+ All Categories
Home > Documents > Convergence analysis of a numerical scheme for a tumour...

Convergence analysis of a numerical scheme for a tumour...

Date post: 29-Jul-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
49
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Convergence analysis of a numerical scheme for a tumour growth model Gopikrishnan C. Remesan IITB - Monash Research Academy Monash Workshop on Numerical Differential Equations and Applications 2020 Joint work with A/Prof J. Droniou (Monash Uni.) and Prof N. Nataraj (IIT Bombay) February 11, 2020 1 / 26 Numerical solutions of free boundary problems
Transcript
Page 1: Convergence analysis of a numerical scheme for a tumour ...users.monash.edu/~jdroniou/MWNDEA/slides/slides-remesan.pdf · u jD T nD T 0 cjD T nD T 1 0 ` (0) `m iBK2 bT +2(x ) (t)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Convergence analysis of a numericalscheme for a tumour growth model

Gopikrishnan C. Remesan

IITB - Monash Research Academy

Monash Workshop on Numerical Differential Equations and Applications2020

Joint work with A/Prof J. Droniou (Monash Uni.) and Prof N. Nataraj (IIT Bombay)

February 11, 20201 / 26 Numerical solutions of free boundary problems

Page 2: Convergence analysis of a numerical scheme for a tumour ...users.monash.edu/~jdroniou/MWNDEA/slides/slides-remesan.pdf · u jD T nD T 0 cjD T nD T 1 0 ` (0) `m iBK2 bT +2(x ) (t)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Contents

1 Model

2 Discretisation

3 Main Theorem

4 Compactness results

5 Convergence results

6 Numerical results

2 / 26 Numerical solutions of free boundary problems

Page 3: Convergence analysis of a numerical scheme for a tumour ...users.monash.edu/~jdroniou/MWNDEA/slides/slides-remesan.pdf · u jD T nD T 0 cjD T nD T 1 0 ` (0) `m iBK2 bT +2(x ) (t)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

1 Model

2 Discretisation

3 Main Theorem

4 Compactness results

5 Convergence results

6 Numerical results

2 / 26 Numerical solutions of free boundary problems

Page 4: Convergence analysis of a numerical scheme for a tumour ...users.monash.edu/~jdroniou/MWNDEA/slides/slides-remesan.pdf · u jD T nD T 0 cjD T nD T 1 0 ` (0) `m iBK2 bT +2(x ) (t)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Model of tumour–growth

cross-section of tumour spheroid

Assumptions

Cells and fluid exchange matter via the processes, celldivision and cell death.Mass and momentum are conserved internally.No blood vessels. Limiting nutrient - Oxygen, followsdiffusion.

3 / 26 Numerical solutions of free boundary problems

Page 5: Convergence analysis of a numerical scheme for a tumour ...users.monash.edu/~jdroniou/MWNDEA/slides/slides-remesan.pdf · u jD T nD T 0 cjD T nD T 1 0 ` (0) `m iBK2 bT +2(x ) (t)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Model of tumour growth

Domain − 0 < t < T , x ∈ Ω(t) = (0, ℓ(t)).ℓ(t) − tumour length, x = 0 − tumour centre.α − volume fraction of tumour cells, u − cell velocity, c − oxygentension.

4 / 26 Numerical solutions of free boundary problems

Page 6: Convergence analysis of a numerical scheme for a tumour ...users.monash.edu/~jdroniou/MWNDEA/slides/slides-remesan.pdf · u jD T nD T 0 cjD T nD T 1 0 ` (0) `m iBK2 bT +2(x ) (t)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Model of tumour growth

Domain − 0 < t < T , x ∈ Ω(t) = (0, ℓ(t)).ℓ(t) − tumour length, x = 0 − tumour centre.α − volume fraction of tumour cells, u − cell velocity, c − oxygentension.

cell volume fraction (hyperbolic conservation law)

∂α

∂t+ ∂

∂x(αu) =(1+s1)cα(1− α)

1+s1c︸ ︷︷ ︸Birth rate

− s2 +s3c

1+s4cα︸ ︷︷ ︸

Death rate

,

α(0,x) = α0(x).

1+(1/s1), s2 − maximal birth and death rates, s3/s4 − minimaldeath rate.Set f(α, c) = (1+s1)(1−α)c

1+s1c − s2+s3c1+s4c

4 / 26 Numerical solutions of free boundary problems

Page 7: Convergence analysis of a numerical scheme for a tumour ...users.monash.edu/~jdroniou/MWNDEA/slides/slides-remesan.pdf · u jD T nD T 0 cjD T nD T 1 0 ` (0) `m iBK2 bT +2(x ) (t)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Model of tumour growth

Domain − 0 < t < T , x ∈ Ω(t) = (0, ℓ(t)).ℓ(t) − tumour length, x = 0 − tumour centre.α − volume fraction of tumour cells, u − cell velocity, c − oxygentension.

cell velocity (elliptic)

kαu

1− α−µ

∂x

∂u

∂x

)=− ∂

∂x(αH (α)),

u(t,0) = 0, µ∂u

∂x(t, ℓ(t)) = H (α(t, ℓ(t))).

µ − coefficient of viscosity of cell phase. k − interfacial dragcoefficient.Set H (α) = (α −α∗)+/(1− α)2, a+ = max(a,0).

4 / 26 Numerical solutions of free boundary problems

Page 8: Convergence analysis of a numerical scheme for a tumour ...users.monash.edu/~jdroniou/MWNDEA/slides/slides-remesan.pdf · u jD T nD T 0 cjD T nD T 1 0 ` (0) `m iBK2 bT +2(x ) (t)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Model of tumour growth

Domain − 0 < t < T , x ∈ Ω(t) = (0, ℓ(t)).ℓ(t) − tumour length, x = 0 − tumour centre.α − volume fraction of tumour cells, u − cell velocity, c − oxygentension.

Oxygen tension (parabolic)

∂c

∂t− ∂2c

∂x2 = −Qαc,︸ ︷︷ ︸Ox. consumption rate

c(0,x) = c0(x), ∂c

∂x(t,0) = 0, c(t, ℓ(t)) = 1.

Q − Maximum oxygen consumption rate.

4 / 26 Numerical solutions of free boundary problems

Page 9: Convergence analysis of a numerical scheme for a tumour ...users.monash.edu/~jdroniou/MWNDEA/slides/slides-remesan.pdf · u jD T nD T 0 cjD T nD T 1 0 ` (0) `m iBK2 bT +2(x ) (t)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Model of tumour growth

Domain − 0 < t < T , x ∈ Ω(t) = (0, ℓ(t)).ℓ(t) − tumour length, x = 0 − tumour centre.α − volume fraction of tumour cells, u − cell velocity, c − oxygentension.

boundary evolution

ℓ′(t) = u(t, ℓ(t)),

ℓ(0) = 1.

4 / 26 Numerical solutions of free boundary problems

Page 10: Convergence analysis of a numerical scheme for a tumour ...users.monash.edu/~jdroniou/MWNDEA/slides/slides-remesan.pdf · u jD T nD T 0 cjD T nD T 1 0 ` (0) `m iBK2 bT +2(x ) (t)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Idea of extended model

ℓ(0) ℓm0

space (x)

time(t)

T

(α, u, c)

DT

ℓ(t)

α > 0

ℓ(0) ℓm0

space (x)tim

e(t)

T

DT

∂tα+ ∂x(uα) = αf(α, c)

α > 0 α = 0

DT \DT

u|DT \DT= 0

cDT \DT= 1

original model extended model

ℓ as the interface between α > 0 and α = 0.velocity and oxygen tension extended by 0 and 1, respectively.

5 / 26 Numerical solutions of free boundary problems

Page 11: Convergence analysis of a numerical scheme for a tumour ...users.monash.edu/~jdroniou/MWNDEA/slides/slides-remesan.pdf · u jD T nD T 0 cjD T nD T 1 0 ` (0) `m iBK2 bT +2(x ) (t)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Idea of threshold model

ℓ(0) ℓm0

space (x)

time(t)

T

DT

∂tα+ ∂x(uα) = αf(α, c)

α ≤ αthr

DT \DT

u|DT \DT= 0

c|DT \DT= 1

ℓ(0) ℓm0

space (x)

time(t)

T

DT

∂tα+ ∂x(uα) = αf(α, c)

α > 0 α = 0

DT \DT

u|DT \DT= 0

c|DT \DT= 1

extended model threshold model

ℓ as the interface between α > 0 and α <= αthr.velocity and oxygen tension extended by 0 and 1, resp.αthr facilitates estimates on cell velocity and is requirednumerically.

6 / 26 Numerical solutions of free boundary problems

Page 12: Convergence analysis of a numerical scheme for a tumour ...users.monash.edu/~jdroniou/MWNDEA/slides/slides-remesan.pdf · u jD T nD T 0 cjD T nD T 1 0 ` (0) `m iBK2 bT +2(x ) (t)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Threshold solution

A threshold solution (with threshold αthr ∈ (0,1)) and domain DthrT of

the threshold model in DT is a 4-tuple (α,u,c,Ω) such that:0 < m11 ≤ α|Ω(t) ≤ m12 < 1 for all t ∈ [0,T ],m11 ≤ m01, m12 ≥ m02

c ≥ 0,and the following hold:

7 / 26 Numerical solutions of free boundary problems

Page 13: Convergence analysis of a numerical scheme for a tumour ...users.monash.edu/~jdroniou/MWNDEA/slides/slides-remesan.pdf · u jD T nD T 0 cjD T nD T 1 0 ` (0) `m iBK2 bT +2(x ) (t)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Threshold solution

cell volume fraction

The volume fraction α ∈ L∞(DT ) is such that ∀φ ∈ C ∞c ([0,T )×

(0, ℓm)),∫DT

(α,uα) ·∇t,xφdtdx+∫

Ω(0)φ(0,x)α0 dx

+∫

DT

(α −αthr)+ f(α,c)dx = 0.

7 / 26 Numerical solutions of free boundary problems

Page 14: Convergence analysis of a numerical scheme for a tumour ...users.monash.edu/~jdroniou/MWNDEA/slides/slides-remesan.pdf · u jD T nD T 0 cjD T nD T 1 0 ` (0) `m iBK2 bT +2(x ) (t)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Threshold solution

tumour boundary

The set DthrT is of the form

DthrT = ∪0<t<T (t×Ω(t)),

where Ω(t) = (0, ℓ(t)), and we have α ≤ αthr on DT \DthrT .

7 / 26 Numerical solutions of free boundary problems

Page 15: Convergence analysis of a numerical scheme for a tumour ...users.monash.edu/~jdroniou/MWNDEA/slides/slides-remesan.pdf · u jD T nD T 0 cjD T nD T 1 0 ` (0) `m iBK2 bT +2(x ) (t)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Threshold solution

cell velocity

H1,u∂x (Dthr

T ) := v ∈ L2(DthrT ) : ∂xv ∈ L2(Dthr

T )and v(t,0) = 0 ∀ t ∈ (0,T ).

u ∈ H1,u∂x (Dthr

T ) and ∀v ∈ H1,u∂x (Dthr

T ), satisfies∫ T

0at(u(t, ·),v(t, ·))dt =

∫ T

0Lt(v(t, ·))dt, (1)

where at : H1(Ω(t)) × H1(Ω(t)) → R is a bilinear form and Lt :H1(Ω(t)) → R is a linear form as follows:

at(u,v)= k

1−αu,v

)Ω(t)

+µ(α∂xu,∂xv)Ω(t) and (2)

Lt(v)= (H (α),∂xv)Ω(t) . (3)

Extend u to DT by setting u|DT \Dthr

T

:= 0.

7 / 26 Numerical solutions of free boundary problems

Page 16: Convergence analysis of a numerical scheme for a tumour ...users.monash.edu/~jdroniou/MWNDEA/slides/slides-remesan.pdf · u jD T nD T 0 cjD T nD T 1 0 ` (0) `m iBK2 bT +2(x ) (t)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Threshold solution

oxygen tension

H1,c∂x (Dthr

T ) := v ∈ L2(DthrT ) : ∂xv ∈ L2(Dthr

T )and v(t, ℓ(t)) = 0 ∀ t ∈ (0,T ).

c−1 ∈ H1,c∂x (Dthr

T ) satisfies,

−∫

DthrT

c∂tv dxdt+λ

∫Dthr

T

∂xc∂xv dxdt−∫

Ω(0)c0(x)v(0,x)dx

−Q

∫Dthr

T

αcv dxdt = 0, (1)

∀v ∈ H1,c∂x (Dthr

T ) such that ∂tv ∈ L2(DthrT ). Extend c to DT by

setting c|DT \Dthr

T

:= 1.

7 / 26 Numerical solutions of free boundary problems

Page 17: Convergence analysis of a numerical scheme for a tumour ...users.monash.edu/~jdroniou/MWNDEA/slides/slides-remesan.pdf · u jD T nD T 0 cjD T nD T 1 0 ` (0) `m iBK2 bT +2(x ) (t)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Threshold value - comments

To obtain a lower bound strictly greater than zero for α.Facilitates bounded variation estimates on α.To obtain supremum norm bounds on u and ∂xu.

An unavoidable disadvantageResidual volume fraction - creates spurious growth outside thetumour domain.Essential from numerical vantage point.Modified source term (α −αthr)+f(α,c) eliminates spuriousgrowth.As αthr → 0, (α −αthr)+f(α,c) approaches αf(α,c).

8 / 26 Numerical solutions of free boundary problems

Page 18: Convergence analysis of a numerical scheme for a tumour ...users.monash.edu/~jdroniou/MWNDEA/slides/slides-remesan.pdf · u jD T nD T 0 cjD T nD T 1 0 ` (0) `m iBK2 bT +2(x ) (t)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Threshold value - comments

To obtain a lower bound strictly greater than zero for α.Facilitates bounded variation estimates on α.To obtain supremum norm bounds on u and ∂xu.

An unavoidable disadvantageResidual volume fraction - creates spurious growth outside thetumour domain.Essential from numerical vantage point.Modified source term (α −αthr)+f(α,c) eliminates spuriousgrowth.As αthr → 0, (α −αthr)+f(α,c) approaches αf(α,c).

8 / 26 Numerical solutions of free boundary problems

Page 19: Convergence analysis of a numerical scheme for a tumour ...users.monash.edu/~jdroniou/MWNDEA/slides/slides-remesan.pdf · u jD T nD T 0 cjD T nD T 1 0 ` (0) `m iBK2 bT +2(x ) (t)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

1 Model

2 Discretisation

3 Main Theorem

4 Compactness results

5 Convergence results

6 Numerical results

8 / 26 Numerical solutions of free boundary problems

Page 20: Convergence analysis of a numerical scheme for a tumour ...users.monash.edu/~jdroniou/MWNDEA/slides/slides-remesan.pdf · u jD T nD T 0 cjD T nD T 1 0 ` (0) `m iBK2 bT +2(x ) (t)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Discrete scheme

Space: 0 = x0 < · · · < xJ = ℓm, Time: 0 = t0 < · · · tn = T

Uniform discretisation: δ = tn+1 − tn, h = xj+1 −xj .scheme

volume fraction: αnh - upwind finite volume scheme.

Set ℓnh = minxj : αn

j < αthr on (xj , ℓm) andΩn

h := (0, ℓnh).

Conforming Lagrange P1-FEM to obtain unh|Ωn

h, and set

unh = 0 outside Ωn

h.Time-implicit mass lumped P1-FEM to obtain cn

h|Ωnh

, andset cn

h = 1 outside Ωnh.

9 / 26 Numerical solutions of free boundary problems

Page 21: Convergence analysis of a numerical scheme for a tumour ...users.monash.edu/~jdroniou/MWNDEA/slides/slides-remesan.pdf · u jD T nD T 0 cjD T nD T 1 0 ` (0) `m iBK2 bT +2(x ) (t)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Discrete solution

Definition (Time-reconstruct)For a family of functions (fn

h )0≤n<N on a set X, define thetime-reconstruct fh,δ : (0,T )×X → R as fh,δ := fn

h on [tn, tn+1) for0 ≤ n < N .

Definition (Discrete solution)

The 4-tuple (αh,δ,uh,δ, ch,δ, ℓh,δ), where αh,δ, uh,δ, ch,δ, and ℓh,δ arethe respective time-reconstructs corresponding to the families(αn

h)n, (unh)n, (cn

h)n, and (ℓnh)n is called the discrete solution.

10 / 26 Numerical solutions of free boundary problems

Page 22: Convergence analysis of a numerical scheme for a tumour ...users.monash.edu/~jdroniou/MWNDEA/slides/slides-remesan.pdf · u jD T nD T 0 cjD T nD T 1 0 ` (0) `m iBK2 bT +2(x ) (t)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Discrete solution

Definition (Time-reconstruct)For a family of functions (fn

h )0≤n<N on a set X, define thetime-reconstruct fh,δ : (0,T )×X → R as fh,δ := fn

h on [tn, tn+1) for0 ≤ n < N .

Definition (Discrete solution)

The 4-tuple (αh,δ,uh,δ, ch,δ, ℓh,δ), where αh,δ, uh,δ, ch,δ, and ℓh,δ arethe respective time-reconstructs corresponding to the families(αn

h)n, (unh)n, (cn

h)n, and (ℓnh)n is called the discrete solution.

10 / 26 Numerical solutions of free boundary problems

Page 23: Convergence analysis of a numerical scheme for a tumour ...users.monash.edu/~jdroniou/MWNDEA/slides/slides-remesan.pdf · u jD T nD T 0 cjD T nD T 1 0 ` (0) `m iBK2 bT +2(x ) (t)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Why a mixed numerical scheme?Finite volume method

Respects mass conservation property at the discrete level.Upwind flux (+ CFL) yields a stable scheme.FVM - significant numerical diffusion.Large error in locating ℓn

h as the boundary where αnh becomes 0.

Solution: Locate ℓnh as minxj : αn

h < αthr on (xj , ℓm].

ℓm x|

αth

r

α(t, ·)

αnh

ℓnh

αnh < αthrΩn

h

11 / 26 Numerical solutions of free boundary problems

Page 24: Convergence analysis of a numerical scheme for a tumour ...users.monash.edu/~jdroniou/MWNDEA/slides/slides-remesan.pdf · u jD T nD T 0 cjD T nD T 1 0 ` (0) `m iBK2 bT +2(x ) (t)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Why a mixed numerical scheme?

Finite element methodsVelocity equation - elliptic, oxygen tension equation - parabolic.Unknown Lagrange P1-FEM - boundary nodes of (xj ,xj+1), andeasy to compute the upwind flux.Mass lumping in oxygen tension equation is crucial to obtain L∞

bounds.Time-implicitness yields stability in L2(0,T ;H1(0, ℓm)).

11 / 26 Numerical solutions of free boundary problems

Page 25: Convergence analysis of a numerical scheme for a tumour ...users.monash.edu/~jdroniou/MWNDEA/slides/slides-remesan.pdf · u jD T nD T 0 cjD T nD T 1 0 ` (0) `m iBK2 bT +2(x ) (t)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

1 Model

2 Discretisation

3 Main Theorem

4 Compactness results

5 Convergence results

6 Numerical results

11 / 26 Numerical solutions of free boundary problems

Page 26: Convergence analysis of a numerical scheme for a tumour ...users.monash.edu/~jdroniou/MWNDEA/slides/slides-remesan.pdf · u jD T nD T 0 cjD T nD T 1 0 ` (0) `m iBK2 bT +2(x ) (t)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

uh,δ: continuous modification of uh,δ

||ℓm

uh,δ(t,·)

ℓh,δ(t, ·)

(a) uh,δ(t, ·).

ℓmℓh,δ(t, ·)

uh,δ(t,·)

||

uh,δ(t, ℓh,δ(t))

(b) uh,δ(t, ·).

Figure: The left-hand side plot illustrates the discontinuous function uh,δ

and the right-hand side plot illustrates the continuous modification uh,δ.

12 / 26 Numerical solutions of free boundary problems

Page 27: Convergence analysis of a numerical scheme for a tumour ...users.monash.edu/~jdroniou/MWNDEA/slides/slides-remesan.pdf · u jD T nD T 0 cjD T nD T 1 0 ` (0) `m iBK2 bT +2(x ) (t)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Few notationsMass lumping operator

Set χj = (xj −h/2,xj +h/2), Sh,ML − piecewise constantfunctions on χj .Mass lumping operator: Πh : C 0([0,L]) → Sh,ML suchthat Πhw =

∑Jj=0 w(xj)1Xj

.

Set Πh,δch,δ by Πh,δch,δ(t, ·) := Πh(ch,δ(t, ·)).

b b| | |xj xj+1xj−1/2 xj+1/2 xj+3/2

w(x)

x

w(xj)w(xj+1)

w(x0)

Πhww

13 / 26 Numerical solutions of free boundary problems

Page 28: Convergence analysis of a numerical scheme for a tumour ...users.monash.edu/~jdroniou/MWNDEA/slides/slides-remesan.pdf · u jD T nD T 0 cjD T nD T 1 0 ` (0) `m iBK2 bT +2(x ) (t)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Few notations

Time-dependent spaces

L2c(0,T ;H1(0, ℓm)) := f ∈ L2(0,T ;H1(0, ℓm)) : f(t, ℓ(t)) = 0

for a.e. t ∈ [0,T ],

L2u(0,T ;H1(0, ℓm)) := f ∈ L2(0,T ;H1(0, ℓm)) : f(t,0) = 0

for a.e. t ∈ [0,T ].

13 / 26 Numerical solutions of free boundary problems

Page 29: Convergence analysis of a numerical scheme for a tumour ...users.monash.edu/~jdroniou/MWNDEA/slides/slides-remesan.pdf · u jD T nD T 0 cjD T nD T 1 0 ` (0) `m iBK2 bT +2(x ) (t)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Main Theorem I - Hypothesis

Theorem (compactness)

Let the properties stated below be true.The initial volume fraction α0 belongs to BV (0, ℓm) and0 < m01 ≤ α0 ≤ m02 < 1, where m01 and m02 are constants.The discretisation parameters h and δ satisfy the followingconditions:

ρCCF L ≤ δ

h≤ CCF L :=

√a∗µ

2ℓm

|1−a∗|2

|a∗ −α∗|and

δ < min(

1−ρ

s2,

2(1−ρ)1+s2

),

where ρ, a∗ and a∗ are constants chosen such that ρ < 1,0 < a∗ < m01, and 0 < m02 < a∗.

14 / 26 Numerical solutions of free boundary problems

Page 30: Convergence analysis of a numerical scheme for a tumour ...users.monash.edu/~jdroniou/MWNDEA/slides/slides-remesan.pdf · u jD T nD T 0 cjD T nD T 1 0 ` (0) `m iBK2 bT +2(x ) (t)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Main Theorem I - Conclusions

Theorem (compactness)Then, there exists a finite time T∗ = T∗(ρ, a∗,a∗), a subsequence of thefamily of functions (αh,δ, uh,δ, ch,δ, ℓh,δ)h,δ and a 4-tuple offunctions (α, u,c,ℓ) such that

α ∈ BV (DT∗)c ∈ L2

c(0,T∗;H1(0, ℓm))u ∈ L2

u(0,T∗;H1(0, ℓm))ℓ ∈ BV (0,T∗)

with DT∗ = (0,T∗)× (0, ℓm) and as h, δ → 0,αh,δ → α almost everywhere and in L∞ weak⋆ on DT∗ ,Πh,δch,δ → c strongly in L2(DT∗) and ∂xch,δ ∂xc weakly inL2(DT∗),uh,δ u and ∂xuh,δ ∂xu weakly in L2(DT∗), andℓh,δ → ℓ almost everywhere in (0,T∗).

15 / 26 Numerical solutions of free boundary problems

Page 31: Convergence analysis of a numerical scheme for a tumour ...users.monash.edu/~jdroniou/MWNDEA/slides/slides-remesan.pdf · u jD T nD T 0 cjD T nD T 1 0 ` (0) `m iBK2 bT +2(x ) (t)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Main Theorem II

Theorem (convergence)Let (α, u,c,ℓ) be the limit provided by the compactness theorem.Define Ω(t) := (0, ℓ(t)) and the threshold domain

DthrT∗ := (t,x) : x < ℓ(t), t ∈ (0,T∗)

and let u := u on DthrT∗ and u := 0 on DT∗\Dthr

T∗ . Then, (α,u,c,Ω) is athreshold solution with T = T∗.

16 / 26 Numerical solutions of free boundary problems

Page 32: Convergence analysis of a numerical scheme for a tumour ...users.monash.edu/~jdroniou/MWNDEA/slides/slides-remesan.pdf · u jD T nD T 0 cjD T nD T 1 0 ` (0) `m iBK2 bT +2(x ) (t)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Idea for proof of Main Theorem I

Proof is through inductive arguments on time-step, n.Fix two constants a∗ ∈ (max(α∗,m02),1) anda∗ ∈ (0,min(αthr,m01)).The time of existence T∗ on a∗ and a∗, and is explicitly providedby Theorem (well-posedness).

Theorem (well-posedness)For all n ∈ N such that tn ≤ T∗, αh,δ(tn, ·), uh,δ(tn, ·), and ch,δ(tn, ·)are well defined, and it holds:

a∗ < αh,δ(tn, ·)|Ωnh

< a∗,0 ≤ ch,δ(tn, ·)|(0,ℓm) ≤ 1.

Necessary compactness results proved using supremum normbounds from the Theorem (well-posedness).

17 / 26 Numerical solutions of free boundary problems

Page 33: Convergence analysis of a numerical scheme for a tumour ...users.monash.edu/~jdroniou/MWNDEA/slides/slides-remesan.pdf · u jD T nD T 0 cjD T nD T 1 0 ` (0) `m iBK2 bT +2(x ) (t)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Proof of well-posedness TheoremStep 1: Energy estimate of un

h

There exists a unique solution unh to discrete weak form of ve-

locity equation in Ωnh and it satisfies the following estimates:∣∣∣∣∣∣∣∣√αh,δ(tn, ·)∂xun

h

∣∣∣∣∣∣∣∣0,Ωn

h

≤√

ℓm|a∗ −α∗|µ|1−a∗|2

and∣∣∣∣∣∣∣∣∣∣

√αh,δ(tn, ·)un

h√1−αh,δ(tn, ·)

∣∣∣∣∣∣∣∣∣∣0,Ωn

h

√ℓm

|a∗ −α∗||1−a∗|2

.

Keeping the coefficients yields optimal estimates, which improvesthe existence time T∗.Estimate on ∂xun

h yields

||uh,δ(tn, ·)||L∞(0,ℓm) ≤ ℓm√a∗µ

|a∗ −α∗||1−a∗|2

. (3)

.18 / 26 Numerical solutions of free boundary problems

Page 34: Convergence analysis of a numerical scheme for a tumour ...users.monash.edu/~jdroniou/MWNDEA/slides/slides-remesan.pdf · u jD T nD T 0 cjD T nD T 1 0 ` (0) `m iBK2 bT +2(x ) (t)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Proof of well-posedness Theorem

Step 3: BV and L∞ bound on ∂xuh,δ(tn, ·)

It holds:

||µαh,δ(tn, ·)∂xuh,δ(tn, ·)−H (αh,δ(tn, ·))||BV (0,ℓm)

≤ ℓm

√k

µ

|a∗ −α∗||1−a∗|5/2 ,

||(µαh,δ(tn, ·)∂xuh,δ(tn, ·))−||L∞(0,ℓm) ≤ ℓm

√k

µ

|a∗ −α∗||1−a∗|5/2 , and

||µαh,δ(tn, ·)∂xuh,δ(tn, ·)||L∞(0,ℓm) ≤ ℓm

√k

µ

|a∗ −α∗||1−a∗|5/2

+a∗(a∗ −α∗)(1−a∗)2 .

18 / 26 Numerical solutions of free boundary problems

Page 35: Convergence analysis of a numerical scheme for a tumour ...users.monash.edu/~jdroniou/MWNDEA/slides/slides-remesan.pdf · u jD T nD T 0 cjD T nD T 1 0 ` (0) `m iBK2 bT +2(x ) (t)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Proof of well-posedness Theorem

Step 3: L∞ bound on αh,δ(tn, ·)

There exists T∗ > 0 such that if n+1 ≤ N∗ := T∗/δ, then

a∗ ≤ minj :xj∈Ωn+1

h

αn+1j ≤ max

0≤j≤J−1αn+1

j ≤ a∗.

Step 4: L∞ bound on ch,δ(tn, ·)

The discrete weak form corresponding to the oxygen tensionequation has a unique solution cn+1

h in Ωnh, and it holds 0 ≤

cn+1h ≤ 1.

18 / 26 Numerical solutions of free boundary problems

Page 36: Convergence analysis of a numerical scheme for a tumour ...users.monash.edu/~jdroniou/MWNDEA/slides/slides-remesan.pdf · u jD T nD T 0 cjD T nD T 1 0 ` (0) `m iBK2 bT +2(x ) (t)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

1 Model

2 Discretisation

3 Main Theorem

4 Compactness results

5 Convergence results

6 Numerical results

18 / 26 Numerical solutions of free boundary problems

Page 37: Convergence analysis of a numerical scheme for a tumour ...users.monash.edu/~jdroniou/MWNDEA/slides/slides-remesan.pdf · u jD T nD T 0 cjD T nD T 1 0 ` (0) `m iBK2 bT +2(x ) (t)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Check-list of compactness estimates

1 a uniform L2(0,T∗;H1(0, ℓm)) estimate for the family ch,δh,δ −weak L2(0,T∗;H1(0, ℓm)) convergence.

2 a uniform spatial and temporal BV estimate for the familyαh,δh,δ − strong Lp(DT∗) convergence.

3 a uniform BV estimate for the family ℓh,δh,δ − strongLp(0,T∗) convergence.

4 the family Πh,δch,δh,δ is relatively compact in L2(DT∗) −strong L2(DT∗) convergence.

5 a uniform L2(0,T∗;H1(0, ℓm)) estimate for the familyuh,δh,δ − weak L2(0,T∗;H1(0, ℓm)) convergence .

19 / 26 Numerical solutions of free boundary problems

Page 38: Convergence analysis of a numerical scheme for a tumour ...users.monash.edu/~jdroniou/MWNDEA/slides/slides-remesan.pdf · u jD T nD T 0 cjD T nD T 1 0 ` (0) `m iBK2 bT +2(x ) (t)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Relative compactness of Πhch,δh,δ

DefinitionAuxiliary function Define ch,δ := ch,δ −1. For a fixed ϵ > 0, define theauxiliary function φn

h,ϵ : [0, ℓm] → [0,1] by

φnh,ϵ(x) =

1 0 ≤ x ≤ ℓnh − ϵ,

(ℓnh −x)/ϵ ℓn

h − ϵ < x ≤ ℓnh,

0 ℓnh < x ≤ ℓm.

ℓmℓnhℓnh − ϵ

φnh,ϵ

1

0 b

20 / 26 Numerical solutions of free boundary problems

Page 39: Convergence analysis of a numerical scheme for a tumour ...users.monash.edu/~jdroniou/MWNDEA/slides/slides-remesan.pdf · u jD T nD T 0 cjD T nD T 1 0 ` (0) `m iBK2 bT +2(x ) (t)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

The mass lumped function can be split into

Πh,δ ch,δ = Πh,δ(ch,δφh,ϵ)+Πh,δ(ch,δ(1−φh,ϵ)),

where φh,ϵ = φnh,ϵ on [tn, tn+1) for 0 ≤ n ≤ N∗ −1.

The second term can be bounded by:

||Πh,δ(ch,δ(1−φh,ϵ))||L2(DT∗ ) ≤√

T∗ϵ.

TheoremThe family of functions Πh,δ(φh,ϵch,δ)h,δ is relatively compact inL2(DT∗).

Proof follows from the Discrete Aubin - Simon Theorem.

TheoremThe family of functions Πh,δch,δh,δ is relatively compact inL2(DT∗).

Proof follows from the fact ϵ > 0,

Πh,δ ch,δh,δ ⊂ Πh,δ(φh,ϵch,δ)h,δ +BL2(DT∗ )

(0;

√T∗ϵ

).

21 / 26 Numerical solutions of free boundary problems

Page 40: Convergence analysis of a numerical scheme for a tumour ...users.monash.edu/~jdroniou/MWNDEA/slides/slides-remesan.pdf · u jD T nD T 0 cjD T nD T 1 0 ` (0) `m iBK2 bT +2(x ) (t)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

1 Model

2 Discretisation

3 Main Theorem

4 Compactness results

5 Convergence results

6 Numerical results

21 / 26 Numerical solutions of free boundary problems

Page 41: Convergence analysis of a numerical scheme for a tumour ...users.monash.edu/~jdroniou/MWNDEA/slides/slides-remesan.pdf · u jD T nD T 0 cjD T nD T 1 0 ` (0) `m iBK2 bT +2(x ) (t)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Idea of proof of convergence theorem

1 The domains

Ah,δ := (t,x) : x < ℓh,δ(t), t ∈ (0,T∗)

converge to

DthrT∗ := (t,x) : x < ℓ(t), t ∈ (0,T∗).

2 The limit function α satisfies the weak form (volume fraction)with T = T∗.

3 The restricted limit function u|DthrT∗

satisfies weak form (cellvelocity) with T = T∗.

4 The limit function c|DthrT∗

satisfies weak form (oxygen tension)with T = T∗.

22 / 26 Numerical solutions of free boundary problems

Page 42: Convergence analysis of a numerical scheme for a tumour ...users.monash.edu/~jdroniou/MWNDEA/slides/slides-remesan.pdf · u jD T nD T 0 cjD T nD T 1 0 ` (0) `m iBK2 bT +2(x ) (t)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

1 Model

2 Discretisation

3 Main Theorem

4 Compactness results

5 Convergence results

6 Numerical results

22 / 26 Numerical solutions of free boundary problems

Page 43: Convergence analysis of a numerical scheme for a tumour ...users.monash.edu/~jdroniou/MWNDEA/slides/slides-remesan.pdf · u jD T nD T 0 cjD T nD T 1 0 ` (0) `m iBK2 bT +2(x ) (t)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Parameters

k = 1, µ = 1, Q = 0.5, s1 = 10 = s4, s2 = 0.5 = s3, α∗ = 0.81.The bounds of the cell volume fraction are set to be a∗ = 0.4 anda∗ = 0.82.The extended domain length ℓm is set as 10.The threshold value is taken as αthr = 0.1.ρ = 0.1, δ = 1E−3 and h = 5E−2.Set T∗ = 50.Predicted time by compactness theorem: 1E−7 to 1E−1.

1Breward, C.J.W., Byrne, H.M. and Lewis, C.E., 2002. The role of cell-cellinteractions in a two-phase model for avascular tumour growth. J. of Math. Bio.,45(2), pp. 125-152.

23 / 26 Numerical solutions of free boundary problems

Page 44: Convergence analysis of a numerical scheme for a tumour ...users.monash.edu/~jdroniou/MWNDEA/slides/slides-remesan.pdf · u jD T nD T 0 cjD T nD T 1 0 ` (0) `m iBK2 bT +2(x ) (t)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

0 2 4 60

0.2

0.4

0.6

0.8

x

αh,δ(t,x)

t = 5t = 10t = 15t = 20t = 25t = 30t = 35t = 40t = 45t = 50

(a) cell volume fraction

0 2 4 6

0

5

·10−2

x

uh,δ(t,x)

t = 5t = 10t = 15t = 20t = 25t = 30t = 35t = 40t = 45t = 50

(b) cell velocity

0 2 4 60

0.2

0.4

0.6

0.8

1

x

c h,δ(t,x)

t = 5t = 10t = 15t = 20t = 25t = 30t = 35t = 40t = 45t = 50

(c) oxygen tension

0 10 20 30 40 500

2

4

6

t

` h,δ(t)

(d) tumour radius

24 / 26 Numerical solutions of free boundary problems

Page 45: Convergence analysis of a numerical scheme for a tumour ...users.monash.edu/~jdroniou/MWNDEA/slides/slides-remesan.pdf · u jD T nD T 0 cjD T nD T 1 0 ` (0) `m iBK2 bT +2(x ) (t)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Conclusive remarks

Sufficiency of compactness and convergence theorems - Existenceof solutions beyond T∗ is possible.Convergence theorem guarantees existences of a domain D

αthrT .

However, it is not known whether it is unique.Framework can be extended to similar problems and models.Higher dimensional study (on going work).

25 / 26 Numerical solutions of free boundary problems

Page 46: Convergence analysis of a numerical scheme for a tumour ...users.monash.edu/~jdroniou/MWNDEA/slides/slides-remesan.pdf · u jD T nD T 0 cjD T nD T 1 0 ` (0) `m iBK2 bT +2(x ) (t)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Conclusive remarks

Sufficiency of compactness and convergence theorems - Existenceof solutions beyond T∗ is possible.Convergence theorem guarantees existences of a domain D

αthrT .

However, it is not known whether it is unique.Framework can be extended to similar problems and models.Higher dimensional study (on going work).

25 / 26 Numerical solutions of free boundary problems

Page 47: Convergence analysis of a numerical scheme for a tumour ...users.monash.edu/~jdroniou/MWNDEA/slides/slides-remesan.pdf · u jD T nD T 0 cjD T nD T 1 0 ` (0) `m iBK2 bT +2(x ) (t)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Conclusive remarks

Sufficiency of compactness and convergence theorems - Existenceof solutions beyond T∗ is possible.Convergence theorem guarantees existences of a domain D

αthrT .

However, it is not known whether it is unique.Framework can be extended to similar problems and models.Higher dimensional study (on going work).

25 / 26 Numerical solutions of free boundary problems

Page 48: Convergence analysis of a numerical scheme for a tumour ...users.monash.edu/~jdroniou/MWNDEA/slides/slides-remesan.pdf · u jD T nD T 0 cjD T nD T 1 0 ` (0) `m iBK2 bT +2(x ) (t)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Conclusive remarks

Sufficiency of compactness and convergence theorems - Existenceof solutions beyond T∗ is possible.Convergence theorem guarantees existences of a domain D

αthrT .

However, it is not known whether it is unique.Framework can be extended to similar problems and models.Higher dimensional study (on going work).

25 / 26 Numerical solutions of free boundary problems

Page 49: Convergence analysis of a numerical scheme for a tumour ...users.monash.edu/~jdroniou/MWNDEA/slides/slides-remesan.pdf · u jD T nD T 0 cjD T nD T 1 0 ` (0) `m iBK2 bT +2(x ) (t)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Thanks

26 / 26 Numerical solutions of free boundary problems


Recommended