ‡1 + ๐œ‡2)๐‘’๐‘ฅ๐‘(โˆ’๐ท3(๐‘ก โˆ’ ๐‘›๐‘‡))

1 โˆ’ ๐‘’๐‘ฅ๐‘(โˆ’๐ท3๐‘‡)

+๐œ‡0๐ท3(๐‘Ž2๐‘2๐‘š4๐‘€๐‘’๐‘ฅ๐‘(โˆ’๐‘‘1๐œ)

(๐ท3 + ๐œ‡0)+ ๐œ–5) + ๐œ–6.

It shows that โˆƒ a ๐‘‡1 > 0 s.t for ๐‘›๐‘‡ < ๐‘ก โ‰ค (๐‘› + 1)๐‘‡, we are having the following subsystem of

(1 โˆ’ 2): ๐‘‘๐‘ž(๐‘ก)

๐‘‘๐‘กโ‰ฅ [๐‘Ž1๐‘1๐‘š1 โˆ’ ๐‘Ž2(๏ฟฝฬƒฬ…๏ฟฝ2(๐‘ก) + ๐œ–6)๐‘’

โˆ’๐‘‘1๐œ โˆ’ ๐ท]๐‘ž, ๐‘ก โ‰  ๐‘›๐‘‡

๐‘ž(๐‘ก+) = (1 โˆ’ ๐›ฟ)๐‘ž(๐‘ก), ๐‘ก = ๐‘›๐‘‡, ๐‘Ž๐‘›๐‘‘, ๐‘ก > ๐‘‡1} (22)

Integrating the system, (22) on (๐‘›๐‘‡, (๐‘› + 1)๐‘‡], ๐‘› โ‰ฅ ๐‘1 (here,๐‘1 is the nonnegative integer and

๐‘1๐‘‡ โ‰ฅ ๐‘‡1), then we obtain that,

Page 10: Controlling Pest by Integrated Pest Management: A ...

International Journal of Mathematical, Engineering and Management Sciences

Vol. 5, No. 4, 769-786, 2020

https://doi.org/10.33889/IJMEMS.2020.5.4.061

778

๐‘ž((๐‘› + 1)๐‘‡) โ‰ฅ (1 โˆ’ ๐›ฟ)๐‘ž(๐‘›๐‘‡+)๐‘’๐‘ฅ๐‘(โˆซ(๐‘›+1)๐‘‡

๐‘›๐‘‡

(๐‘Ž1๐‘1๐‘š1 โˆ’ ๐‘Ž2(๏ฟฝฬƒฬ…๏ฟฝ2(๐‘ก) โˆ’ ๐œ–6)๐‘’โˆ’๐‘‘1๐œ โˆ’๐ท)๐‘‘๐‘ก)

= ๐‘ž(๐‘›๐‘‡+)๏ฟฝฬ…๏ฟฝ

where, ๏ฟฝฬ…๏ฟฝ(1 โˆ’ ๐›ฟ)๐‘ž(๐‘›๐‘‡+)๐‘’๐‘ฅ๐‘(โˆซ(๐‘›+1)๐‘‡

๐‘›๐‘‡(๐‘Ž1๐‘1๐‘š1 โˆ’ ๐‘Ž2(๏ฟฝฬƒฬ…๏ฟฝ2(๐‘ก) โˆ’ ๐œ–6)๐‘’

โˆ’๐‘‘1๐œ โˆ’ ๐ท)๐‘‘๐‘ก) > 1, as, ๐‘‡ >

๐‘‡๐‘š๐‘Ž๐‘ฅ, therefore, for๐œ–5 > 0, we obtain that,

(๐‘Ž1๐‘1๐‘š1 โˆ’ ๐‘Ž2๐œ–6๐‘’๐‘ฅ๐‘(โˆ’๐‘‘1๐œ) โˆ’ ๐ท)๐‘‡ โˆ’๐‘Ž2๐œ‡0๐‘’๐‘ฅ๐‘(โˆ’๐‘‘1๐œ)

๐ท3(๐‘2๐‘š4๐‘€๐‘’๐‘ฅ๐‘(โˆ’๐‘‘1๐œ)

(๐ท3 + ๐œ‡0)โˆ’ ๐œ–5) โˆ’

๐‘Ž2(๐œ‡1

(๐ท3 + ๐œ‡0)

(๐œ‡1 + ๐œ‡2) exp(โˆ’๐‘‘1๐œ)

๐ท3) โˆ’ ๐‘™๐‘œ๐‘”(

1

1 โˆ’ ๐›ฟ) > 1.

Thus, ๐‘ž((๐‘1 + ๐‘˜)๐‘‡) โ‰ฅ ๐‘ž(๐‘1๐‘‡+)๏ฟฝฬ…๏ฟฝ๐‘˜ โ†’ โˆž as ๐‘˜ โ†’ โˆž, which violoates our assumption ๐‘ž(๐‘ก) <

๐‘š4, for every ๐‘ก > ๐‘ก2. Hence there exists a ๐‘ก2 > ๐‘ก1 s.t ๐‘ž(๐‘ก2) โ‰ฅ ๐‘š4.

Step 2: If ๐‘ž(๐‘ก) โ‰ฅ ๐‘š4 โˆ€ ๐‘ก โ‰ฅ ๐‘ก2, then our aim will be fulfilled. On the contrary let us assume

that ๐‘ž(๐‘ก) < ๐‘š4 for some ๐‘ก > ๐‘ก2. Let ๐‘กโˆ— = inf{๐‘ก|๐‘ž(๐‘ก) < ๐‘š4, ๐‘ก > ๐‘ก2}, then there will be two

cases:

Case 1: Let๐‘กโˆ— = ๐‘›1๐‘‡, ๐‘›1 โˆˆ ๐‘+ . In this case ๐‘ž(๐‘ก) โ‰ฅ ๐‘š4 for ๐‘ก โˆˆ [๐‘ก2, ๐‘ก

โˆ—) and (1 โˆ’ ๐›ฟ)๐‘š4 โ‰ค๐‘ž(๐‘กโˆ—+ = (1 โˆ’ ๐›ฟ)๐‘ž(๐‘กโˆ—) < ๐‘š4) . Let ๐‘‡2 = ๐‘›2๐‘‡ + ๐‘›3๐‘‡, where ๐‘›2 = ๐‘›2

โ€ฒ + ๐‘›2โ€ฒโ€ฒ, ๐‘›2

โ€ฒ , ๐‘›2 โ€ฒโ€ฒ and ๐‘›3

satisfy these inequalities:

๐‘›2โ€ฒ๐‘‡ > โˆ’1

๐ท3 + ๐œ‡0๐‘™๐‘›

๐œ–5๐‘€ + ๐œ‡1

,

๐‘›2โ€ฒโ€ฒ๐‘‡ > โˆ’1

๐ท3 + ๐œ‡0๐‘™๐‘›

๐œ–6๐‘€+ ๐œ‡2

,

(1 โˆ’ ๐›ฟ)๐‘›2+๐‘›3exp (๐œ‚๐‘›2๐‘‡)exp (๐‘›3๐œŽ) > 1,

๐œ‚ = ๐‘Ž1๐‘1๐‘š1 โˆ’ ๐‘Ž2๐œ–6๐‘’๐‘ฅ๐‘(โˆ’๐‘‘1๐œ) โˆ’ ๐ท < 0. Now, we claim that โˆƒ a time ๐‘ก2โ€ฒ โˆˆ (๐‘กโˆ—, ๐‘กโˆ— + ๐‘‡2) such

that ๐‘ž(๐‘ก2โ€ฒ ) โ‰ฅ ๐‘š4, if it is not true, then ๐‘ž(๐‘ก2

โ€ฒ ) < ๐‘š4, ๐‘ก2โ€ฒ โˆˆ (๐‘กโˆ—, ๐‘กโˆ— + ๐‘‡2). If the system (18) is taken

with initial value ๏ฟฝฬ…๏ฟฝ1(๐‘กโˆ—+) = ๐‘Ÿ1(๐‘ก

โˆ—+), then from lemma (3.1) for ๐‘ก โˆˆ (๐‘›๐‘‡, (๐‘› + 1)๐‘‡],

we have

๏ฟฝฬ…๏ฟฝ1(๐‘ก) = (๏ฟฝฬ…๏ฟฝ1(๐‘กโˆ—+) โˆ’

๐‘Ž2๐‘2๐‘š4๐‘€๐‘’๐‘ฅ๐‘(โˆ’๐‘‘1๐œ)

๐ท3+๐œ‡0+

๐œ‡1

1โˆ’๐‘’๐‘ฅ๐‘(โˆ’(๐ท3+๐œ‡0)๐‘‡))๐‘’๐‘ฅ๐‘(โˆ’(๐ท3 + ๐œ‡0)(๐‘ก โˆ’ ๐‘ก

โˆ—)) + ๏ฟฝฬƒฬ…๏ฟฝ1(๐‘ก),

for ๐‘›1 โ‰ค ๐‘› โ‰ค ๐‘›1 + ๐‘›2 + ๐‘›3 which shows that |๏ฟฝฬ…๏ฟฝ1(๐‘ก) โˆ’ ๏ฟฝฬƒฬ…๏ฟฝ1(๐‘ก)| โ‰ค (๐‘€ + ๐œ‡1)๐‘’๐‘ฅ๐‘(โˆ’(๐ท3 +

๐œ‡0)(๐‘ก โˆ’ ๐‘›1๐‘‡)) < ๐œ–5, and ๐‘Ÿ1(๐‘ก) โ‰ค ๏ฟฝฬ…๏ฟฝ1(๐‘ก) < ๏ฟฝฬƒฬ…๏ฟฝ1(๐‘ก) + ๐œ–5 for ๐‘กโˆ— + ๐‘›2

โ€ฒ ๐‘‡ โ‰ค ๐‘ก โ‰ค ๐‘กโˆ— + ๐‘‡2.

Now, from the system (18) with initial values ๏ฟฝฬ…๏ฟฝ2(๐‘กโˆ— + ๐‘›2

โ€ฒ ๐‘‡) = ๐‘ž2(๐‘กโˆ— + ๐‘›2

โ€ฒ ๐‘‡) โ‰ฅ 0 and again from

lemma (3.1), we have |๏ฟฝฬ…๏ฟฝ1(๐‘ก) โˆ’ ๏ฟฝฬƒฬ…๏ฟฝ1(๐‘ก)| < (๐‘€ + ๐œ‡2)๐‘’๐‘ฅ๐‘(๐ท3(๐‘ก โˆ’ (๐‘›1 +๐‘2โ€ฒ)๐‘‡)) <

๐œ–6, and ๐‘Ÿ2(๐‘ก) โ‰ค ๏ฟฝฬ…๏ฟฝ2(๐‘ก) < ๏ฟฝฬƒฬ…๏ฟฝ2(๐‘ก) + ๐œ–6 for ๐‘กโˆ— + ๐‘›2

โ€ฒ ๐‘‡ + ๐‘›2โ€ฒโ€ฒ๐‘‡ โ‰ค ๐‘ก โ‰ค ๐‘กโˆ— + ๐‘‡2, which shows that

Page 11: Controlling Pest by Integrated Pest Management: A ...

International Journal of Mathematical, Engineering and Management Sciences

Vol. 5, No. 4, 769-786, 2020

https://doi.org/10.33889/IJMEMS.2020.5.4.061

779

system (22) holds for [๐‘กโˆ— + ๐‘›2๐‘‡, ๐‘กโˆ— + ๐‘‡2].

Integrating equation (22) on [๐‘กโˆ— + ๐‘›2๐‘‡, ๐‘กโˆ— + ๐‘‡2], we have

๐‘ž((๐‘›1 + ๐‘›2 + ๐‘›3)๐‘‡) โ‰ฅ ๐‘ž((๐‘›1 + ๐‘›2)๐‘‡)(1 โˆ’ ๐›ฟ)๐‘›3๐‘’๐‘ฅ๐‘(๐‘›3๐œŽ) (23)

In addition from the system (1 โˆ’ 2), we have

๐‘‘๐‘ž(๐‘ก)

๐‘‘๐‘ก= (๐‘Ž1๐‘1๐‘š1 โˆ’ ๐‘Ž2๐‘€๐‘’

โˆ’๐‘‘1๐œ โˆ’ ๐ท) ๐‘ž(๐‘ก) = ๐œ‚๐‘ž(๐‘ก), ๐‘ก โ‰  ๐‘›๐‘‡

๐‘ž(๐‘ก+) = (1 โˆ’ ๐›ฟ)๐‘ž, ๐‘ก = ๐‘›๐‘‡, ๐‘› = 1,2,3. . . .} (24)

On integrating (24) in the interval [๐‘‡โˆ—, (๐‘›1 + ๐‘›2)๐‘‡], it is obtained that

๐‘ž((๐‘›1 + ๐‘›2)๐‘‡) โ‰ฅ ๐‘š4(1 โˆ’ ๐›ฟ)๐‘›2๐‘’๐‘ฅ๐‘(๐œ‚๐‘›2๐‘‡) (25)

Now substitute (25) into (24), we get that

๐‘ž((๐‘›1 + ๐‘›2 + ๐‘›3)๐‘‡) โ‰ฅ ๐‘š4(1 โˆ’ ๐›ฟ)๐‘›2+๐‘›3๐‘’๐‘ฅ๐‘(๐‘›3๐œŽ)๐‘’๐‘ฅ๐‘(๐œ‚๐‘›2๐‘‡) > ๐‘š4 (26)

which contradicts to our supposition, so there exists a time ๐‘ก2โ€ฒ โˆˆ [๐‘กโˆ—, ๐‘กโˆ— + ๐‘‡2] such that๐‘ž2

โ€ฒ โ‰ฅ

๐‘š4. Let ๏ฟฝฬ‚๏ฟฝ = inf{๐‘ก|๐‘ก โ‰ฅ ๐‘กโˆ—, ๐‘ž(๐‘ก) โ‰ฅ ๐‘š4} ,since 0 < ๐›ฟ < 1, ๐‘ž(๐‘›๐‘‡+) = (1 โˆ’ ๐›ฟ)๐‘ž(๐‘›๐‘‡) <

๐‘ž(๐‘›๐‘‡)and๐‘ž(๐‘ก) < ๐‘š4, ๐‘ก โˆˆ (๐‘กโˆ—, ๏ฟฝฬ‚๏ฟฝ). Thus,๐‘ž(๏ฟฝฬ‚๏ฟฝ) = ๐‘š4.

Suppose๐‘ก โˆˆ (๐‘กโˆ— + (๐‘™ โˆ’ 1)๐‘‡, ๐‘‡โˆ— + ๐‘™๐‘‡] (๐‘™is a positive integer) and ๐‘™ โ‰ค ๐‘›2 + ๐‘›3, from the system

(24), we have

๐‘ž(๐‘ก) โ‰ฅ ๐‘ž(๐‘กโˆ— + (๐‘™ โˆ’ 1)๐‘‡)๐‘’๐‘ฅ๐‘(๐œ‚(๐‘ก โˆ’ ๐‘กโˆ— โˆ’ (๐‘™ โˆ’ 1))๐‘‡)

๐‘ž(๐‘ก) โ‰ฅ ๐‘ž(๐‘›๐‘‡+)๐‘’๐‘ฅ๐‘(๐œ‚๐‘‡(๐‘™ โˆ’ 1))(1 โˆ’ ๐›ฟ)๐‘™โˆ’1๐‘’๐‘ฅ๐‘(๐œ‚๐‘‡)

๐‘ž(๐‘ก) โ‰ฅ ๐‘š4(1 โˆ’ ๐›ฟ)๐‘™๐‘’๐‘ฅ๐‘(๐‘™๐œ‚๐‘‡)

๐‘ž(๐‘ก) โ‰ฅ ๐‘š4(1 โˆ’ ๐›ฟ)(๐‘›2 + ๐‘›3)๐‘’๐‘ฅ๐‘((๐‘›2 + ๐‘›3)๐œ‚๐‘‡) โ‰œ ๏ฟฝฬ…๏ฟฝ4

for ๐‘ก > ๏ฟฝฬ‚๏ฟฝ. The same argument can be continued since ๐‘ž(๏ฟฝฬ‚๏ฟฝ) โ‰ฅ ๐‘š4. Hence ๐‘ž(๐‘ก) โ‰ฅ ๏ฟฝฬ…๏ฟฝ4โˆ€๐‘ก > ๐‘ก2.

Case 2: If ๐‘กโˆ— โ‰  ๐‘›๐‘‡, then ๐‘ž(๐‘กโˆ—) = ๐‘š4 and ๐‘ž(๐‘ก) โ‰ฅ ๐‘š4, ๐‘ก โˆˆ [๐‘ก2, ๐‘กโˆ—]. Suppose ๐‘กโˆ— โˆˆ (๐‘›1

โ€ฒ๐‘‡, (๐‘›1โ€ฒ +

1)๐‘‡], we are having two subcases for ๐‘ก โˆˆ [๐‘กโˆ—, (๐‘›1โ€ฒ + 1)๐‘‡] as given below:

Case a: ๐‘ž(๐‘ก) โ‰ค ๐‘š4, ๐‘ก๐œ–[๐‘กโˆ—, (๐‘›1

โ€ฒ + 1)๐‘‡], we claim that there exists a ๐‘ก3ํœ€[(๐‘›1โ€ฒ + 1)๐‘‡, (๐‘›1

โ€ฒ +

1)๐‘‡ + ๐‘‡2] s.t ๐‘ž(๐‘ก3) > ๐‘š4. Otherwise, integrating system (24) on the interval [(๐‘›1โ€ฒ + 1 +

๐‘›2)๐‘‡, (๐‘›1โ€ฒ + 1 + ๐‘›2 + ๐‘›3)๐‘‡] , we have, ๐‘ž((๐‘›1

โ€ฒ + 1 + ๐‘›2 + ๐‘›3)๐‘‡) โ‰ฅ ๐‘ž((๐‘›1โ€ฒ + 1 + ๐‘›2)๐‘‡)(1 โˆ’

๐›ฟ)๐‘›3๐‘’๐‘ฅ๐‘(๐‘›3๐œŽ)

Since ๐‘ž(๐‘ก) โ‰ค ๐‘š4, ๐‘ก โˆˆ [๐‘กโˆ—, (๐‘›1

โ€ฒ + 1)๐‘‡], therefore, (13) holds on [๐‘กโˆ—, (๐‘›1โ€ฒ + ๐‘›2 + ๐‘›3)๐‘‡].

Page 12: Controlling Pest by Integrated Pest Management: A ...

International Journal of Mathematical, Engineering and Management Sciences

Vol. 5, No. 4, 769-786, 2020

https://doi.org/10.33889/IJMEMS.2020.5.4.061

780

Thus,

๐‘ž((๐‘›1โ€ฒ + 1 + ๐‘›2)๐‘‡) = ๐‘ž(๐‘ก

โˆ—)(1 โˆ’ ๐›ฟ)๐‘›2๐‘’๐‘ฅ๐‘(๐œ‚(๐‘›1โ€ฒ + 1 + ๐‘›2)๐‘‡ โˆ’ ๐‘ก

โˆ—)

๐‘ž((๐‘›1โ€ฒ + 1 + ๐‘›2)๐‘‡) โ‰ฅ ๐‘š4(1 โˆ’ ๐›ฟ)

๐‘›2๐‘’๐‘ฅ๐‘(๐œ‚๐‘›2๐‘‡)

and

๐‘ž((๐‘›1โ€ฒ + 1 + ๐‘›2 + ๐‘›3)๐‘‡) โ‰ฅ ๐‘š4(1 โˆ’ ๐›ฟ)

๐‘›2+๐‘›3๐‘’๐‘ฅ๐‘(๐œ‚๐‘›2๐‘‡)๐‘’๐‘ฅ๐‘(๐‘›3๐œŽ) > ๐‘š4

which negates the assumption. Let ๏ฟฝฬ†๏ฟฝ = inf {๐‘ก|๐‘ž โ‰ฅ ๐‘š4, ๐‘ก > ๐‘กโˆ—}, then ๐‘ž(๏ฟฝฬ†๏ฟฝ) = ๐‘š4 and ๐‘ž < ๐‘š4, ๐‘ก โˆˆ

(๐‘กโˆ—, ๏ฟฝฬ†๏ฟฝ). Choose ๐‘ก โˆˆ (๐‘›1โ€ฒ๐‘‡ + (๐‘™โ€ฒ โˆ’ 1)๐‘‡, ๐‘›1

โ€ฒ๐‘‡ + ๐‘™โ€ฒ๐‘‡] โŠ‚ (๐‘กโˆ—, ๏ฟฝฬ†๏ฟฝ), ๐‘™โ€ฒ is a positive integer and ๐‘™โ€ฒ < 1 +

๐‘›2 + ๐‘›3, we have

๐‘ž(๐‘ก) โ‰ฅ ๐‘ž((๐‘›1โ€ฒ + ๐‘™โ€ฒ โˆ’ 1)๐‘‡+)๐‘’๐‘ฅ๐‘(๐œ‚(๐‘ก โˆ’ (๐‘›1

โ€ฒ + ๐‘™โ€ฒ โˆ’ 1)๐‘‡))

๐‘ž(๐‘ก) โ‰ฅ (1 โˆ’ ๐›ฟ)๐‘™โ€ฒโˆ’1๐‘ž(๐‘กโˆ—)๐‘’๐‘ฅ๐‘(๐œ‚(๐‘ก โˆ’ ๐‘กโˆ—))

๐‘ž(๐‘ก) โ‰ฅ ๐‘š4(1 โˆ’ ๐›ฟ)๐‘›2+๐‘›3๐‘’๐‘ฅ๐‘(๐œ‚(๐‘›2 + ๐‘›3 + 1)๐‘‡).

Hence, ๐‘ž โ‰ฅ ๏ฟฝฬ…๏ฟฝ4 for ๐‘ก โˆˆ (๐‘กโˆ—, ๏ฟฝฬ†๏ฟฝ). For ๐‘ก > ๏ฟฝฬ†๏ฟฝ, we can proceed in the same manner since ๐‘ž(๏ฟฝฬ†๏ฟฝ) โ‰ฅ ๐‘š4.

Case b: If โˆƒ a ๐‘ก โˆˆ (๐‘กโˆ—, (๐‘›1โ€ฒ + 1)๐‘‡) s.t ๐‘ž(๐‘ก) โ‰ฅ ๐‘š4. Let ๏ฟฝฬ†๏ฟฝ = inf (๐‘ก|๐‘ž(๐‘ก) โ‰ฅ ๐‘š4, ๐‘ก > ๐‘ก

โˆ—), then

๐‘ž(๐‘ก) < ๐‘š4 for ๐‘ก โˆˆ [๐‘กโˆ—, ๐‘กฬ…) and ๐‘ž(๐‘กฬ…) = ๐‘š4. For ๐‘ก โˆˆ [๐‘กโˆ—, ๐‘กฬ…) (24) holds. On integrating (24) on

๐‘กโˆ—, ๏ฟฝฬ†๏ฟฝ, we obtain

๐‘ž โ‰ฅ ๐‘ž(๐‘กโˆ—) โ‰ฅ ๐‘’๐‘ฅ๐‘(๐œ‚(๐‘ก โˆ’ ๐‘กโˆ—) โ‰ฅ ๐‘š4๐‘’๐‘ฅ๐‘(๐œ‚๐‘‡) > ๏ฟฝฬ…๏ฟฝ4

Since, ๐‘ž(๏ฟฝฬ‚๏ฟฝ) โ‰ฅ ๐‘š4 for ๐‘ก > ๏ฟฝฬ‚๏ฟฝ, we can proceed in the same manner. Hence, we have ๐‘ž(๐‘ก) โ‰ฅ ๏ฟฝฬ…๏ฟฝ4 for

all ๐‘ก > ๐‘ก2. Therefore we can conclude that ๐‘ž(๐‘ก) โ‰ฅ ๏ฟฝฬ…๏ฟฝ4 for all ๐‘ก โ‰ฅ ๐‘ก2 in both cases.

6. Numerical Section For the intended process, we have taken data per week in view of the short term life cycle of the

insect population under investigation. Our aim is to validate the analytical results numerically. We

have considered numerical values for the following set of parameters in reference to (Jatav and

Dhar, 2014) as mentioned in Table 2.

Table 2. Parametric values

Parameters ๐œ‡0 r a1 b1 d1 ๐œ a2 b2 D D3

Values 50 1 1 0.1 0.3 0.2 0.3 0.5 0.03 25

Using the above parametric values, we obtained the threshold value ๐‘‡๐‘š๐‘Ž๐‘ฅ for the parameters per

week as 0.8 . It is proved that (๐‘Ÿ, 0, ๏ฟฝฬƒ๏ฟฝ1(๐‘ก), ๏ฟฝฬƒ๏ฟฝ1(๐‘ก))is locally asymptotically stable if ๐‘‡ = 0.5 <๐‘‡๐‘š๐‘Ž๐‘ฅ as stated above in the theorem 4.1 (Figure 2-5). Further, it is also verified that the system

(๐ด โˆ’ ๐ต) is permanent if ๐‘‡ = 4 > ๐‘‡๐‘š๐‘Ž๐‘ฅ(Figure 6-9) which is inline with theorem 5.1. It is also

shown that if there is no biological control, that is, ๐œ‡1 = 0 and ๐œ‡2 = 0, ๐œ‡1 = 0 and ๐œ‡2 >0 or ๐œ‡1 > 0 and ๐œ‡2 = 0, then both plants and pest population survives.This concludes, that

solely using chemical pesticide cannot eradicate pest population (Figure 10-14).

Page 13: Controlling Pest by Integrated Pest Management: A ...

International Journal of Mathematical, Engineering and Management Sciences

Vol. 5, No. 4, 769-786, 2020

https://doi.org/10.33889/IJMEMS.2020.5.4.061

781

Figure 2. Plant population (๐‘ƒ(๐‘ก)) existing

Figure 3. Pest population (๐‘ž(๐‘ก)) vanishes

Figure 4. Periodic behaviour of ๐‘Ÿ1(๐‘ก)

Page 14: Controlling Pest by Integrated Pest Management: A ...

International Journal of Mathematical, Engineering and Management Sciences

Vol. 5, No. 4, 769-786, 2020

https://doi.org/10.33889/IJMEMS.2020.5.4.061

782

Figure 5. Periodic behaviour of (๐‘Ÿ2(๐‘ก))

Figure 6. Plant population (๐‘(๐‘ก)) exists

Figure 7. Pest population (๐‘ž(๐‘ก)) survives

Page 15: Controlling Pest by Integrated Pest Management: A ...

International Journal of Mathematical, Engineering and Management Sciences

Vol. 5, No. 4, 769-786, 2020

https://doi.org/10.33889/IJMEMS.2020.5.4.061

783

Figure 8. Immature natural enemies (๐‘Ÿ1(๐‘ก)) exists

Figure 9. Behaviour of mature natural enemies (๐‘Ÿ2(๐‘ก))

Figure 10. Existence of the pest population(๐‘ž(๐‘ก)) for ๐œ‡1, ๐œ‡2 = 0

Page 16: Controlling Pest by Integrated Pest Management: A ...

International Journal of Mathematical, Engineering and Management Sciences

Vol. 5, No. 4, 769-786, 2020

https://doi.org/10.33889/IJMEMS.2020.5.4.061

784

Figure 11. Immature natural enemy (๐‘Ÿ1(๐‘ก)) vanishes for๐œ‡1, ๐œ‡2 = 0

Figure 12. Mature natural enemy (๐‘Ÿ2(๐‘ก)) for ๐œ‡1, ๐œ‡2 = 0

Figure 13. Plant population (๐‘(๐‘ก)) is stable for๐œ‡1 = 100, ๐œ‡2 = 50

Page 17: Controlling Pest by Integrated Pest Management: A ...

International Journal of Mathematical, Engineering and Management Sciences

Vol. 5, No. 4, 769-786, 2020

https://doi.org/10.33889/IJMEMS.2020.5.4.061

785

Figure 14. Pest population (๐‘ž(๐‘ก)) declines for๐œ‡1 = 100, ๐œ‡2 = 50

7. Conclusion In this paper, we have examine the effects of hybrid approach to control the pests by release of

natural enemies and pesticides impulsively. It is evident that pest population can become extinct

when large amount of the natural enemies are released impulsively. Thus, integrated pest

management reduces pest quickly rather than using any one of the methods. Hence, in this paper,

we have shown that by incorporating delay in the pests, we are able to control the pest population

but to a lower threshold value which in a way is helpful as it is leading to early reduction in the pest

which is not only economic but it also prevents pest resistance to crops. Incorporating delay

lowered the threshold level from to ๐‘‡๐‘š๐‘Ž๐‘ฅ = 7 to ๐‘‡๐‘š๐‘Ž๐‘ฅ = 0.8 for the same set of parameters as in

(Jatav & Dhar, 2014). Thus, we can conclude that various control measures should be applied

collectively for the eradication of pest. Such a practice improves economy as it is cost effective and

synonymous with sustainable development.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Acknowledgements

The first author would like to express her sincere thanks to her guide, co-guide for their constant guidance and support

and special thanks to all the reviewers and editor.

References

Akman, O., Comar, T.D., & Hrozencik, D. (2015). On impulsive integrated pest management models with

stochastic effects. Frontiers in Neuroscience, 9,119. doi: 10.3389/fnins.2015.00119.

Bainov, D.D., & Simeonov, P. (1993). Impulsive differential equations: periodic solutions and application.

Pitman Monographs and Surveys in Pure and Applied Mathematics, Chapman and Hall/CRC Press,

ISBN 9780582096394.

Page 18: Controlling Pest by Integrated Pest Management: A ...

International Journal of Mathematical, Engineering and Management Sciences

Vol. 5, No. 4, 769-786, 2020

https://doi.org/10.33889/IJMEMS.2020.5.4.061

786

Changguo, L., Yongzhen, P., & Xuehui, J. (2009). Dynamic behavior of a multiple species prey-predator

system with impulsive chemical and biological control. In 2009 Fifth International Conference on

Natural Computation (Vol. 5, pp. 477-481). IEEE. Tianjin, China.

El-Shafie, H. (2018). Integrated insect pest management. Pests - Insects, Management, Control [Working

Title].

James, D.G. (1997). Imidacloprid increases egg production in Amblyseius victoriensis (Acari:

Phytoseiidae). Experimental & Applied Acarology, 21(2), 75-82.

Jatav, K.S., & Dhar, J. (2014). Hybrid approach for pest control with impulsive releasing of natural enemies

and chemical pesticides: a plantโ€“pestโ€“natural enemy model. Nonlinear Analysis: Hybrid Systems, 12,

79-92.

Jatav, K.S., Dhar, J., & Nagar, A.K. (2014). Mathematical study of stage-structured pests control through

impulsively released natural enemies with discrete and distributed delays. Applied Mathematics and

Computation, 238, 511-526.

Liu, B., Xu, L., & Kang, B. (2013). Dynamics of a stage structured pest control model in a polluted

environment with pulse pollution input. Journal of Applied Mathematics, 2013.

doi.org/10.1155/2013/678762.

Pรกez Chรกvez, J., Jungmann, D., & Siegmund, S. (2018). A comparative study of integrated pest management

strategies based on impulsive control. Journal of Biological Dynamics, 12(1), 318-341.

Song, Y., Wang, X., & Jiang, W. (2014). The pest management model with impulsive control. Applied

Mechanics and Materials, 519, 1299-1304. doi.org/10.4028/www.scientific.net/amm.

Tang, S., Xiao, Y., Chen, L., & Cheke, R.A. (2005). Integrated pest management models and their dynamical

behaviour. Bulletin of Mathematical Biology, 67(1), 115-135.

Yu, T., Tian, Y., Guo, H., & Song, X. (2019). Dynamical analysis of an integrated pest management predatorโ€“

prey model with weak Allee effect. Journal of Biological Dynamics, 13(1), 218-244.

Zhang, Y., Liu, B., & Chen, L. (2004). Dynamical behavior of Volterra model with mutual interference

concerning IPM. ESAIM: Mathematical Modelling and Numerical Analysis, 38(1), 143-155.

Original content of this work is copyright ยฉ International Journal of Mathematical, Engineering and Management Sciences. Uses

under the Creative Commons Attribution 4.0 International (CC BY 4.0) license at https://creativecommons.org/licenses/by/4.0/


Recommended