+ All Categories
Home > Documents > convective heat transfer · 2019. 10. 1. · convective heat transfer. P Q U {p k c D U {Pr p v c k...

convective heat transfer · 2019. 10. 1. · convective heat transfer. P Q U {p k c D U {Pr p v c k...

Date post: 03-Feb-2021
Category:
Upload: others
View: 5 times
Download: 0 times
Share this document with a friend
18
convective heat transfer
Transcript
  • convective heat transfer

  • momentum diffusivity :

    themal diffusivity : p

    k

    c

    Prpcv

    k

    0

    s s

    y

    h T T k T Ty

    tanNu=

    tan

    hL conductivethermal resis ce

    k convectivethermal resis ce

    0

    /

    /

    s y

    s

    T T yhL

    k T T L

    2D PDt

    v

    v g

    2 :pDT

    c k T qDt

    τ v

  • dimensional analysis

    forced convection

    in a closed conduit

    # of variables; 7# of dimensions; 5# of ranks; 4# of independent dimensionless groups; 3

    1a b c dD k v

    2e f g h

    pD k v c

    3i j k lD k v h

    1 ReDv

    2 Pr pc

    k

    3 Nu

    hD

    k 1Nu Re, Prf

  • natural convection

    0 1 T

    buoyant 0F g

    buoyant 0F g T

    # of variables; 9# of dimensions; 5# of ranks; 5# of independent dimensionless groups; 4

    1a b c d

    pL k c

    2f g h jL k g

    3k l m n oL k g T

    4p q r s tL k g h

    1 Prpc

    k

    3 T

    3 2

    2 2

    L g

    2 3

    2Gr

    g L T

    3Nu Gr, Prf

    4 NuhL

    k

  • Laminar boundary layer

    No matter how turbulent the flow is far from the surface

    0

    y

    u

    x

    u yx

    2

    2

    2

    2

    y

    u

    x

    u

    y

    p

    y

    uu

    x

    uu

    yyy

    y

    y

    x

    2

    2

    2

    2

    y

    u

    x

    u

    x

    p

    y

    uu

    x

    uu xxxy

    xx

    layerboundarythewithin0;0

    y

    pu y

    Negligible viscous effect outside the boundary layer

  • 0

    y

    u

    x

    u yx2

    2

    y

    u

    y

    uu

    x

    uu xxy

    xx

    3

    3

    2

    22

    yyxyxy

    Boundary conditions

    0for,0on0 xyuu yx

    0for xUux

    yUux for0for,0on0

    xy

    xy

    yxU

    yand,0for

    Blasius’ similarity transformation

    1/2( )

    ( )f

    U x

    1/2

    2

    y U

    x

    ''' '' 0f ff

    ' 0 at 0

    ' 2 as

    f f

    f

  • Ux becomes nearly Ualong the boundary layer

    5

    2/1

    x

    U

    )(xy

    Boundary layer thickness

    Friction coeff.

    1/2

    0

    2 1/212

    ( ) 0.6640.664

    (Re )

    x y

    f

    x

    u yC

    U xU

    Shear force

    L

    y

    x dxy

    uWF

    00

    s s

    2 1/2 1/21L2

    / 1.328 1.328

    ( / ) (Re )f

    F LWC

    U UL

    RexxU

    Local Reynolds

    number1/2

    0

    0.332Rex x

    yy x

  • laminar boundary layer; Blasius

    2 2

    2 2x y

    T T T T Tv v

    t x y x y

    2

    2x y

    T T Tv v

    x y y

    2

    2x x x

    x y

    v v vv v

    x y y

    0 at 0yx

    vvy

    v v

    1 at xv

    yv

    0 at 0s

    s

    T Ty

    T T

    1 at s

    s

    T Ty

    T T

    1/2

    0

    0.332Rex x

    yy x

    1/2

    0

    0.332Res x

    y

    TT T

    y x

    1/2Nu 0.332Rex x xh x

    k

    for Pr=1

    0

    y

    x s

    y

    q Th T T k

    A y

  • effect of Pr; Pohlhausen 1/3Prt

    1/2

    0

    0.332Res x

    y

    TT T

    y x

    1/2 1/3

    0

    0.332Re Prs x

    y

    TT T

    y x

    1/2Nu 0.332Rex x xh x

    k

    1/2 1/3Nu 0.332Re Prx x xh x

    k

    1/2 1/3Nu 0.664Re PrL LhL

    k

    2

    sf

    T TT

    fluid properties are evaluated at the film temperature

    ; laminar boundary layer over a flat plate

    1/2 1/3Nu 0.36Re Prx x(von Karman)

  • energy and momentum transfer analogy

    Reynolds analogy ; for Pr=1

    0 0

    x s

    sy y

    v T Td d

    dy v dy T T

    0

    p x

    y

    c dvh

    v dy

    02 2

    0

    2

    / 2

    xf

    y

    dvC

    dyv v

    coefficient of skin friction

    2

    f

    p

    Ch v c

    St2

    f

    p

    Ch

    v c

    Colburn analogy ; 0.5

  • turbulent flow

    xx x

    y L y

    dL

    dy

    x

    x

    dL

    dy

    turbyx x y

    y L yy

    dtT T L

    dy dTT L

    dy

    turb

    y

    p y

    qc v T

    A

    Prandtl analogy

    / 2St

    1 5 / 2 Pr 1

    f

    f

    C

    C

    / 2St

    51 5 / 2 Pr 1 ln 1 Pr 1

    6

    f

    f

    C

    C

    von Karman analogy

  • convective heat transfer correlations

    natural convection;vertical plates, vertical cylinders, horizontal plates, horizontal cylinders,spheres, rectangular enclosures

    forced convection for internal flow;laminar flow, turbulent flow

    forced convection for external flow;flow parallel to plane surfaces, cylinders in crossflow,single spheres, tube banks in crossflow,

    special considerations;whether to evaluate fluid properties at bulk or film temperaturewhat significant length is usedwhat is the allowable Pr, Re range for a given set of data

  • natural convection; vertical plates

    12.5cm highTs=65CTinf=15C

    2 3

    2Gr

    g L T

    Pr

    pc

    k

    2

    1/6

    8/279/16

    0.387RaNu= 0.825

    1 0.492 / Pr

    L

    PrRa Gr

  • forced convection for internal flow

    laminar flow; Graetz solution

    2

    avg2 1xr

    v vR

    1x

    T Tv r

    x r r r

    2

    avg

    12 1

    r T Tv r

    R x r r r

    at 0 for 0eT T x r R

    at 0, sT T x r R

    0 at 0, 0T

    x rr

    2

    0 avg

    expe n nns e

    T T r xc f

    T T R Rv R

    4 4 /

    RePr / Pe

    x D

    D x Gz Pe

    4

    D

    x

  • wallNu 3.658 for constantx T

    wallNu 4.364 for / constantx q A

    0.141/3

    Nu 1.86 Pe bDw

    D

    L

    2

    0 avg

    expe n nns e

    T T r xc f

    T T R Rv R

    Sieder and Tate

  • turbulent flow; Dittus and Boelter

    0.8Nu 0.023Re PrnD D

    1. n=0.4 if the fluid is being heated, n=3 if the fluid is being cooled

    2. all fluid properties are evaluated at the arithmetic-mean bulk temperature

    3. Re>104

    4. 0.7

  • forced convection for external flow

    flow parallel to plane surfaces

    laminar;

    turbulent;

    1/2 1/3Nu 0.332Re Prx x

    1/2 1/3Nu 0.664Re PrL L

    4/5 1/3Nu 0.0288Re Prx x

    4/5 1/3Nu 0.036Re PrL L

    2/3St Pr2

    fx

    x

    C (Colburn analogy)

    1/5

    0.0576

    Refx

    x

    C (von Karman)

  • cylinders in crossflow

    1/2 1/3

    1/42/3

    0.62Re Pr ReNu 0.3 1

    282,0001 0.4 / Pr

    D DD


Recommended