+ All Categories
Home > Documents > Convection 3

Convection 3

Date post: 06-Apr-2018
Category:
Upload: avinashfriends21
View: 228 times
Download: 0 times
Share this document with a friend

of 26

Transcript
  • 8/3/2019 Convection 3

    1/26

    Convection 3

  • 8/3/2019 Convection 3

    2/26

    Energy equation

    First law of thermodynamics

    dWdQdE dE increment in the (kinetic plus thermal energy) of the system

    dQ heat transfer to the system

    dW work done on the system

    Internal energy per unit mass of the fluid consists of the sum of thekinetic energy ( ) and thermal internal energy e = cv T

    Writing the above equation in the substantial derivative form, so that

    it applies to transport ofEby a moving system

    2

    22vu

    Dt

    DW

    Dt

    DQ

    Dt

    DE x1

    y1

    z1

    dx

    dy

    dz

    x

    y

    z

  • 8/3/2019 Convection 3

    3/26

    Rate of increaseof energy E offluid element

    Rate of heat transferto fluid element Rate of work doneon the fluid elementby surface and bodyforces

    Rate of increaseof E in CV

    Rate at which Eenters throughsurface of CV

    Rate at which Eleaves throughsurface of CV

    Rate of heat transferinto CV by conduction Rate of surface and body forces dowork on CV

    Rate of increaseof E in CV

    dxdydzt

    E

    Rate at which Eenters throughsurface of CV

    Rate at which Eleaves throughsurface of CV

    dxdydzy

    Ev

    x

    uE

  • 8/3/2019 Convection 3

    4/26

    dxdydzx

    uEuEdydz

    xy

    z

    ji

    KdydzEu

    dxdzEv

    dydxdz

    y

    EvvEdxdz

    Rate of increaseof E in CV

    Rate at which Eenters throughsurface of CV

    Rate at which Eleaves throughsurface of CV

    dxdydzy

    Ev

    x

    uE

    t

    E

    CV showing rate of transport of

    energy through the facesnormal to the x and y axes

  • 8/3/2019 Convection 3

    5/26

    Rate of increaseof E in CV

    Rate at which Eenters throughsurface of CV

    Rate at which Eleaves throughsurface of CV

    dxdydzy

    Ev

    x

    uE

    t

    E

    dxdydzy

    Ev

    y

    vE

    x

    Eu

    x

    uE

    tE

    t

    E

    dxdydzyEv

    xEu

    tEdxdydz

    yvE

    xuE

    tE

    dxdydzy

    Ev

    x

    Eu

    t

    Edxdydz

    y

    v

    x

    u

    tE

    dxdydzvu

    e

    tD

    D

    2

    22

    dxdydztD

    DEdxdydz

    y

    Ev

    x

    Eu

    t

    E

  • 8/3/2019 Convection 3

    6/26

    Rate of heat transferinto CV by conduction

    x

    y

    z

    ji

    Kdydzqxdxdydz

    x

    qdydzq xx

    dxdzqy

    dxdydzy

    qdxdzq

    yy

    dxdydzy

    q

    x

    q yx

    dxdydzy

    T

    kyx

    T

    kx

    Negative sign arises because heat

    transfer is counted as positive in the

    positive coordinate direction

  • 8/3/2019 Convection 3

    7/26Rate of doing work = force velocity

    x

    y

    z

    ji

    KudydzP dxdydzxuPdydzPu

    vPdxdz

    dxdydzy

    vPdxdzPv

    dxdydz

    yvP

    xuP

    dxdydzy

    vPdxdzPvPvdxdzdxdydz

    x

    uPdydzPudydzPu

    Outward normal stresses are positive. Positive normal

    stresses are tensile stresses; that is, they tend to stretchthe material. Compressive normal stress wil give positive

    valuefor p

    RATE OF WORK DONE BY PRESSURE FORCES

  • 8/3/2019 Convection 3

    8/26

    xxxyxz

    yy

    yzyx

    xyxzxx

    First subscript denotes the direction of the normal to the

    plane on which the stress actsSecond subscript denotes the direction of the stress

  • 8/3/2019 Convection 3

    9/26

    x

    y

    z

    ji

    Kudydzxx

    dxdydz

    y

    vdxdzv

    yyyy

    dxdydzy

    v

    x

    u

    dxdydzy

    vdxdzvvdxdzdxdydz

    x

    udydzudydzu

    yyxx

    yyyyyy

    xxxxxx

    vdxdzyy

    dxdyd

    x

    udydzu xxxx

    RATE OF WORK DONE BY NORMAL STRESSES

  • 8/3/2019 Convection 3

    10/26

    RATE OF WORK DONE BY SHEAR STRESSES

    x

    y

    z

    ji

    Kvdydzyx

    dxdydzy

    u

    x

    v

    dxdydzy

    udxdzuudxdzdxdydz

    x

    vdydzvdydzv

    xyyx

    xyxyxy

    xxxxyx

    dxdzuxy

    dydzdxx

    vvdx

    x

    yxyx

    dxdzdyy

    uudy

    y

    xyxy

  • 8/3/2019 Convection 3

    11/26

    Rate of increaseof E in CV

    Rate at which Eenters throughsurface of CV

    Rate at which Eleaves throughsurface of CV

    Rate of heat transferinto CV by conduction Rate of surface and body forces dowork on CV

    2

    22vu

    e

    tD

    D

    y

    Tk

    yx

    Tk

    x

    y

    vP

    x

    uP

    y

    v

    x

    u yyxx yx

    xyyxvfuf

    y

    u

    x

    v

    xzxyxxx fzyxx

    P

    Dt

    Du

    X- momentum equation

    xyxxx uf

    y

    u

    x

    u

    x

    Pu

    Dt

    Duu

    A

  • 8/3/2019 Convection 3

    12/26

    xyxxx ufyx

    u

    x

    Pu

    Dt

    uD

    Dt

    Duu

    2

    2

    xyxxx vfyx

    v

    x

    Pv

    Dt

    vD

    Dt

    Dvv

    2

    2

    yxyyyxyxxx vfufyx

    v

    yx

    u

    y

    Pv

    x

    Pu

    Dt

    vuD

    122

    22

    BA -B

    y

    v

    x

    v

    y

    u

    x

    u

    y

    v

    x

    uP

    y

    T

    x

    Tk

    Dt

    Deyyyxxyxx

    1

    2

    2

    2

    2

  • 8/3/2019 Convection 3

    13/26

    y

    v

    x

    v

    y

    u

    x

    u

    y

    v

    x

    uP

    y

    T

    x

    Tk

    Dt

    Deyyyxxyxx

    1

    2

    2

    2

    2

    y

    v

    x

    u

    x

    uxx

    3

    22

    y

    v

    x

    u

    y

    vyy

    3

    22

    x

    v

    y

    uyxxy

    2222

    3

    222 xvyuyvxuyvxu

    D

  • 8/3/2019 Convection 3

    14/26

    P

    eh Dt

    PD

    Dt

    De

    Dt

    Dh

    y

    v

    x

    uP

    Dt

    DP1

    y

    v

    x

    uP

    Dt

    DP1

    Dt

    DP

    Dt

    DP1

    Dt

    P

    D

    22

    y

    v

    x

    v

    y

    u

    x

    u

    y

    v

    x

    uP

    y

    T

    x

    Tk

    Dt

    De

    yyyxxyxx

    1

    2

    2

    2

    2

    y

    v

    x

    uP

    Dt

    DP1

    y

    v

    x

    uP

    y

    T

    x

    Tk

    Dt

    Dh2

    2

    2

    2

    Dt

    DP1

    y

    T

    x

    Tk

    Dt

    Dh2

    2

    2

    2

    0V.tD

    D

  • 8/3/2019 Convection 3

    15/26

    Dt

    DP1

    y

    T

    x

    Tk

    Dt

    Dh2

    2

    2

    2

    Assuming a fluid of constant specific heat TCh P

    Dt

    DP

    y

    T

    x

    Tk

    Dt

    DTCP 2

    2

    2

    2

    ndissipatioviscousworkpressure

    conductionconvection

    P Dt

    DP

    y

    T

    x

    T

    ky

    T

    vx

    T

    ut

    T

    C

    2

    2

    2

    2

  • 8/3/2019 Convection 3

    16/26

    Dt

    DP

    y

    T

    x

    Tk

    Dt

    DTCP 2

    2

    2

    2

    2

    * * * * * * s

    s

    T T x y u v P x , y , u v , P , and T

    L L V V T T V

    PRINCIPLE OF SIMILARITY

    y

    Pv

    x

    Pu

    y

    T

    x

    Tk

    y

    Tv

    x

    TuCP

    2

    2

    2

    2

    For steady flows

    2

    23

    2

    2

    2

    2

    2 L

    V

    y

    Pv

    x

    Pu

    L

    V

    y

    T

    x

    T

    L

    TTk

    y

    Tv

    x

    Tu

    L

    TTVC

    *

    *

    **

    *

    **

    *

    *

    *

    *s

    *

    **s

    P

    2222

    2

    22222

    3

    222

    3

    222

    *

    *

    *

    *

    *

    *

    *

    *

    *

    *

    *

    **

    x

    v

    y

    u

    y

    v

    x

    u

    y

    v

    x

    u

    L

    V

    x

    v

    y

    u

    y

    v

    x

    u

    y

    v

    x

    u

    223

    2

    2

    2

    2

    2L

    V

    TTVC

    L

    y

    Pv

    x

    Pu

    TT

    L

    VCL

    V

    y

    T

    x

    T

    TT

    L

    VCL

    TTk

    y

    Tv

    x

    Tu

    sP

    *

    *

    **

    *

    **

    sP*

    *

    *

    *

    sP

    s*

    **

    sP*

    *

    **

    *

    **

    sP*

    *

    *

    *

    P

    *

    **

    TTLC

    V

    y

    Pv

    x

    Pu

    TTC

    V

    y

    T

    x

    T

    VCL

    k

    y

    Tv

    x

    Tu

    2

    2

    2

    2

    2

    ***** 222

  • 8/3/2019 Convection 3

    17/26

    Re

    Ec

    y

    Pv

    x

    PuEc

    y

    T

    x

    T

    PrRey

    Tv

    x

    Tu

    *

    *

    **

    *

    **

    *

    *

    *

    *

    *

    **

    2

    2

    2

    21

    PrReC

    k

    VLVLC

    k

    PP

    1

    sP*

    *

    **

    *

    **

    sP*

    *

    *

    *

    P*

    **

    TTLC

    V

    y

    Pv

    x

    Pu

    TTC

    V

    y

    T

    x

    T

    VCL

    k

    y

    Tv

    x

    Tu

    2

    2

    2

    2

    2

    sP TTCV

    Ec

    2

    Eckert number is measure of the dissipation effects in the flow. Since this grows in

    proportion to the square of the velocity, it can be neglected for small velocities.

    In an air flow, V = 10 m/s, Cp = 1050 J/kg.K and a reference temperature difference of

    10K,Ec 0.01.

  • 8/3/2019 Convection 3

    18/26

    NONDIMENSIONALIZED CONVECTION AND SIMILARITYWhen viscous dissipation is negligible, the continuity, momentum,

    and energy equations for steady incompressible, laminar flow of a

    fluid with constant properties

    0u v

    x y

    2

    2

    u u u Pu v

    x y xy

    2 2

    2 2p

    T T T T C u v k

    x y x y

    At 0 0 0

    At 0 0 0 0 0 0

    As

    s

    x u , y u , T , y T

    y u x, , v x, ,T x, T

    y u x, u , T x, T

    With the boundary conditions

  • 8/3/2019 Convection 3

    19/26

    2

    * * * * * * s

    s

    T T x y u v P x , y , u v , P , and T

    L L V V T T V

    0

    * *

    * *

    u v

    x y

    2

    2

    1* * * *

    * *

    * * * *L

    u u u dPu v

    Re x y y dx

    2

    2

    1* * *

    * *

    * * *L

    T T Tu v

    Re Pr x y y

    0 1 0 0 1 0 0

    0 1 0 0 1

    * * * * * * * *

    * * * * * *

    u , y , u x , , u x , , v x , ,

    T , y , T x , , T x ,

  • 8/3/2019 Convection 3

    20/26

    212f1f NuNuCC 2121 PrPrReRe

    The number of parameters is reduced greatly by non-

    dimensionalizing the convection equations

    L1

    Re1

    L2

    Re2

    V1Water

    V2Air

    L,V ,T , ,

    Re,Pr

    Parameters before nondimensionalizing

    Parameters after nondimensionalizing

    F i t th l ti f * b d

  • 8/3/2019 Convection 3

    21/26

    For a given geometry, the solution for u* can be expressed as

    1* * * Lu f x , y ,Re

    20 0

    *

    *

    *s L*

    y y

    u V u V f x ,Re y L Ly

    2 2 32 22

    2 2

    * * *s f ,x L l L

    L

    V LC f x ,Re f x ,Re f x ,Re

    ReV V

    Friction coefficient for a given geometry can be expressed in terms

    of the Reynolds number Re and the dimensionless space variable x*alone (instead of being expressed in terms ofx, L, V, and ).This is a very significant finding, and shows the value of

    nondimensionalized equations.

    L

    *

    x,f Re,xC

    *

  • 8/3/2019 Convection 3

    22/26

    Dimensionless temperature T* for a given geometry

    Note that the Nusselt number is equivalent to the dimensionlesstemperature gradient at the surface, and thus it is properly

    referred to as the dimensionless heat transfer coefficient

    * * * LT g x , y ,Re ,Pr

    20

    *

    *

    *x L*

    y

    hL T Nu g x ,Re ,Pr k y

    0

    0 0* *

    * *y s

    * *s s y y

    k T yk T T T k Th

    T T L T T Ly y

  • 8/3/2019 Convection 3

    23/26

    Nusselt number is equivalent

    to the dimensionless

    temperature gradient at thesurface

    m nL Nu C Re Pr

    *y

    0*

    *

    *

    y

    TNu

    y

    *

    x

    *T

    Laminar

    *

    x L

    x L

    Local Nusselt number :

    Nu f ( x , Re , Pr)

    Average Nusselt number :

    Nu f (Re , Pr)

    A common form of Nusselt

    number:

    ANALOGIES BETWEEN MOMENTUM AND HEAT TRANSFER

  • 8/3/2019 Convection 3

    24/26

    ANALOGIES BETWEEN MOMENTUM AND HEAT TRANSFER

    Reynolds analogyand Chilton-Colbourn analogy

    2

    2

    1* * *

    * *

    * * *L

    u u u

    u v Re x y y

    2

    2

    1* * *

    * *

    * * *L

    T T Tu v

    Re x y y

    1Pr

    20 0

    *

    **

    s L*y y

    u V u V f x ,Re

    y L Ly

    2 2 32 22

    2 2

    * * *s f ,x L l L

    L

    V LC f x ,Re f x ,Re f x ,Re

    ReV V

    20

    *

    **

    x L*

    y

    hL T Nu g x ,Re ,Pr

    k y

    2L

    f ,x x

    ReC Nu

    REYNOLDS ANALOGY

    h Nu

  • 8/3/2019 Convection 3

    25/26

    p L

    h NuSt

    C V Re Pr

    2

    L f ,x x

    Re

    C Nu2

    f ,xxC St

    * *

    * *

    * *

    * *

    y y

    L f , x x

    Pr ofile : u T

    u TGradients :

    y y

    Re Ana log y : C Nu

    0 0

    2

    Laminar flow over a flat plate

  • 8/3/2019 Convection 3

    26/26

    1 20 664 f ,x xC . Re

    1 3 1 20 332 x Nu . Pr Re

    2

    f ,x

    x

    C

    St p L

    h Nu

    St C V Re Pr

    Laminar flow over a flat plate

    1 3

    2

    L f ,x x

    ReC Nu Pr

    2 3

    2

    f ,x xH

    p

    C hPr j

    C V

    For . Here is called the Colburn j-factor. Although this

    relation is developed using relations for laminar flow over a flat plate(for which = 0 ), experimental studies show that it is also

    applicable approximately for turbulent flow over a surface, even in

    the presence of pressure gradients. For laminar flow, however, the

    analogy is not applicable unless = 0.

    0 6 60. Pr Hj

    **P x

    **P x

    Th f i d l l i fl i i


Recommended