+ All Categories
Home > Documents > ConvergenceRoots of QGPQGP DiscoveryQGP in …rafelski/PS/160922JR_GWU.pdfConvergenceRoots of QGPQGP...

ConvergenceRoots of QGPQGP DiscoveryQGP in …rafelski/PS/160922JR_GWU.pdfConvergenceRoots of QGPQGP...

Date post: 30-May-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
34
Convergence Roots of QGP QGP Discovery QGP in the Universe History of the Universe Johann Rafelski, September 22, 2016, GWU-Washington DC QGP Universe 1/34
Transcript
Page 1: ConvergenceRoots of QGPQGP DiscoveryQGP in …rafelski/PS/160922JR_GWU.pdfConvergenceRoots of QGPQGP DiscoveryQGP in the UniverseHistory of the Universe by 1967 – Hagedorn’s SBM:

Convergence Roots of QGP QGP Discovery QGP in the Universe History of the Universe

Johann Rafelski, September 22, 2016, GWU-Washington DC QGP Universe 1/34

Page 2: ConvergenceRoots of QGPQGP DiscoveryQGP in …rafelski/PS/160922JR_GWU.pdfConvergenceRoots of QGPQGP DiscoveryQGP in the UniverseHistory of the Universe by 1967 – Hagedorn’s SBM:

Convergence Roots of QGP QGP Discovery QGP in the Universe History of the Universe

Vocabulary: BNL; RHIC; CERN; SPS; LHC;QGP: Quark-Gluon Plasma;

CREDITS: Results obtained in collaboration withJeremiah Birrell, Michael Fromerth, Inga Kuznetsowa, Michal Petran

Graduate Students at The University of Arizona

Sept 22, 2016

Johann Rafelski, September 22, 2016, GWU-Washington DC QGP Universe 2/34

Page 3: ConvergenceRoots of QGPQGP DiscoveryQGP in …rafelski/PS/160922JR_GWU.pdfConvergenceRoots of QGPQGP DiscoveryQGP in the UniverseHistory of the Universe by 1967 – Hagedorn’s SBM:

Convergence Roots of QGP QGP Discovery QGP in the Universe History of the Universe

What is special with Quark Gluon Plasma?

1. RECREATE THE EARLY UNIVERSE IN LABORATORY:The topic of this talk

2. PROBING OVER A LARGE DISTANCE THE CONFININGVACUUM STRUCTURE

3. STUDY OF THE ORIGIN OF MASS OF MATTER

4. OPPORTUNITY TO PROBE ORIGIN OF FLAVOR?Normal matter made of first flavor family (u, d, e, [νe]).Strangeness-rich quark-gluon plasma the sole laboratoryenvironment filled with 2nd family matter (s, c).

Johann Rafelski, September 22, 2016, GWU-Washington DC QGP Universe 3/34

Page 4: ConvergenceRoots of QGPQGP DiscoveryQGP in …rafelski/PS/160922JR_GWU.pdfConvergenceRoots of QGPQGP DiscoveryQGP in the UniverseHistory of the Universe by 1967 – Hagedorn’s SBM:

Convergence Roots of QGP QGP Discovery QGP in the Universe History of the Universe

50 years ago 1964/65: Beginning of the modern scientific epoch

I Quarks + Higgs→ Standard Model of Particle PhysicsI CMB discovered (GWU’s Gamov prediction)→ Big BangI Hagedorn Temperature, Statistical Bootstrap

→ QGP: A new elementary state of matter

Topics today:1. Convergence of 1964/65 ideas and discoveries:

understanding back to 10 ns of our Universe2. Roots of QGP: from Hagedorn TH → Big Bang; to3. QGP Laboratory Discovery4. QGP in the Universe5. History of the Universe

Johann Rafelski, September 22, 2016, GWU-Washington DC QGP Universe 4/34

Page 5: ConvergenceRoots of QGPQGP DiscoveryQGP in …rafelski/PS/160922JR_GWU.pdfConvergenceRoots of QGPQGP DiscoveryQGP in the UniverseHistory of the Universe by 1967 – Hagedorn’s SBM:

Convergence Roots of QGP QGP Discovery QGP in the Universe History of the Universe

1964: Quarks + Higgs→ Standard Model

Johann Rafelski, September 22, 2016, GWU-Washington DC QGP Universe 5/34

Page 6: ConvergenceRoots of QGPQGP DiscoveryQGP in …rafelski/PS/160922JR_GWU.pdfConvergenceRoots of QGPQGP DiscoveryQGP in the UniverseHistory of the Universe by 1967 – Hagedorn’s SBM:

Convergence Roots of QGP QGP Discovery QGP in the Universe History of the Universe

1965: Penzias and Wilson

G. Gamov GWU prediction1966-1968: Hot Big-Bang⇒ conventional wisdom

Johann Rafelski, September 22, 2016, GWU-Washington DC QGP Universe 6/34

Page 7: ConvergenceRoots of QGPQGP DiscoveryQGP in …rafelski/PS/160922JR_GWU.pdfConvergenceRoots of QGPQGP DiscoveryQGP in the UniverseHistory of the Universe by 1967 – Hagedorn’s SBM:

Convergence Roots of QGP QGP Discovery QGP in the Universe History of the Universe

Hagedorn Temperature October 1964 in press:Hagedorn Spectrum January 1965⇒ March 1966

Johann Rafelski, September 22, 2016, GWU-Washington DC QGP Universe 7/34

Page 8: ConvergenceRoots of QGPQGP DiscoveryQGP in …rafelski/PS/160922JR_GWU.pdfConvergenceRoots of QGPQGP DiscoveryQGP in the UniverseHistory of the Universe by 1967 – Hagedorn’s SBM:

Convergence Roots of QGP QGP Discovery QGP in the Universe History of the Universe

Exponential Mass SpectrumWe search and discover new particle

checking this extreme idea

Johann Rafelski, September 22, 2016, GWU-Washington DC QGP Universe 8/34

Page 9: ConvergenceRoots of QGPQGP DiscoveryQGP in …rafelski/PS/160922JR_GWU.pdfConvergenceRoots of QGPQGP DiscoveryQGP in the UniverseHistory of the Universe by 1967 – Hagedorn’s SBM:

Convergence Roots of QGP QGP Discovery QGP in the Universe History of the Universe

by 1967 – Hagedorn’s SBM: Statistical Bootstrap Model‘the’ initial singular Hot Big-Bang theory

Boiling Primordial Matter Even though no one was present when theUniverse was born, our current understanding of atomic, nuclear andelementary particle physics, constrained by the assumption that theLaws of Nature are unchanging, allows us to construct models withever better and more accurate descriptions of the beginning.

Johann Rafelski, September 22, 2016, GWU-Washington DC QGP Universe 9/34

Page 10: ConvergenceRoots of QGPQGP DiscoveryQGP in …rafelski/PS/160922JR_GWU.pdfConvergenceRoots of QGPQGP DiscoveryQGP in the UniverseHistory of the Universe by 1967 – Hagedorn’s SBM:

Convergence Roots of QGP QGP Discovery QGP in the Universe History of the Universe

By 1980: SBM⇒ Quark-Gluon PlasmaHI collisions+strangenessJR & Michael Danos of NISTJR & Rolf Hagedorn of CERN

PLB 97 pp.279-282 (1980)

Johann Rafelski, September 22, 2016, GWU-Washington DC QGP Universe 10/34

Page 11: ConvergenceRoots of QGPQGP DiscoveryQGP in …rafelski/PS/160922JR_GWU.pdfConvergenceRoots of QGPQGP DiscoveryQGP in the UniverseHistory of the Universe by 1967 – Hagedorn’s SBM:

Convergence Roots of QGP QGP Discovery QGP in the Universe History of the Universe

Research time-line: Quarks→ QGP formation in RHICollisionI Cold quark matter in diverse formats from day 1: 1965

D.D. Ivanenko and D.F. Kurdgelaidze, Astrophysics 1, 147 (1965)Hypothesis concerning quark stars

I Interacting QCD quark-plasma: 1974P. Carruthers, Collect. Phenomena 1, 147 (1974)Quarkium: a bizarre Fermi liquid

I Formation of quark matter in RHI collisions: 1978conference talks by Rafelski-Hagedorn (CERN)unpublished document (MIT web page) Chapline-Kerman

I Hot interacting QCD QGP: 1979 (first complete eval!)J. Kapusta, Nucl. Phys. B 148, 461 (1979)QCD at high temperature

I Formation of QGP in RHI collisions 1979-80CERN Theory Division talks etc Hagedorn, Kapusta, Rafelski, Shuryak

I Experimental signature:Strangeness and Strange antibaryons 1980Rafelski (with Danos, Hagedorn, Koch (grad student), Muller

I Statistical materialization model (SHM) of QGP: 1982Rafelski (with Hagedorn, Koch(grad student), Muller

Johann Rafelski, September 22, 2016, GWU-Washington DC QGP Universe 11/34

Page 12: ConvergenceRoots of QGPQGP DiscoveryQGP in …rafelski/PS/160922JR_GWU.pdfConvergenceRoots of QGPQGP DiscoveryQGP in the UniverseHistory of the Universe by 1967 – Hagedorn’s SBM:

Convergence Roots of QGP QGP Discovery QGP in the Universe History of the Universe

CERN RHI experimental SPS program is born1980-86

Johann Rafelski, September 22, 2016, GWU-Washington DC QGP Universe 12/34

Page 13: ConvergenceRoots of QGPQGP DiscoveryQGP in …rafelski/PS/160922JR_GWU.pdfConvergenceRoots of QGPQGP DiscoveryQGP in the UniverseHistory of the Universe by 1967 – Hagedorn’s SBM:

Convergence Roots of QGP QGP Discovery QGP in the Universe History of the Universe

A new ‘large’collider is build at BNL: 1984-2001/operating today

Johann Rafelski, September 22, 2016, GWU-Washington DC QGP Universe 13/34

Page 14: ConvergenceRoots of QGPQGP DiscoveryQGP in …rafelski/PS/160922JR_GWU.pdfConvergenceRoots of QGPQGP DiscoveryQGP in the UniverseHistory of the Universe by 1967 – Hagedorn’s SBM:

Convergence Roots of QGP QGP Discovery QGP in the Universe History of the Universe

Preeminent signature: Strange antibaryon enhancementpress.web.cern.ch/press-releases/2000/02/new-state-matter-created-cern

Johann Rafelski, September 22, 2016, GWU-Washington DC QGP Universe 14/34

Page 15: ConvergenceRoots of QGPQGP DiscoveryQGP in …rafelski/PS/160922JR_GWU.pdfConvergenceRoots of QGPQGP DiscoveryQGP in the UniverseHistory of the Universe by 1967 – Hagedorn’s SBM:

Convergence Roots of QGP QGP Discovery QGP in the Universe History of the Universe

9AM, 18 April 2005; US – RHIC announces QGPPress conference APS Spring Meeting

Preeminent property: non-viscous flow

Johann Rafelski, September 22, 2016, GWU-Washington DC QGP Universe 15/34

Page 16: ConvergenceRoots of QGPQGP DiscoveryQGP in …rafelski/PS/160922JR_GWU.pdfConvergenceRoots of QGPQGP DiscoveryQGP in the UniverseHistory of the Universe by 1967 – Hagedorn’s SBM:

Convergence Roots of QGP QGP Discovery QGP in the Universe History of the Universe

Current interest: Exploration of the QGP phasediagram

Johann Rafelski, September 22, 2016, GWU-Washington DC QGP Universe 16/34

Page 17: ConvergenceRoots of QGPQGP DiscoveryQGP in …rafelski/PS/160922JR_GWU.pdfConvergenceRoots of QGPQGP DiscoveryQGP in the UniverseHistory of the Universe by 1967 – Hagedorn’s SBM:

Convergence Roots of QGP QGP Discovery QGP in the Universe History of the Universe

Current interest: Exploration of exponential massspectrum

Slope for prescribed pre-exponential shape is the HagedornTemperature: another way to determine critical properties ofdeconfinement phase change

Johann Rafelski, September 22, 2016, GWU-Washington DC QGP Universe 17/34

Page 18: ConvergenceRoots of QGPQGP DiscoveryQGP in …rafelski/PS/160922JR_GWU.pdfConvergenceRoots of QGPQGP DiscoveryQGP in the UniverseHistory of the Universe by 1967 – Hagedorn’s SBM:

Convergence Roots of QGP QGP Discovery QGP in the Universe History of the Universe

My expertise:Cooking strangequarks→ strangeantibaryons

APS car sticker from period

Johann Rafelski, September 22, 2016, GWU-Washington DC QGP Universe 18/34

Page 19: ConvergenceRoots of QGPQGP DiscoveryQGP in …rafelski/PS/160922JR_GWU.pdfConvergenceRoots of QGPQGP DiscoveryQGP in the UniverseHistory of the Universe by 1967 – Hagedorn’s SBM:

Convergence Roots of QGP QGP Discovery QGP in the Universe History of the Universe

Prediction: 1980-86 confirmed by experimentalresults: Particle yields=integrated spectra

Johann Rafelski, September 22, 2016, GWU-Washington DC QGP Universe 19/34

Page 20: ConvergenceRoots of QGPQGP DiscoveryQGP in …rafelski/PS/160922JR_GWU.pdfConvergenceRoots of QGPQGP DiscoveryQGP in the UniverseHistory of the Universe by 1967 – Hagedorn’s SBM:

Convergence Roots of QGP QGP Discovery QGP in the Universe History of the Universe

Statistical Hadronization Model Interpretation (SHM)equal hadron production strength Bulk properties⇓yield depending on available phase spaceExample data from LHC⇓

Johann Rafelski, September 22, 2016, GWU-Washington DC QGP Universe 20/34

Page 21: ConvergenceRoots of QGPQGP DiscoveryQGP in …rafelski/PS/160922JR_GWU.pdfConvergenceRoots of QGPQGP DiscoveryQGP in the UniverseHistory of the Universe by 1967 – Hagedorn’s SBM:

Convergence Roots of QGP QGP Discovery QGP in the Universe History of the Universe

Relativistic Heavy Ion Collisions and the Big-BangI Universe time scale 18

orders of magnitudelonger, hence equilibriumof leptons & photons

I Baryon asymmetry sixorders of magnitude largerin Laboratory, hencechemistry different

I Universe: dilution by scaleexpansion, Laboratoryexplosive expansion of afireball

=⇒ Theory connects RHI collision experiments to Universe

Johann Rafelski, September 22, 2016, GWU-Washington DC QGP Universe 21/34

Page 22: ConvergenceRoots of QGPQGP DiscoveryQGP in …rafelski/PS/160922JR_GWU.pdfConvergenceRoots of QGPQGP DiscoveryQGP in the UniverseHistory of the Universe by 1967 – Hagedorn’s SBM:

Convergence Roots of QGP QGP Discovery QGP in the Universe History of the Universe

Universe: QGP and Hadrons in full EquilibriumThe key doorway reaction too abundance (chemical)equilibrium of the fast diluting hadron gas in Universe:

π0 ↔ γ + γ

The lifespan τπ0 = 8.4× 10−17 sec defines the strength ofinteraction which beats the time constant of Hubble parameterof the epoch. Inga Kuznetsova and JR, Phys. Rev. C82, 035203(2010) and D78, 014027 (2008) (arXiv:1002.0375 and 0803.1588).Equilibrium abundance of π0 assures equilibrium of chargedpions due to charge exchange reactions; heavier mesons andthus nucleons, and nucleon resonances follow:

π0 + π0 ↔ π+ + π−. ρ↔ π + π, ρ+ ω ↔ N + N, etc

The π0 remains always in chemical equilibrium All chargedleptons always in chemical equilibrium – with photonsNeutrinos freeze-out (like photons later) at T = OMeV

Johann Rafelski, September 22, 2016, GWU-Washington DC QGP Universe 22/34

Page 23: ConvergenceRoots of QGPQGP DiscoveryQGP in …rafelski/PS/160922JR_GWU.pdfConvergenceRoots of QGPQGP DiscoveryQGP in the UniverseHistory of the Universe by 1967 – Hagedorn’s SBM:

Convergence Roots of QGP QGP Discovery QGP in the Universe History of the Universe

Chemical Potential in the UniverseM. Fromerth and JRastro-ph/0211346Minimum:µB = 0.33+0.11

−0.08eV

=⇒ µB defines remainder of matter after annihilation

Johann Rafelski, September 22, 2016, GWU-Washington DC QGP Universe 23/34

Page 24: ConvergenceRoots of QGPQGP DiscoveryQGP in …rafelski/PS/160922JR_GWU.pdfConvergenceRoots of QGPQGP DiscoveryQGP in the UniverseHistory of the Universe by 1967 – Hagedorn’s SBM:

Convergence Roots of QGP QGP Discovery QGP in the Universe History of the Universe

Particle Composition after QGP Hadronization

=⇒ Antimatter annihilates to below matter abundance beforeT = 30 MeV, universe dominated by photons, neutrinos, leptonsfor T < 30 MeV Next: distribution normalized to unity

Johann Rafelski, September 22, 2016, GWU-Washington DC QGP Universe 24/34

Page 25: ConvergenceRoots of QGPQGP DiscoveryQGP in …rafelski/PS/160922JR_GWU.pdfConvergenceRoots of QGPQGP DiscoveryQGP in the UniverseHistory of the Universe by 1967 – Hagedorn’s SBM:

Convergence Roots of QGP QGP Discovery QGP in the Universe History of the Universe

The Universe Composition Changes

T [eV]10-3 10-2 10-1 100 101 102 103 104 105 106 107 108

EnergyDen

sity

Fraction

10-4

10-3

10-2

10-1

100

Dark EnergyDark MatterHadronse±

γ

ν

µ±

τ±

t [s]

1017 1016 1015 1014 1013 1012 1011 1010 109 108 107 106 105 104 103 102 101 100 10-1 10-2 10-3 10-4 10-5

10-4

10-3

10-2

10-1

100

π

K

p+n

∆,Y

η+f0

ρ+ω

u/d/s

c

b

Trecomb

TBBN

TQCD

J. Birrell & J. Rafelski (2014/15)

dark energy matter radiation ν, γ leptons hadrons=⇒ Different dominance eras

Johann Rafelski, September 22, 2016, GWU-Washington DC QGP Universe 25/34

Page 26: ConvergenceRoots of QGPQGP DiscoveryQGP in …rafelski/PS/160922JR_GWU.pdfConvergenceRoots of QGPQGP DiscoveryQGP in the UniverseHistory of the Universe by 1967 – Hagedorn’s SBM:

Convergence Roots of QGP QGP Discovery QGP in the Universe History of the Universe

The contents of the Universe today

1. All visible matter2. Free-streaming matter

particles that do not interact – have ‘frozen’ out:I dark matter:from way before QGP hadronizationI massless dark matter: darkness: maybe neededI neutrinos: since T = 1–3 MeVI photons: since T = 0.25eV

3. Dark energy = vacuum energy

Johann Rafelski, September 22, 2016, GWU-Washington DC QGP Universe 26/34

Page 27: ConvergenceRoots of QGPQGP DiscoveryQGP in …rafelski/PS/160922JR_GWU.pdfConvergenceRoots of QGPQGP DiscoveryQGP in the UniverseHistory of the Universe by 1967 – Hagedorn’s SBM:

Convergence Roots of QGP QGP Discovery QGP in the Universe History of the Universe

Free-streaming matter contributions: solution of kinetic equations withdecoupling boundary conditions at Tk (kinetic freeze-out).

ρ =g

2π2

∫ ∞0

(m2 + p2

)1/2p2dp

Υ−1e√

p2/T2+m2/T2k + 1

, P =g

6π2

∫ ∞0

(m2 + p2

)−1/2p4dp

Υ−1e√

p2/T2+m2/T2k + 1

,

n =g

2π2

∫ ∞0

p2dp

Υ−1e√

p2/T2+m2/T2k + 1

.

These differ from the corresponding expressions for an equilibriumdistribution by the replacement m→ mT(t)/Tk only in the exponential.Only for massless photons free-streaming = thermal distributions(absence of mass-energy scale).

Johann Rafelski, September 22, 2016, GWU-Washington DC QGP Universe 27/34

C. Cercignani, and G. Kremer. The Relativistic Boltzmann Equation: Basel, (2000).H. Andreasson, “The Einstein-Vlasov System”Living Rev. Rel. 14, 4 (2011) Y. Choquet-Bruhat. General Relativity and the Einstein Equations, Oxford (2009).

Page 28: ConvergenceRoots of QGPQGP DiscoveryQGP in …rafelski/PS/160922JR_GWU.pdfConvergenceRoots of QGPQGP DiscoveryQGP in the UniverseHistory of the Universe by 1967 – Hagedorn’s SBM:

Convergence Roots of QGP QGP Discovery QGP in the Universe History of the Universe

Distinct Composition Eras

Composition of the Universe changes as function of T:I From Higgs freezing to freezing of QGPI QGP hadronizationI Antimatter annihilationI Last leptons disappear just whenI Onset of neutrino free-streaming and begin ofI Big-Bang nucleosynthesis within a remnant lepton plasmaI Emergence of free streaming dark matterI Photon Free-streaming – Composition Cross-PointI Dark Energy Emerges – vacuum energy

Johann Rafelski, September 22, 2016, GWU-Washington DC QGP Universe 28/34

Page 29: ConvergenceRoots of QGPQGP DiscoveryQGP in …rafelski/PS/160922JR_GWU.pdfConvergenceRoots of QGPQGP DiscoveryQGP in the UniverseHistory of the Universe by 1967 – Hagedorn’s SBM:

Convergence Roots of QGP QGP Discovery QGP in the Universe History of the Universe

Evolution Eras and Deceleration Parameter qUsing Einsteins equations exact expression in terms of energy,pressure content (a is the scale of the Universe, flat k = 0Universe favored)

H(t) ≡ aa

; q ≡ − aaa2 =

12

(1 + 3

)(1 +

ka2

)I Radiation dominated universe: P = ρ/3 =⇒ q = 1.

I Matter dominated universe: P� ρ =⇒ q = 1/2.

I Dark energy (Λ) dominated universe: P = −ρ =⇒ q = −1.Accelerating Universe TODAY(!)

Johann Rafelski, September 22, 2016, GWU-Washington DC QGP Universe 29/34

Page 30: ConvergenceRoots of QGPQGP DiscoveryQGP in …rafelski/PS/160922JR_GWU.pdfConvergenceRoots of QGPQGP DiscoveryQGP in the UniverseHistory of the Universe by 1967 – Hagedorn’s SBM:

Convergence Roots of QGP QGP Discovery QGP in the Universe History of the Universe

Today and recent evolution

t [yr]10-1 100 101 102 103 104 105 106 107 108 109 1010

T[eV]

10-4

10-3

10-2

10-1

100

101

102

103

q

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1Tγ

q

trecomb treion

Radiation Domiated

Matter Domiated

Dark EnergyDomiated

Evolution of temperature T and deceleration parameter q fromsoon after BBN to the present day

Johann Rafelski, September 22, 2016, GWU-Washington DC QGP Universe 30/34

Page 31: ConvergenceRoots of QGPQGP DiscoveryQGP in …rafelski/PS/160922JR_GWU.pdfConvergenceRoots of QGPQGP DiscoveryQGP in the UniverseHistory of the Universe by 1967 – Hagedorn’s SBM:

Convergence Roots of QGP QGP Discovery QGP in the Universe History of the Universe

Long ago: Hadron and QGP Era

I QGP era down to phase transition at T ≈ 150MeV. Energydensity dominated by photons, neutrinos, e±, µ± alongwith u,d,s.

I 2 + 1-flavor lattice QCD equation of state usedI u,d,s lattice energy density is matched by ideal gas of

hadrons to sub percent-level at T = 115MeV.I Hadrons included: pions, kaons, eta, rho, omega,

nucleons, delta, hyperonsI Pressure between QGP/Hadrons is discontinuous at up to

10% level. Causes hard to notice discontinuity in q (slopesmatch). Need more detailed hadron and quark-quarkinteractions input

Johann Rafelski, September 22, 2016, GWU-Washington DC QGP Universe 31/34

Page 32: ConvergenceRoots of QGPQGP DiscoveryQGP in …rafelski/PS/160922JR_GWU.pdfConvergenceRoots of QGPQGP DiscoveryQGP in the UniverseHistory of the Universe by 1967 – Hagedorn’s SBM:

Convergence Roots of QGP QGP Discovery QGP in the Universe History of the Universe

t [s]10-5 10-4 10-3 10-2 10-1 100 101 102 103 104

T[M

eV]

10-2

10-1

100

101

102

q

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

q

tν tBBN

Figure: Evolution of temperature T and deceleration parameter q fromQGP era until near BBN.

Johann Rafelski, September 22, 2016, GWU-Washington DC QGP Universe 32/34

Page 33: ConvergenceRoots of QGPQGP DiscoveryQGP in …rafelski/PS/160922JR_GWU.pdfConvergenceRoots of QGPQGP DiscoveryQGP in the UniverseHistory of the Universe by 1967 – Hagedorn’s SBM:

Convergence Roots of QGP QGP Discovery QGP in the Universe History of the Universe

Figure: Evolution of temperature T and deceleration parameter q fromElectro-Weak symmetric era to near QGP hadronization.

Johann Rafelski, September 22, 2016, GWU-Washington DC QGP Universe 33/34

Page 34: ConvergenceRoots of QGPQGP DiscoveryQGP in …rafelski/PS/160922JR_GWU.pdfConvergenceRoots of QGPQGP DiscoveryQGP in the UniverseHistory of the Universe by 1967 – Hagedorn’s SBM:

Convergence Roots of QGP QGP Discovery QGP in the Universe History of the Universe

SummaryI 50 years ago particle production in pp reactions prompted

introduction of Hagedorn Temperature TH; soon after recognizedas the critical temperature at which matter surrounding usdissolves into primordial new phase of matter made of quarksand gluons – QGP.

I 35 years ago we realized the opportunity to recreate a newphase of matter smashing heaviest nuclei

I We developed laboratory observables of this quark-gluon phaseof matter: cooking strange quark flavor.

I 15 years ago we witnessed two international Laboratoriesannouncing the discovery of QGP leading to models of theproperties of the baby Universe 10 ns – 18µs.

I Today: We explore the phase diagram of QGP; we describe theevolution of the Quark-Universe across the neutrino desert intothe era of Big-Bang nucleosynthesis (BBN) and on to CMBfreeze-out

Johann Rafelski, September 22, 2016, GWU-Washington DC QGP Universe 34/34


Recommended