+ All Categories
Home > Documents > Copper contributions to fight climate change 1

Copper contributions to fight climate change 1

Date post: 05-Jun-2015
Category:
Upload: gilberto-de-martino-jannuzzi
View: 1,073 times
Download: 0 times
Share this document with a friend
Popular Tags:
34
1 Final Project Report COPPER CONTRIBUTIONS TO FIGHT CLIMATE CHANGE ESTIMATES FOR LATIN AMERICA COUNTRIES International Energy Initiative (IEI) Team Prof. Dr. Gilberto M. Jannuzzi - Coordinator Dr. Conrado A. Melo - Technical Consultant Prepared for International Copper Association (ICA) and Procobre – Instituto Brasileiro do Cobre
Transcript
Page 1: Copper contributions to fight climate change 1

1

FinalProjectReport

COPPERCONTRIBUTIONSTOFIGHTCLIMATECHANGE

ESTIMATES FOR LATIN AMERICA COUNTRIES

International Energy Initiative (IEI) Team

Prof. Dr. Gilberto M. Jannuzzi - Coordinator

Dr. Conrado A. Melo - Technical Consultant

Prepared for International Copper Association (ICA)

and Procobre – Instituto Brasileiro do Cobre

Page 2: Copper contributions to fight climate change 1

2

TableofContents

1.  Executive Summary .................................................................................................. 5 

2.  Introduction ............................................................................................................... 8 

3.  Objective ................................................................................................................... 9 

4.  Methodology ........................................................................................................... 10 

4.1.  End-use technologies .......................................................................................... 10 

4.2.  Renewable generation technologies .................................................................... 11 

5.  Energy Efficiency and Copper Content of the Evaluated Technologies .................. 13 

5.1.  Electric motors ..................................................................................................... 13 

5.2.  Distribution transformers ...................................................................................... 14 

5.3.  Refrigerators ........................................................................................................ 17 

5.4.  Air conditioning .................................................................................................... 18 

5.5.  Renewable energy ............................................................................................... 18 

5.6.  Solar water heating .............................................................................................. 19 

6.  Results .................................................................................................................... 20 

7.  Conclusions ............................................................................................................ 23 

8.  Bibliography ............................................................................................................ 24 

9.  Appendix 1 - Electric Matrix and Emissions for the Selected Countries .................. 25 

9.1.  Brazil .................................................................................................................... 25 

9.2.  Mexico ................................................................................................................. 25 

9.3.  Peru ..................................................................................................................... 25 

9.4.  Chile .................................................................................................................... 27 

9.5.  Argentina ............................................................................................................. 27 

9.6.  Colombia ............................................................................................................. 28 

9.7.  Emission factor of national electrical systems...................................................... 29 

10.  Appendix 2 - Parameters Used in Estimates of ICA LA Programs Contributions . 30 

11.  Appendix 3 - Estimates of ICA LA Programs Contributions ................................. 32 

11.1.  Electric motors .................................................................................................. 32 

11.2.  Refrigerators ..................................................................................................... 32 

11.3.  Air conditioning ................................................................................................. 33 

11.4.  Solar water heating ........................................................................................... 33 

11.5.  Distribution transformers .................................................................................. 34 

Page 3: Copper contributions to fight climate change 1

3

ListofTables

Table 1 – Project Scope: equipment, countries and type of study. .................................. 9 

Table 2 – Relation between the use of copper and efficiency of 22kW electric induction motors ........................................................................................................................... 14 

Table 3 – Electric motors’ market in Brazil and Mexico ................................................. 14 

Table 4 – Distribution of single-phase transformers according to power in Brazil (2007) ...................................................................................................................................... 14 

Table 5 – Distribution of three-phase transformers according to power in Brazil (2007) 15 

Table 6 – European parameters for losses and use of copper in distribution transformers .................................................................................................................. 15 

Table 7 – Relation between the use of copper and efficiency for distribution transformers .................................................................................................................. 15 

Table 8 – Copper increment in 15kV single-phase transformers to reduce losses by 20% ............................................................................................................................... 17 

Table 9 – Copper increment in 15kV three-phase transformers to reduce losses by 20% ...................................................................................................................................... 17 

Table 10 – Additional use of copper, per component, in a 480 liters refrigerator ........... 18 

Table 11 – Additional use copper per installed capacity of renewable generation sources .......................................................................................................................... 19 

Table 12 – Installed capacity of renewable generation sources .................................... 19 

Table 13 – Technical coefficients for CO2 mitigation per equipment type ...................... 20 

Table 14 – Technical coefficients for CO2 mitigation per additional kg of cooper .......... 20 

Table 15 – Technical coefficients for CO2 mitigation: renewable generation technologies ...................................................................................................................................... 21 

Table 16 – Results of CO2 mitigation: final use of energy technologies (tons of CO2/year) ....................................................................................................................... 21 

Table 17 – Results of annual CO2 mitigation program with renewable generation (tons of CO2/year) ................................................................................................................... 22 

Table 18 – Assumptions of programs coverage: Three Phase Electric Motors ............. 30 

Table 19 – Assumptions of programs coverage: Distribution Transformers .................. 30 

Table 20 – Assumptions of programs coverage: Refrigerators ...................................... 30 

Table 21 – Assumptions of programs coverage: Air Conditioning ................................. 31 

Table 22 – Assumptions of programs coverage: Solar Heating ..................................... 31 

Table 23 – Results of the CO2 mitigation program for electric motors: in millions of tons ...................................................................................................................................... 32 

Table 24 – Results of the CO2 mitigation program for refrigerators: in millions of tons .. 32 

Table 25 – Results of the CO2 mitigation program for air-conditioning sets: in millions of tons ................................................................................................................................ 33 

Table 26 – Results of the CO2 mitigation program for solar heaters: in millions of tons 33 

Table 27 – Estimates for distribution transformers: study of potential ........................... 34 

Page 4: Copper contributions to fight climate change 1

4

ListofFigures

Figure 1 – Loss reduction curves due to copper increment in transformers .................. 16 

Figure 2 – Brazil: Domestic offer of electricity by source type - 2009 ............................ 26 

Figure 3 – Mexico: Domestic offer of electricity by source type - 2009 .......................... 26 

Figure 4 – Peru: Domestic offer of electricity by source type - 2009 .............................. 27 

Figure 5 – Chile: Domestic offer of electricity by source type - 2009 ............................. 28 

Figure 6 – Argentina: Domestic offer of electricity by source type - 2009 ...................... 28 

Figure 7 – Colombia: Domestic offer of electricity by source type - 2009 ...................... 29 

Figure 8 – Average CO2 emissions’ factor of electric systems: 2000 – 2009 ................. 29 

Page 5: Copper contributions to fight climate change 1

5

1. ExecutiveSummary

This project has the objective to estimate the contribution of the additional use of copper

in electrical equipment and power generation in reducing CO2 emissions. The study was

developed considering the introduction of more efficient electric equipment, solar water

heaters, and the contribution given by electricity generation using renewable sources in

Latin America1 countries. These two components employ technologies that have a

higher copper content when compared to the conventional technologies they replace.

The analysis comprised different periods depending on the start of fomenting and

diffusion activities of the appraised technologies, which, basically, started in 2005. The

results are presented in annual basis.

Estimates were based on indicators relating the copper content and the equipment

energy efficiency. For the renewable sources, we used factors relating the copper

content of selected technologies per unit capacity. Estimates of emissions’ reduction

with the introduction of these technologies were based on sales information of efficient

equipment and on the characteristics of each country electric system. The methodology

and assumptions used are detailed in Chapters 4 and 5 and Appendixes 1 and 2.

Table A shows the different contributions of each additional kilogram of copper applied

in building more efficient electric equipment, solar heaters, and renewable power

generation in the analyzed countries. As could be expected, countries employing a

higher share of thermal generation using fossil sources have the most significant

indicators on impacts’ mitigation. Such is the case of Mexico, Argentina, and Chile.

Electric motors are the items that exhibit the higher reduction of emissions per unit,

followed by refrigerators and air conditioners.

Table A – Technical CO2 mitigation coefficients per kg of additional copper 

Country  Electric Motors  Refrigerators  Air Conditioning  Solar Heating  Wind  SHPs  Biomass Solar PV 

Tons of CO2/additional kg of copper/year 

Argentina  0.491  0.128  0.099 ‐ 

0.224  0.798  1.166  0.048 

Brazil  0.126  0.033  0.025  0.004  0.057  0.202  0.295  0.012 

Chile  0.471  0.123  0.095  0.033  0.230  0.819  1.198  ‐ 

Colombia  0.221  0.058  0.044 ‐ 

0.097  0.347  0.507  0.021 

Mexico  0.614  0.207  0.159  0.033  0.360  1.282  1.874  0.077 

Peru  0.281  0.073  0.056  0.033  0.135  0.480  0.702  0.029 

1 Argentina, Brazil, Chile, Colombia, Mexico and Peru.

Page 6: Copper contributions to fight climate change 1

6

Emissions’ reduction for each equipment is given in Table B. The penetration of each

efficient motor in Mexico reduces CO2 emission by 412 kg/year while in Brazil this

factor is 82 kg/year. It can be verified that for each equipment unit, solar water heaters

provide the largest contribution to emissions reductions in countries that, according to

the assumptions, use natural gas for domestic water heating.

Table B – Technical coefficients for CO2 mitigation, per equipment 

Country  Electric Motor  Refrigerator  Air Conditioning  Solar Heating1 

Tons of CO2/equipment/ year 

Argentina  0.31959  0.04867  0.07699  0.66759 

Brazil  0.08194  0.01248  0.01974  0.07147 

Chile  0.30717  0.04678  0.07399  0.66759 

Colombia  0.14366  0.02188  0.03461  0.66759 

Mexico  0.41248  0.07852  0.12420  0.66759 

Peru  0.18290  0.02785  0.04406  0.66759 1 In Brazil solar heaters replace electric showers, for other countries it was

assumed that this technology replaces direct natural gas burning.

The total annual savings of electric energy, per country and equipment, are presented in

Table C. Brazil is the country where the dissemination of efficient technologies provides

the highest amount of electricity conservation (about 2 TWh/year) stressing the

penetration of efficient electric motors, which accounts for energy savings of 1.2 TWh

yearly. Solar water heating technologies in Mexico represent a total saving of 16,800

tons of natural gas.

Table C – Annual results of energy conservation 

Country  Electric Motor  Refrigerators  Air Conditioning  Solar Heating 

GWh/year  GWh/year  GWh/year 

Argentina  16.2  59.4  26.0  ‐ 

Brazil  1,213.5  580.8  120.1  166.3 GWh/year 

Chile  11.7  16.2  6.6  2,321.0 (Tons of NG) 

Colombia  29.4  42.6  8.8  ‐ 

Mexico  723.2  374.9  68.9  16,885.0 (Tons of NG) 

Peru  9.4  17.8  1.3 2,343.0 

(Tons of NG) 

Page 7: Copper contributions to fight climate change 1

7

Table D shows the annual results of CO2 emissions mitigation. Among the analyzed

countries, Mexico represents 72% of the total CO2 reduction. In both countries, Brazil

and Mexico, the most important equipment was more efficient motors, followed by

refrigerators. However, in other countries, the situation was different, with refrigerators

and solar heaters being more important in Argentina, Chile and Peru.

Table D – Results of CO2 mitigation: energy end‐use technologies (CO2 tons/year) 

Country  Electric Motors  Refrigerators  Air Conditioning  Solar Heating  Total 

Argentina  5,983  21,901  9,585  ‐  37,468 

Brazil  114,714  54,904  11,349  15,723  196,690 

Chile  4,147  5,730  2,353  7,043  19,273 

Colombia  4,870  7,055  1,453  ‐  13,379 

Mexico  430,213  222,993  40,987  51,237  745,430 

Peru  1,975  3,760  264  7,110  13,110 

Total  561,902  316,344  65,992  81,113  1,025,350 

The contribution of renewable sources to emissions' reduction is even larger, as can be

seen in Table E. Although Brazil has a very low emission factor compared with other

countries, the country was the largest contributor due to its higher installed capacity.

Generation using biomass is the main source to contribute towards emissions’

reduction.

Table E – Results of annual CO2 mitigation taking renewable generation into account: (CO2 tons/year) 

Country  Wind  SHP  Biomass  Solar Photovoltaic  Total 

Brazil  232,165  1,633,169  3,417,274  2,126  5,284,735 

Argentina  17,106  606,224  1,007,575  4,198  1,635,104 

Chile  11,497  260,485  238,555  ‐  510,536 

Mexico  76,470  966,631  546,539  10,121  1,599,761 

Colombia  4,478  327,358  81,523  183  413,542 

Peru  236  201,640  64,855  935  267,666 

Total  341,952  3,995,508  5,356,321  17,563  9,711,344 

Page 8: Copper contributions to fight climate change 1

8

2. Introduction

Technological innovation of electric equipment and devices have produced significant

improvement concerning energy-efficiency gain, which, on its turn, have an enormous

potential for environmental gain in Greenhouse Gases (GHG) mitigation. These

innovations are, in many cases, directly related to application of additional copper. For

instance, electric motors' gain in energy performance for each additional kilogram of

copper used in them allows the reduction of 3 tons of CO2e emission2, in comparison to

equipment with less intensive copper use. Emissions’ balance is very positive, as in the

production phase of these devices; the use of additional copper is responsible for only 3

kg of CO2e emissions (Keulenaer et al 2006). This means a return factor of 1000 times

in mitigation benefits provided by these applications throughout their lives (Copper

2006). Furthermore, it shall be noted that at the end of the equipment lifetime, its copper

content can be recycled and used in another application.

2 All greenhouse gases are converted into equivalent quantities of CO2 contribution to the atmospheric warming. Thus, for example, one ton of methane (CH4), which has an effect 21 times that of carbon dioxide, is equivalent to 21 tons of CO2.

Page 9: Copper contributions to fight climate change 1

9

3. Objective

This study objective is to evaluate the contribution of using copper, and the consequent

increase in energetic efficiency, to fight climate changes. The study intends to diagnose

and account for the impacts of CO2, the main Greenhouse Gas (GHG), mitigation in

selected Latin America countries, considering: a) the use of more efficient technologies

into electrical equipment manufacturing, b) the use of solar water heaters, and c)

electricity generation by renewable sources, as wind, biomass, small hydropower plants

(SHP), and solar photovoltaic. Furthermore, an evaluation was developed for the

potential impact of an improvement in losses' reduction of distribution transformers.

Table 1 shows the list of evaluated equipment, countries, and type of study3.

Table 1 – Project Scope: equipment, countries and type of study. 

Equipment  Assessed Countries  Type of Study 

Electric motors  Argentina, Brazil, Chile, Colombia, Mexico and Peru  Evaluation of impacts 

Distribution transformers  Brazil  Study of potential 

Refrigerators  Brazil, Chile and Mexico.  Evaluation of impacts 

Air conditioners  Brazil, Chile, Colombia, Mexico and Peru  Evaluation of impacts 

Renewable energy(*)  Argentina, Brazil, Chile, Colombia, Mexico and Peru  Evaluation of impacts 

Solar water heating  Brazil, Chile, Mexico and Peru  Evaluation of impacts 

Note: (*) Biomass, wind, solar photovoltaic and small hydro (SHP).

3 Additionally, the likely contribution of the programs fomented by the ICA LA for energy savings and emissions' reduction was also estimated. (See Appendix 3, page 25).

Page 10: Copper contributions to fight climate change 1

10

4. Methodology

To develop the project, two analysis steps were taken, as described below.

Phase1 ‐Analysisofenergyefficiencyindicatorsandcoppercontent

This first analysis stage objective is to evaluate relations between each equipment

energy efficiency and its copper content. The development of this step is based on a

review of national and international literature. This literature covers scientific reports,

research papers, indexed articles and related books. Details of this evaluation are

presented in Chapter 5.

Phase2 –Accountingofimpactsbyincrementingcopperusage

This step aims at estimating the impact of new equipment sales and increase in

electricity generation from renewable sources in each of the analyzed countries. To

perform this step, the information obtained in Step 1 was used to establish technical

coefficients for CO2 emissions' mitigation for each technology4, besides market-specific

parameters, as explained below. In the study on the available potential for distribution

transformers’ improvement, the energy potential is conserved, and the corresponding

CO2 mitigation is quantified, in a scenario that considers the total deployment of efficient

transformers in Brazil. Two models are used for emissions’ accounting: one related to

end-use technologies and other related to renewable generation technologies, as

described below.

4.1. End‐usetechnologies

The annual basis model used for accounting CO2 emissions' mitigation, for each end-

use energy technology evaluated, is given by Equation 1.

∗ ∗ Equation 1 

Where: - Me is the annual mitigation of CO2 emissions provided by the introduction of

technology e into the stock in use in year y;

- Pe is the participation of efficient equipment in annual sales;

4 This data is presented in Chapter 5, pages 15-17.

Page 11: Copper contributions to fight climate change 1

11

- Vae is the sale in year y of technology e;

- CTe is the annual technical mitigation coefficient for CO2 emissions by technology e,

given by Equation 2.

∗ ∗ Equation 2 

Where:

- Cep is the consumption of the standard equipment;

- Cee is the consumption of the efficient equipment;

- Pse is the loss factor for electrical power generation of each assessed country; and

- Fme is the electrical system average emissions' factor for each considered country.

It standouts in the electric equipment model that emissions are accounted for at the

electricity generation source; therefore, factors concerning losses in each country

electrical systems are considered in the analysis. Just in replacement of direct gas

burning by solar water heaters, emissions are estimated considering the total gas saved

multiplied by the gas emission factor.

4.2. Renewablegenerationtechnologies

A similar procedure is used in the analysis of CO2 emissions' mitigation by renewable

generation (wind, small hydro, biomass, and solar photovoltaic). In this case, the

method used compares energy from renewable generation sources with the electrical

system expansion that would occur using an equivalent power plant representing each

country electricity generation mix. This method is conservative in the sense that it

considers the effects of renewable generation already included in the average emission

factors for the analyzed countries' electricity generation systems. A comparison carried

out against a plant based on fossil fuel (fuel oil, natural gas, diesel oil, etc.) would give a

larger mitigation impact.

Equations 3 and 4 show the method used in accounting for CO2 emissions' mitigation

for renewable generation.

∗             Equation 3 

 

Page 12: Copper contributions to fight climate change 1

12

Where:

- Mer is the annual CO2 emissions’ mitigation provided by the installed capacity of

renewable technology generation r;

- CIr is the installed capacity of the r generation technology,

- CTe is the technical mitigation coefficient for CO2 emissions of generation technology

r, given by Equation 4.

∗ . ∗ Equation 4 

Where:

- FCr is the capacity factor of generation technology r, and

- Fme is the average emissions factor of the electrical systems for each considered

country.

- The constant 8.76 refers to the number of hours per year divided by one thousand.

Page 13: Copper contributions to fight climate change 1

13

5. EnergyEfficiencyandCopperContentoftheEvaluatedTechnologies

5.1. Electricmotors

Electric motors are widely used in the industrial sector. Application examples are pumps

for liquids’ transfer, gas compressors, and fans. The textile industry has dedicated

machines, either for spinning and weaving of century's old technology. The cement,

pulp and paper, and chemical sectors use a large amount of pumps, compressors and

fans in their processes, as well as large conveyors, mills, agitators, sieves employing

many high-power motors, together with numerous small motors for ancillary services.

The ceramics industries employ large mixers, blowers and a multitude of conveyors.

Mining, steel mills and general metal manufacturing, besides pumps, compressors and

fans, also mills, conveyors and large quantities for specific machinery for activities as

lamination, drawing, bending, and cutting (Garcia, 2003).

According to Keulenaer et al (2006) evaluation of low voltage (22 kW) induction motors,

operating in typical system applications such as water pumping, compressed air, and

ventilation, the benefits of increasing their energetic efficiency would be quite significant

and would directly reflect in reducing emissions, for example, by some 19 tons of CO25

per motor throughout its useful life. It shall be pointed out that the emissions’ balance

between the production of the highly efficient equipment, and the amount that this

equipment shall mitigate throughout its useful life is of the order of 1000 times, i.e., each

kg of CO2 emitted during the motor production represents a reduction of one ton of CO2

emission during its operation.

Table 2 shows the direct relation between electric motors' efficiency and additional

copper usage according to Keulenaer et al (2006), who assessed three types of motors

operating under the same conditions. In this case, with the additional use of 5.1 kg of

copper, the high performance motor efficiency increased by 4.1 percentage points in

relation to the standard motor.

5 In this case, we considered the average emission factor for 15 European countries.

Page 14: Copper contributions to fight climate change 1

14

Table 2 – Relation between the use of copper and efficiency of 22kW electric induction motors 

Parameters  Standard Efficiency High Efficiency Premium High Efficiency 

Useful life (years)  20 20 20 

Load (%) 50 50 50 

Efficiency (%)  89.5 91.8 92.6 

Copper (Kg)  8.8 12.9 13.9 

Source: Keulenaer et al (2006) 

Table 3 shows the market share of electric motors per power for Brazil and Mexico.

Table 3 – Electric motors’ market in Brazil and Mexico 

Power Range  Market share ‐ Brazil Market share ‐ Mexico 

1. Up to 1 hp (Frame 63 and above) 33.77% 7.68% 

2. Over 1 hp up to 10 hp  50.92% 82.13% 

3. Over 10 hp up to 40 hp  11.47% 8.44% 

4. Over 40 hp up to 100 hp 2.73% 1.29% 

5. Over 100 hp up to 300 hp 0.99% 0.44% 

6. Over 300 hp  0.13% 0.02% 

Source:  Garcia (2003) 

5.2. Distributiontransformers

Distribution transformers are designed to step voltage up or down to attend specific

needs of electrical grid. However, the use of this equipment introduces power losses

into the system. As an example, these losses amount, approximately, to 30% of the

total losses of the electricity distribution system in Brazil, CEPEL (2008). According to

CEPEL’s (2008) data, in 2007 the number of installed transformers in Brazil amounted

to 1.55 million single-phase transformers plus 1.10 million of three-phase transformers.

Tables 4 and 5 show transformers’ distribution according to power in the Brazilian

Electricity Distribution System.

Table 4 – Distribution of single‐phase transformers according to power in Brazil (2007) 

5 kVA  10 kVA 15 kVA 25 kVA Other Total 

Units 323,587  904,663 237,600 75,509 10,748 1,552,107 

% 20.8%  58.3% 15.3% 4.9% 0.7% 100.0% 

Source: CEPEL, 2008 

Page 15: Copper contributions to fight climate change 1

15

Table 5 – Distribution of three‐phase transformers according to power in Brazil (2007) 

15 kVA 30 kVA  45 kVA 75 kVA 112.5 kVA 150 kVA Other  Total

Units  175,878  231,614  256,125 233,604 113,007 54,717 39,250  1,104,195

%  15.9%  21.0%  23.2% 21.2% 10.2% 5.0% 3.6%  100.0%

Source: CEPEL, 2008 

The use of efficient transformers reduces energy losses substantially. Efficiently

operated high-efficiency transformers allow energy conservation gains and consequent

reduction of GHG emissions. According to Keulenaer (2006) a high performance 100

KVA distribution transformer operating at 25% load allows mitigation of approximately

37 tons of CO2e6 in its 30-year useful life. According to the same author Table 6

presents a direct relation between transformer losses and use of additional copper, for

three equipment types.

Table 6 – European parameters for losses and use of copper in distribution transformers 

Parameters AA’ CC’ C‐Amorphous

Useful life (years) 30 30 30

Load (%)  25 25 25

Copper losses (kW) 1.750 1.475 1.475

Iron losses (kW) 0.32 0.21 0.06

Copper (Kg)  85 115 155

Source: Keulenaer (2006)

 

According to studies developed by LAT-EFEI (The High Voltage Laboratory) of UNIFEI

(The Federal University of Itajubá, Brazil) additional copper in transformers should allow

significant losses reduction in power distribution networks of Brazil. Table 7 shows the

difference in losses for 30, 45 and 75 kVA transformers, in MWh/year for standard and

high-efficiency equipment, used in Brazil.

Table 7 – Relation between the use of copper and efficiency for distribution transformers 

Transformer  Standard (MWh/year) Efficient (MWh/year) % 

30 kVA  2.9558 2.1525 27.2% 

45 kVA  3.6429 2.7105 25.6% 

75 kVA  6.4560 4.7790 26.0% 

6 In this case we considered the average emission factor for 15 European countries.

Page 16: Copper contributions to fight climate change 1

16

Figure 1 illustrates the direct relation between the increment in the mass of copper and

technical losses reduction in distribution transformers.

Figure 1 – Loss reduction curves due to copper increment in transformers 

Source: LAT‐EFEI UNIFEI 

Tables 8 and 9 show the increment in copper mass for single and three-phase

transformers, for various transformer capacities, according to the LAT-EFEI UNIFEI

study. In this case the copper increment was calculated for a 20% reduction in total

losses.

Page 17: Copper contributions to fight climate change 1

17

Table 8 – Copper increment in 15kV single‐phase transformers to reduce losses by 20% 

Power Standard Mass  

(kg) 

Losses Reduction 

(%) 

Mass Increment 

(%) 

Mass Increment  

(kg) 

5 kVA 7.41  20 29.11 2.15 

10 kVA 11.88  20 28.91 3.43 

15 kVA 20.13  20 24.61 4.95 

25 kVA 22.96  20 23.94 5.49 

Source: LAT‐EFEI – UNIFEI 

 

 

Table 9 – Copper increment in 15kV three‐phase transformers to reduce losses by 20% 

Power Standard Mass 

(kg) 

Losses Reduction 

(%) 

Mass Increment 

(%) 

Mass Increment  

(kg) 

15 kVA 23.68  20 18.72 4.43 

30 kVA 27.63  20 21.92 6.05 

45 kVA 35.10  20 16.72 5.86 

75 kVA 49.75  20 17.81 8.86 

112.5 kVA 67.08  20 24.67 16.55 

150 kVA 66.64 20 20.27 13.50 

Source: LAT‐EFEI ‐ UNIFEI 

5.3. Refrigerators

Highly efficient refrigerators concerning electricity usage are manufactured with a larger

application of copper in several components. Compressors are components with

intense use of copper. The difference in usage of this conductive metal in efficient

equipment may exceed by 20% the amount used in less efficient equipment. Table 10

shows, for a standard 480 liters equipment, the use of additional copper per component

of the refrigerator. This equipment with a 22% increase in energy efficiency uses

386.45 g of additional copper.

Page 18: Copper contributions to fight climate change 1

18

Table 10 – Additional use of copper, per component, in a 480 liters refrigerator 

Component Weight (g) Efficiency + 22% (g) Difference (g) 

Electric cable   101.42 123.73 22.31 

Compressor service tube  25.80 31.48 5.678 

Drier filter service  tube   26.34 32.13 5.79 

Drier filter 76.12 92.87 16.75 

Ground wire 18.32 22.35 4.03 

Plastic plug 41.88 51.09 9.21 

Evaporator (suction line tip + capillary) 166.72 203.40 36.68 

Compressor 1,300.00 1,586.00 286.00 

Total  1,757.00 2,143.00 386.45 

Source: National manufacturer ‐ Private information  

5.4. Airconditioning

Air conditioners are used for treatment of indoor air. Such treatment consists in

regulating the quality of the indoor air, i.e., its temperature, humidity, cleanness and

movement. For this purpose, the air conditioning system may include air heating,

cooling, humidification, renewal, filtering, and ventilation functions applied to the

ambient air.

No studies were found referring the relation between use of additional copper and

energy efficiency of air conditioners. A standard equipment of 17,700 BTU/hr. contains

about 3.64 kg of copper. For its installation there is an additional demand of 1.56 kg,

which totals 5.2 kg of copper per installed equipment.

5.5. Renewableenergy

In relation to electricity generation from renewable sources, the following technologies

are considered: wind, small hydropower (SHP), biomass and solar PV. Concentrated

solar photovoltaic technology was not considered, because it is not yet used in Latin

America. Table 11 shows the use of copper per MW of installed capacity for each of

these technologies. Table 12 shows the installed capacity for each considered country.

Page 19: Copper contributions to fight climate change 1

19

Table 11 – Additional use copper per installed capacity of renewable generation sources 

Technology  

Copper demand per technology 

Wind  2.5 tons of copper/MW

SHPs  2.0 tons of copper/MW

Biomass 1.2 tons of copper/MW

Photovoltaic 8.8 tons of copper/MW

Source: Leonardo Energy and KEMA, 2009

Table 12 – Installed capacity of renewable generation sources 

Country Wind 

(MW) 

SHP

(MW) 

Biomass

(MW) 

Photovoltaic

(MW) 

Total 

(MW) 

Brazil  1,638*  4,043 9,644* 20 10,879 

Argentina  31  380 720 10 1,141 

Chile  20  159 166 0 345 

Mexico  85  377 243 15 720 

Colombia  18  472 134 1 625 

Peru  1  210 77 4 291 

Total  1,591  5,641 6,720 50 14,001 

Source: Jannuzzi et al, 2010 *Values updated according to www.aneel.gov.br/

5.6. Solarwaterheating

Collecting plates are responsible for absorption of solar radiation. Heat from the sun, captured

by the solar heater plates, is transferred to water circulating inside copper tubing.

A basic water heating system using solar energy consists of solar collector plates and a thermal

reservoir (boiler). The thermal reservoir, also known as boiler, is a container to store heated

water. It is built in copper, steel or polypropylene cylinders, insulated with CFC-free

polyurethane foam, which does not harm the ozone layer. It stores the heated water for later

use. The cold water tank feeds the solar heater thermal reservoir, keeping it full. On the

average, it is known that each installed square meter of solar heaters demands 5kg of copper.

Page 20: Copper contributions to fight climate change 1

20

6. Results

Table 13 shows technical mitigation coefficients for CO2 emissions provided by the

introduction of one end use unit of energy efficient technology. As shown in Equation 2

(Section 4.1), besides depending on the difference in energy consumption between the

so-called standard and efficient technologies, these coefficients depended of the

electrical systems losses and also of the assessed countries' energy matrix. Thus,

these coefficients reflect, to some extent, the carbon content embedded in the countries’

energy matrix. It is noteworthy that replacing direct burning of natural gas with solar

water heaters has the highest mitigation coefficient7.

Table 13 – Technical coefficients for CO2 mitigation per equipment type 

Country  Electric Motors  Refrigerators  Air Conditioning  Solar Heating1 

Tons. of CO2/equipment/year 

Argentina  0.31959  0.04867  0.07699  0.66759 

Brazil  0.08194  0.01248  0.01974  0.07147 

Chile  0.30717  0.04678  0.07399  0.66759 

Colombia  0.14366  0.02188  0.03461  0.66759 

Mexico  0.41248  0.07852  0.12420  0.66759 

Peru  0.18290  0.02785  0.04406  0.66759 1

In Brazil, solar heaters replace electric showers and in other countries, this technology replaces direct burning of natural gas.

From the technical coefficients shown in Table 13 and the assessment of copper

content presented in Chapter 5, Table 14 shows CO2 mitigation coefficients per kg of

copper added to the efficient equipment.

Table 14 – Technical coefficients for CO2 mitigation per additional kg of cooper 

Country  Electric Motors  Refrigerators  Air Conditioning  Solar Heating 

  Tons. of CO2/kg of additional copper/year

Argentina  0.491  0.128  0.099  0.033 

Brazil  0.126  0.033  0.025  0.004 

Chile  0.471  0.123  0.095  0.033 

Colombia  0.221  0.058  0.044  0.033 

Mexico  0.614  0.207  0.159  0.033 

Peru  0.281  0.073  0.056  0.033 

7 In this case, estimates consider solar heaters with 4m2 of area replace 220m3 of natural gas per year.

Page 21: Copper contributions to fight climate change 1

21

Table 15 shows CO2 emissions mitigation coefficients for renewable generation, already

considering each country characteristics (Appendix 1) and the considerations

introduced by equations 3 and 4, of Section 4.2.

Table 15 – Technical coefficients for CO2 mitigation: renewable generation technologies  

Country  Wind  SHP  Biomass  Solar PV 

  Tons of CO2/Installed MW/year

Brazil  141.7  403.9  354.3  106.3 

Argentina  559.8  1,595.3  1,399.4  419.8 

Chile  574.8  1,638.3  1,437.1  431.1 

Mexico  899.7  2,564.0  2,249.1  674.7 

Colombia  243.4  693.6  608.4  182.5 

Peru  336.9  960.2  842.3  252.7 

Table 16 shows the results of CO2 emissions mitigation estimates resulting from annual

sale of efficient equipment. The major mitigation impact due to the introduction of

efficient equipment among the analyzed countries occurs in Mexico, where every year

some 750 thousand tons of carbon are avoided to be emitted into the atmosphere.

Table 16 – Results of CO2 mitigation: final use of energy technologies (tons of CO2/year) 

Country  Electric Motors  Refrigerators  Air Conditioning  Solar Heating  Total 

Argentina  5,983  21,901  9,585  ‐  37,468 

Brazil  114,714  54,904  11,349  15,723  196,690 

Chile  4,147  5,730  2,353  7,043  19,273 

Colombia  4,870  7,055  1,453  ‐  13,379 

Mexico  430,213  222,993  40,987  51,237  745,430 

Peru  1,975  3,760  264  7,110  13,110 

Total  561,902  316,344  65,992  81,113  1,025,350 

Unconventional renewable generation (excluding hydropower) is still insignificant in

Latin America. In this case mitigation estimates are based on the effective generation by

these renewable sources. The comparison is made against a scenario of absence of

these sources and their substitution by conventional generation (using each country

generation mix matrix).

Page 22: Copper contributions to fight climate change 1

22

Table 17 shows the results of these estimates for wind power, small hydro, biomass and

photovoltaic generation. According to the estimates each year 9.7 million tons of CO2

emissions are mitigated due to the installed capacity of these types of renewable

generation. Over one-half of this mitigation comes from Brazil, a country that, despite

having an average factor of CO2 emissions lower than other countries, has a higher

installed capacity of these types of sources.

Table 17 – Results of annual CO2 mitigation program with renewable generation (tons of CO2/year) 

Country  Wind  SHP  Biomass  Solar PV  Total 

Brazil  232,165  1,633,169  3,417,274  2,126  5,284,735 

Argentina  17,106  606,224  1,007,575  4,198  1,635,104 

Chile  11,497  260,485  238,555  0  510,536 

Mexico  76,470  966,631  546,539  10,121  1,599,761 

Colombia  4,478  327,358  81,523  183  413,542 

Peru  236  201,640  64,855  935  267,666 

Total  341,952  3,995,508  5,356,321  17,563  9,711,344 

Note: Values calculated using the technical coefficients (Table 15)

Appendix 1 shows the characterization study of electric matrixes and respective CO2

emission factors of the analyzed countries. Appendix 2 depicts other parameters and

assumptions underlying the estimates. Appendix 3 gives the ICA LA activities

contribution estimates in the markets of studied countries.

Page 23: Copper contributions to fight climate change 1

23

7. Conclusions

The paper presented a methodology to estimate the impact of CO2 emissions' mitigation

resulting from the diffusion of efficient use of electricity, due to the substitution of natural

gas by solar heaters and also due to the increased participation of renewable

generation sources (wind, small hydro, biomass and solar photovoltaic). This

methodology allowed the elaboration of technical coefficients that can produce

estimates for a market evaluation (for total annual sales or a part thereof) and, for

renewable generation capacity, of CO2 emissions’ mitigation impacts. Also, the study

presented technical coefficients relating mitigation impacts and the corresponding

additional copper for energy end use equipment.

These coefficients and the estimated penetration rates of efficient equipment in

Argentina, Brazil, Chile, Mexico, Colombia and Peru markets were used to estimate the

total reduction in CO2 emissions. These coefficients directly reflect the electricity

generation matrix of the assessed countries. In this sense, a higher coefficient value

indicates a larger participation of fossil sources (oil and oil products, natural gas, coal).

Based on these coefficients, and on annual sales’ market data of more efficient

technologies, annual impacts were estimated in terms of energy conservation. In the

electricity sector, 3.5 TWh is saved annually due to introduction of efficient electrical

equipment. The case of Brazil is noteworthy, for the country participates with about 2

TWh per annum to this total. The substitution of natural gas heaters by solar heaters

also resulted in significant impacts that correspond annually to a saving of about 21,400

tons of natural gas.

In terms of CO2 emissions’ mitigation the results were quite significant, particularly in

countries whose energy matrix is more carbon intensive. The penetration of

technologies for energy-efficient end use is responsible for mitigating annually about 1

million tons of CO2, in the countries analyzed with Mexico alone accounting for 72% of

the total.

The impact of renewable generation is even greater, with some 9.7 million tons of CO2

avoided emissions into the atmosphere annually. Although the Brazilian emissions’

factor is very low compared to other countries, the country was the major contributor

due to its higher installed capacity. Generation from biomass has the larger participation

in reducing emissions.

Page 24: Copper contributions to fight climate change 1

24

8. Bibliography

BAE. 2010. Balance Anual de Energía 2009 – From web-site: http://www.gob.cl/informa/2010/11/10/ministerio-de-energia-entrega-balance-anual-de-energia-2009.htm

BEN. 2010. Balanço Energético Nacional 2010 – From web-site: https://ben.epe.gov.br/

BNE. 2010. Balance de Energía del Perú 2010 – From web-site: http://www.minem.gob.pe/publicacion.php?idSector=12&idPublicacion=418

Copper (2006) ECI. Information site providing up to date life cycle data on its key products. Available at: www.copper-life-cycle.org

Garcia. A.G.P (2003). Impacto da lei de eficiência energética para motores elétricos no potencial de conservação de energia na indústria. Dissertação de Mestrado. Programas de Pós-Graduação de Engenharia da Universidade Federal do Rio de Janeiro. (Impact of the Law on Energy Efficiency for electrical motors, on the energy conservation potential of the industry.

MS Dissertation. Graduate Programs in Engineering of the Federal University of Rio de Janeiro).

Hans De Keulenaer. Constantin Herrmann. Francesco Parasiliti. (2006) 22 kW induction motors with increasing efficiency. Available at:

http://www.leonardo-energy.org/Files/Case1-22kW-50.pdf

Hans De Keulenaer (2006) 100 kVA distribution transformer designs with increasing efficiency. Available at: http://www.leonardo-energy.org/repository/Library/Papers/Case7-trafo-100-25.pdf

INE. 2010. Instituto Nacional de Estadística – Web-site: http://www.ine.cl

IEA. 2011. International Energy Agency. CO2 emissions from fuel combustion. IEA Statistics.

Jannuzzi, G.M.; Rodríguez, O.B.; Dedecca,J.G.; Nogueira, L.G.; Gomes, R.D.M, Navarro, J. (2010). Energias renováveis para geração de eletricidade na América Latina: mercado, tecnologias e perspectivas. Relatório de Projeto desenvolvido para “International Copper Association” (Renewable generation of electricity in Latin America: market,

technology and perspectives. Project Report developed for the “International Copper Association”).

Available at: http://www.procobre.org/archivos/pdf/energia_sustentable/generacion_de_electricidad_pr.pdf

Leonardo Energy and KEMA. 2009. System integration of distributed generation - renewable energy systems in different European countries.

Available at: http://www.leonardo-energy.org/files/root/pdf/2009/System_Integration_DG_RES.pdf

POISE. 2011. Programa de Obras e Inversiones del Sector Eléctrico 2011_2025 – Coordinación de Planificación – CFE – Available at web-site: http://www.sener.gob.mx/portal/Default.aspx?id=1453#

SEN. 2010. Estadísticas del Sector Eléctrico. Available at web-site: http://www.sener.gob.mx/portal/industria_electrica_mexicana.html

UPME. 2010. Balances_EnergEticos_Nacionales_30-mar-11 – Colombia - Balances Energéticos Nacionales 1975-2009 - Ing. Oscar Uriel Imitola Acero. Director General y Ing. Enrique Garzón Lozano. Subdirector de Información.

Page 25: Copper contributions to fight climate change 1

25

9. Appendix1‐ElectricMatrixandEmissionsfortheSelectedCountries

In following we present the power generation matrices for countries with ICA LA

actuation to promote the use of copper: Brazil, Mexico, Chile, Argentina, Peru and

Colombia. These countries have different electricity generation matrices, with some with

more intensive use of fossil fuels such as petroleum, coal and natural gas than others.

9.1. Brazil

The electricity generation in Brazil by public plants and self-producers reached 509.2

TWh in 2010, a result 10.0% higher than 2009, according to the 2009/2010 analysis of

the National Energy Balances (BEN). The main source is hydropower, which increased

3.7% in 2010. Figure 2 shows that Brazil presents an electricity generation matrix

predominantly formed by renewable sources, with internal hydraulic generation

accounting for more than 74% of the supply. Adding imports, which are also produced

by renewable sources, it can be stated that some 86% of Brazilian electricity comes

from renewable sources (BEN, 2010).

9.2. Mexico

According to the Statistics of the Mexican Electricity Sector (SEN, 2010) the public

power generation capacity, in December 2009 (51,686 MW) increased 1.14% over 2008

(51,105 MW). The most important hydropower plant of the country, with 4,800 MW, is

located in the Grijalva River and is interconnected to plants as Angostura, Chicoasén,

Peñitas and Malpaso. In December 2009, according to the Planning Coordination

(POISE, 2011), they represented 42.2% of all hydroelectric capacity in operation.

However, in 2009, stand out the reduction in hydropower generation due to drought in

Mexico. This reduction was offset by gas thermal plants using fossil fuel. Figure 3

illustrates the diversity of Mexican electrical matrix in 2009.

9.3. Peru

Peru presents a predominantly fossil-based electricity generation matrix. According to

the NBS (2010) data, natural gas is the main fuel with 45.1%, followed by hydropower

with 22.5%. Figure 4 shows the Peruvian electricity generation matrix for 2009.

Page 26: Copper contributions to fight climate change 1

26

Figure 2 – Brazil: Domestic offer of electricity by source type ‐ 2009 

Figure 3 – Mexico: Domestic offer of electricity by source type ‐ 2009 

Domestic offer of electricity by source type ‐ 2009 

Hydraulic (76.9 %)

Coal and derivatives (1.3 %)

Nuclear (2.5 %)

Petroleum derivatives (2.9 %)

Natural Gas (2.6 %)

Wind (0.2 %)

Biomass (5.4 %)

Importation (partlyhydraulic) (8.2 %)

Domestic offer of electricity by source type – 2009

Hydraulic (22%)

Nuclear (2.6%)

Geothermal & Wind (2%)

Carbon Electric (9.1%)

Internal Combustion (0.4%)

Gas Turbines (4.9%)

Combined Cycle (34%)

Conventional Thermo (25%)

Page 27: Copper contributions to fight climate change 1

27

Figure 4 – Peru: Domestic offer of electricity by source type ‐ 2009 

9.4. Chile

In Chile, hydroelectric power account for 43% of electricity generation, coal based

generation is 27%, and oil base accounts for 18%. Natural gas contributes with slightly

less than 9%, non-conventional renewable resources contributed with no more than 3%

of generation (wind and biomass) (INE, 2010). Figure 5 shows the electricity generation

matrix of Chile in 2009.

9.5. Argentina

In Argentina about 90% of energy consumption uses fossil fuels, with main sources

being natural gas and oil (BAE, 2010). Figure 6 shows the electric generation matrix in

2009.

Domestic offer of electricity by source type – 2009

Natural Gas (45.1%)

Uranium (3.3 %)

Mineral Coal (4.2 %)

Crude Petroleum (11.7 %)

Liquid & Natural Gas (13.2 %)

Hydraulic (22.5 %)

Page 28: Copper contributions to fight climate change 1

28

Figure 5 – Chile: Domestic offer of electricity by source type ‐ 2009 

Figure 6 – Argentina: Domestic offer of electricity by source type ‐ 2009 

9.6. Colombia

In Colombia, coal-base electricity generation is predominant with 47.3%, followed by oil

with 33.8% and natural gas with 10.4%. Figure 7 shows the Colombian electricity

generation matrix for 2009 (UPME, 2010).

Domestic offer of electricity by source type – 2009

Hydraulic (43%)

Coal (27%)

Petroleum (18%)

Natural Gas (9%)

Others (3%)

Domestic offer of electricity by source type – 2009

Hydraulic (5 %)

Mineral Coal 1%)

Nuclear (3 %)

Petroleum (39 %)

Natural Gas (48 %)

Firewood (2 %)

Biomass (1 %)

Others (1 %)

Page 29: Copper contributions to fight climate change 1

29

Figure 7 – Colombia: Domestic offer of electricity by source type ‐ 2009 

9.7. Emissionfactorofnationalelectricalsystems

The average emission factor of the national electric systems directly reflects the

composition of countries’ energy matrix. As shown in the previous sections, the majority

of the surveyed countries have generation matrices heavily dependent on fossil-based

generation, what implies in large emission factors. Figure 8 shows, according to an IEA

(2011) study, the average CO2 emission factors for the electric power sectors of the

analyzed countries. These factors are usually calculated based on the average

emissions of all power plants generating energy.

Figure 8 – Average CO2 emissions’ factor of electric systems: 2000 – 2009 

Domestic offer of electricity by source type – 2009

Hydraulic (4.2 %)

Biomass (4.3%)

Mineral Coal(47.3 %)

Petroleum (33.8 %)

Natural Gas (10.4 %)

2000 2002 2003 2004 2005 2006 2007 2008 2009

Brazil 88 85 79 85 84 81 73 89 64

Mexico 539 559 558 571 495 509 482 479 430

Chile 267 349 279 295 322 318 304 408 411

Argentina 338 258 275 308 313 311 352 366 355

Peru 154 146 152 212 209 183 199 240 236

Colombia 160 154 152 117 131 127 127 107 175

0

100

200

300

400

500

600

Grams of 

CO

2per KWh

Page 30: Copper contributions to fight climate change 1

30

Source: IEA (2011) 

10. Appendix 2 ‐ Parameters Used in Estimates of ICA LA ProgramsContributions

Tables 18 to 22 show, for each evaluated device, the assumptions used in the impacts’

estimation process for the programs developed by ICA LA to promote the diffusion of

efficient equipment.

Table 18 – Assumptions of programs coverage: Three Phase Electric Motors  

Country  Start  End  Total Market  Efficient  ICA influence 

    Units % % 

Argentina  2007  In progress 374,400 5%  100%

Brazil  2002  In progress 2,000,000 70%  90%

Chile  2006  In progress 90,000 15%  100%

Colombia  2007  In progress 226,000 15%  50%

Mexico  2006  In progress 1,490,000 70%  95%

Peru  2007  In progress 540,000 2%  100%

Total  

4,720,400  

Table 19 – Assumptions of programs coverage: Distribution Transformers 

Country  Start  End  Total Market  Efficient  ICA influence 

   Units  %  % 

Argentina  2007  In progress 1,900 0%  0%

Brazil  2006  In progress 150,000 20%  90%

Chile  2007  In progress 8,600 30%  90%

Colombia  2007  In progress 110,000 10%  60%

Mexico  2007  In progress 127,500 3%  100%

Peru  2007  In progress 450 0%  0%

Total  398,450

Table 20 – Assumptions of programs coverage: Refrigerators 

Country  Start  End  Total Market  Efficient  ICA influence 

   Units  %  % 

Argentina  2007  2011 900,000 50%  0%

Brazil  2006  In progress  5,500,000  80%  5% 

Chile  2007  In progress 245,000 50%  50%

Colombia  2007  2011 645,000 50%  0%

Mexico  2007  In progress  3,550,000  80%  5% 

Peru  2007  2011 450,000 30%  0%

Total  11,290,000

Page 31: Copper contributions to fight climate change 1

31

 

Table 21 – Assumptions of programs coverage: Air Conditioning  

Country  Start  End  Total Market  Efficient  ICA influence 

   Units  %  % 

Argentina  2007  2011 415,000 30%  0%

Brazil  2006  In progress 1,150,000 50%  5%

Chile  2007  In progress 106,000 30%  50%

Colombia  2007  2011 140,000 30%  3%

Mexico  2007  In progress 660,000 50%  5%

Peru  2007  2011 30,000 20%  3%

Total  

2,501,000  

 

Table 22 – Assumptions of programs coverage: Solar Heating 

Country  Start  End  Total Market  Efficient  ICA influence 

   m2  %  % 

Argentina  ‐  ‐  ‐  ‐  0% 

Brazil  2005  In progress 880,000 100%  100%

Chile  2005  In progress 42,200 100%  100%

Colombia  ‐  ‐ ‐ ‐  0%

Mexico  2005  In progress 307,000 100%  100%

Peru  2005  In progress 42,600 100%  100%

Total  

1,271,800  

Page 32: Copper contributions to fight climate change 1

32

11. Appendix3‐EstimatesofICALAProgramsContributions

11.1. Electricmotors

Table 23 shows the results of CO2 emissions’ impact mitigation estimate program for

electric motors. Although Brazil is the country with the longer program (started in 2002),

Mexico is the country that showed the highest cumulative mitigation result, with some

11.4 million tons of CO2. This opposition is mainly explained by the large difference

between emission factors for these countries. It is noteworthy that only Brazil and

Mexico present results based on motors' categories market share. For other countries,

estimates use the Brazilian equivalent model. Operation hypothesis consider 480 hours

per month (16 hr. /day x 30 days/month) at 50% load.

Table 23 – Results of the CO2 mitigation program for electric motors: in millions of tons 

Country  2002  2003  2004  2005  2006  2007  2008  2009  2010  2011  2012  Accumulated Total 

Argentina  ‐  ‐  ‐  ‐  ‐  0.006  0.012  0.018  0.024  0.030  0.036  0.126 

Brazil  0.103  0.206  0.310  0.413  0.516  0.619  0.723  0.826  0.929  1.032  1.136  6.814 

Chile  ‐  ‐  ‐  ‐  0.004  0.008  0.012  0.017  0.021  0.025  0.029  0.116 

Colombia  ‐  ‐  ‐  ‐  ‐  0.002  0.005  0.007  0.010  0.012  0.015  0.051 

Mexico  ‐  ‐  ‐  ‐  0.409  0.817  1.226  1.635  2.044  2.452  2.861  11.444 

Peru  ‐  ‐  ‐  ‐  ‐  0.002  0.004  0.006  0.008  0.010  0.012  0.041 

Total  0.103  0.206  0.310  0.413  0.929  1.456  1.982  2.509  3.035  3.561  4.088  18.592 

11.2. Refrigerators

Table 24 shows estimates results for refrigerators. Mexico is the country with the

greatest mitigation result, about 234,000 tons of CO2. In Brazil the program cumulative

impact is 77 thousand tons and in Chile, this figure is 60 thousand tons.

Table 24 – Results of the CO2 mitigation program for refrigerators: in millions of tons 

2006  2007  2008  2009  2010  2011  2012  Accumulated Total 

Argentina  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐ 

Brazil  0.003  0.005  0.008  0.011  0.014  0.016  0.019  0.077 

Chile  ‐  0.003  0.006  0.009  0.011  0.014  0.017  0.060 

Colombia  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐ 

Mexico  ‐  0.011  0.022  0.033  0.045  0.056  0.067  0.234 

Peru  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐ 

Total  0.003  0.020  0.036  0.053  0.070  0.087  0.103  0.371 

Page 33: Copper contributions to fight climate change 1

33

11.3. Airconditioning

Table 25 shows the estimates results for air conditioners. Once again, the greatest

mitigation impact provided by the program goes to Mexico where for the estimated

period of 2007 to 2012 were not emitted into the atmosphere 43,000 tons of CO2.

Table 25 – Results of the CO2 mitigation program for air‐conditioning sets: in millions of tons 

Country  2006  2007  2008  2009  2010  2011  2012  Accumulated Total 

Argentina  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐ 

Brazil  0.00057  0.00113  0.00170  0.00227  0.00284  0.00340  0.00397  0.01589 

Chile  ‐  0.00118  0.00235  0.00353  0.00471  0.00588  0.00706  0.02471 

Colombia  ‐  0.00004  0.00009  0.00013  0.00017  0.00022  0.00026  0.00092 

Mexico  ‐  0.00205  0.00410  0.00615  0.00820  0.01025  0.01230  0.04304 

Peru  ‐  0.00001  0.00002  0.00002  0.00003  0.00004  0.00005  0.00017 

Total  0.00057  0.00441  0.00826  0.01210  0.01595  0.01979  0.02364  0.08471 

11.4. Solarwaterheating

Table 26 shows results for solar heating programs. Here usage impacts of solar heating

were simulated by replacing, in Brazil, the use of electric showers, and in other

countries, the use of natural gas. Despite these programs being recent, the cumulative

CO2 emissions' mitigation impact is significant. In the period ranging from 2005 to 2012

about 2.9 million tons were not emitted into the atmosphere due to the diffusion of this

technology by the program.

Table 26 – Results of the CO2 mitigation program for solar heaters: in millions of tons 

Country  2005  2006  2007  2008  2009  2010  2011  2012  Accumulated Total 

Argentina  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐ 

Brazil  0.016  0.031  0.047  0.063  0.079  0.094  0.110  0.126  0.566 

Chile  0.007  0.014  0.021  0.028  0.035  0.042  0.049  0.056  0.254 

Colombia  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐ 

Mexico  0.051  0.102  0.154  0.205  0.256  0.307  0.359  0.410  1.845 

Peru  0.007  0.014  0.021  0.028  0.036  0.043  0.050  0.057  0.256 

Total  0.081  0.162  0.243  0.324  0.406  0.487  0.568  0.649  2.920 

Page 34: Copper contributions to fight climate change 1

34

11.5. Distributiontransformers

For distribution transformers a study was made for the Brazilian potential. Technical

losses data was obtained (total = empty + copper) from the study conducted by the

Electric Power Research Center of ELETROBRÁS (CEPEL) requested by the

International Cooper Association (ICA). Based on data for the various transformers’

categories market share, their efficiencies, and use of copper, the CO2 emissions’

mitigation potential was estimated.

Table 27 shows results of potential energy conservation estimates, use of copper, and

CO2 mitigation with the application of single phase (1Ø) and three phase (3Ø)

distribution transformers with a 20% higher efficiency. In this case, we considered

replacing the current Brazilian stock.

Table 27 – Estimates for distribution transformers: study of potential 

Type 

Conserved energy  (total)  

Conserved energy per 

unit 

Additional copper per 

unit 

Total additional copper 

Reduction in supply need 

during lifetime 

Total CO2 emissions’ avoided 

Emissions avoided by using 

additional copper 

  GWh/year  kWh/year  kg  Tons  GWh  Tons of CO2  Tons of CO2/  kg  of copper 

1 Ø  385  248.39  3.5  5,435  13,397  1,083,856  0.1994 

3 Ø  1.232  1,116.50  7.9  8,673  42,843  3,466,017  0.3996 

Total  1.618     14,108  56,241  4,549,874    


Recommended