+ All Categories
Home > Documents > Copernicus Institute Sustainable Development and Innovation Management Technologies (and their role...

Copernicus Institute Sustainable Development and Innovation Management Technologies (and their role...

Date post: 17-Dec-2015
Category:
Upload: leon-bryan
View: 222 times
Download: 6 times
Share this document with a friend
Popular Tags:
39
Copernicus Institute Sustainable Development and Innovation Management Technologies (and their role for sustainable bioenergy) 1 st Workshop ESSP Bioenergy – Bioenergy and Earth Sustainability. Escola Superior de Agricultura “ Luiz de Queiroz” Piracicaba - Brazil, July 19-22, 2008. André Faaij Copernicus Institute - Utrecht University Task Leader IEA Bioenergy Task 40 Member Steering Group BIOPEC Initiative
Transcript

Copernicus InstituteSustainable Development and Innovation Management

Technologies (and their

role for sustainable bioenergy)

1st Workshop ESSP Bioenergy – Bioenergy and Earth Sustainability.

Escola Superior de Agricultura “ Luiz de Queiroz” Piracicaba - Brazil, July 19-22, 2008.

André FaaijCopernicus Institute - Utrecht University

Task Leader IEA Bioenergy Task 40Member Steering Group BIOPEC Initiative

Copernicus InstituteSustainable Development and Innovation Management

Integration…

Pfff, it’s complex…

Copernicus InstituteSustainable Development and Innovation Management

Key bioenergy utilisation routes

Copernicus InstituteSustainable Development and Innovation Management

Bioenergy today• 45 EJ + 10 EJ total use• 9 EJ + 6 EJ commercial; non-modern• ~ 8 EJ Modern; commercial:

– < 1 EJ electricity– ~ 2.5 EJ heat– ~ 1.5 EJ biofuels (bulk = ethanol; half of that

ethanol sugar cane based)• Main controversy on biofuels from annual

crops and palm oil. • Currently some 20 Mha in use for biofuels

worldwide (compared to 5,000 Mha for food)

Copernicus InstituteSustainable Development and Innovation Management

Combustion; workhorse of bio-energy…

Fuel Ash

Air

Fixed bed furnace(grate furnace)

Fuel

Ash

Air

bubbling fluidisedbed furnace

circulating fluidisedbed furnace

Air Air

Fuel

Fuel

dust firing

Efficiency: from 20 – 40%CHP: 60 - <80%Capacity: 20 – 250 MWe …Economics OK with residues

Copernicus InstituteSustainable Development and Innovation Management

Power Station Kymijärvi, Lahti Finland

Copernicus InstituteSustainable Development and Innovation Management

Future BIG/CC technology

Pre-treatment Gasifier Fuel gas

clean-up

Fuel gasexpander Gas turbine HRSG

Air

Steamturbine

Ash Particles/alkalis

Fluegas

Fuel gascooler

Steam

Poplar wood

Natural gas

AirBurner

Flue gasInert gasGas

cooler

Steam

Air

forpressure lockingDolomite

Hotwater

-> Current status: ~3500 U$/kWe, 30% electrical efficiency, ACFB, ~10 Mwe

-> Future:~1500,- U$/kWe, ~50% efficiency, (ACFB..), >100 MWe

-> Ultimate: <1000 U$/kWe, >55% eff., PCFB, HT gas cleaning >200 MWe

Cost of electricity:~ 10 U$ct/kWh -> 3-4 U$ct/kWh,almost doubling of electrical output

[Faaij, van Ree et al., 1998]

Copernicus InstituteSustainable Development and Innovation Management

Perennial crops (vs. annual crops)

• Lower costs (< 2 €/GJ)• Planted for 15-25 years• Low(er) intensity

– Can restore soil carbon and structure– Suited for marginal/degraded lands– Requires less inputs (well below key threshold values)

• Wide portfolio of species & production systems– Possibilities for enhancing (bio-) diversity– Adaptable to local circumstances (water, indigenous

species)

• Earlier development stage– Large scale and diverse experience needed– Learning curve to be exploited– Improvement potential

Miscanthus x giganteus

Copernicus InstituteSustainable Development and Innovation Management

Yields: perennials ~3x annual

Crop Biomass yield (odt/ha* yr)

Energy yield in fuel (GJ/ha*yr)

Wheat 4 - 5 ~ 50

Corn 5 – 6 ~ 60

Sugar Beet 9 – 10 ~ 110

Soy Bean 1 – 2 ~ 20

Sugar Cane 10 – 11 ~ 180

Palm Oil 10-15 ~ 160

Jathropha 5-6 ~ 60

SRC temperate climate 10 – 15 100 - 180

SRC tropical climate 15 - 30 170 - 350

Energy grasses good conditions 10 - 20 170 – 230

Perennials marginal/degraded lands 3 - 10 30 – 120

Copernicus InstituteSustainable Development and Innovation Management

Bioethanol from lignocellulosic biomass

1. SHF2. SSF3. SSCF4. CBP

+BIG/CC…

Major demonstrationsIn US/Canada, EU

Copernicus InstituteSustainable Development and Innovation Management

Synthetic fuels from biomass

Biomass & coal gasification to FT liquids - with gas turbine

Power

Pre-treatment:

- grinding - drying

feedstock is poplar wood

Gasification:

- air or oxygen- pressurised or atmospheric- direct/indirect

Gas cleaning:

- ‘wet’ cold or ‘dry’ hot

FT liquids

Offgas

Recycle loop

FT synthesis:

- slurry reactor or fixed bed

Gas turbine

Gas processing:

- reforming- shift

- CO2 removal

Major investments in IG-FT capacityongoing in China right now:- Reducing dependency on oil imports!- Without capture strong increase in CO2 emissions…

About 50%of carbon!

Copernicus InstituteSustainable Development and Innovation Management

What are we waiting for?Yueyang Sinopec-ShellCoal gasification project; (China)

Shell gasifier arrivingat site September 2006.

15 licences in China at present…

Courtesy of Shell

Copernicus InstituteSustainable Development and Innovation Management

Economic performance 2nd generation biofuels s.t. & l.t.; 3

Euro/GJ feedstock

[Hamelinck & Faaij, 2006, Energy Policy]

Copernicus InstituteSustainable Development and Innovation Management

GHG Balances (without indirect land-use

changes)

0

20

40

60

80

100

120

Wastes (Waste Oil,Harvest Residues,

Sewage)Fibers (Switchgrass,

Poplar)Sugars (Sugar Cane,

Beet)Starches (Corn,

Wheat)

Vegetable Oils(Rapeseed, Sunflower

Seed, Soybeans)

Red

uct

ion

in C

O2

Eq

uiv

alen

t E

mis

sio

ns

(Per

cen

t)

Source: IEA

IEA – Fulton, 2004

Copernicus InstituteSustainable Development and Innovation Management

Composing chains…

D e d i c a t e d 5 0 k m

L o g s C h i p s B a l e sB a l e sL o g s

B a l e sL o g s

R o a d s i d e

1 0 0 k m

1 0 0 k m

1 1 0 0 - 1 1 , 5 0 0 k m

H a r b o u r

P l a n t

D e d i c a t e d 5 0 k m

R o a d s i d e

C G P =T e r m i n a l

1 1 0 0 k m

P l a n t

R o a d s i d e R o a d s i d e

C G P C G P =T e r m i n a l

1 0 0 k m 1 1 0 0 k m

H a r b o u r

P l a n t

P l a n t

1 0 0 k m

E M

E M

E M

E M

C G P

E M

E M

D e d i c a t e d 5 0 k m D e d i c a t e d 5 0 k m

R o a d s i d e R o a d s i d e

D e d i c a t e d 5 0 k m D e d i c a t e d 5 0 k m

C G P C G P =T e r m i n a l

1 0 0 k m 1 1 0 0 k m

H a r b o u r

H a r b o u r

P l a n t

P l a n t

1 0 0 k m

D e d i c a t e d 5 0 k m D e d i c a t e d 5 0 k m D e d i c a t e d 5 0 k m D e d i c a t e d 5 0 k m

R o a d s i d e R o a d s i d e R o a d s i d e R o a d s i d e

C G PC G P =T e r m i n a l

C G PC G P =T e r m i n a l

1 0 0 k m 1 1 0 0 k m

1 0 0 k m

P l a n t

P l a n t

E M

E M

M

1 0 0 k m 1 1 0 0 k m

H a r b o u r P l a n t

1 0 0 k m

P l a n t

M

P P

R o a d s i d e R o a d s i d e

1 5 0 k m 5 0 k m

H a r b o u r T e r m i n a l

1 1 0 0 k m

P l a n t

P l a n t1 0 0 k m

EP M

EP M

1 0m m

3 0m m

3 0m m

1 0m m

1 1 0 0 - 1 1 , 5 0 0 k m

1 1 0 0 - 1 1 , 5 0 0 k m

1 1 0 0 - 1 1 , 5 0 0 k m

1 1 0 0 - 1 1 , 5 0 0 k m

1 1 0 0 - 1 1 , 5 0 0 k m

> > M e O HB a l e sL o g s > P y r o

P e l l e t sB r i q u e t t e s

3 0m m

3 0m m

3 0m m

3 0m m

3 0m m

3 0m m

3 0m m

3 0m m

3 0m m

3 0m m

D e d i c a t e d 5 0 k m

L o g s C h i p s B a l e sB a l e sL o g s

B a l e sL o g s

R o a d s i d e

1 0 0 k m

1 0 0 k m

1 1 0 0 - 1 1 , 5 0 0 k m

H a r b o u r

P l a n t

D e d i c a t e d 5 0 k m

R o a d s i d e

C G P =T e r m i n a l

1 1 0 0 k m

P l a n t

R o a d s i d e R o a d s i d e

C G P C G P =T e r m i n a l

1 0 0 k m 1 1 0 0 k m

H a r b o u r

P l a n t

P l a n t

1 0 0 k m

E MEEE MM

E MEEE MM

E MEEE MM

E MEEE MM

C G P

E MEEE MM

E MEEE MM

D e d i c a t e d 5 0 k m D e d i c a t e d 5 0 k m

R o a d s i d e R o a d s i d e

D e d i c a t e d 5 0 k m D e d i c a t e d 5 0 k m

C G P C G P =T e r m i n a l

1 0 0 k m 1 1 0 0 k m

H a r b o u r

H a r b o u r

P l a n t

P l a n t

1 0 0 k m

D e d i c a t e d 5 0 k m D e d i c a t e d 5 0 k m D e d i c a t e d 5 0 k m D e d i c a t e d 5 0 k m

R o a d s i d e R o a d s i d e R o a d s i d e R o a d s i d e

C G PC G P =T e r m i n a l

C G PC G P =T e r m i n a l

1 0 0 k m 1 1 0 0 k m

1 0 0 k m

P l a n t

P l a n t

E MEE M

E MEE M

MMM

1 0 0 k m 1 1 0 0 k m

H a r b o u r P l a n t

1 0 0 k m

P l a n t

MMM

PPP PPP

R o a d s i d e R o a d s i d e

1 5 0 k m 5 0 k m

H a r b o u r T e r m i n a l

1 1 0 0 k m

P l a n t

P l a n t1 0 0 k m

EP MEEP MM

EP MEEP MM

1 0m m1 0m m

3 0m m

3 0m m

1 0m m1 0m m

1 1 0 0 - 1 1 , 5 0 0 k m

1 1 0 0 - 1 1 , 5 0 0 k m

1 1 0 0 - 1 1 , 5 0 0 k m

1 1 0 0 - 1 1 , 5 0 0 k m

1 1 0 0 - 1 1 , 5 0 0 k m

> > M e O HB a l e sL o g s > P y r o

P e l l e t sB r i q u e t t e s

3 0m m

3 0m m

3 0m m

3 0m m

3 0m m

3 0m m

3 0m m

3 0m m

3 0m m

3 0m m

P P M M

E E

L e g e n d

H a r v e s t o r c o l l e c t i o n T r a n s p o r t p e r t r u c k ( s o l i d s ) . . . p e r t r a i n … p e r s h i p … o f l i q u i d s

L o o s e b i o m a s s L o g s o r b a l e s C h i p s 3 0 m m F i n e s 1 0 m m P e l l e t s o r b r i q u e t t e s

S t o r a g e o f l o g s o r b a l e s . . . o f c h i p s o r f i n e s …

o f l i q u i d s ( i n t a n k ) i n a s i l o . . .

D r y i n g c h i p s

C o n v e r s i o n E l e c t r i c i t y P y r o l y s i s o i l M e t h a n o l

Sou

rce:

Ham

elin

ck,

Faa

ij, 2

005

Copernicus InstituteSustainable Development and Innovation Management

Technological learning; improvement potentials and

development pathways.• Detailed bottom –up analyses of

bio-energy systems.• Breakdown of factors in

conversion, supply lines and biomass (crop) production.

• Essential for implementation• Many case studies, methodology

development & applied research.

Copernicus InstituteSustainable Development and Innovation Management

Cost reduction potential in 2nd generation technologies.

[Wit, Junginger, Faaij, 2008]

Copernicus InstituteSustainable Development and Innovation Management

Total learning system for biomass-fuelled power plants producing

electricity Experience curve on investment cost

Experience gained with plant operation

Experience curve on fuel supply

Investment in biomass fuelled plants

Main components: Fuel feeding system Boiler Generator Turbine Heat exchange Flue gas cleaning Etc.

Fuel Supply Chain Harvesting Forwarding Comminution Transportation Etc.

Operation and maintenance of the plant

Input: (€)

Output: Capacity (kWe)

Output: Full-load hours (h)

Output: Fuel (MJth)

Input: (€)

Input: (€)

Production of electricity from biofuelled power plants

Experience curve on electricity production costs

Input: (€) Output: Electricity (kWhe)

Sou

rce:

Jun

ging

er,

Faa

ij et

al.,

200

5

Copernicus InstituteSustainable Development and Innovation Management

Experience curve for primary forest fuels in Sweden and Finland (1975

and 2003).

Sou

rce:

Jun

ging

er F

aaij

et a

l., 2

005

Copernicus InstituteSustainable Development and Innovation Management

Experience curve for the average and marginal production cost of electricity

from Swedish biofuelled CHP plants from

1990-2002

Cumulative electricity production (MWh)

1 10 100 1000 10000

Ele

ctric

ity p

rodu

ctio

n co

sts

(Eur

o(20

02)/

kWh)

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

Average electricity production costs Marginal electricity production costs

PR = 92% R2 = 0.88

PR = 91% R2 = 0.85

1990

1991

1992 1993

1994

1995

2002

1997

1999

Sou

rce:

Jun

ging

er,

Faa

ij et

al.,

200

5

Copernicus InstituteSustainable Development and Innovation Management

Cumulative national sugarcane production [106 TC]

1000 2000 4000 8000

Sug

arca

ne p

rodu

ctio

n co

sts

[US

$(20

05)/

TC

]

40

20

10

Average production costs (1975-1998) and prices (1999-2004)PR = 0.68 + 0.03 (R2 = 0.81)

19851980

1990 2001

1975

1999

Cumulative national ethanol production [106m3]

10 20 40 80 160 320

Pro

duct

ion

cost

s [U

S$(

2005

)/m

3H

YD)

400

200

100

50

Industrial costs (excl. feedstock)PR = 0.81 + 0.02 (R2 = 0.80)

197

7

1984

1981

1989

1998

2000

2003

Experience curve of sugarcane production 1975 – 2004

Experience curve for total hydrated ethanol (1975- 2004) excluding feedstock

[Wall Bake et al., Biomass & Bioenergy, 2008]

Copernicus InstituteSustainable Development and Innovation Management

Examples of various sugarcane cost breakdowns in Sao Paulo

1976-2005 Sugarcane production cost breakdowns

1976 1980 1987 1995 1997 2000 2005

Pro

duct

ion

cost

s[U

S$(

2005

)/T

C]

0

10

20

30

40

50

LandSoil preparationCrop maintenanceHarvest (cutting and loading)Cane transportationAverage cane production cost(as presented earlier)

[Wall Bake et al., Biomass & Bioenergy, 2008]

Copernicus InstituteSustainable Development and Innovation Management

Cost breakdowns of industrial ethanol production process excl.

feedstock

1975 1980 1985 1990 1995 2000 2005

Eth

anol

pro

duct

ion

cost

s [U

S$/

m3 ]

0

100

200

300

400

500

Investment costsOperational costsOther costs (taxes, administration, etc.)Total industrial costs (excl. feedstock)

120 m3/day120 m3/day

240 m3/day

1000 m3/day

[Wall Bake et al., Biomass & Bioenergy, 2008]

Copernicus InstituteSustainable Development and Innovation Management

Estimated future costs of sugarcane and ethanol

production assuming 8% annual growth

Cumulative sugarcane production [106 TC]1000 2000 4000 8000 16000 32000P

rodu

ctio

n co

sts

suga

rcan

e [U

S$/

tonn

e] a

nd e

than

ol [

US

$/m

3]

10

20

40

200

400

800

10 20 40 80 160 320 640 1280

SugarcaneEthanol prod. cost (excl. feedstock)Expected range of cane prod. costs in 2020Expected range of ethanol prod. costs in 2020

PR = 0.68 + 0.03

PR = 0.81 + 0.02

2020

2020

Cumulative ethanol production [106 m3]

Explaining the experience curve: Cost reductions of Brazilian ethanol from sugarcaneJ.D. van den Wall Bake, M. Junginger, A. Faaij, T.Poot, A. da Silva WalterBiomass & Bioenergy, 2008

Copernicus InstituteSustainable Development and Innovation Management

Ethanol plants US (status 2006)

Source: John Urbanchuk (data for Oct 31 2006; green =

operating, red = under construction)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

16000

1975

1980

1985

1990

1995

2000

2005

2010

2015

U.S

. Eth

an

ol p

rod

uct

ion

[mill

ion

ga

llon

s]

U.S. BrazilU.S. projected WorldRFS

Global ethanol

Production &

outlook

Copernicus InstituteSustainable Development and Innovation Management

Corn production costs

0

1

2

3

4

5

6

7

1975 1980 1985 1990 1995 2000 2005

Ann

ual c

orn

prod

uctio

n co

sts

[$(2

005)

/bu]

0

2

4

6

8

10

12

14

Ann

ual c

orn

prod

uctio

n [b

illion

bus

hel]

Corn production Corn production costs

Source: ERS-USDA, NASS -USDA

0

1

2

3

4

5

6

7

1975 1980 1985 1990 1995 2000 2005

Annual c

orn

pro

ductio

n c

osts

[$(2

005)/

bu]

0

2

4

6

8

10

12

14

Annual c

orn

pro

ductio

n [billio

n b

ushel]

Corn production Corn production costs (yield is f ixed)Corn production costs per bushel

60% reduction in costs per bushel

Still 38% reduction in costs per acre(so without yield increase influences)

[Hettinga, 2007]

Copernicus InstituteSustainable Development and Innovation Management

Corn production costs

Corn production costs per bushel

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

19

75

19

76

19

77

19

78

19

79

19

80

19

81

19

82

19

83

19

84

19

85

19

86

19

87

19

88

19

89

19

90

19

91

19

92

19

93

19

94

19

95

19

96

19

97

19

98

19

99

20

00

20

01

20

02

20

03

20

04

20

05

Pro

du

ctio

n c

ost

s [$

(20

05

)/b

u]

0

20

40

60

80

100

120

140

160

180

Yie

ld [

bu

/acr

e]

Cash expenses Capital costs Other

Corn price Yield [bu/acre] right axis

-64%

-46%

-63%

+171%

[Hettinga, 2007]

Copernicus InstituteSustainable Development and Innovation Management

Source: Adapted from Pioneer, NCGA (ProExporter Network)

Development: yield increase

0

20

40

60

80

100

120

140

160

180

1860 1880 1900 1920 1940 1960 1980 2000

Yie

ld [

bu

/ac

re]

Open pollinated

Hybrids

Single cross hybrids

Genetic modification?

[Hettinga, 2007]

Copernicus InstituteSustainable Development and Innovation Management

0

0.2

0.4

0.6

0.8

1

1.2

1975 1980 1985 1990 1995 2000 2005 2010

Op

era

ting

co

sts

[$(2

00

5)/

ga

l]

Operating costs (excl energy) Trendline (R2= 45%)

Ethanol operating costs

-75% ?

[Hettinga, 2007]

Copernicus InstituteSustainable Development and Innovation Management

Experience curve: operating costs

y = 1.1428x-0.1281

R2 = 0.3381PR = 0.92

y = 2.8318x-0.2118

R2 = 0.3722PR = 0.86

0.1

1

10

100 1000 10000 100000

Cumulative ethanol production [million gallon]

Ope

ratin

g co

sts

min

us e

nerg

y [$

(200

5)/g

al]

worst case best caseTrendline (worst case) Trendline (best case)

[Hettinga, 2007]

Copernicus InstituteSustainable Development and Innovation Management

0

1

2

3

4

5

6

7

1960 1970 1980 1990 2000

Yie

ld [t

on

/ha

]

Source FAOSTAT

Yield developments in Europe

y = 0.0764x - 147.16

R2 = 0.9468

0

1

2

3

4

5

6

7

1960 1970 1980 1990 2000

Yie

ld [t

on

/ha

]

Source FAOSTAT

Historic yield development example: wheat

Average yields plotted for The Western European CountriesThe Central and Eastern European Countries

Significant difference!

y = 0.0764x - 147.16

R2 = 0.9468

y = 0.0377x - 71.637

R2 = 0.497

0

1

2

3

4

5

6

7

1960 1970 1980 1990 2000

Yie

ld [t

on

/ha

]

Source FAOSTAT

[Wit & Faaij, 2008]

Copernicus InstituteSustainable Development and Innovation Management

0

12

3

45

6

7

89

10

1960 1970 1980 1990 2000 2010 2020 2030

Yie

ld [t

on

/ha

]

Source FAOSTAT

Observed historic yields

Yield projections EuropeObserved yield

CEEC and WEC

Linear extrapolation of

historic trendsWidening yield gap

Applied scenariosLow, baseline and high

0

12

3

45

6

7

89

10

1960 1970 1980 1990 2000 2010 2020 2030

Yie

ld [t

on

/ha

]

Source FAOSTAT

Observed historic yields Projections

0

12

3

45

6

7

89

10

1960 1970 1980 1990 2000 2010 2020 2030

Yie

ld [t

on

/ha

]

Source FAOSTAT

Observed historic yields Projections

[Wit & Faaij, 2008]

Copernicus InstituteSustainable Development and Innovation Management

Results - spatial production potential

Arable land available for dedicated bio-energy crops divided by thetotal land

Countries

Low potential

High potential

Moderate potential

< 6,5%

NL, BE, LU, AT, CH, NO, SE and FI

Potential

6,5% - 17%

FR, ES, PT, GE, UK, DK, IE, IT and GR

> 17% PL, LT, LV, HU, SL, SK, CZ, EST, RO, BU and UKR

[Wit & Faaij, 2008]

Copernicus InstituteSustainable Development and Innovation Management

Results - spatial cost distribution

Production cost (€ GJ-1) for Grassy crops

PL, PT, CZ, LT, LV, UK, RO, BU, HU, SL, SK, EST, UKR

FR, ES, GE, IT, SE, FI, NO, IE

NL, BE, LU, UK, GR, DK, CH, AT

< 2,00 Low Cost

Moderate Cost

2,00 – 3,20

> 3,20 High Cost

Potential Countries

[Wit & Faaij, 2008]

Copernicus InstituteSustainable Development and Innovation Management

Results – cost-supply curves

Production costs vs. supply potentialfor 2010, 2020 and 2030

Variation areas indicated around the curves represent uncertainties and scenario variables.

Only CEEC cost level increases

[Wit & Faaij, 2008]

Copernicus InstituteSustainable Development and Innovation Management

1 EJ (ExaJoule) = 24 Mtoe

Summary baseline 2030

0

3

6

9

12

15

18

21

24

0 6 12 18Supply (EJ/year)

Pro

duct

ion

Cos

ts (

€/G

J)

Oil

Summary baseline 2030

0

3

6

9

12

15

18

21

24

0 6 12 18Supply (EJ/year)

Pro

duct

ion

Cos

ts (

€/G

J) Starch

Oil

Summary baseline 2030

0

3

6

9

12

15

18

21

24

0 6 12 18Supply (EJ/year)

Pro

duct

ion

Cos

ts (

€/G

J) Starch

OilSugar

Summary baseline 2030

0

3

6

9

12

15

18

21

24

0 6 12 18Supply (EJ/year)

Pro

duct

ion

Cos

ts (

€/G

J)

Wood

Starch

OilSugar

Summary baseline 2030

0

3

6

9

12

15

18

21

24

0 6 12 18Supply (EJ/year)

Pro

duct

ion

Cos

ts (

€/G

J)

GrassWood

Starch

OilSugar

Summary baseline 2030

0

3

6

9

12

15

18

21

24

0 6 12 18Supply (EJ/year)

Pro

duct

ion

Cos

ts (

€/G

J)

GrassWood

Starch

OilSugar

GrassWood

1st generation

2nd generation

Crop specific supply curves

• Feedstock potentials Produced on 65 Mha arable and 24 Mha on pastures (grass and wood)

• Significant difference between ‘1st and 2nd generation crops’

• Supply potentials high compared to demand

2010 (0,78 EJ/yr) and 2020 (1,48 EJ/yr)

[Wit & Faaij, 2008]

Copernicus InstituteSustainable Development and Innovation Management

Development in net feedstock use for biofuels (REFUEL project; example

scenario)

[www.refuel.org, 2008]

Copernicus InstituteSustainable Development and Innovation Management

Closing remarks• Technological and management improvements

key factor:– Agricultural (and livestock) management!– Energy cropping & supply systems– Conversion.

• Technological learning and improvement potentials still fairly poorly covered in analyses around bioenergy (potentials & projections), agriculture a.o (especially 2nd generation and beyond!).

• Combination of bottom-up engineering work and modelling generally gives good results.

• Takes considerable effort.

Copernicus InstituteSustainable Development and Innovation Management

Thanks for your attention

For more information, see e.g. IEA Task 40:

www.bioenergytrade.org:

Key References:• Junginger, Faaij et al., 2005• Smeets et al., 2007, Progress in Energy & Combustion

Science,• Hoogwijk et al., 2005 & 2008, Biomass & Bioenergy• Hamelinck & Faaij, 2006, Energy Policy• Dornburg et al.,2008 Biomass Assessment WAB• Wicke et al., 2008, Biomass & Bioenergy• Wall Bake et al., 2008, Biomass & Bioenergy• Wit & Faaij, 2008, REFUEL – (Forthcoming)• Hettinga et al., 2009 (forthcoming).


Recommended