+ All Categories
Home > Documents > Correl Soils Properties Carter&Bentley

Correl Soils Properties Carter&Bentley

Date post: 01-Mar-2016
Category:
Upload: valmorebocanegralond
View: 228 times
Download: 7 times
Share this document with a friend
Description:
libro de correlaciones en geotecnia muy util para sacar diferentes parametros
136
 Í T
Transcript

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 1/136

Í IT S

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 2/136

c

 

LAT

  SO L

Michaef  Cárter

 n

Stephen P Bentley

PENTECH

 PRESS

Publishers London

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 3/136

 ref ce

E n g i n e e r s  a n d g e o l o g i s t s a r e o f t e n e x p e c t e d t o

  g i v e

 p r e d i c t i o n s o f s o il

b e h a v i o u r

  e v e n

  w h e n

  l i t t l e  o r n o

  r e l e v a n t

  t e s t r e s u l t s a r e a v a i l a b l e .

T h i s

  i s pa r t icu la r }

7  t r u e

  o f s m a l l

  p r o j e c t s

  o r fo r

  p r e l i m i n a r y d e s ig n s .

O u r a i m i n  t h i s b o o k  h a s  b e e n  t o  g a t h e r t o g e t h e r m a t e r i a l t h a t  vvou l d

b e o f

 p r a c t i c a

a s s i s t a n c e t o t h o s e   f a ced w i t h  t h e p r o b l e m o f h a v i n g t o

e s t í m a t e

  s o i l b e h a v i o u r

  f r o m

  l i t t l e  o r n o  l a b o r a t o r y  t e s t  d a t a .

T h e f i e l d o f s o i l  p r o p e r t y  c o r r e l a t i o n s is d i v e r s e a n d c o m p l e x a n d

o u r  m a i n  d i f f i c u l t y  i n

  p r o d u c i n g

  th e

  w o r k  w a s

  th e

 v o l u m e

 o f

  m a t e r i a l

a v a i l a b l e . C o n s e q u e n t ly ,  w e h a v e h a d t o b e s e l ec t i v e  i n o u r  a p p r o a c h

a n d w e

 h o p e

  t h a t  o u r  f i n a l  c h o í ce p r o v i d e s a  w o r k a b le c o m p e n d i u m .

M o d e r n i n - s i t u t e s ti n g m e t h o d s

  i s a

  r a p i d l y  d e v e l o p m g  a s p ec t

  o f

g e o t e c h n i c a l

 e n g i n e e r in g

 w h i c h

  w a r r a n t s  a

  t e x t

  to  i t s e l f :  t h i s  a s p ec t  i s

n o t d e a l t

  w i t h h e r e b u t ,

  w h e r e

  a p p r o p r i a t e , s u i t a b l e r e f e r e n c e s

  a r e

g i v e n .

T h e  w o r k p r e s e n t s t y p i c a l v a l ú e s  o f  e n g i n e e r i n g p r o p e r t i e s  fo r

v a r i o u s t y p e s

  o r

  c l asses

  o f

  s o i l , t o g e t h e r w i t h c o r r e l a t i o n s b e t w e e n

d i f f e r e n t

  p r o p e r t ie s . P a r t i c u l a r e m p h a s i s  i s g i v e n to  c o r r e l a t i o n s w i t h

soi l  c l a s s i f í c a t i on

  t es t s  and t o t he u se o f  c l a s s i f i c a t i o n  s y s t e m s .

I n c l u d e d  i n t h e  c o r r e l a t i o n s  a r e  p r o p e r t i e s t h a t  a r e  d i f f í cu l t  t o

m e a s u r e d i r e c t l y ,

 s u c h a s f ros t

  s u s c e p t i b i l i t y

 an d

  s w e l l i n g p o t e n t i a l .

  In

a d d i t i o n ,

 s o m e

  e x p l a n a t i o n s  a re  g i v e n o f t he e n g i n e e r i n g r e le v a n c e  o f

th e   v a r i o u s p r o p e r t i e s  a n d t h e  j u s t i f i c a t i o n  o f t h e  c o r r e l a t i o n s

be tw

;

een

  p r o p e r t i e s i s d i s c u s s e d .

S u c h p r e d i c t i o n s c a n ,

  o f

  c o u r s e , n e v e r

  b e a

  s u b s t i t u t e

 f o r

  p r o p e r

t e s t i n g b u t w e   h o p e

  t h a t

  th e

  i n f o r m a t i o n

  i n

  t h i s b o o k

  w i l l

  e n a b l e

o p t i m u m   u s e o f  so i l c l ass i f íca t ion

  d a t a .

S t e p h e n   P  B e n t l e y

C a r d i f f ,  W a l e s

M i c h a e l  C á r t e r

C o l o m b o ,  S r i  L a n k a

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 4/136

Contents

CHAPTER  1  GRADING  AND PLASTICITY  1

1.1  GRADING  1

1.1.1 The  influence  of grading  on  soil properties  1

1.1.2

  Standard grading divisions  and  sieve  sizes  3

1.2

  PLASTICITY  3

1.2.1  Consistency Limits  6

1.2.2

  Development

 of the

  l iquid

  and

  plástic

  limit

  tests

  7

1.2.3

  The  shrinkage

 l imit

  test  8

1 2 4 Consistency limits as indicators  of soil behaviour  10

1.2.5  Limitations  on the use of consistency

 limits

  12

CHAPTER  2  SOIL CLASSIFICATION SYSTEMS  13

2.1   COMMON SOIL CLASSIFICATION SYSTEMS  14

2.2

  CORRELATION

  OF THE

 UNIFIED

BS AND

AASHTO  SYSTEMS  38

CHAPTER

  3

  DENSITY

  39

3.1   NATURAL DENSITY  39

3.2   COMPACTED DENSITY  43

3.2.1  Compaction  test  standards  43

3 2 2 Typical compacted densities

  45

3 2 3 Typical moisture d ensity  curves  49

CHAPTER

  4

  PERMEABILITY

  50

4.1  TYPICAL VALÚES  51

4.2   PERMEABILITY AND GRADING  51

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 5/136

CHAPTER  CONSOLIDATION  AND SETTLEMENT

5 1

5 2

COMPRESSIBILITY

  OF

  CLAYS

5 1 1  The  compressibility parameters

5 1 4

  Typical

  valúes

 and

 correlations

 of com pressibility

coefiícients

5 1 5 Settlement corrections

RATE  OF CONSOLIDATION OF  CLAYS

5 3  SECONDARY COMPRESSION

5 4

  SETTLEMENT

 OF  SANDS AND GRAVELS

5 4 1 Probes  and  standard penetration tests

5 4 2  Píate  bearing tests

55

56

5 1 2 Setílement calculations using consolidation theory 58

5 1 3   Settlement  calculations using elasticiíy theory  59

9

60

62

65

68

7

7

7

CHAPTER  6  SHEAR STRENGTH  76

6 1

  THE CHOICE OF

  TOTAL

 OR

 EFFECTIVE STRESS

ANALYSIS   78

6 1 1   The  choice  in  practice  79

6 2  UNDRAINED SHEAR  STRENGTH OF  CLAYS  80

6 2 1

  Rem oulded shear strength  81

6 2 2 Undisturbed shear strength

  83

6 2 3 Predictions using the  standard penetration test  89

6 3

  DRAINED

 AND EFFECTIVE  SHEAR

  STRENGTH

OF

  CLAYS

  89

6 4

  SHEAR

  STRENGTH

 OF  G RA N U LA R

 SOILS

  90

6 5 LATE RAL PRESSUR ES IN A

 SOIL  MASS

  92

CHAPTER

CALIFORNIA BEA RING RATIO  97

7 1  THE TEST METHOD  97

7 2

  CORRELATIONS WITH SOIL CLASSIFICATION

SYSTEMS

  97

7 3 CBR AND

  SHEAR

  STRENGTH  104

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 6/136

CHAPTER

 

S H RI N K A G E

 AND

 SW ELLING

CHARACTERISTICS

8 1   IDENTIFICATION

8 2   SWELLING   P O T E N T I A L

8 2 1 Relat ion

  to

  o the r

  proper t ies

8 3  S W ELLI N G P RES S U RE

  5

  5

107

107

113

CHAPTER

  9

  FROST  SUSCEPTIBILITY

9 1   ICE   S EG REG A TI O N

9 2   G R A I N S I Z E S

9 3

  PLASTICITY

  e f e r e n c e s

  n d e x

 

7

  9

 

8

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 7/136

Chapter

 

GRADING

 AND  PLASTICITY

The concepta of grading and

 p lasticity

and the use of

 these properties

to   iden tify classify  and

  assess

  soils are the

  oldest

  and

  most

fundamental  in

  soil mechanics. Their use

in   fact pre-dates  th e

concept

  of

 soil mechanics

 itself:  th e

 basic ideas w ere borrow ed  from

pedologists

 and  soil scientists by the fírst soil engin eers as a basis for

their new

  science.

1 1

  GRADING

It   can be

  readily appreciated

  by

  even

  th e

  most untrained

 eye

  t ha t

grave l is a

  somewhat

  diíferent

  material  from  sand. Likewise

silt  and

clay are  different

  again. Perhaps

  not

  quite

 so

 obvious

 is

 that

  it is not

just

 th e

 particle size tha t

 is

 impor tant

 bu t the distribution of

 sizes th at

make up a

 particu lar soil. Thus

the

 grading

 of a

 soil determines ma ny

of  its  characteristics. Since  it is such an o bviou s property and easy  to

measure

it is

 plainly

  a

  suitable fírst  choice

 as the

 most fundam ental

pro perty to assess the characteristics of soil at least for coarse grained

soils.

 Of

 course

  to

  rely

 on

 grading alone

 is to

 overlook

 th e

  influences

of

  such characteristics  as  particle shape mineral comp osition  and

degree

  of compaction.

  Nevertheless grading

 has been   found  to be a

major

  factor

  in determining the

  properties

  of

  soils particularly

coarse-grained soils w here min eral compo sition

  is

 relatively

 unim

portant.

1 1 1  The  influence  of  grading on  soil properties

During  th e

  early

  development of

  soil mechanics engineers relied

heavily on past experience and

  found

 it

 convenient

 to  classify

  soils

  so

that experience gained

 w i th  a

 particular type

 of

 soil could

 be

 used

  to

assess  the  suitability  of similar  soils for any  specific  purpose  and to

indícate appropriate   methods of treatm ent. Thus the concept  of soil

classification   aróse early in the  development of soil mech anics. Ev en

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 8/136

2  CORRELATIONS  O F  SOIL PROPER TIES

today, despite

  the

  development

  in

  analytical  techniques

  which  has

taken place, geotechnical engineers rely  heavily  on past experience,

and soil

  classification

  sys tems are an inva luab le aid , part icu larly

where soils are to be used in a remoulded form,

  such

  as in the

construct ion  of  e m b a n k m e n t s  and filis. The use of  grading  in  soil

classifíations

  is

 discussed

  in

  Chapter

  2 .

Poorly-graded soils, typically

  trióse with  a

  very small range

  of

particle sizes, con tain

  a higher

  proport ion

  of

 voids than w ell-graded

soils,

  in

  wh ich

  the fíner

  particles

  fíll the

  voids between

  the

  coarser

grains. T hu s, grad ing iníluences the d ens ity of soils. This is indic ated

in  a general w ay in Ch apter 3  Table 3.1). An oth er consequ ence of the

greater degree of packing achievable by well-graded soils is that the

proport ion

  of

 voids w i th in

  the

 soils

 i s

 reduced.

 In

 addit ion, al though

th e

 proportion

  of

 voids

 in fine-grained

  soils

 is

 relative ly high,

 the

 size

of

 individual voids is ex trem ely small. Since the proportion  and  size of

voids  aíTecí  íhe flow of water  th rough  a soil, grading  can be  seen  ío

influence  permea bil ity . The theoret ical relat ionship between grading

and

  permeabil i ty

  is

  discussed

  in

  Chapter

  4 and the

  coefficient

  of

permeabil i ty

  is

  related

  to

  grain size

  in

  Figure 4.1.

Since consolidation

  involves  the

  squeezing-out

  of

 wa te r

  from  the

soil

 voids, as the soil grains pack closer to geth er un de r load, it follow s

that

  th e

 rate

 at

  w hich consolidation takes place

  is

 controlled

  by the

soil permeability. Since permeability

  is, in

  turn, partly controlled

  by

grading

it can be

  seen that grading

  influences  th e

 rate

 of

 consolida-

tion.

  Also,

 since fíne-grained

  soils

  and

  poorly-graded soils ha ve

  a

higher  proportion

  of

  voids,

  and

  tend

  to be less

  well-packed  than

coarse-grained

 and

 well-graded

  soils

they tend

 to consolídate

 more.

Thus the

 consolidation properties

 of a soil are

 profoundly

  iníluenced

by

 its

 grading. Since

 fine-grained

 soils tend

by and large to be

  more

compressible

 than

  coarse-grained

  soils

and consolídate at a  much

slower rate

it is

  these soils that

  are of

 most concern

  to the

  engineer.

Their gradings

 are

  much

  too fine to be

  measured

  by

  conventional

means and,

  at

 these sm all particle sizes,

  th e

 properties

  of the

  minerals

present  are of  more importance  than  th e  grading.  Specific  correla-

tions between grading

  and

  consolidation chara cteristics

  do

  not,

therefore, exist. However,

  th e

  efíect

  of

 grading

  on

 consolidation

  is

taken  into  account indirectly  in some  soil

  classifications

  which  are

used

  to

  assess

  th e

  suitability

  of

 soils

  for

  earthworks

  and

  pavement

subgrades.

Shear strength  is also

 affected

  by grading since grading  influences

th e  amoun t  of interlock between particles  bu t  correlations  between

grading  and shear  strength  are not  possible  because  other  factors,

such  as the  angularity  of the

  particles

th e  confíning  pressure,  th e

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 9/136

G R A D I N G A N D PLA STIC I TY 3

compaction

  and

  consolidat ion history ,

  and the

  types

  of the  clay

minerals

  are of

  overriding importance.

  The

  variability

  of

  some

  of

tríese

  factors

  is

  reduced where

 only

  compacted

  soils are

  considered

and, with the aid of

 soil

 classifícation system s, the

 iníluence

 of grading

on shear stren gth can be given in a general way, as indicated in Table

6.2. Similarly,

 the

  influence

 of the

 g rad ing

 o f

  coarse-grained soils

 on

their  California bearing ratio

  is

 ind icated

 in

 Table

  7 .2

 an d ,

  to

  some

extent ,  in

  Figure

  7.3.

In a broad

 sense,  both swelling properties

 and

  frost susceptibility

are  influenced  by  grading. Correlation between grain size and

  frost

susceptibility

  can be

  seen

  in

  Chapter

  9 but the

  identifícation

  of

expansive

 clays, discussed

 in

 Chapte r

  8,

 relies alm ost

  entirely  on the

plast ici ty

  properties,  the  only re levan t aspect  of  grading being  the

propor t ion

  of

 material

  finer

  than  2/rni.

1 1 2

  tandard grading

  divisions  and

 sieve sizes

Although

 grading, as the mo st basic of soil propertie s,  is used to bo th

identify  and  classify

  soils,

  th e

  división

 of

  soils into categories, based

on grading,

  varíes

  according to the agency or classifíca tion system

used.

  A  comparison  of

  some common

  defínitions

  used

  is

  given

  in

Figure

  1.1.

For

  soil particles larger than

  60¿on,

  grading

  is

 carried

  out

  using

standa rd square mesh sieves. Table

  1.1

 shows s tandard

 sieve

 sizes

 and

gives  a

  comparison between British

 and

  American standards.

1 2

  PLASTICITY

Just

  as the

  concepts

  of particle size and grading can be readily

appreciated for coarse-grained soils, so it is obvious that clays

 are

somehow fundamenta l ly  different

  from

  coars e-grained soils, since

clays exhibit the property of plasticity whereas sands and gravéis do

not.

Plasticity is the

  ability

  of a

  material

  to be

  mou lded irreversibly

deformed)

 w i thou t

 fracturing.

 In

 soils,

 it is du e to the

 electrochemical

behaviour

 o f the

 clay minerals

 and is

 un ique

 to

  soils containing

 clay-

mineral particles.

  These  are  plate-like

  structures which typically

possess a negative electrical charge on their

  face

  surface, brought

about  by  inherent  flaws  within  the  chemical lattice.  In  nature, this

negative

 charge

 is

 cancelled

  out by cations  Na + ,

 Ca+

 +

  etc.) present

in

  the pore

  water.

  The

  positive

  to

  negative attraction, between

  the

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 10/136

CORRELATIONS OF

 SOIL

  PROPERTIES

British Standard and MIT

clay

silt

 

m

c

sand

 

m

c

grave

 

m

c

cobb-

les

boulders

O OO2

  O O O 6

  O O2 O O6  0 2 0 6

6 2O  6O   20O

Unif ied Soil Classif¡catión System

fines  silt, clay )

sand

 

m  ] c

gravei

f

c

cobb-

les

bouiders

0.075  0.425 2  4.75

  19

75

300

AST1KD422,

 D653)

fines

 silt,

 clay

 )

sand

f  | m|

gravei

«Ato-

les

bouiders

O 075

  0 425 2

  4 75

75  300

AASHTO T88)

colloids

clay

silt

sand

f

c

gravei

bouiders

O CO 1   O O O 5

O 075  0 425

Grain size

)

LL

1 I 1  lu. S i l .  |t lI I 1   lu. I it  i  InnI

75

_ÍL1.1_1_5 

luí

 i l i i

 

i

0.001

O.01

0.1

 

10

100 10OO

Figure

  1.1  Some

 common

  dejlnitions ofsoils,  classijled  by

 par ticle size

  modified  after

Al-Hussaini ,

  1977)

catión and the clay mineral,  pro  vides  a netw ork of bonds throu gho ut

the clay mass, as   illustrated   in Figure  1 2 Also,

  because

  water

molecules   themselves are   polarised,   water molecules immediately

adjacent  to the clay minerals become attracted and

  bonded

  (adsor-

bed) to the   surface   to   form   an adsorption com plex . Since these

electrochemical bonds act

  through

  the water surrounding the clay

particles,

  th e

 at traction

  is

 maintained even w hen

 large   deformations

take place between clay particles,

  to

  produce

  the phe

  orne  ion

  of

plasticity.

Plástic

 soils  -   clays  - are  often  described  as  cohesive to distmguish

them  from

 non -plastic

 soils

 -

  sands  and gravéis

 -

  which

 are

 described

as

  granular

or

  non-cohesive . Thus,

  th e   terms   plástic and   cohe-

sive are   often

  used synonymously. Since

 all

 plástic soils

 a re

 cohesive

and all coh esive soils  are  plástic this

 seems

 quite reasonable,

 yet,

 not

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 11/136

G R A D I N G  A N D PL A ST ICIT Y

Table   1 1   C O M P R I S O N

  O F

  S T N D R D

  S I E V E S

  T Y P I C L L Y  U S E D

  I N

  S O I L  T E S T I N G

Aperíure

size

75mm

63mm

50mm

37.5mm

28ram

25mm

20mm

19mm

14mm

12.5mm

lO.Omm

9.5mm

6.3mm

S.Omm

4.75mm

3.35mm

3.18mm

2.36mm

2.00mm

1.70mm

l.ISmm

850/mi

600^m

425/^m

300/zm

250/im

150¿un

75/im

63/ím

  These  sieve sizes are

 _2 M0 «

 

Í/.S.

 sieve

designation

3in

2^in

2in

l|in

 

l in

 

lin

 

U n

 

f in

¿in

 

No. 4

 

No. 8

 

No 16

No. 20

No. 30

No. 40

No. 50

No. 60

No. 100

No. 200

 

either unavailable or

•ww? *

B.S. sieve

designation

75mm

63mm

50mm

37.5mm

28m

 

20mm

 

14mm

 

lOmm

 

6.3mm

5mm

 

3,35mm

 

2.00mm

1.70mm

1.18mm

850/im

600/zm

425/im

300/im

 

100/zm

75/zm

63/ím

are not  normally

 used.

 

Oíd

  Imperial)

B S sieve

designation

3in

2iin

2in

l^in

 

l in

 

|in

 

lin

 

f in

¿in

 

16

 

sin

No. 7

 

No. 10

No. 14

No. 18

No. 25

No. 36

No. 52

No. 60

No. 100

No. 200

 

 v L

1

 a b

Figure

  1.2  Electrochemical  bonding

  between  clay-mineral

  par

 fieles;

  a)  dispersed

structure

b) flocculated síructure

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 12/136

6 C O R R E L A T I O N S

  OF

  SOIL  P R O P E R T I E S

only are the tw o prope rties

  subtly

 diíferent in nature , their underlying

cause  is quite different.  Whereas plasticity  is the  property that allows

deformation  w i thou t  cracking, cohesión  is the  possession  of  shear

strength which allows

  the soil to

  maintain

  it s

 shape under load even

when it is not confíned. And   wh ereas plast ici ty  is produced  by the

electrochemical nature of the

  clay

  particles, cohesión occurs as a

result

  of

  their very

  small

  size, which results

  in

  extremely

  low

permeabilit ies

  and

  al lows pore water pressure changes during

defo rma tion tha t gives clays the shear stre ngth prope rties w e describe

as cohesive. The precise mechanism involved is described more

thoroughly in

  Chap ter

  6, but three

  simple examples help il lustrate

these d iíferences. Firstly, althou gh sands

 cannot be

 moulded wi thou t

cracking, they

  can

  possess

  a

  weak cohesión, al lowing children

  to

m a k e sandpies and sandcastles. This is actua lly the result of m enisc us

forces

  in

  partially-saturated sands,

  and  disappears  in  saturated

condit ions, Secondly,  if  clays

  are

  loaded  sufficiently  síowly,  íheir

strength characteristics  are similar to  those  of granular  soils; tha t  is ,

they

  behave

  like  frictional

  materials . Again, this

  is

  discussed more

fully  in

  Chapter

  6.

 Thirdly,

 non -plast ic  silts,

 which

 are

  composed

  of

very

 small

 particles of un altered

 rock,

 do possess a

 transient cohesión,

even thou gh they are non -plastic. Thus, it can be seen tha t plasticity

and cohesión go

  together

 not because the y are  different  facets  of the

same property

but

  because clay particles

  are at the

  same time both

extremely small and co mposed of minerals, the

 producís

 of chem ical

alteration

that

  possess

 particu lar electrochemical feature s.

1 2 1  onsistency  l imit s

The notio n of soil consistency limits stems from  the concept tha t soil

can exist in an y of

 four

 states, dep end ing on its mois ture conten t. This

is illustrated

  in  Figure

  1.3,

  where

  soil

  is

  shown settling

  out of a

suspensión in water, and

  slowly

 dr yin g ou t. Initially, the soil is in the

form   of a  viscous liquid,

  with

  no  shear  strength.  As its  mois tu re

content is reduced , it begins to attain som e strength but is still easily

moulded: this is the plastic-solid phase. Further drying reduces its

ability to be m oulded  so that it tends to crack  as

 m ould ing

 occurs: this

is the sem i-solid

  phase. Eventual ly,

 th e

 soil becom es

 so dry

  tha t

 it is a

brittle

  solid. Early

  ideas

  on the

 co nsistency concept

  and

  procedures

fo r

  its measurement  were

 developed

 by

 Atterberg,

 a

  Swedish chemist

and

  agricultural researcher

  in

  about 1910.

  In his

  original work

Atterberg 1911)

  identifíed  fíve

  limits

  bu t

  only three

  shrinkage,

plástic

  and

  liquid limits) have been used

 in

 soil m echanics.

  The

 liquid

and   plástic limits represent  the  moisture contents  at the  borderline

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 13/136

G R A D I N G   A N D  P LA S TI CI TY  7

  ' ''.  ' .'

  • -

  • • . : •

; •

llfi?

Liquid  Viscous

suspensión  liquid

 

' / ' ' /  ^

 (' T V/-t

Plástic

solid

S

  £M^¡

emi-plastic

solid

  %%®® &,

Solid

 a

u

m

 

Solid

 

< n

O

w

E

1

-  Plástic

a

 

•• •

=Liquid

•o

W at e r  ontent

  b )

Figure  1.3 Consistency

  limits:

  o)

  change

 from  liquid to solid as a  soil  dries out b)

volume  and

  consistency

  changes  wiíh

  water content change

between plástic  and  l iquid phases  and  between semi-sol id  and  solid

phases,

  as

 indicated

  in

 Figure  1 3

The

  shrinkage  l imit  represents

  th e

moisture content at which

 fur ther

  dry ing of the soi l causes no

  fu r the r

reduction

  in

  volume. This

  is

  illustrated

  ín

  Figure

  1.3 b) .  In

  elec-

t rochemical

 terms, the clay mineral part ic les are far enoug h apa rt a t

the  l iquid l imit

  to

  reduce

  the

  elect rochemical a t t ract ion

  to

  a lmost

zero, and at the plást ic l imit there is the minimum amount of water

present  to  maintain  the flexibility of the  bonds.

1.2.2 Development  of the  liquid  and  plástic l imit

 tests

The methods of  measurement  of the l iquid and plást ic l imits have

changed  Hule  since  1910 The  me t hod  of hand-rolling  clay into  fine

threads to  determine  the  plást ic l imit remained virtual ly  as i t was

originally

 defined

  unti l H arison 1988) suggested

  a

 procedure using

 a

cone penet rom eter .

  The

 liq uid limit test,

  in

 wh ich soil

 w as

  originally

held

  in a

  cupped

  hand and

  tapped gently, evolved

  to

  provide

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 14/136

8  CORRELATIONS  OF SOIL PROPERTIES

Table  1 2

  C O R R E C T I O N F A C T O R S   F O R T H E

  O N E - P O I N T

  L IQUID

  L J M I T

  T E S T

No of

blows

15

16

17

18  

19

20

21

Factor

F

0 9 5

0.96

0.96

0.97

0 9 7

0.98

0.98

No of

blows

22

23

24

25

26

27

28

Factor

F

0.99

0.99

0.99

1 0 0

1.00

1.01

1.01

No of

blows

29

30

31

32

33

34

35

Factor

F

1 0 1

1.02

1.02

1.02

1 0 2

1.03

1.03

Liquid   limit = moisture contení   of   test   specimen x   factor   F .

much-needed standardisation:

 a

 metal

 dish replaced the cupped hand

and the Casagrande  apparatus,  developed in 1932, replaced the

original hand-tapping.

  The

 introduction

 of the

  cone penetrometer

method

  in  1922 fur ther improved

 repeatability

 of the

 liquid limit test.

When  th e  Casagrande method is  used to  determine th e  liquid l imi t ,

a

  plot

  is drawn of moisture coníent against  blow   count (to a

logarithmic scale). For

 soils

 of a similar geológica origin, the slope of

the plot is

 similar,

 so

 that once

 one

 point

 has

 been established,

 it is

possible

  to

 draw

 a line

 through

 it, at the

 correct slope

  to

 obtain

 an

approximate valué

  of the

  liquid limit

  w i t h o u t   the

  need

  fo r   furíher

testing:

 this

 is the

 one-point Liquid Limit test.

 All

 British

 soils have

been

  found

  to show a similar slope so that their liquid limits

 m a y

 be

obtained

 in this way. As an alternative to constructing a

 graph,

 liquid

limit valúes are obtained by multiplying the moisture

 contení

 valué of

the

  test specimen

  by

 a

 correction

 factor, obtained  from   Table

  1.2.

Results  a re  less accurate than  for the

  full

 test procedure  but   tesing i s

much quicker.

1 2 3  The shrinkage limit test

The

  shrinkage limit test

  is  difíicult  to

  carry

  out and

  results vary

according

 to the

 test method used

 ¿ nd

 sometímes even deoend

  on the

initial moisture

 contení of the

 test specimen.

 If íhe

 specimen

 is

 síowly

dried

 from a

 water

 contení

 near

 the  auid

 limit (for

 exarr de,

 using

the ASTM D 427 procedure), a shrinkage limit valué of giv   ,ter than

th e plástic limit m ay be  obtained; this is  meaningless when considered

in the contexí of Figure 1.3. This is paríicularly írue wiíh sandy and

silíy

 clays. Likewise,

 if íhe

 soil

 is in iís

 naíural, undisíurbed

 síaíe

 íhen

the

 shrinkage

  l imií is often

 greater

 íhan the

 plástic limit

 due to the

 soil

structure

 (Holíz and

 Kovacs

 1981).

 Karlsson (1977),

 who

 carried

  out

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 15/136

GRA DING AND PLASTICITY 9

shrinkage

  limit

  tests

  on a

  n u m b e r

  of

  Swedish clays,

  found

  t ha t

shrinkage

 l im it was related to sensit ivity

  discussed

 in

 C hap te r

 6). For

clays of médium sensitivity the shrinkage limit of undisturbed

samples was about  equal  to the plástic  l imit ,  whereas undisturbed

highly sensitive clays showed shrinkage limits greater

  than

 the

  plástic

limits. Un disturbed organic clays showed sh rinka ge l imits

 well

 below

th e

  plástic limits.

  For

  all

  th e  soils

  tested,

  th e

  shrinkage l imits

 o f the

disturbed sam ples were lower tha n thos e of the undis turbe d samples,

and below the plástic limit.

In his lectures  at Harvard  University,  Casagrande  suggested that

the ini t ia l moisture con ten í for sh rinkag e l im it tests should be slightly

above the plástic lim it, but it is

 difficult

  to prepare specimens  to  such

low  moisture contents without entrapping  air  bubbles.  It has  been

found  tha t for soils prepared in this way and tha t plot near the

 A-line

of

 a

 plasticity

 chart

  see Figure 2.1 ,

 the

 shrinkage l imit

 is

 about

 20.

 If

the soil plots a n

 a m o u n t

 A p

 vert ically abov e

 o r

 below

 the

 A-line, then

the

  shrinkage limit

 will be less

 than

 or

  greater than

  20 by A p.

 That

 is

fo r

  plots

  Ap

 above

  the

  A-line

=

 20-Ap

Soil B SL = 7

Soil A SL = 4

Figure

  1.4 Casagrande s  procedure  fo r   estimating   th e

  shrinkage limit

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 16/136

10

  CORRELATIONS

 OF SOIL

 PROPERTIES

For  ploís

  p

  below  íhe  A-line

This procedure

 ío

 deíermine

 íhe

 shrinkage

 limií

 (for

 soils

 prepared

 in

the

  manner suggested

  by

  Casagrande)

  has

  been

  found

  ío be as

accuraíe

 as íhe íesí itself. An alternaíive and even simpler procedure is

illusíraíed

 in Figure

  1

 .4. The U-line and  A-line of íhe plasíiciíy

 charl

are

  exíended

  ío  meel  ai

  co-ordinaíes

 

43.5,

  —46.4)  and a  line  is

drawn

 from  íhe

 ploííed poiní

  ío

 íhis

 inlerseclion, as

 illusíraíed. This

line crosses

  íhe

 liquid limií axis

 ai a

 valué approximaíely

 equal ío íhe

shrinkage

  limit.

1.2.4 Consistency  limits as  indicators of soil  behaviour

The

 liquid limit should,  from

  the way it is defined  in

 Figure

  1

 .3 ,

 be íhe

minimum

 moisture contení

 ai

 which

 íhe

 shear sírengíh

  of the

 soil

 is

zero.

 However, because

 of the w ay the

 standard liquid limit tesis have

been  defíned,  the  soil actually  has a

  small

  shear sírength.  The

Casagrande procedure models  a slope

 failure

 due ío dynamic loading

under quick undrained condiíions.  The  shear strengíh of the speci-

men is progressively reduced b y increasing iís moisíure

 conlení

 until

a

 speciííc

 energy inpuí, in íhe form of síandard íaps, causes a failure of

a standard

 slope

 in íhe

 defíned manner.

 The

 alíernative cone method

devised

 by íhe

 Swedish Geotechnical Commission

 in

 1922,

 is

 also

 an

indirecí shear sírengíh test thaí models

  bearing

  failure

 under quick

undrained condiíions.

  The

  consequence

  of

 these

 tesl

  procedures

  is

that

 all

 soils

 at

 their liquid limil exhibit

 íhe

 same valué

 of

 undrained

shear sírengíh. Casagrande

 (1932)

 eslimaled this

 valué

 as 2.6kN/m2 

and laler work by Skemplon  and Norlhey (1952) indicated valúes  of

l-2kN/m2.

 The hand

  rolling

 procedure used in íhe plasíic limil

  lest

can be regarded  as a measure of the  toughness of a soil (íhe energy

required  ío  fracíure

  il )

  which  is  also relaled  lo

  shear

  sírengíh,

although

 there

 are n o

 obvious analogies

 for íhe

 mechanism

 of failure.

Il has

 been

 found  Ihat all

 soils

 at the

 plástic limit exhibit similar valúes

of

 undrained shear strengíh reported

  by a

 number

 of

 researchers

 as

being

  100-200kN/m2.  Il was

  recognised

  as  early  as

  1910

  Ihal íhe

consislency limil

 lesls

 are measures of shear strengíh,  and Atlerberg s

assislanl íhe geologisl Simón Johansson, presenled

 an

 árdele

 on

 íhe

sírengíh

  of soils  al

  different

  moisíure conlenls  in  1914.

From  íhe preceding discussion

 il can be

 seen  Ihaí

 all

  remoulded

soils change íheir sírengíh

 Ihroughoul

 Iheir plasíic range from  aboul

IkN/m2

 al íhe liquid limil lo abouí 100kN/m2

 al

 the plástic limit.  The

plasticiíy

  índex  is  Iherefore  íhe

  change

  of

 waíer conlení needed

  lo

bring

 aboul

  a

  sírengíh change

 of

 roughly

 one hun dred-fold,

 within

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 17/136

G R A D IN G   AND   PLASTICITY   11

the plástic range  of the soil. A  remoulded   soil  with  a  mo isture content

within   the plástic range can be expected to have a shear   strength

somewhere between these extremes  and it   seems

  reasonable

  to

assume  that ,  for a  giv en soil,  it s  actu al shear strength  will  be  related  to

its moisture con tent.

 Also,

 assuming th at the general pa ttern of shear

strength change with moisture content, across the plástic range, is

similar for all

 soils,

 then  i t

 should

 be  possible   to  predict  th e  remoulded

shear strength   of any clay

  from

  a   knowledge  of its  m oisture content

and its

  liquid

  and

  plástic limits. Correlations

  of

  remoulded shear

strength an d m oisture con tent, related to the liquid and plástic

 l imit,

have  been obtained and are discussed in Chapter 6. With

  slight

corrections

 and some loss of

 accuracy , these co rrelations

  may

 also

 be

used to   predict   th e   shear strength   of   undis turbed

  clays.

  This   is

especially   useful   in view of the

  fací   that most

  clays, both in their

natural state and when used in earth w ork s, are in a plástic state.

A  further   consequence   of  these concepts   is  that   a   soil with  a   low

plasticity

 Índex

 requires  only  a small reduction in mo isture content to

bring  about  a  substan tial increase  in  shear streng th. Con versely,  a  soil

with   a   high   plasticity  Índex   will   not   stabilise under load   until   large

moisture content changes have taken place. This implies that highly

plástic soils will

  be

  less   stable

  and

  that

  a

  correlation

  may

  exist

between p lasticity

 and

  com pressibility. Also,

 the

 liquid limit d epends

on the

 amounts

  and

  types

 of

 clay m inerals

 present

which

 control the

permeability,  henee the rate of consolidation, imp lying a c orrelation

between

  liquid limit

  and the

  coefíicient

  of

 consolidation. Consolida-

tion properties  are   discussed   in   Chapter   5.

The

  special

  property   of

  plasticity

  in   clays   is a   function   of the

electrochemical  behaviour

 of the clay mine rals: soils tha t possess no

clay m inerals  do not   exhib it plasticity and,   as  their moisture content

is reduced, they pass directly from   the liquid to the

  semi-solid

  state.

The   Atterberg limits   can   give indications   of   both   the   type   of   clay

minerals present  and the  amount .  The   ratio   of the  p lasticity Índex  to

the

  percentage

  of

 m aterial

  finer

  than

  2¿¿m

  gives

 an

  indication

  of the

plasticity of the purely

 clay-sized

  portion of the soil and is called the

 activity .

  Kaolinite has an activity of

 0.3-0.5;

  1;

  ilute of

 ~0.9;

  and

montmorillonite of  greater

  than 1.5. These valúes

 hold

  true

 not

  only

for  th e   activity  of the   puré  clay minerals  but   also  for  coarser-grained

soils  whose clay fraction is   composed  of these minerals. A   high

activity is associated w ith those clay minerals tha t can adsorb large

amounts of water within their mineral lattice, and is related to the

chemistry

 of the

  clay  pa rticles.  This penetration

  of the

  clay

 m inerals

by  wa ter molecules causes  an   increase   in  vo lume  of the  clay minerals,

so that the soil swells. Th us, ac tivity is a mea sure of the prop ensity of a

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 18/136

12  CORRELA TIONS OF SOIL PROPERTIES

clay to

  swell

  in the

  presence

  of

 water

  and may be

  used

  to i

expansive

  clays.

  In a  less

  precise manner, swelling

  and

  shrinkage

properties

 are

 also

  related to the  liquid limit, so that this too can be

used to help identify expansive clays. This is discussed in

 Chapter

 8.

In  broad term s, the plasticity Índ ex reflects the ratio of clay m ineral

to

 silt

 and fine

 sand

  in a

 soil, tha t

 is the

 proportion

  of

 clay m inerals

 in

the fines. Since th e silt-, sand- and clay sized particles each nave th eir

characteristic angles

  of

  internal friction, their relative proportions

largely

 determine  the  angle  of  internal frict ion,

  f )

T

,

  and henee  to a

large exten t the  angle o f

 efíective

 shearing resistance,

  < / > )

 o f clay soils.

Thus there are, perhaps surprisingly, correlations  of

  < p

r and

 

with

plasticity  índex.

 These

  are

  given

 in

  Chapter

  6.

1 2 5   Limitations  on the use of consistency limits

It

 can be seen íhat,

  like

 grading, the Atterberg limits are poteníially

related to a w ide

 variety

 o f soil prop erties.

 That

 this has been fou nd to

be true , gives ampie just if ícation  for the use of grading and  plasticity

properties

  in the

  soil  classifícation  systems. However,

  a l though

Atterberg  l imits  do  enable intriguingly good predictions  for  some

engineering properties, certain lim itatio ns m ust be recognised. L im it

tests

 a re performed on the m aterial fíner than 425jUm, and the  degree

to w hich this fractio n reflects the

 properties

 of the soil will  depend on

the

 proporíion  of  coarse material present and on the  precise grading

of   the  soil.

Another l imitat ion

  is

  that

  th e

  limit tests

  are

  performed

  on

remoulded soils  and the  correlations  are not  generally  valid  for

undisturbed soils unless  the  soil

 properties

 do not  change substan-

tially

  during remoulding.

  This  is the

  case with

  m a n y

  nor-

mally-consolidated

  clays but the properties of

  over-consolidated

clays, sensitive clays and  cemented soils

  often

  differ  markedly

  from

those predicted  from  Atterberg limit tests.

«•

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 19/136

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 20/136

14   CORREL ATIONS OF   SOIL   PROPERTIES

In

  t h i s

  respect,   c lassif ícat ion   sys tem s are m ore applicable w here soi ls

are used in remoulded

  form

  tha n w here they are used in thei r na tura l

s ta te and i t i s not surpr is ing tha t the  m o s t   comm only used engineer-

ing soil

  classifícat ion systems were

  all

  developed

  fo r

  e a r t hworks ,

highways

  o r

  a i rpor ts work.

2.1

  COMMON SOIL CLASSIFÍCATION

 SYSTEMS

Th e  mo st widely used engineer ing so il c lass i f íca t ion systems thro ugh -

out the

  English-speaking   wor ld

  are the   Uniííed

  system

  and the

American

 Asso c ia t ion  o f  S t a te Highw ay  and  T ranspor ta t ion

  Offíciáis

(AASHTO ) system. Of these, the

 Unified

  system is the mo re generally

applicable

  and

  more widely used.

  I t was

  developed   f rom

  a

  system

proposed

  by

  Casagrande   (1948)

  and

  referred

  to as the

  Airfield

Classif ícaíion  S ystem . Coarse-grained soi ls (sands

  and

  gravéis)

  are

classifíed  according   to   their grading,  an d fine-grained   soils   (silts   and

clays)

 a nd

  organic soi ls

 are

  classifíed   according

  to

  their plast ici ty,

 a s

indicated   in

 Table

 2.1.  Classifícat ion  i s  carried   out   using particle size

dis t r ibut ion   data   and   l iquid   l imit   and   plast ici ty   índex   valúes,   as

shown in   Table   2.2. An ingenious feature of the system is the

differentiat ion

  o f

  silts

  and

  clays

  by

  means

  of the

  plast ici ty chart ,

included in the

  table.

  The posi t ion of the   A-line   was fíxed by

Casagrande, based

  on

  empirical data.

  Th e   only

 m odif ícat ion   f rom

Casa grande s original proposa l is the

  smal l

  devia t ion a t the lower

end.

  The

  system

  ca n

  also

  be

  used

  to

  classify soils using only

  fíeld

ident i f íca t ion,  as

  indicated

  in

  Table 2.3.

An   advantage   of the   system   is   t h a t   i t can be   easily extended   to

include   more soi l groups, giving   a fíner   degree   of   classifícat ion  i f

required.

The A merican Ass ocia t ion for Test ing and M ater ia ls hav e a dopted

th e

 U nified system as a basis for the ASTM soil classifícation, entitled

 S tandard   Test   M eth od for Classifícation o f Soils for Engineering

Purposes ,  designation   D2487.  T h e  p resentat ion   is  s omewha t

  difíer-

ent

 from

  t h a t

 o f the

 U nified system

 but the raethod of

 classifícatio n

 is

almost identical.  Th e  ma in   differences   a re   t h a t   th e  ASTM classifíca-

tion D2487 requires classifícation tests   to be   rformed   whereas   th e

Unifíed   system allows   a   t enta t ive   classifíca;  based   on   visual

inspection only;

  and the

  ASTM system gives

  a

  subdivis ión

  of the

groups wh ich produces

 a

 rigidly

 specifíed   ñ a m e  fo r

 each

 soil

 type.

 T he

main soi l classifícat ion chart

  is

  given

  in

  Table

  2 .4 and the

  ASTM

versión

 of the

  soi l plast ici ty ch art

 i s

 given

 in

 Figure

 2.1.

 D efíni tions

 of

th e   soil descriptions used   are   given   in  Table   2.5.   The   coefíicient   of

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 21/136

SOI L CLASSI FI CATI ON SYSTEMS  15

Table   2 1   TH E  U N I F I E D S O I L C L A S S I F I C A T I O N S Y S T E M : B A S I C S O I L   G R O U P I N G S

Majar  divisions

 

jg

'o

  ^ S

 '3

3

  X

.

  ftj

^J

3

•*••»

  1

^j

  Q

  ^j

  e;

  "S

Ijl

líl

djl

o

"a

I

 Q

C* 3

^   s j   E

"^S

  'r»

 ^

1

 s '^

a

  v^   s:

  »££

Su

  ^~*' 1\

 §

§  -s:

 

'S

^

*

  +

C^  s ^f*

^S

  C

"S

  -2  ^

  »   ^ j ^

^

 V   Í3  *

"^  "3

  S .§

=3 - J

jf

1

y

 i

~SS

  J

e

•g

  <í  o1

0 S

S

w

i

h

f

n

 

a

e

a

e

a

m

o

o

f

n

s

¿o  ~~

"^  .§ a

^ 5   -^

  g j

Highly

  organic soils

Typical  ñames

W e l l

  graded gra vé i s , g rave l - s a nd

m i x t u r e s ,

  li t t le  or no f ines

Poor ly graded g ravé is , g rave l - s a nd

m i x t u r e s ,  little

  or no f ines

Silty

  g ravé i s , poor ly graded

gravel-sand-si l t

  mix tures

Clayey

  g ravé i s , poor ly graded

gravel-sand-clay   mix tures

Wel l  graded s ands , grave l ly s ands ,

little or no fines

Poor ly graded s ands , gra ve l ly

sands,

  little

 or no fines

Silty

  s ands , poor ly graded

sand-silt  mix tures

Clayey

  s ands , poor ly graded

sand-clay  mix tures

I no rgan i c

  silts

  and very f ine sands ,

rock  f lour ,

  silty

  or clayey fine

sands with s l ight plas t ic i ty

Inorgan ic c l ays

  of low to

  médium

plast ici ty ,

  gravel ly c lays , sandy

clays, sil ty clays, lean clays

Organic s i l t s

  a nd

  organ ic

  silt-

clays

  of low

  plas t ic i ty

Inorganic s i l t s , micaceous

  or

d i c tomac eous

  fine

  s andy

  or

  sil ty

soils , elastic

  sil ts

Inorganic c lays of high plas t ic i ty,

fa t

  c lays

Organic c lays

  of

  mé d i um

  to

  high

plast ici ty

Peat

 and

  other highly

 organic soils

Group

symbols

G W

GP

G M

GC

SW

SP

SM

SC

M L

CL

OL

M H

CH

OH

Pt

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 22/136

U se

  grain size curve

  in

  identifying

  th e

 fractions

  as

 given under f ield

  Identification

P l a t t l c i t y

  l n d * x

  M U

  *•

  O t

  0»O

 *-JO

  O O O O O

É

J

  (^

i   r*

i  1

  É

 ~

- ,

  rj

s   e

  *

  2 N r _

Si  ° * \r

O.

  U

  r-  ^

-.

 o i

»   ~

  o

  2

 

r ~ ? r

—   s  \

O • -•--«••— ' ' 1 ' -

  s  *J

  \ ^

m  \

•*

  \

Determine

  percentages  o f

  gravel

  a n d  sand

  f ro m  g r a i n s i ze c u r ve . D epe

percentage of f ines  ( f r a c t i o n  s m a l l e r  than 75/ ím sieve  size)  c o a r se g r a i ned

classified   a s f o l l o w s:

Less than 5

G W , G P ,

  SW ,

 SP

More  t h a n  12%  GM, GC, SM, SC

5 to   12%

P  * £

í3

  Cr í

  n >

,

  S

  í±

^ •í   ñ

  c^

^   f l >

» ^ . ^^

CT |

o cr

«. °

fD

  ^

1-1 rt

& > ^

3

 fc—

 n t

  '

  C . T Í

  M

"  S

  *

-

  "

o

 

^3 l

er o

 ^

1- 1   cr

p  tr

rt

•-i   <

W  -1P

SH

  la.

^ -<

  C D

  i- *   r p   > ^

3

iD

  o

  * -•

  cr

.  c cr   c ^

C r  ~-  O f u

  ^

5- 3'

 

 ,

r-

 ^

f >

 

«

  S

i^

  5 ^

0 * ^S

-•>

    P

0,8

 o í

C en  O.

 £.'

- ^

00

C /3

S

§?

^

  -4-

n >

fD

r -

tr o

TO

^™ í

D-

P

(-*

O

3

í-t

S

£.

• -i

re

3

3

e n

i— ^

O

> -i

IV D

Borderline

  cases  r e q u i r i n g

use of  d u a l  s y m b o l s

O

  0

n

  c

|

\^3

h -

o

X

to

Q\

C

^

3

(

I I

h*«

H« M

to to

S  s  §

w

  ^^

O

  ^

J

r-*-

0

 

t>

-t-  r-f

5

  3-

u   ??

n

  3

3

h

P

_

o\4

3

CL

u>

00

Í T > g

3

  trt

  re

5

 i

  ^-J  fi )

  O

^  c 3

w ^

£ 3

E -.

C /3

H-i)  ^

P cr

P

  o

ft ^

> -i

  n >

P   ^ ? t

a

ro

» — *

  ^i

* £ * • 3

 

c r

tí  í?

**   ffO

w

°

 1

^t)

  en

^

cr

£L

nT

  o"

en

  ¿

en  <

en   * t  P  S * > * .

*< «

^

 2£

3

jD   r o

 ^

cr

_. c  ._ cr o

o ^   5'  § a

  r l

»^

  ^J •

  w

  ( *•

  18

ir  5  fí

  ^Ü

e n

  Sr

 3 _

m  3 .

|± -

o

  ^

  "  S

^ r "

M   ^ .

ftj

  *-3

  *C

c

  w   P- 2.

E -  S  -j

  3-

O

n

o

S

S o

^

*-»•

rt i

re

r-f

fc»

 •

3

O Q

Si

O Q

i~ i

C L

P

r

o

3

*- t

£

C_

i - t

re

3

3

•   .

  rt-

o n

i—

 » ^

O

O

13

**•

to

1

 

O

 

X

0

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 23/136

SOIL

  CLASSIFICATION SYSTEMS  17

70

60

I

5

X

 

40

_ > .

o

  30

  5

<

a20

10

7

4

FOR CLASSIFICATION OF FINE-GRAINED SOILS AND FINE-GRAINED

FRACTION

 OF COARSE-GRAINED

 SOILS

Equation

 of

.Horizontal

then PI=O.7

.Equation

 oí

Vertical

 at

then Pl=0.í

 

A--IÍ

at

 Pl='

3(LL-

 IT-I

LL=16

KLL-fi

 

CL-ML 

I

ne

\

2O)

ne

to Pl

=

)

¿

í

 

ox

^

Lo

-25.5

y

 

ov,

 

rOL

1  j

\°*

vJ/>

^

z

,

*

v

>

s

 

J

X

MH

 

°

.

 »v

0

 

/

 

or

s

 

OH

  y

 

1O 2 3 4 S 6 7 8 9 1 O 11 12

Liquidlimit LL)

Figure 2.1 Soil  plasticity  chart used with the  STM  an d

  Unified

  soil  classifi-

cation  sysíems

uni formi ty ,

  Cu and the

  coefficient

  of  cu rva tu r e ,

 Ce,

  of the  grad ing

curve ,

 wh i ch

 are

  used

  in the

  classif ication,

 are

  defined

  in

 Table  2.4.

The  soil

 ñames used

 for

 each

  of the

 soil group s

  are

 defíned

 in

  Tables

2.6,

  2.7 and

 2.8.

The  Bri t ish Standard  classification

  system

  BS 5930)  is ,  like  th e

Unified  system, also based

  on the

  Casagrande classification

  but the

definitions

  of sand and gravel are slightly different,  to be in keeping

with

  o the r

  Brit ish Standards, and the f ine-grained

 soils

  are divided

into   fíve  plastici ty ranges rather than  the  simple

  low

and   high

divisions  of the  Unified  and the  original Casagrande  systems.  In

addi t ion, a considerable

 n u m b e r

 of sub-groups have been i n troduced .

The basic soil ñam es, symbols and  qualifying  t e rms are given in  Table

2.9 and the   definit ions  of the  soil groups  and  sub-groups  can be

obtained

  from

  Table

 2.10

 in

  conjunct ion with

  the BS

 versión

  of the

plastici ty chart , Figure  2.2.

It  can be  seen that both  the ASTM  and, part icularly,  the BS soil

classification  systems subdivide the soil in to a m uc h larger num ber of

group s th an the earl ier system s. Al tho ugh

 this

 allows  a m ore precise

classification,

  it

  negates

  two of the

  main attr ibutes

  of the

  Unified

classificat ion: the

 system s

 are no t

 long er simple

 and

 easy

 to

 remem ber

but require constant  reference  to a table and ch a r t; and  they canno t

be  implemented without recourse  to  laboratory test ing.

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 24/136

18   CORRELATIONS  OF  SOIL  PROPERTIES

  ble   2 .3 TH E

  U N I F I E D  S O I L C L A S S I F I C A T I O N S Y S T E M : F I E L D I D E N T I F I C A T I O N

Field  identiflcation procedures

(Excluding par ti

 cíes

  larger than  75mm  and basing fractions on

estimated  weights)

t

1

i~

-Ü  *

 ^

'3

 .2

  ¿

í I 'S

lis

 i

2^5= °

?í|l

2 J  a

8

•* =

  a  e

3

J**

Ib

  .O

o

  :s

ís

o

o

Ui

«I

O.

W )

ü

13

o

u

.n

3

O

ja

«

^ .< £

1 .s

1

 

X

  «,

  S

V,

  —  .N U

Í3

O

  o;

  '55

2 £  S  E

 «  o  -S i

  = * •

. 1

«

  £

¡>t

  j j

< * x ¡ o   f _

ia C

;

S -s

  c

^

 §

•«

S u

 

f

^ < ¿

£ a  ^3

 , I

•- _   ^ . s  ^

Q1

 

^ 5j

  -C

1%I«

s -

2   • * = < - . £

 s

 

J a

 £ .u -S

-5 .0 -  s;  .

H   f l

5

•*

S

M

o

h

h

o

c

f

r

a

o

s

s

m

e

h

4

7

m

m

 

s

e

 

o

r

v

s

u

c

a

c

o

h

e

v

e

o

 

|o?

§ ^ ^ .

•5;  :

{ j   -^

-c:  ^-

=   - - ' < = •

n  <ú  í- 5C   aj

1*11*

 3

-a

  o

JU

^ 0 3

a

  « j

  ,a

g^^

J

  *-.

o -S

  -2:^

.•S   -c  o ^ ^

- ^ . .a ^ -

  -^

  ¿

  ^

  c  2

1 4 I H

o  _g Q

W i d e r an g e i n g r a i n s i z e an d s u b s t an t i a l

a m o u n t s o f  a ll

  i n t e r m e d í a t e

  particle sizes

Pred om ina ntly one s ize or a range of s izes

  w i t h

s o m e  i n t e r m e d í a t e s i z e s m i s s i n g

N o n - p l a s t i c  fines  ( f o r

  id e n t i f lc a t io n

  p r o c e d u r e s ,

s ee  ML  b e l o w )

Plás t ic f ines (for id e n t i f ic a t io n  p r o c e d u r e s , s e e C L

b e l o w )

W i d e r an g e  in  grain sizes  a n d  s u b s t a n t i a l

a m o u n t s o f a ll

  i n t e r m e d i ó t e  pa r í ic le

  sizes

P r e d o m i n a n t l y   o ne  size  o r a  range  o f s i z es w i t h

s o m e  i n t e r m e d í a t e

  size

  m i s s i n g

N o n - p l a s t i c

  f i nes

  ( f o r

  id e n t i f ic a t io n

  p r o c e d u r e s ,

s ee

  M L

  b e l o w )

Plás t ic f ines (for id e n t i f ic a t io n  procedures , see CL

b e l o w )

Identification procedures on fraction smaller íhan 425um sieve

h's;

- ¿ l l

§:s-s

a.|.g

§ ~ "

^

  o

E * -

0

3

  -.3  -.

  G .g J

li|

Í3

 Q

:

 

« u

 

o,

Highly

  organic soils

Dry   sírength

(crushing

charac-

teristics)

None

 to

s l ight

M é d i u m

to

  high

Slight to

m é d i u m

Slight  to

m é d i u m

H i g h  to

very high

M é d i u m

to

  high

Dilatancy

(reaction

to shaking)

Q u i c k  to

s low

None to

very

  s l o w

Slow

Slow   to

n o n e

None

N o n e

  to

very slow

Toughness

(consistency

near plástic

limit)

None

M é d i u m

Slight

Sl ight  to

m é d i u m

H i g h

Slight

  to

  •sdium

R e ad i l y

 identif ied

  b y c o l o u r, odou;  p o n g y

  feel

a n d

  f r e q u e n t l y

  b y f i b r o u s

  t e x t u r e

Group

symbols

G W

G P

G M

G C

SW

S P

S M

SC

M L

C L

O L

M H

CH

O H

Pt

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 25/136

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 26/136

20  CORRELATIONS OF SOIL PROPERTIES

  ble   2.5

SYSTEM

DEFINITIONS OF SOIL DE SCRIPTIONS FOR THE ASTM SOIL CLASSIFICATION

Description

  Defm ition of

  material

Boulders Reta ined on

  300mm

  (12in)

 sieve

Cobbles  Passing  300mm  (12in); retained  on  75mm  (Sin)  sieves

Gravel   Passing  75mm  (Sin):  reíained  on  4.75mm (No.  4)  sieves

coarse Passing  75mm  (Sin);  retained  on  19mm

  (|in)

  sieves

fine  Passing  19mm

  (|in);

 retained  on  4.75mm (No.  4)  sieves

Sand   Passing  4.75mm  (No.  4);  retained  on  75/zm  (No. 200) sieves

coarse  Passing  4.75mm (No.

  4);

  retained

  on 2mm

  (No.

  10)

 sieves

médium

  Passing

  2m m  (No. 10); retained  on 425/mi  (No.  40)  sieves

fine

  Passing

  425/¿m

  (No. 40); retained

  on  75/¿m

  (No. 200) sieves

Clay

  Passing  75/mi

  (No. 200) sieve that

  can be

 made

  to

  exhibit plasíicity

within

  a  range  of  water contents  and  that ,  exh ibits considerable

s t rength  when

  air

 dry .

 F or

  classification,

  a

 clay

 is a

 fine-grained

  soil,

or fine-grained

 port ion

  of a

 soil, w ith

 a

 plasticity

 índex

 of

 equal

 to or

greaíer than  4, and  ploís  above íhe

  A line

 on íhe  plasíicity charí.

Silt  Passing 75/^m (No. 200) that

 is

 nonplastic

  or

 ve ry slightly plástic

  and

exhibits little or no dry  strength when a ir dry.  For  classification, silt

is

 a fine-grained

 soil,

 or fine-grained

 portion

  of a

 soil, w ith

 a

 plasticity

Índex

  less than  4 or  which ploís below  th e  A line  on the plasticity

charí .

Organic

  clay  A  clay  or  sill with  sufficient  organic conlent  to

  influence

  íhe  soil

or  sill  properlies.   For  classification,  an  organic clay  or  silt  is a  soil  that

would  be classified  as a

  clay

  or  silí

 excepl

  Ihat ils liquid  limil

  valué

afler  oven drying

  is

  less Ihan

  75 of ils

  liquid limií before oven

drying.

Peat

  A soil

 composed

 of vegetable tissue in

 various

 stages

 of

 decomposi-

lion usual ly w ilh an organic odour , a dark-brow n  lo black  colour, a

spongy consislency

  and a

  lexture ranging

  from  fibrous lo

  amor-

phous .

*

 Sieve sizes

  and numbers  refer  to

  U.S.

  square

 sieves.

As  a

  result

  of the  introduction  of

  these classification systems,

  a

subtle change

  has

  arisen

  in the  defmition  of

  silt. Normally, silt

  and

clay  particles are

  defíned

  by their particle size, the división betw een

silt

  and clay being 5/rni in the ASTM and AASHTO

  defmitions,

  and

2/mi

  in the BS

  defmition.

 The

  plasticity chart

  was a

  useful

  way of

separating silts  from  clays,  which worked for  mosí soils:  clays

generally  plotted above

  the

  A-line

  and

  silts

  below  üthough

  excep-

tional clays were known to plot below it. Now,   ,

  r

  classification

purposes,

 whether

 a

 soil

 is a silt or a

 clay

 is defíned in terms of

 w hether

it plots above

  or

 below

 the

 A -line, rathe r than

 o n its

 particle sie.

 T he

British  Standard system suggests that, to avoid confusión, the term

 M-soil

is used for those fine-grained soils that plot below the A-line,

but  this does  not

  seem

  to ha ve  gained popular acceptance.

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 27/136

SOIL  CLASSIFICATION SYSTEMS  21

70

6

= 4

2

er

3 3

20

10

SILT M-SOIL), M, plots bolowA-line\y becombinedas

CLAY C, plots above

 A-line

  /  FINE SOIL, F.

L - Low

 plasticity

U

 - Uppor

  plasticity rango

i

Inter-

medíate

NOTE: the

  letter

 O is added

to the  symboi of any

 material

-

 containing

 a

 significant

proportion

 of

 organic

  mat ter

e.g.  MHO

CL

ML

x

Cl

MI

H -

 High

CH X

-

 M«J

m

 

V   -

 Very

high

C

 

:V

 

MV

E - Extremely

 high

x

°>

ME

 

O  1 2 3 4O 5 6 7 8 9O 1 11 12

Plasticity indox ( )

Figure

 2 2

  oilplasiicity

  chart used  with the British Standa rd so il

 classification

  system

Although  the

  Casagrande- type systems c lassify

  soils

 aceo r d ing

  to

the i r e ng inee r ing prope r t i e s ,

  t h ey

 are no t s t r ic t ly inte r pre t ive , in that

they

 do not  over t ly

 classify soils

 as

 good

 or

 bad

 for a

 part icular use

How eve r , they can be re adi ly used in th is way with the a id of tables or

charts such

 as

  those indicated

  in

 Tables 2 11

 and

 2 12

The AASHTO soi l classif ication  system M 145) doe s not  classify

soils by type i .e . sands, clays etc .) but sim ply divides them into seve n

major groups,  as shown in

 Table

 2.13. Groups A-1, A -2 and A-7 are

usually

 subdivided as indicated.

 Typical

 mate r ia ls in

 each

 g ro up a r e

indicated   in  Table  2 14 Although soils  are  divided into granular

mate r ia ls groups  A-1, A-2 and A-3) and

  silt-clay

  mate r ia ls groups

A-4

  to  A-7),  th e  dist inct ion  is

  less

  c lear-cut than with  the  Casag-

rande-type systems. This i s part icularly t rue   of the A-2 group, which

c an

  include  soils with

  a

  considerable sil t

  or  clay

  content . Clays

  are

dist ingushed  f rom  silts

 on the

 basis tha t c lays have

 a

 plasicity Índe x

 of

greate r than  10:  unlike  th e  A-line  división  of the  Casagrande

plasticity

  char t , th is ra the r arbi t rary divis ión does

  no

  truly dist in-

guish between

  these  tw o

  types

  of

  soils.

  Also,

 organic soils

  are not

included in the c lass i f icat ion. However , the system must be judged

aceording  to its own  aims, which  ar e

  specifically

  to  assess  th e

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 28/136

  b le   2 6

  F L O W C H A R T

  F O R

  C L A S S I F Y I N G C O A R S E - G R A I N E D S O I L S ( M O R E T H A N

  s o

R E T A I N E D

  O N

  is^m  S I E V

<5 fines

and

an d / o r  l>Cc>3

G R A V E L

%  grave l>

%san d

^5-12% fines

and

Cu<4

  and/or  l>Cc>3

12 %

  fines

fines-ML

 o r MH

fines-CL, CH,—

(o r  C L - M L )

f ínes-ML or M H

f ines-CL

 or  C H ,

(or  C L - M L )

f ines-ML

 o r MH

fines CL or CH 

f ínes-CL-ML

> G W - G M

> G W - G C

+ G P - G M

> G P - G C

*G M

  < 15%  s a n d -

S í l 5 % s a n d -

< 1 5% s a n d -

>

 15%

 s a n d -

<

  15% sand

 -

5=15%  sand

- » < 1 5 % s a n d -

> 1 5 % s a n d -

< 1 5 % s a n d

> 1 5 % s a n d -

< 15%

 sand

*G C

> G C - G M

  15%

  sand

 -

^

 15%

  s a n d -

->

  < 15%  s a n d -

^

 >

 15%  s a nd -

  < 1 5%

  s a n d -

  ' 5= 15% s a nd -

>W

'We

>Po

> P o

>W

>W

>W

>W

>Po

>Po

>Po

»Po

  Si

» S i l

••Cl

>Cl

v S i l

> S i l

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 29/136

•• • • •

  n n n

  • •

B

  1 1 E 1 1 1 1 I I I» »

SAND

,<5 fines

5-12

fines

Cu 

 6 and 1

 < Ce <

 3

Cu<6  and/or  1

 >Cc>3

Cu^óand  l<Cc<3

,  T

 J

* fines-ML

  or MH —

X

   ines-CL, CH,

(o r CL-ML)

— ovv

  - ^

> S T p

 +SW-SM

  -:

 »sw-sc

 

'-^- 1J 70 giavci

 ~^

 15 gravel

l jf*1 1  AOTIVPl

•> 15

grave l

 —

 > <

 15

gravel

^ 15%

gravel

:—

 -» < 1 5 gravel

>15 gravel

Cu<6

  and/or

 l>Cc>3x,

>12

fines

,

 fines-ML or MH  >SP-SM

fines-CL or

 CH  >SP-SC

(or CL-ML)

fines-ML or

 MH  -S M

fines-CL-CH

  > SC

fines L ML

->SC-SM

  15 g r a v e l -

' ^15 g r a v e l -

» <

 15

g r a v e l -

' ^ 1 5 grave l -

< 15

grave l

 

15

grave l

 

< 15 gr ave l 

<15 g rav e l -

 15

grave l

 •

 

W

 

W

» P

>

»W

*

 

»W

»W

*P

 

••

••

- >

- >

-*

->

-*

->

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 30/136

Table  2 . 7

  F L O W

  C H A R T F O R   C L A S S I F Y I N G I N O R G A N I C F I N E - G R A I N E D

  S O I L S

  ( 5 0 %   O R   M O R E P A S S E S

  7 5 / « n

  S I E V

GROUP  SYMBOL

I n o r g a n i c

L L < 5 0

P I > 7 a n d

plo t s  o n o r  above

'A ' - l ine

4<PI<7

  a n d

  >C L - M I

  p lo t s  on or  a b o v e

'A ' - l ine

PI<4

  o r

  p l o t s -

be low 'A ' - l ine

 

/ LL- ove rd r i e d

Orgahic  —  .  ,<0.75

1   LL-not

  d ne d

<3Q

plus

  N o . 200^< 1 5

p lus

  N o. 200

\5-29 p lus  N o .  2C

  sand  grave l

15-29 p lus  N o .  2 0 0 - x — > %   sand  >

  sand

  <

p lus  No . 200<f

 

sand

  < g r a v e l «

< 1 5

grav

5*15 grav

< 1 5 s a n

l^\5 san

,<30%  p l u s

  N o .

  200<-»<15 p l u s

  N o .  200-

  sand

N. t

grave l

 •

'15-29

p l u s

  No. 2(Kk^»

sand

  ^

/ o

  sand <

<15 grav

p lus

  No. 200<(

  * ^

 1 5

g r a v

  sand < g r a ve l v^   <

 15

san

15 sand

,<30%  plus  No .  200^-* < 15 p lus  No .  200-

  15-29%  plus  No. 200 sand

  >

  sand  <

 

sand  ^%  g r á v e l a — 

15

g r a

 

^  15

g r a

 

s a n d

  <%  g r a v e l ^ — + < 15

san

^  15 s a n

> S e e T a b l e 2 . 8

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 31/136

 vi  t  i  i i  i i i i i  »

 M

 I J I  » » » V V I f t f t  i i

 

ft}11Il

Inorganic

PI plots on

  or  >C H

above

  'A'-line

PI

  plots below

  > M H

'A'-line

/LL-overdried

Organic  —

  —-j<0.75

  —»OH

1

 LL-not

  dned

<30 plus No.

 200^-»<15

plus No. 200

N

5-29

plus

 No.  2(XK^

sand

 

sand

  <

 

30

plus

  No

,

sand

gravel

N ,

 

sand

  <

gravel

< 15 grav

\5

grav

< 15 sand

^

 15 san

,<30

plus No. 200 -> < 15 plus No.

  200

 

15-29

plus

 No. 2(Xk-*

sand

 ^

  sand  <

  sand < gravel -^— >< 15 gra

  15

grav

í

 30

plus

  N o.

 

sand  < gravel

:15

sand

 15

sand

> S e e T a b l e  2.8

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 32/136

  ble

  2 . 8

  F L O W C H A R T

  F O R

  C L A S S I F Y I N G O R G A N I C F I N E - G R A I N E D S O I L S (5 0

O R

  M O R E  P A S S E S  7 5 /i m S I E V E )

GROUP

  SYMBOL

and

  plots on

or

  above

  'A' - l ine

PI<4 or plots

below  'A'-line

OH

Plots on or

above 'A'-line

Plots below,

'A ' - l ine

<30 plus

 No.  200-

5 = 3 0 %

  plus  No. 200

<30 plus

 No.

  200

S s  30% plus No.  2

<30

plus

 No.

  200-

Ss 30 plus No. 200

,<30% plus  No.  200-

•> 30 plus No. 2

<15 plus No.  200-

15-29 plus No.

  200-=

 

sand

  > 

graveé

 

sand  < g r a v e l -

> < 1 5 %   plus  No.  200

15-29 plus  No. 20(k

sand

  ^

  gravel -

  sand

  < gravel

> < 1 5 %   p lus No. 200

'15-29

plus

 No.  200-

 

sand ^

 

grave l

 •

 

sand

  <

grave l .

•<15 plus No.  200-

'15-29 plus No.  200-

 

sand

  >

grave l -

 

sand

  <

gravel

 

sand

 

gravel

'

  sand  < grave l

< 15 gravel

5* 15% g rave l

-»<15 sand

• > 1 5 %

  sand

  sand

  ¿t 

gravel

 

%   sand  < %  gravel

< 15 gravel

>15 g r a v e l —

<15

sand

Sil5

sand

  sand

  5s

  gravel

  sand  < gravel

 K15

gravel

•>15 gravel

-*<15

sand

1 5 %

  s a n d —

-»  sand

 ^

  gravel

 

sand  < gravel

<

 15

gravel

15 %

  gravel  —

<15

sand

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 33/136

SOIL  CLASSIFICATION SYSTEMS 27

Table

  2 9

  Ñ M E S  AND   D E S C R I P T IV E L E T T E R S  FOR   G R D I N G  AND   P L S T I C I T Y

 H R TERISTI S

  escriptive  ñame  Letter

Main  íerms

Qualifying   terms

Main terms

Qualifying terms

Main  term

Qual i fy ing

  term

G R A V E L

SAND

Well graded

Poorly

  graded

Uniform

Gap

 graded

FINE  SOIL, FINES

m ay

  be   differentiated   in to   M or C

SILT (M-SOIL)

plots below A-line

  of plasticity chart

(of  restricted

  plástic

  range)

CLAY

plots  abo ve   A-line

  (fully

  plástic)

Of

  lo w   plasticity

Of

  intermedíate

  plasíicity

Of   high plasticity

Of very high plastisity

Of extremely

  h igh

  plasticity

Of

  upper

  plasticity

  range*

incorporating groups

 I, H, V and E

PEAT

Organic

may be   suffixed   to any

  g roup

G

S

W

P

Pu

Pg

F

M

C

L

I

H

V

E

U

Pt

O

 

This term

 is a

 useful guide when

 it is not

 possible

 or not required to desígnate the range of

 l iquid  l imit more closely,

e.g.  during the rapid

 assessment

 of soils.

suitabili ty of

 soils

 fo r

 pavement

  subgrades;  the

 higher group num bers

being progressively less suitable.

  In

  this way the system is more

restricted yet more interpretive than the Casagrande-type systems,

since

  it not

  only

  classifíes

  soils into groups

  o f

 similar properties

  but

also  passes ju dgem ent abou t the qua lity or suitab ility of the soils in

each group.

  A

  further

  refínement of the

  AASHTO system

  in

  this

respect is the use of a

  group

 Índex , to ev alúa te subgrade quality . It is

calculated   from

  the

  formula :

Group

  index  =

 ( JF-35)[0.2 + 0.005(LL-40)]-

r

-0.01(F-15)(P/-10)

where

  F  is the

  percentage passing 0.075mm sieve, expressed

  as a

and

whole

  number .

  This

  percentage

material passing

  th e

  75mm sieve

LL

  is the

  liqu id limit

PI   is the   plasticity Índex.

is   based only

  on the

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 34/136

  oarse

 soils

 (<35% fines)

Sands (>50% of coarse

material is of

 sand size

 -

<

 2mm)

—  <

P E?.  2-  E £

1

«5*  £ |£2

0.0 o.s-

« <   o

1-t

C/3

  S

0  ^

<

<-

  n oo

  *o

 <•

0

rt

  — —  0

 *í

22

p

  £?

  X

<*

*•<   v<«

  *•<

  í CS

fD O3  *"~*

t

P*

 £ w  3

oci

 P

«<  ve;  p  Q  -i  Q

o  a p n

*<  g  o.  0.0.

0.

a

"

 

. . . • .  o.

00 00 00 00  OO  00

 í||¡ ¡¡

£3 jy i

y  C J

  *

  t

(JQ

 «

CJ Q   OQ M

n c i Q ' S r o ^ ' c / 3 ( r o P o o P  3

CT tr «

  S-.

  ^_ O 3 a

 g o. o

fj*

  O  £^

t-*-

  O^  Q p.  ("L

 Q

  CÍ* (TQ

*J-

 p*

 J 

J5-

CB

  Cu

  >-t

i-

 1

§ •

  S

<<

  0_

p 00

***

  s

1

 —  

1

O O O O O O O O O O O )   O O O O O O O O   O O O O

OOOQOo

  ^ fl ^'TS

V

--J

 V

t>J

 A

pp

v

 A

v o T T I

  w

0O0 

> —

 *

  vi O

v />

 

I

[

  >—  V

U>  V

Gravéis (> 50% of

 coarse

material is of gravel size -

>2mm)

o.

 <

  OQ  oo  o.  oo

  ~ í

  M

  2-

 o << d

lf ale.

is   .

  3

 

w;

  o

§ O O

•TI

< <

O

  y

V

 

33  s r ^ g

 «;

O

  w

  f»*

-Í"«f

  o? §  »

3

o>   p  «  P n

 3

 i

~  »£*

Í£L

  w S

- .

  si  P «

i"*

o

 o  9 9

   

«5"3"c«9tS3-^

  TiO-'-iD.

 g-J

^ p- P  CT.

  v

  J  p

  rj

  n3  o»  «~-

3 Tj¿.

 o  JJ D. O. D-  O. Q.  O.([q

C y Q   P ^ °i t

  v^

  p)  p^  p

> J

 i:

g .  i*   g

If I

t

  *

 °

o o o o o

« •

  nooo  oo

onnoo"  J^^^^^^

\

  --J

 V

OJ  A

 O

V

 p o vi A

«o T T

1

  u>

O

  ^¿>

  *—l V V

OO0

>—   V

  P

y» - l T

1   >—  V

U)

  V

V

C/3

O

«Ci

o

00

o

Oo

1

•** t

i1

A 3

tf

;

 

z

D

>

O

P

O

1

s

ñ

H

¡

I

SHIIÍÍ3cIOHcI  IOS

 HO

 SMOI V 3HHOD

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 35/136

SOIL CLAS SIFICATION SYSTEMS 29

000

v vi r~ —  o\D

f>

1   1

  Os

W «0

 00A

rmV^ ¡

  */•} t-

  A

r

 ^J

c/ 3

o

H-]

 2 PC  >

  W

•su uu

 uu

1

  —

 

> ->

  |3

' 5   -2

  :§

 "ale

n

'£ *

 .2

 tí

  ft

  > -.

,_

 "a |

" S - ' - S E

Q ¡_, r* ^_

  gJ

^-»   ¡>

  <u

  £Q

  j^y

  ~ i

w  o

  •g ;-

u x

•<

  —  

t_ x  í>

  w

O

 o

Su

ü

«s

'« *o

?

"«3  *4J

rt

  o 3

6o

Ü

UH

*-

?".

rs o s

co •-

1—  

í*

rt >

a   M

(ssuy  %S9~S£)

sXep pire

 sjiis

ípuBS   Jo

  /ÍUSABJQ

o o o

V

 V

  C*-  O"\>

r* }  

C T N

oo

  v

A

U U

 "U

us   tn «j

<

<<

£££uuuuu

l/J t/J  _ J

us

•*-*

>>  |o

'Q

 Ü

O S43

O

 O  '-S

 •-

  tí

 js

 ^

U U U

  J2

  S

 - -SP"

O  O O  '

  i— i

  r^

  -^^ 

c*-<

  tfc-i (*_,

   ^   j > pj

^««O ^Ox

<-<-<i_ih-.lx;,>tU

00 00

 «

 "o

>-.  >->

•o-a

  >,

c c   > >   a

cd   cd

  rzn

  r^?

í/3  </3  t/3  U

C /2

IX  U.

kH

0

*  >.

•S

 ^-2

W 3   O

"c *°*

 °

03   rrt rz3

C /D   u3 C/2

(S3UU

°/   5 9 )

  S

^ - ^ I D  pu^

 ^ns

(S3UIJ %g£<) SITOS 3UIJ

3

O

JH

C X

t_

o

E

03

i—

Q

^3

o

 

E

  2

>.  c

vi  U

3 C

0= ¿   o 3

^

•*•*%

  «

J ?*O

 

3 J*0

Cl Cl

i—   J5   *

O

  Q J • J

3 _ 0 f l c

eÍ<— 

c °"S

a Z

 a

2.H

  «   Ij's

I

S

*-"

 

^ *

  o

3 | "3

 

o

 '°

^

 ^

 ^

i

*5»

  S

utoü >_ »

iJ«i  AH

O

C

 t

CU *

 •?

 _>

oc

 o «

O Cu

1

C

cd

5

S?

A

¡s

•a

B

CS

Wl

u

_ N

35

1

«

13

'C

u

M

E

U

S2

cd

S

o

A

Ít3

'B

>

O

3

c

_0

e i

u

c c

•—   o

E

  -

«  ^

-

  S

 E

•—

  C

•o

 

-¿ C

o   - S

O.

o

  u

•-; C

§ - 8

u •- O

ü

  o  <"

i

 3

cr

O —

C

.. c

c c

o *

?  S?   ü

 '

•3

 U

O

 ,

 

H

_  u c

§

 

C

r™1

 

o J

IIs">í

  -2

  t T / n 

«   ¡_  U 0

c

15

y

O

O

 §.«

l.§

o o  —

 L ñ  "O

-=

o  o .y

  o.

M

 ..

 E

O

TT

ce a

o  o

 «

 

'

  u c 5o -=

  ^

  *  >  .,

t a w E Z o r i E  - S S

— .

  o

 w

*3

  rt

 Ü

3 O

~ §

— ü

o

••3 EOU

 

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 36/136

Table

 2 11

  E N G I N E E R I N G P R O P E R T IE S

  O F

  C O M P A C T E D

  S O I L S ,

  C L A S S IF IE D A C C O R D I N G

  T O T H E

  U N I F I E D

  S Y S T E M

Ty  ÍCal

ames

ofsoil

  groups

Important

  engineering properties

Relative desirability

  No.

  1 is

  consid

Rolled

Earthfill

  dams

Canal

  seclions

 

Group

symbols

Shear

Permeabili ty  strenglh ibility

when

compacted when

compacted

  an d

compacted

salurated

  saturated

Workability Homo-

as   a qeneous

,

conslruclion embank-

material mení

 

Core  Shell

Com-

Erosión S

pacled .

resist-

  i

earth  

anee

  l

lining

 

Well-graded gravéis,

g rave l -sand mix tures ,

little

 or no fines

GW

Poorly  graded gravéis,

  GP

gravel-sand  mix tures ,

l i t t le

  or no fines

Sil ty

  gravéis ,  poorly  G M

graded gravel -sand-si l t

m i x t u r e s

Clayey  gravéis ,

  poorly  G C

graded grave l -sand-c l ay

mixtures

Wel l -graded

  sands

S W

gravel ly

 sands

l i t t le

  c1

no f ines

Poorly  g raded sands ,  S P

gravelly sands

l i t t le or

no f ines.

Perv ious Exce l l en t Neg l ig ib l e Exce l l en t —

Very  Good

pervious

Semiperv ious

  Good

to   i rnperv ious

I m p e r v i o u s  Good

to

  fair

Negl igible  Good

Negl igible   Good

V ery  lo w  Good

2

Perv ious Exce l en t Negl ig ib l e Exce l l en t — —

Pervious  Good  Very  lo w

  Fair

3

If

  6

gravel ly

4 7

I f

  If

gravelly  g rave l ly

2

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 37/136

SOIL

  CLASSIFICATION  SYSTEMS  31

ÍN  r^

2

 

o

• < ñ

  o

s

 s

• W

  o

O  3

  u

o

  —

 

r

ÜJ

c

 o

c   oo  ca

2.

  •-

oc  ¡>

  o u

1*

bu

0

?

O

0

v

o

.§ •

»

c /5

  C

tfl

•o

1

¡55

Vi

3

_0

 >

S

E

o

  ?

T3

S s

  8

  3

2

 -|

e c

  E

0

o

a

o

3 3

cS

  2

VI

3

.2

 

B

u

ai

C

l

a

s

p

y

g

a

s

n

c

a

m

i

x

u

e

i*

  3

U

E

3

•3

4>

S

1

3  3

o .2

  >   £ ;

II

Ji

  S

j

S

§

  s

• g á

r t _ ^ j

a

  g

.-*

  w

V

•al

c u   5

00  S

 

i—  <  tS

05

TJ

d

4J  'Q

C • —

  S , s

g o.

a

  _

0 Jj

o  S

 

'1

O

  -5 5

áS

E

3

-3

U

S

UH

2

3

O

8.

E

U

o

I

n

g

n

c

c

a

o

o

w

m

é

d

u

m

 

p

a

ü

y

g

a

y

c

a

s

n

c

a

s

y

c

a

e

n

c

a

i_ i

 a

t

E

3

'•o

u

l_

O

£

v

o

.1

1

u

0

0

O

r

g

n

c

s

s

a

n

o

g

to

3

,O

 >

(_r

8.

o

-^

to

  H .

_ o

to

C8

 o

 vi

O

O

c u

J2

00

s

'3

U.

v

o

.1 -

U

2

I

n

g

n

c

s

s

k i

o

o

D.

0

r

v

o

S.

_ §

o

m

c

u

o

O

d

a

o

m

a

f

n

s

n

05

  ío

o

«

_r t

u

  o

«

*¡o

IM

O

M

o

o

O.

oo

X

w

o

VI

3

_ O

 

E

U

00

2

°

 

S,

C3  *J

  o  < 2

  —   >i

S  t¡

« o

00  • —

ll

o

o

B U

00

X

b .

0

o

CU

to

_ o

8.

a

o  £

O

r

g

n

c

c

a

o

m

e

d

u

t

o

h

g

p

a

c

y

P

a

n

o

h

h

g

y

o

g

n

c

s

o

s

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 38/136

Table  2.12  E N G I N E E R I N G P R O P E R T IE S   O F  C O M P A C T E D S O I L S , C L A S S I F IE D A C C O R D I N G   T O T H E  E X T E N D E D C A

  A F T E R   CP2001:  B S I 1957

Casagrande

group-

symbol

G W

GC

G U

GP

GF

S W

S C

S U

SP

Valué

  as a

  road

foundation when

not subject  tofrost

action

E x c e l l e n t

Exce l l en t

Good

Good

 to

  excellent

Good  to  excel lent

E x c e l l e n t

  to

  good

E x c e l l e n t  to  good

Fair

Fair to

 good

Potential frost

action

Non to v ery s l ight

M é d i u m

N o n e

 on to  very

slight

S l ight

  to

  médium

N o n e

  to

  v e r y

 

_t

 •

  i

4.

c

  i gh t

'- 'o

M é d i u m

N o n e  to

  very

i  •   i  

slight

None

 to

  very

slight

Shrinkage or

swelling

properties

Almos t none

V e r y  s l ight

Almos t none

Almos t  n o n e

A l m os t n on e

to  slight

A l m os t n on e

V e r y  s l igh t

A l m os t n on e

Almost  n o n e

Drainage

characteristics

Excel l en t

Prac t i ca l ly

i m p e r v i ou s

E x c e l l e n t

Excel lent

F a i r

  to

  pract ical ly

i m p e r v i ou s

Exce l l en t

P rac t i ca l ly

i m p e r v i o u s

Exce l l en t

Excel lent

Bulk

  dry

 

at  opt imu

compactio

Ib .

 /cu .

  f t

voids

  rati

> 1 2 5

< ? < 0 . 3 5

> 1 3 0

e<0 30

e<0 50

e<0 45

> 1 2 0

e < 0.40

> 1 2 0

f\

 r\ <Ü

>125

e < 0 . 3 5

>100

 

0.70

>100

e

 <  0.70

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 39/136

SF

M L

CL

OL

M I

CI

M H

CH

OH

Pt

Note .

L -

I-

H

 -

Fair

  to good

Fair to poor

Fair

  to poor

Poor

Fair to

  poor

Fair to

  poor

Poor

Poor

Poor to very póor

Very  poor

Extremely

  poor

Group  symbols as for  Unif ied  system

low plastici ty ,

 P I

  less than

  35

intermedíate  plastici ty , PI

 35-50%

high  plastici ty ,

 P I

  greater than

  50

Slight  to  high

Médium   to  very

high

Médium   to  high

Médium   to  high

Médium

Slight

Slight

Médium   to  high

Very slight

Very slight

Slight

except

  fo r

  plactici ty ranges:

b

Almost  n o n e

to   médium

Slight

  to

médium

Médium

Médium

  to

  •

  v

high

Médium   to

1 1

high

High

High

High

High

High

Very

  high

Fair

 to  practically

impervious

Fair to  poor

Practically

impervious

Poor

Fair to

  poor

Fair to practically

impervious

Fair to practically

impervious

Poor

Practically

imperv ious

Practially

impervious

Fair to  poor

-

  > 105

e

 

0.60

  i o o

e<0.70

  i o o

e<0.70

>90

e  0.90

  i o o

e  0.70

>95

0.80

>95

0.80

>  1 00

>90

e < 0 . 9 0

  i o o

e

  0.70

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 40/136

  • • . . . .

Table

  2.13

  A A S H T O S O I L C L A S S I F IC A T I O N S Y S T E M   M

  145)

,-,   , ,  . ~

  Granular materials

General

  classmcatwn

  ,->cn/

 

•   T C   \

  or

  less passing  /jum

4-7   4-3 4-2

Group  classification

A l a A l b  4-2-4 4-2-5 4-2-6 4-2-7

Sieve analysis:

Percentage passing:

2 m m 5 0 m a x — — — — — —

425/rni 30 max 50 max 51 min — — — —

75/¿m  15  max 25 max 10 max 35 max 35 max 35 max 35 max

Charater ist ics of

f rac t ion  passing

425/im:

Liquid

  l imit  — — 40 max 41 min 40 max 41 min

Plast ici ty índex 6 max  NP 10 max 10 max

  11

  min

  11

  min

Group  índex

-

  typical valúes  0 0

  0 4 max

Usual

  types  of

  Stone

  f r agment s  Fine  Silty  or  clayey

  gravel

  and  sarid

significant

  gravel

  and

  sand

  s a n d -

 

c on s t i t u e n t  materials

. • .

.

Genera l r a t ing  as

subgrade Excel l en t

  to

  good

 

Si

(More

A-4

 

36 min

40 max

10

 max

8 max

Silty 

Fa

* Plast ici ty

  Índex

  of  A -7 -5 s u b g r ou p  is e q u a l  to or  less  t h a n  LL  m i n u s  30 .  Plast ici ty índex  of A -7 -6 s u b g r ou p i s  g rea te r  t h a n  LL  m i n u s  30 .

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 41/136

SOIL

 CLASSIFICATION

  SYSTEMS  35

Table   2 14

  D E S C R I P T I O N S  O F  S O I L T Y P E S  I N T H E  S H T O S O I L C L S S I F I C T I O N

  S Y S T E M

Classification

  of

 materials

 in the

 v arious groups applies

 only to the

 fract ion passing

 th e

75mm  sieve. The proportions  of boulder and cobb le-sized particles should be  recorded

separately

  and any  specification

  regarding

  the use of  A - l ,  A-2 or

  A-3 materials

 in

construction

  should

  state

 whether

  boulders are

 permitted.

  ranular

 materials

Silty  clay

  materials

Group  A-l. Typical ly

  a  well

  graded

mixture o f

  stone fragments

  or

gravel, coarse  to fine  sand  and a

nonplas t ic  or

  feebly

  plástic

  soil

binder .

  However ,

  this g roup

  also

includes  stone fragments , gravel ,

coarse

  sand, volcanic cinders, etc.

wi t hou t

  soil binder.

Su b g rou p

  A-l-a  is

  p re d ominan t l y

stone

  fragments

  o r

  gravel ,

  with

  or

w i t h o u t

  binder.

Subgroup A-l -b

  is

  predominant ly

coarse sand  with or w i tho ut b inder .

Group

  A-3. Ty pically fine beach  sand

or

  desert sand without

  silty  or

clayey   fines or with a very  small

proport ion of nonplast ic s i l t . The

group   also  includes stream-deposi-

ted mixtures of poorly graded fine

sand with limi ted amoun ts

 of

 coarse

sand

  and  gravel.

Group

 A-2. Includes  a w ide varie ty of

 granular materials which are bor-

derline between the granular A-l

and A-3 groups and the  silty-clay

materials

  of

 groups

  A-4 to

  A-7.

  It

includes

 al l

 m aterials with

 not

  more

than

  35 fines

 which

 are too

  plás-

tic or  have  too  m a n y  fines to be

classified  as A-l or

  A-3.

Subgroups  A-2-4  and  A-2-5 include

various granular materials whose

finer

  particles  (0.425mm down)

have íhe characteristics

  of the A-4

and A-5

 groups , respectively.

Subgroups  A-2-6  and

  A-2-7

  are simi-

lar to

  those

  described above but

who se finer particles have the ch ar-

acteristics  of A-6 and A-7

 groups,

respectively.

G rou p A-4. Typically   a  nonplast ic  or

modera te ly  plástic silty soil  usual ly

with  a high

  percentage passing

  th e

0.075mm sieve. The group also in-

cludes

  mixtures

  of

  silty

  fine

  sands

and  silty  gravelly sands.

Group A-5. Similar to material de-

scribed

 under group

 A -4

 except tha t

it  is  usually diatomaceous  or

micaceous

  and may be

  elastic

  as

indicated

  by the

  high l iquid

  limit.

Gr ou p A-6. Typical ly

  a

  plástic clay

soil having   a  high  percentage  pas-

sing  th e

  0.075mm sieve. Also m ix-

tures  of clayey  soil  with sand  and

fine gravel .

  Materials

  in

  this group

have a high volume change between

wet

  and dry states.

Group A-7. Similar

  to

  material

  de-

scribed

 under

 group

 A-6

 except tha t

it  has the

  high liquid limit

  charac-

teristic

  of group  A-5 and may be

elastic

  as

  well

  as

  subject

  ío

  high

volume change.

Subgroup A-7-5 materials have m od-

érate  plasticity Índices  in relation  to

the liquid limits and may be

 highly

elastic

 as

  well

 as

 subject

  to

  volume

change.

Subgroup

  A-7-6  materials

  have high

plasticity

  Índices in relation to the

liquid limits

  and are

  subject

  to

extremely  high volume change.

Gro up A-8. Includes highly organ ic

materials.  Classification

  of  these

materials  is based  on  visual inspec-

tion

 and is not

 related

 to grading  or

plasticity.

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 42/136

36

  C O R R E L A T I O N S

  O F

  SOIL PROPERTIES

Table  2 15  C O M P R I S O N

  O F

  S O IL G R O U P

  I N

  U N I F I E D S Y S T E M

Group

 

G-F

GF

S

S-F

SF

FG

FS

F

Pt

  S  system

Subgroup

  Subdivisión

GW

GP

G-M

G-C

GM

GC

sw

SP

S-M

S-C

SM

SC

MG

CG

MS

CS

M

C

GPu

GPg

GW M

GPM

GWC

GPC

SP u

SPg

SW M

SP M

SW C

SPC

MLG,

  MIG

MHG, MVG,

M EG

CLG,  CIG

CHG, CVG,

CEG

MLS, MIS,

MHS, MVS,

M ES

CLS,

  CIS

CHS, CVS, CES

M L,  M I

M H ,

  MV, ME

CL,

 CI

CH, CV, CE

Comparable  soil  group

in  n i f i e d  system

Most  probable

  Possible

GW

GP

GP

GW-GM

GP-GM

GW-GC

GP-GC

GM

GC

SW

SP

SP

SW-SM

SP-SM

SW-SC

SP-SC

SM

SC

ML, OL (3 )

M H ,

  OH

(3 >

CL'

4

'

CH

(4)

M L, OL

(3)

M H , OH'

3

'

CL (4 >

CH'4'

ML, OL

(3 )

M H , O H (3 )

CL'4'

CH'

4

'

Pt

SW'2'

Sp 2

GW'1'

  SP'

2)  SW'1 2'

SW-SM'2'

GW-GM'1', SP-SM'2',

SW-SM'

1

 

2

'

SW-SC'2'

GW-GC'1',

 SP-SC'

2

',

SW-SC'1 2'

SM'2'

SC'

2

'

SW'1'

SW-SM'1'

SW-SC'1'

GM<

2)

, SM'2 5'

GC'2', SC'2 5'

SM'5'

SC'5'

-

Notes:

(1 ) These p ossibilities

  arise

 because soil that is udged to be gap-graded using the BS system may

 satisfy

  the criterion

Cc=(D30):z/(D10xí)60) =

 between

 1 and 3 used in the  Unified

  system.

(2) These possibilities

 arise

 because

  of diflerences in the

  definitions

  of

 sand

  and gravel

  sizes

  between the BS and

Unified

  systems.

(3)

 Soil

  will

  be classified into these

 groups

  if the BS symbol is

 suffíxed

  with the letter

 'O'.

(4 ) Soil will b e

  classified into these

 groups if it

 plots above

 the A

 line, even

 if the BS

 symbol

 is suffixed

  with

 the

 letter

'O'.  However, this will rarely happen.

(5) These possibilities arise because  fine soiis  are  defined  as havin g at least 50 fines (< 4 25¿ im) in the Unified

system

  bu t

  having

  at  least  35 fines in the BS

 system.

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 43/136

SOIL  CLASSIFICAT ION SYSTEMS 37

Table  2 16   C O M P A R I S O N

  O F

  S O I L

  G R O U P I N

  A A S H T O

  S Y S T E M

Soil

  group

in

Umfied ASTM

systems

GW

GP

Most

probable

A - l - a

A - l - a

Comparable

  soil  groups

in  SHTO  system

Possible

A - l - b

Possible

  but

improbable

A-2-4, A-2-5,

A-2-6,

  A-2-7

A - 3 A-2-4,

A-2-5, A-2-6,

A - 2 - 7

GM

GC

SW

SP

SM

se

M L

CL

OL

MH

CH

OH

Pt

A-l-b, A-2-4,

A-2-5,

 A-2-7

A-2-6,

 A-2-7

A- l -b

A - 3

A - l - b

A-l-b, A-2-4,

A-2-5,

 A-2-7

A-2-6, A-2-7

A - 4

A-5

A - 6

A-7-6

A - 4

A -5

A-7-5, A-5

A - 7 - 6

A-7-5, A-5

A - 2 - 6

A-2-4, A-6

A - l - a

A-l -a

A-2-6,

 A-4 ,

A -5

A-2-4, A-6,

A-4, A-7-6

A-6, A-7-5,

A -4

A-6, A-7-5,

A - 7 - 6

A - 7 - 5

A-4, A -5, A-6,

A-7-5,  A-7-6,

A- l - a

A - 4

A-7-6,

A - 7 - 5

A-3, A-2-4,

A-2-5, A-2-6,

A - 2 - 7

A-2-4,

  A-2-5,

A-2-6, A-2-7

A - 6

A-7-5,

A-7-6,  A- l - a

A-7-5

A-7-6

A-7-6

When applying the formula, the following rules are used:

  1 )

  When  th e  calculated group Índex is negative,  it is reported  as

zero.

  2)  It is reported  to the  nearest

  whole

  number .

  3)

  When calculating the group

  índex

  of subgroups A-2-6 and

A-2-7,  only

  the

  plasticity  índex  port ion

  of the

  formula should

be  used.

The g roup Índex is usually show n in brackets  after  the group symbol.

Because of the criteria

  that

  define  subgroups A-l-a , A-l-b , A-2-4,

A-2-5

  and

  group

  A 3,

  their group índex  will  always

  be

  zero,

  so the

group índex

  is

  usually omitted  from

  th e  classification.

Originally  the group

  índex

 was  used directly  to

 obtain

 pavement

thickness designs, using th e

  group

 índex method but  this approach

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 44/136

38

  CO RRE L A T I O N S OF SOIL  PROPERTIES

Table

  2 1 7   C O M P A R I S O N   OF  S O I L   GROUPS  F R O M   TH E  A A S H T O   TO THE  U N I F I E D S Y S T E M S

Soil group

in

  S TO

system

A l a

A l b

A-3

A-2-4

A-2-5

A-2-6

A 2 7

A-4

A-5

A-6

A-7-5

A-7-6

Comparable   soil

  groups

in

  Unified ASTM   systems

Mos t

probable

G W ,  G P

S W , S P , G M , S M

SP

G M, SM

G M ,  SM

GC, SC

G M , G C , S M , S C

ML, OL

O H , M H , M L,

OL

CL

O H , M H

CH , CL

Possible

SW ,  SP

GP

G C, SC

G M , S M

CL, SM, SC

ML, OL, SC

M L , O L , C H

ML, OL, SC

Possible but

improbable

G M , S M

SW ,

  G P

G W ,

 G P, SW, SP

G W , G P , S W , S P

G W ,

 G P, SW, SP

G W , G P , S W , S P

G M ,

  G C

SM ,

  G M

G C, G M , SM

G M , S M , G C , S C

O H ,

  M H , G C ,

G M , SM

has now   been

  superseded

  and  group índex valúes are used

  only

  as a

guide.

Numerous other methods of  classification  have been proposed .

Classifícations aimed  specifically  at

  identifying

  expansivo  soils and

frost

  susceptible soils are

  given

  in Chapters 8 and 9.

2.2  CORRELATION   OF THE

 UNIFIED

BS AND  AASHTO

SYSTEMS

A correlation between

 the BS and

  U nified/ASTM systems

 is

 given

 in

Table

  2.15. Because

  the two

  systems

  share a common

  origin,

  it is

possible to correlate the soil groups with a reasonable degree of

confidence. H owever,  minor

  differences

  beíween  the  systems  mean

that  the possibility of ambiguity can arise, as explained  in  th e

accompanying

  notes.  The  totally

  different

  basis  of the  A A S H T O

system means that there

 is no

  direct equivalence between

  it and the

groups of the

 U nified

  system . This is indi cate d in Tables 2.16 and 2.17

which show correlations betw een the U nifíed  and AA SH TO systems.

A  full comparison of the U nified, AASHTO and now-superseded U S

Federal A viation Agency FA A ) system s is given by Liu 1970). The

FAA  soil  classification system

  is ,

  like

  the

  AASH TO sys tem,

  an

interpretive

  one in

  that soil

  is

  divided into

  a

  number

  of

  classes

according  to  their suitability  as  runway subgrades. H owever ,  the

FA A now uses the U nified system.

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 45/136

Chapter   3

  NSITY

3 1

  NAT URA L DENSITY

There  are two   measures of soil density; bulk density which mcludes

th e mass

  of

 both  soil

  and

  pore water

and dry

  density which ignores

th e

 efíect

  of the

  contained water.

 The

  relationship betw een bu lk

 and

dry

  densities

  is:

where  p¿  is the dry   density

p

  is the

  bulk densiíy

and

  wn

  is the moisture  contení .

Bulk   density

  is

  usually

  of

  prima ry consideration wh ere density

valúes are used directly; to calcúlate earth pressures b ehin d retainin g

walls

 or

  basements

fo r

 exam ple since

 it is the

 com bined mass

 of

 soil

and

  water  that  determines  th e   pressure.

Probably

  a

 more common

 u se of

 density

 is as a

 measure

 of the

 state

of

  packing

  of

  soil particles and

fo r  this dry

  density

  is a

  m o r e

appropriate measure. Where density measurements are used in this

way a  high   dry   density   is  usual ly sought .

  Al though

  high density  is

not

of  itself an   important characteristic it   implies that

  oíher

properties

  of the

  soil

  will

 be

  desirable

  from

  th e

  engineering poiní

  of

view.

  A n   increase  in   soil packing   is   accompanied   by an   increase  in

sírength a decrease in

 com pressibility

 and a decrease in perm eability

which in

  t u rn

can

  lead

  to

  reduced

  shrinkage/swell

  problems.

Typical valúes

 of

 natu ral density

 are

 given

 fo r

 various

 soil

 types

 in

Table  3.1.

 T h r o ugho u í  the chapter densi íy valúes ar e given  in kg /m 3 ;

to

  convert to unit weighís in   kN/m

3

  íhe mulíiplying factor is

0.009806.

For

  g ranu la r

  soils the

  relative  densi íy

  is  often

  considered

  to be

39

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 46/136

40

  C O R R E L A T I O N S  OF SOIL PROPERTIES

T a b J e   3 1   T Y P I C L V L Ú E S  O F  N T U R L D E N S I T Y

Natural

  density

  (kg/m

3

)

Material

Sands  and  gravéis: very

 loóse

loóse

médium dense

dense

very

  dense

Poorly-graded sands

Well-graded sands

Well-graded   sand/gravel mi x t u r e s

Clays:

  unconsol idated  mu d s

soft,

  open-síructured

typical,

  normally

  consolidaíed

boulder clays (overconsol idated)

Red tropical soils

Bulk  density

1700 1800

1800 1900

1900 2100

2000 2200

2200 2300

1700 1900

1800 2300

1900 2300

1600 1700

1700 1900

1800 2200

2000 2400

1700 2100

Dry  density

1300 1400

1400 1500

1500 1800

1700 2000

2000 2200

1300 1500

1400 2200

1500 2200

900 1100

1100 1400

1300 1900

1700 2200

1300 1800

1 Assumes

  saturated

  or  nearly  saturated condit ions.

more important than the absolute density. This is defíned  as:

relative density

 =

 

dr

—   •

m x

  m n

  Par

 Par,

where

 p¿, p

dmax

 and  p

d m i n

 a re the dry den sities in the fíeld and at the

densest and loosest síates of com paction

and

  e,

 e

max

 and e

m

-

m

 are the

 corresponding void s ratios, respectively.

Because

 of the  difficulty  of

 measuring

 fíeld

 densities

  in

 sands

  and

gravéis, valúes are usually estimaíed  from  standard peneíration test

results.

  A

  classifícation

  of

  relative  densiíy

  and SPT

  iV-values,

although

 widely used, has

  received

  repeated criticism.

Work by

 Gibbs

  and

  Holtz

  (1957) indicated that the relationship

beíween  relative density and SPT  valúes depends  on the  character-

istics  of sand, w hether it is dry or  saturated,  and on íhe  overburden

pressure. This

  led to the

  suggestion that correction factors

  (C

N

) for

overburden pressure should be applied in the determination of

relative density  and for f oun dation calculations.

Recommendations,  from  a

  num b e r

 o f

 sources

 are

  given

 in

  Table

3.2. C orrected  N  valúes  (A

r1

)

  are

  obtained using

  th e  formula:

  =

 CNJV

For

  clarifícation

  purposes ií should be noted that alího ugh the

interpretador

of

 Terzaghi

 and

  Peck's (1948) classifícation, which

 led

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 47/136

D E N S IT Y 41

  ble

  3 .2

  S U M M R Y

  O F

  P U B L I S H E D C O R R E C T I O N F C T O R S

D  f

Reference

~  f  „  ,

  orrection

 factor

  C N )

Units

  of

overburden

  l

  ¿OÍ4

K

Gibbs  and  Holtz 1957)

[equation  by  Teng 1962]

Peck  and  Bazaraa 1969)

Peck,  Hanson and

Thornburn 1974)

 ee 1976)

Tokimatsu   and

Yoshimi

  1983)

Q=

 

10  <

4

3 .25  0.5a;

2 0

C

N

 = l-1.251og10cr;

1.7

^

0 7  a v

psi

ksf

kg/cm

2

  or tsf

kg /cm 2   or tsf

n 2   or tsf

Liao   and  W h i íma n  1986)

kg/cm

2

  or tsf

Skempton

  1986)

C

N

=

1.7

0

For fine sands

of

  médium

  D r

For  dense,

coarse  sands

when  normal ly

Consolidated

For  overconsolidated

fine sands

kg/cm2

 or tsf

to this particula r correction,

  originated with

 Gibbs  and Ho ltz 1957),

the actual equation for the correction f acto r can be attributed to T eng

  1962) .

A l t hough  SPT correction fac tors we re discussed at some length by

Liao and W hitm an 1986), the

 deímitive

 work on the

  subject

 is that of

Skem pton 1986) . Ske m pton points

 ou í

  tha t

  in

 carrying

 out the SP T

test  the energy delivered  to the sampler,  and  therefore  the

 blow

 count

obíained in any given sand deposit at a particular   effective  over-

burd en pressure, can still vary to a

 signifícan t

 extent depending on íhe

m e t h o d

  of  releasing  th e  h a m m e r ,  on the  type  of

  anvil

  and on the

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 48/136

4 2 C O R R E L A T I O N S  O F  SOIL  P R O P E R T I E S

  ble

  33  S U M M A R Y   OF ROD  E N E R G Y R A T I O S A F T E R S K E M P T O N   1986)

Hammer

Reléase

ER

ERJ60

Japan

China

USA

UK

D o n u t

D o n u t

Pilcon type

D o n u t

Safety

D o n u t

Pilcon Dando

oíd

  standard

T o mb i

2 turns of

 rope

Trip

M a n u a l

2 turns of rope

2

  turns

  of

  rope

Trip

2

 turns

  of

  rope

78

65

60

55

55

45

60

50

1.3

1.1

1.0

0.9

0.9

0 . 7 5

1.0

0.8

length  of  rods,  if  less  than  lOm.  H is  suggest ion  is  that  N  valúes

measured by any particular method should be normalised to some

standard

  rod energy

 raíio

  ER

T

),  and a

  valué

 of 60 is

 proposed.

 A

summary  of rod  energy ratios  for a  range  of h a m m e rs  and  reléase

methods  (wiíh

  ro d  lengths  >

  l O m )

 is

  given

  in

  Table  3.3 .  N  valúes

measured w iíh

 a

 k n o w n

 or

 est imated

 ER

T  valué

 can be

 normalised

 by

the conversión:

 

60

where  A  represents  other  correction factors detailed in Table 3.4.

Skempton (1986) síates  thaí  th e  Terzaghi-Peck limits  of blow

coun t

 for

 various grades

  of

 relative density,

 as

 enumerated

 by

 Gibbs

and  Holtz ,  appear  to be  good average valúes  for  normally con-

solidated  natural  sand deposits, provided that blow counts  are

corrected for ov erbu rden pressure

  N1

)  and norm alised to a 60 rod

energy ratio  C/Vj )^ ) ,

  se e

  Table 3.5.

Table  3.4  A P P R O X I M A T E   C O R R E C T I O N S   (A) TO  M E A S U R E D   N

V A L Ú E S A F T E R S K E M P T O N   1986)

R od

  lengíh:

  >10m

6-1 O m

4-6m

3^m

Standard sampler

U S

  sampler wiíhouí

  liners

Borehole diameíer:  65-115rnm

150mm

200mm

1.0

t.95

0.85

0.7

1.0

1.2

1.0

1 . 0 5

1 . 1 5

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 49/136

DENSITY 43

Table 3.5  T E R Z A G H I   A N D   P E C K S   C L A S S I F IC A T T O N * ( A F T E R

  S K E M P T O N

  1986)

D

t

0 15

0 35

0.5

0 65

0 85

1.0

  lassification

V e r y  loóse

Loóse

 é ium

Dense

Ver y dens e

NK-0.75

4

10

( 1 8 )

30

50

( 7 0 )

 

4 4

1 1

20

33

55

77

 Ní 60

3

g

15

25

42

58

 NiW

65

60

59

58

58

*CW=U; £Rr/

Another correction

  often

  applied to SP T valúe s wh en assessing the

relative density

  of silts and  fine

  sands below

  th e

  water table

  is :

with  no correction for N  v alúes of less tha n 15. This is based o n the

work of Terzaghi and it is suggested that, because of the  lo w

permeability

  of

  such soils , pore water pressures

  build up

  d u r i n g

driving  of the sam pler, resulting in increased  . /V -  valúes. This ap proach

is   rec o mmen d ed  by  Tom linson 1980)  in his  discussion  of the

application  of corrections  to SPT  JV-values.

However, corrections

  appear

 to be somew hat academic  in the

 l ig ht

of

  errors that can  arise  as a result of bad practice when carrying out

tests below the water table. In order to obtain

 meaningful

  resulís, the

borehole should be kept surcharged

  with

  wa ter a b o v e th e g ro u n d

wa ter

  level

  at  all  times. This is

  often

  neglected, both because it

requires

  a

  large  supply

  of

  water

  and

  simply

  out of

  ignorance.

Consequently, groundwater

  flows

  into  th e  borehole, loosening  th e

sand  and  resulting in

 artificially

  lo w

 JV -values.

 A lternatively, unrealis -

íically

  h igh N - value s

  may be  obíained  if  drillers drive  th e  casing

ah ead  of the borehole,  to  reduce th e  problem of sand washing up the

casing, thus compacting

  th e

  sand beneath.

3 2 COM PACTED DENSITY

3.2.1  Compaction

  test

  standards

T he  compacted density of a

  soil

  is not a

  f undam e nt a l

  p r o p e r t y  but

de pe nds  on íhe  m a n n e r  in which compaction is carried  o u t .

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 50/136

44

  C O R R E L A T I O N S   OF SOIL   P R O P E R T I E S

Compaction tests provide   a   s tandard m ethod of compact ion and a

standard

  a m o u n t

  of compacíive   efíbrí   to produce a soil density

against

  which

  site

  valúes

  can be   com pared .

Soil is usually contained in a

  mou ld

  and compacíed using a

h a m m e r  which

  is

  repeatedly raised

  and

  a l lowed

  to

  fall.   Typical

compact ion equ ipment

  is

  illustrated

  in

  Figure 3.1.

  To

  cont ro l

  íhe

compactive

 effbrt  -

  the energy

 per

 uni t volume

 - the

 dimensions  of

 the

m ould and ram m er are precisely specifíed   and the num be r of layers in

which

  com paction is carried   ou t ,   t he num ber of

 b lows

  per layer and

the   height   of

 fall

  of the ram m er are

 al l

  controlled. T here are basically

tw o

  s tandards   of  com pactive   eífort,   commonly   referred   to as

  stan-

dard

and heavy in the   U .K.   In the   U.S. these   are   referred   to as

 s tandard and

  modified

and are

 detailed

 in

 A STM-D698/AA SHTO

T-99

  and

  ASTM-D   1557/AASHTO  T-180,   respecíively.   Most   tests

use

  a   special mould   of  abou t   1 litre   capacity   but for   coarse-grained

soiís  the   larger California Bearing Ratio (CBR) mould   is

 used.

 Slighí

  s

oll r

  ould

 

se

Rammer

1

V

 

es

Figure 3 1   Typical  compaction

  mould

  and hand

  rammer used   incompaction   tests

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 51/136

D E N S IT Y

  45

Table

 3 6

  C O M P A R I S O N

  O F  E Q U I P M E N T  SIZES,   N U M B E R  O F

 R A M M E R

 B L O W S  A ND

  N U M B E R

O F

  L A Y E R S

  O F

 SOIL  USED

  IN   V A R I O U S

  C O M P A C T I O N T ES TS . D I M E N S I O N S

  d , f A N D h A N D

WEIGHT W ARE SHOWN IN  FIGURE  3.1

Test

  designarían

BS   1377:1975

Test

  12

Test  12   (modified)

Test

  13

Test 13 (m odified )

AASHTO

T145

TI

 80

TI 80 (m odified)

Mould

volume

d

1.0

2.32

1.0

2.32

0.94

0.94

2.32

Mould

día d

( m m )

105

152

105

152

101.5

101.5

152

Mould

ht h

( mm)

1 1 5 . 5

127

1 1 5 . 5

127

1 1 6 . 4

116.4

127

Rammer

wt W

  k g )

2.5

2.5

4.5

4.5

2.50

4.54

4.54

R a m m e r

  ll

m m )

300

300

45 0

450

304.8

457.2

457.2

Number

of

layers

3

3

5

5

3

5

5

Blows

per

layer

27

62

27

62

25

25

56

The modified   forras   of the test use a CBR mould and are   su i t ab le   fo r   coarser

  soils.

differences  exist between British   and   Ame r i can

  S tandards ,

  as in-

dicated

  in

 Table  3.6,   which   g ives mould

  and

  rammer s izes

  for the

var ious

  tests.

With sands a nd   gravéis,   th e   ramm er tends   to  displace   th e   mater ia l

ra the r

  t han

  compací i t so that the densities obtained in the

compaction test

 a re

 unr ealisíically  low when  co mpa red wi th wha t

 ca n

be achieved on   site.   To   overeóme this,   a   v ibra t ing   h am m e r   can be

used

  instead

  of the

  r am m er . V ib r a t io n

  is

  typically carried out

  for 60

seconds

  per

  layer

  und e r   a

  constant

  forcé   o f

 30 40kg.

3.2.2  Typical

  compacíed densities

The  com pacted den sity achieved  for a soil depends  on the soil

 type ,

 its

mois íure

  contení

  and the compactive   effort   used. Table  3.7 shows

typical valúes of máximum

  d ry

  densi ty (MDD) and optimum

moisture coníení

  fo r

  soil classes, using

  íh e

  Unified   classifícation

sysíem,for soils

 compacíed

 to A A SH TO  or BS s tandard

 compaction:

A A S H T O

  T99

  (5.51b

  r a m m e r m e t h o d )

  or BS

  1377:1975 Test

  12

(2.5kg  ram m er m ethod) . The valúes given are b ased on typical valúes

given   by   Krebs  and   Walker (1971)   and the   U.S. A rm y Engineer

W a íe rways

  Exper iment

  S ta t ion   (1960),

  and on the

  a u tho r s

ow n

experience. A similar set of valúes but r elated ío íhe A A SHT O soil

classifícaíion system, is  given   in  Table  3.8. These   a re  based  on íhe

above valúes

 and the

 re la t ionship between

 the

 A A SH TO

  and

 U nified

soil classifícation   systems,   and on va lúes sugge sted by G regg (1960).

I t should be noted that clean sands   often   show no   clear   o p t imum

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 52/136

4 6 CO RRELA TI O N S  OF SOIL  PRO PERTI ES

Table

 3 7

  T Y P I C A L C O M P A C T E D D E N S I T I E S

 A N D

  O P T I M U M M O I S T U R E   C O N T E N T S

  F O R

 S O I L

TYPES

  USING

  THE UNIFIED CLASSIFICATION  SYSTEM

Soil

 description

Gravel/sand  mixtures:

well-graded, clean

poorly-graded, clean

well-graded,  small silí

  content

well-graded, sm all clay co ntent

Sands

  and

  sandy

  soils:

well-graded, clean

poorly-graded, small  silt content

well-graded, small silt contení

well-graded, small clay content

Fine-grained soils  o f l o w p last icity:

silís

clays

organic silís

Fine-grained soils  of high plasticity:

silts

clays

organic clays

Class

GW

GP

G M

GC

SW

SP

SM

se

M L

CL

OL

MH

CH

OH

M D D

standard

compaction

(kg/m

3

)

2000 2150

1850-2000

1900-2150

1850-2000

1750-2100

1600-1900

1750-2000

1700-2000

1500-1900

1500-1900

1300-1600

1100-1500

1300-1700

1050-1600

Optimum

moisture

content

( )

11-8

14-11

12-8

14-9

16-9

21-12

16-11

19-11

24-12

24-12

33-21

40-24

36-19

45-21

Table  3 8   T Y P I C A L C O M P A C T E D D E N S IT IE S   AND  O P T IM U M M O I S T U R E C O N T E N T S   FOR S O I L

TYPES USING THE AASHTO SOIL CLASSIFICATION SYSTEM

Soil description

Well-graded  gravel/sand  mixtures

Silty  or

  clayey gravel

  and

  sand

Poorly-graded sands

Silíy

  sands

  an d

  gravéis

 of

  lo w

 plasíicity

Elastic

 silts diatomaceous  or micaceous

Plástic

  clay, sandy clay

Highly  plasíic  or  elastic clay

Class

A -l

A-2

A-3

A-4

A-5

A-6

A-7

BSIAASHTO

Max dry

densiíy

(kg/m

3

)

1850-2150  •

1750-2150

1600-1900

1500-2000

1350-1600

1500-1900

1300-1850

compaction

  p í moisture

contení

( )

5-15

9-18

5-12

10-20

20-35

10-30

15-35

moisture content and that peak densiíy may be achieved when íhe

sand

  is

  completely dry.

Work carried  out by Morin  and Todor (1977) on red tropical soils

;orrelations betvveen the opt imurn

n

 África

  and  Sou th Am erica gave

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 53/136

DE NS I T Y 47

 

4

Plástic limit -

(a)

 

Opíimum

 moisture

 contení -

(b)

Figure 3.2 Relationships of optimum moisíure contení  wiíh

  plástic

  limií and with

  áx u

dr y

  density

  for red

  tropical soils

  after

  Morin

  and Todor,

  1977)

mois ture conten í

  and

  plasíic limií

  and

  be íween opí imum mois íure

conten í  a nd   m á x i m u m  d ry   densi íy as indicated   in  Figu re 3.2. M orin

and  odor also produced a  relaíionship  beíween opíimum mo isíure

coníent

  and íhe

  perceníage

  of

 paríicles

  f íner than   2¿um  buí

  íhis

showed   too   wide  a   scal ter  to be of use and has noí   been included.

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 54/136

  8  CORR ELATIONS OF SOIL PROPER TIES

 

1 55  

6 8 10 12 U   16  18 20 22 24 26 28 30 32   34   36 38 40

Moisture

 contení - of dry

  w ight

Figure  3.3  Typical  moisture-densüy curves  modified

  after

  Woods  and Liíehiser, 1938

and   Joslin,  1959)

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 55/136

DENSITY  49

3 3

  Typical  moisture density curves

Work

  carried  out by

 W oods

  and

  Litehiser 1938)

 in

 Ohio  indicated

tha t ,  fo r  Ohio soils, nearly  al l  m oisture-d ensi ty curves

  have

  a

characteristic   shape.  On the  basis  of  o ver  10,000 tests  26  typical

curves

  were  produced,

  as

  shown

  in

  Figure 3.3.

  Use of the

  curves

allows the m áxim um dry densi ty and op t imum m oisture content to be

estimated  f rom a single po int  on the curve, greatly reducing time  and

eífort.

  I t  should  be  noted that  the  curves  are  plots  of bulk  densi ty ,

instead  of the more usual  dry  density, against moisture content.  The

inset

  table gives íhe corresponding m áx im um dry density and

optimum moisture content

  for

  each curve. When used with rapid

mois ture

  content determinations,

  these

  curves provide quick and

fairly  accurate estimates. They have been found to be applicable in

many

  áreas though minor

  modifications

  have  sometimes  been

necessary. Accuracy

  is

 improved

  if the

  moisture content

  of the

  test

specimen

 is

 cióse

 to

  optimum

  and

 preferably

 o n the dry

  rather

  than

the wet side. The curves are not  valid  for unusual materials such as

uniformly graded  sand, highly micaceous  soils, diatomaceou s earth,

volcanic

 soils

 or

 soils

  in

 which

 the specific

 gravity

 of the

  solids

 diífers

greatly  from  2.67.

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 56/136

Chapter

 

PERMEABILITY

The   coefncient   of   permeabil i ty   is   defíned   as the   quan t i t y   of flow

through uni t área o f  soil un de r  a  unit pressure g radient. T his assum es

a   l inear reíationship between   the   pressure gradient   and   quan t i t y  o f

f low, q,

  which

  is the

  basis

  fo r

  Darcy s

  l a w :

 4J

where  k  is the   coefficient   of  perm eabií i ty

A

  is the

  área

  of flow

and  i  is the hyd raulic pressure gradient.

If  the vo lume of f low  q is divided by the  área A

 then

 the veloc ity of flow

v   i s obíained and Equa t ion (4.1) can be w ri t ten :

*-?

i

(4.2)

From  this,

  it can be

  seen   thaí

  th e  c oefficient   of

 perm eabil i ty

  can be

thought

  of as the

  veíociíy

  of flow

  that results   f rom

  a

  unit pressure

gradient. Since pressure is usually measured as head o f w ater an d

pressure

  is

  loss

  o f

  head

  per

  unit   distance,  i  typically

  has the

dimensions  m/m  so   thaí

  k

  has the units of veíociíy; typically  m/s

Ho wev er, i í sho uld be remem bered that área A is the to tal

 área

 of soil

being considered

  but

  parí

  o f

  íhis

  área

  will

  be

  occupied

  by solid

partióles   so íhe

 área

  of flow  wilí   be  less.  This means  íhaí veíociíy u is

only a no íional valué, used for calculaí ing vo lum es of f low, and íhe

true average veíociíy   of flow   u   will  be  greater:

l

  e

n

where

 e

 an d

 n

 are the

 vo ids rat io

 and

 porosi ty

 of íhe

 so il, respectively.

T he

  permeabil i ty

  o f a

  soil

  is

  s írongly   iníluenced

  by its

  mac r o-

50

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 57/136

P E R M E A B I L I T Y  51

s t r uc t u r e :  clays  coníaining  físsures or  fine  bands  of sand  will have

permeabilities  which are many times that of the clay material  itself.

Also,

 since

  flow

  tends

  to  follow  th e

  line

 of

  least resisíance, stratiñ ed

soils

  often

  have horizontal permeabilit ies which are  m a n y  times  the

vertical permeability   and the  overall perm eabil ity

  will

  be  approxi-

mately equal to the  horizontal permeability.

 Because

 of the sm all size

of labor atory specimens

  and the w ay they are

 obtained

  and

  prepared,

large-scale

  features are absent and test results do not

  give

  a  t rue

indication

 of fíeld

 valúes

 in

 soils w ith

 a

 pronounced

 macro-structure.

Moreover,

 laboratory tests usually constrain w ater

  to flow

 vertically

th rough

  the specimen whereas the horizontal permeability

  m ay

  be

much greater ,  and  henee  of

  overriding

  importance  so far as

  site

conditions

  are

  concerned.  Field  tests overeóme

  these  shortcoming,

bu t , since  íhe pattern  of w a ter flow  from  a well can

  only

  be guessed,

iníerpretation   of íhe  test results is

 diííícuíí

  and  uncerta in. Thus, one

set of

 problems

  is  exchanged  fo r

 another

4 1  TYPICAL  VALÚES

The   íypical  range  of  valúes encounfered  is  indicaíed  by

  Table

  4.1,

which  is based  on

  informalion

  originally  presented  by  Casagrande

and

  Fad um 1940).  Superimposed

 on íhe

 charí

 are

  íypical  valúes

 fo r

compacíed soils,

  classifíed  by íhe U nifíed

  sysíem. These

 re late to

 soils

compacíed using

  the heavy

  compaction

  slandard:

 AASHTO

  T-180

  lOlb  r a mmer )  or BS  1377:1975, Tesí  13  4.5kg rammer). Typical

permeabiliíy  valúes for  highw ay matería ls , suggested  by Krebs and

Walker 1971),

 are

 given

 in

 Table 4.2. A ddiíional

 informaíion on the

influence  of  voids  ratio  in  differení  soil types  is  given  by Mitcheíl

 1976).

4 2  PERMEABILITY AND GRADING

A

  theoreíical

  equaíion relaíing the  coefíícient  of permeability ío  íh e

soil  and permeaní properíies was

 developed

  by

 Táylor  1948).  This

gave:

  e 

wfaere

  k

  is the

  coefficient

  of perme ability

D

s  is

  some  effective  paríicle diameíer

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 58/136

Table

  4 .1

  T Y P I C A L

  P E R M E A B I L IT Y V A L Ú E S

  F O R

 S O I L S

Coefficient of

permeab i l i ty

  lo g  scale)

Drainage

c o n d i t i o n s :

Typical soil

g roups:

10

  II  0-10 1Q 9

 

1 8 io - 7

  i .

10

6

I

i o 5

I

m /s

109

10

10

 7

1 0

10

 

1 0

cm/s

10

 1

f t / s

io-

3

i

10

  2

 

9

10 10

 6

10 ~ 5

10

 

10

MH

MC-CL

Practically

i mp e r me a b l e

Very low

L ow

M é d i u m

Pract ica l ly

im per m eab l e

Poor

G C —   •  G M —  

CH SC

  S M

SM-SC

SW-K

SP->

Soil types:

H o m o g en eo u s

c lays

  be low

the zone of

w e a t h e r i n g

Silts,

  fine  sands,  sil ty  sands ,

glacial  t i l l , strat i fied  c lays

Cl ean

  sand

a n d

  grave l

Fissured and  weathered  clays  and  c lays

modified  by the  eflects  of vege ta t ion

Note:

  th e

  rrow  dj cent

  lo

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 59/136

P E R M E A B I L I T Y

  53

 

ble

  4 2

  T Y P I C A L   P E R M E A B I L I T Y V A L Ú E S

  F O R   H I G H W A Y

  M A T E R I A L S

Material

  Permeability

  (m/s)

niformly graded coarse aggregate 0 .4-4

  x 10 ~

3

Well-graded  aggregate  w i t h o u t  fines  4x 10~3-4x  1 0 ~

5

Concrete sand,

  lo w

 dust content

  7x 10~

4

-7x

  1 0 ~

6

Concrete

 sand,  high  dus t  c on te nt 7 x l O ~6 - 7 x l O ~ 8

Silty

  an d

  clayey

 sands

  10~7-10~9

Compactad  silí  7x  10 8-7x  1 0 ~1 0

Compacted  clay  less  tha n  1 0 ~9

Bi t u mi nou s  concrete*

  4x

 10~5-4x  10 ~8

Portland  cemen t concr ete less th an  1 0 ~1 0

 

* New   pavements ; va lúes  as  lo w  as

  1 0 ~1 0

  have been  reported  fo r  sealed,

  traf l íc-compacted

  h ig hw a y p a v e m e n t .

y   is the  uni t we igh t or  weight density  of the  permeant

\i

  is the

  viscosity

 of the

  permeant

e  is the void s ratio

and   c  is a  shape  factor.

In soils, the  permeant  is  usual ly water  and the  efíective  particle

d iamete r D s

 is

 usually taken

 as the 10 (or eífective)

 particle size

 D

10

.

Yhis

  led to the

  Hazen fo rmula :

y

  e3

where the constant  C,  repíaces  -  —

Based

  on

  experimental work wi th

  clean

  sands, Hazen (1911)

proposed a valué of betw een 0.01  and  0.015  for C15 where k is in m/s

and   Z > 1 0   is in  m m .  However, this ignores the

  large

  efíect  that even

small

 changes

 in

  e will have

  on the

  valué

  of

 k

as can be

  seen  from

Taylor's

 equat ion,  and can be expected to give only very appro ximate

resuíts.  For  instance, experimental work  by  Lañe  and  W a s h b u r n

(1946),  reporíed  in  Lambe  and  Wh itma n (1979) gives 

l

  valúes of

beíween 0.01

 and

 0.42 wit h

 an

 average valué

 of

 0.16, w hils í Hol tz

  and

Kovacs  (1981) suggesí a range of 0.004 ío 0.12  with an average valué

of 0.01.

  The

 equat ion

 is

 usu aíly considered

  ío be

 valid

 for

 soils hav ing

a  coefficient  of permeability  of at

  least

  10~

5

m/s.

Figure  4.1  gives  ploís  of  k  againsí  D

10

,  based  on  experimental

results , in w hich the valué

 o í e

 has been taken into acc ou nt. It

 will

 be

noted

 tha t

  the

 correlaíions given all relate

  to

 sands

 and

  gravéis.

 T he

greaíer ran ge of particle size wh ich is present in m ost  clays  and íhe

effecís

  of the clay mineralogy m ake such correlations m ore resíricíive

fo r

  clays. Some  useful

  informat ion

  on the  permeabil i íy  of  clays  is

provided

  by  Tavenas  et al.  (1983a  and b),

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 60/136

5 CORRELATIONS

 OF  SOIL  PROPERTIES

0.05

w

X

E

o.01

 

O.OO5

o

 

c

o

©  O OO1

o

ü

O O O O 5

O O O O 1

Burmister

Cu= 1.5,  e =  0.75

Cu

 = 3, e = 0.7

Mansur

Mississippi

 ríver

sands

Cu

 =2 - 3

e = 0.9 - 0.6 ,

-  field tests 

-  Icb

 tests,

 

Í

V

Hazen

 formula

Limited to D-0= 0.1  — 3mm,

Cu<5

USNavy

Correlation oí  lab  test valúes

of various materials

Cu

 =  2 — 1 2

  íower

 Cu valúes are

associated with higher e  vaiues )

Liirited to D10/Dg less  than

 1.4

D1O/DS>1.4  cr C

u

 ?12

  lie  in a

 tange

of

  tower  permeabilities

NOTE: correlations

 shown are for  remolded

compacted

 sands and sand-grave mixtures

Cu  = cc«í í ¡cieni oí

  ufiiíOírnity

e

  =  vo ids  r a t i o

O.1

0 5 1

Grain  size, D10 -

 mm

10

Figure 4 1 The

  permeability

  of sands and

 gravéis

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 61/136

Chapter

 5

CONSOLID TION  ND

SETTLEMENT

The

 settlement

 of

 soils

 in

 response

 to

 loading

 can be

 broadly

 divided

into

  tw o

  types: elastic settlement

  and

  time-dependent settlement.

Elastic

  settlements

  are the simplest to

  deal

  with; they

  are

  instan-

taneous, recoverable,

 and can be

 calculated

 from

 linear elastic theory .

Time-dependent settlements

  occur in  both

  granular

  and

  cohesive

soils,

 although

 the response time for gran ular soils is usua lly sh ort. In

addition

  to

  being  time-dependent, their response

  to

  loading

  is

non-linear

and  deformations  are  only  partially

  recoverable.

  Two

types of time-dependent settlement are recognised. Primary consoli-

dation  results  from  the

  squeezing

  out of water  from  the  soil  voids

under

  th e  influence  of

 excess pore w ate r pressures, g ene rated

 by the

applied loading. Secondary compression occurs essentially

 after

  all

the

 excess

 pore

 pressures have been

 dissipated

that

  is ,

 after

  primary

consolidation

 is

 substantially com plete,

 but the

 mechanisms

 involved

are not  fully  understood.  The

  settlement

  of

  granular soils

  is

  more

difficult  to

 predict with

 any

 accu racy, largely because

 o f the  difficulty

of

 obtaining and testing und isturb ed soil samples, and settlements are

usually estimated

  by

  indirect methods.

  Alteraatively,

 píate

  bearing

tests

 m ay  be

  used

  but

  their results

 are  difíicult  to

  interpret.

5 1

  COMPRESSIBILITY

 OF CLAYS

The  compressibility  of

  clays

  is

  usually

  measured  by means of

oedometer  consolidom eter) tests,

  or

  similar method s see Tave nas

and

 Leroueil 1987). Results

 may be

 expressed

 in a

 number

 of ways,

leading

  to a,

  sometimes

  conftising,

  variety

  of

 compressibility

  par-

ameters. As indicated in F igure 5.1, either am pie thickn ess, h or voids

ratio

e may be

 plotted

 againsí

 consolidation

 pressure, p which may

itself  be

  plotted either

  ío a natural scale or,

  more usually,

  to a

logarithmic

  scale.

55

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 62/136

56

  CORRELATIONS OF  SOÍL

 PROPERTIES

V i r g i n

  c omp r e s s i o n   c u r v e

 O

O

  2 4 6 8 1O

o

Consolldation prossur* , p  MN/m

 a)

OverconsoJidation

 pressure

= C

 

b.

 

O

Unloading

Recompression

O 01  O t

  1 10

Consoüdation prsssura, p - MN/m 

í

Figure

  5 1

  Typical

  ploís  of   compressibiliíy  t st

  results

5.1.1  The compressibility parameíers

The process of compression on a soil can be  usefully  ill-.otrated by

means of íhe

  model  soil sample

as  illusírated  in Pigure 5.2.

Recognising  thaí compression íakes

  place  by a

  reduction

  in

  the

volume of voids with virtually no change  in íhe volume of íhe solid

paríicles compressibiliíy  was originally defíned by íhe  eoeffkie í of

compressibiliíy

a

which

 is íhe

 change

 in

 voids

 ratio per

 unií increase

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 63/136

CONSOLIDATION  A ND SETTLEMENT  57

Pressure p1

l l lí

Voids

Solías

Pressure

 Pffdp

  =

 

de

Vol e

Vol 1

Yoids

 oii s

dh

Figure 5.2   Compression   of the

  model soil

  sample

in

 pressure.

  In terms of the

  model soil

  sample,

de e

e >

 y ~™~

P2~Pi

 5.1)

and is the

 slope

 of the

 curve shown

  in Figure

 5.1

  a)

 when e

 is

 plotted

against  p .   From  an

  engineering

  viewpoint,  it is the  proportional

change of thickness of a specimen

  that

  is of direct concern. For a

constant

 cross-sectional  área

this is

 proportional

  to the

  proportional

change

  of  volume  of a  soil an d  gives  rise to the  concept  of the

coefíiclenl

  of

  volunie

  of

  compressibility

m

v

,

  which  is  much more

commonly used:

d volume)  1  dh  1

v  volunie  dp  h áp

Refemng

 to the soil sample,  m

v

 can also be expressed in terms  of the

voids

  ratio:

dh   1

1

 5.3)

This is the slope of íhe curv e in Figure 5.1  a)

 when

 h

 is plotted against

p.

 From

  Equations

  5.1 and

  5.3,

  th e

 relation ship between these

  tw o

deímitions  of

 com pressibility

  is :

av

 =

 my l+e)  5.4)

It can be

 seen thaí

  the

  slope

  of the

  curve

  in

  Figure

  5.1  a) is not

con stant. This m eans that

 th e coefficients

  a

v an d

 m

v

 also var y

 and

  that

a

 given

 valué applies only to a

 specific

  pressure range. However, the

curve obtained  in

 figure

  5.1 b) when the logarithm of  consolidation

pressure is used, approxim aíes m uch m ore closely ío a

 straight line,

 at

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 64/136

5 8 C O R R E L A T I O N S

  O F

 SOIL

  P R O P E R T I E S

least

  on the

 v irgin comp ression curv e. This gives

 rise to two  fur ther

measures of compressibility, the

  compression

  índex,  C

c

,  and  th e

modifíed

  compression

 índex  or

  compression ratio,

 CC£,  which are the

slopes of the

 virgin compression cu rves obtained

 by

 plotting

  e

  or

  h,

respectively, against

  l o g p :

áe

dh

d logp)  logpa-logp logípa/pi

de  1  e -e 1

C

-

 -

T

/d logp)-

  ~

 

1  Iog p

2

/

Pl

)

 5.5)

  5.6)

Note

  that,

  for these

 evaluations, logarithms

  are

 taken

  to the

  base

10. From equations  5.5 and  5.6,  íhe  relationship between C

c

 and C

ce

foliows that between

  a

v

  and

  m

v

:

C^CJl+eJ  5.7)

O f

 th e

 two,

  c is

 much m ore comm only used. From

 equations 5.3 and

5.5,  it can be relaíed  to  mv:

1

 

v

 

givmg

 5.8)

For the

 com pression  parí

 of the

 curve,

 the

 terms

 recompression

 índex, ,

C

r5

  and modiíled recompresslon  Index,

  C

,  are used,

  defined

  in the

same ways as

  Cc

 and  C

,  respectively.

5.1.2

  Setíleinení  calcóla

 tions

  using consolida

 tion  theory

Returning

  to íhe

  basic defíniíion

  of the

  coefficient

  of volume

compressibility, given

 in

  equ ation 5.2:

áh  1

iri

h áp

 5.9)

li can be

 seen t ha t, once

 my is

 k n o w n

 for a

  particular pressure range,

th e  compression,

  dh,

  of a

  layer

  of  íhickness,  h,  due to a

  load

increment,  dp,

  can be  calculated  by  simply

  íurning

  th e  above

equation

  a round:

áh

 

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 65/136

CONSOLIDATION  A N D  SETTLEMENT  59

since   dh  is  normally thoughí  of as íhe  setílement,  p and   áh  is the

applied pressure increase,

  < j

this  becomes:

p

 = Ham,

  (5.10)

where

  specimen íhickness,

 h

is now replaced by íhickness,

 H

of

 íhe

compressible síraíum. The

  average valué

 of a

 across

  a

  compressible

layer, due lo some applied loading, is usually calculaíed using

elaslicity  theory. Allhough  nol  strictly valid

  fo r  soils,  ií  gives

sufficienlly

 acc uraíe valúes. Selílemenl

 is Ihen

 oblained using consoli-

daíion theo ry by w ay of Eq uatio n 5.10.

W here valúes o f

 C

c are obtained,  m

v

 valúes may be calculated  from

Equation 5.8, using

 th e appropriale

 valúes

 of

  consolidaíion pressure

and

  voids

  ratio.  Alternaíively,  Equalions  5.8 and

  5.10

  may be

combined and seíílemenl calculated direcíly  from

  C

c  valúes:

Iog(p 2/Pi)

l e  p-

givmg

  =  C

l e

5.1.3   Settleoiení

  calculations

  using elasticity theory

An  alterna

 ti ve approa ch is to calcúlate d isplacem ents (seíílements)

directly using elasticiíy the ory ,  thus reducing

 t h e tw o

  sepárate stages

in

  th e

  seítlement calculation

  ío  one,  and

  obviaíing

  the

  need

  to

calcúlate average valúes

 of

 consolidaíion pressure across

 soil layers.

Numerous solutions,  for

 both

  síresses  and  displacements, have been

produced,

 man y

 of wh ich ha ve been

 presented

 by

 Poulos

 and Da

 vis

(1974).

The

 problem

  wiíh

 usin g elastic soluíions

  ío

 calculaíe seíílernenís

 is

thaí ií requires  the evaluation  of Young's m odulus , E and  Poisson s

raíio, v, neither of which are

 measured,

 or are  strictly meaningful,  fo r

soil

  consolidaíion

  problems.  Considering

  Equation

  5.9, since

  the

raíio áh/h can be

 íhoughí

  of as a

 sírain,

  m y is sírain/síress,

 w iíh units

I/stress; íypically

  m

2

/kN

 or  m2/MN. Thus, ií is by defíniíion akin ío

íh e  reciprocal  of  Young's modulus ,  £,   and  whereas  E  can be

envisaged simplisíically as íhe síress req uired ío do uble íhe length o f

an object, mv can be envisaged as an área of soil wh ich,

 if

 subjecíed  to

a

  unit load,

  will

 jus t disappear

Of course,

  such absurdiíies

  do noí

occur

  in

  realiíy  because

  íhe relationships are not

  valid

  fo r  íhese

extremes. Addiíionally,

  íhe

  relationship beíween  E

  and

  mv

  is not a

simple

  reciprocal

  one  because   E is   defíned  for a specirnen wiíh

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 66/136

60

  CORRELATIONS   OF  SOIL  PROPERTIES

unrestrained sides whereas   m

v

  is

  definH

  for a

  specimen   which

  is

laterally constrained. The relationship

 bt

  ween  and

  m

y  therefore

depends   on the   valué  of  Poisson s ratio,   t h \ . > £ \

1 (l +   v ) ( l- 2 v )

 

-

This

  relationship can   then   be used when  calcúlate  lg   settlem ents

using

  elastic

  theory.

  When used   in   this context,  is   nc>

  ^strictly

  an

elastic constant,

  but it

  does represent

  the

  response

  of

 thc soil

  to a

single loading applied over a long

 period.

 To emphasise the p¿*nt,  the

term  deform ation   m odulus is  sometimes used   for  defined  L   this

way.  Thus, eíastic theory

  can be

  used

  to

  calcúlate

  consolidaron

settlem ents,  even   thoug h these   are not   elastic (i.e. recoverable).  T¿ 7

main problem  lies   in   obtaining   a   valué   of  Poisson s   ratio   that

properly represents  the  consolidation behaviour   of soils. Poisson s

ratio is not m easured in standard soil testing an d, indeed, it is

virtually   im possible to obtain realistic m easure m ents.  Howev er,   it

has been po inted out by Skem pton and  Bjerrum  (1 957) that   very  little

lateral

  strain

  occurs

  during   the

  consolidaíion

  of clays so

  that,

efíectively,   Poisson s ratio is zero, and

•-,-;—a

where M   is the defonnaíion m odulus or constrained m odulus.

Another reason

  fo r

  choosing

  a

  zero valué

  is

  that calculated

seítlem ents based   on   elastic solutions then becom e identical w iíh

those

 based on  consolidaíion  íheory,  which  has been  shown over  the

years to give reasonable predictions provided that suitable correc-

tions are

 m ade

 for the

 pore pressure response

 o f the

  soil (Skem pton

and   Bjerrum 1957).

5 1 4 Typical

 v alaes   and

 correlatioos

 of eom pressibiüty

  eoeffkients

Typical valúes   of the   coefficient   of

  volumc

  com pressibiliíy,  mv  are

indicated  in

 Table

 5.1,   along  with

 descripti

  ?

 íerms

  for the

 various

ranges of  com pressibility.  Althoug h  m y is the m ost suiíable, and  m ost

popular, of the

  com pressibility  coefficients

  for the

  direct

  calculation

of   settlem ents,

  its

  variabiiity with

  confining

  pressure m akes

  it

  less

useful

  when

  quoting typical conipressibilities

  or

  when correlating

compressibñity  with some   other   property.   For  íhis   reason, the

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 67/136

CONSOLIDATION AND  SETTLEMENT  61

Table

  5 1

  T Y P I C L

  V L Ú E S

  O F T H E

  C O E F F I C I E N T

  O F

  V O L U M E  C O M P R E S S I B I L I T Y

  A N D

DES CRIP TIVE

  T E R M S

  U S E D

  A F T E R C Á R T E R 1 98 3)

Type  o f  clay

Descriptive

t erm

Coefficient  o fvolume

compressíbili ty,  /nv

 m

2

/MN)

  f t

2

/ t o n )

H e a v y

  over-consolidated

 boulder

clays,  stiff  weathered  rocks  e.g.

weathered mudstone)

  and  hard

  clays

Boulder clays, marls, very  stiff  tropical

red

  clays

Firm

  clays, glacial outwash clays,

  lake

deposits, weathered marls, firm boulder

clays,

  normally

  Consolidated clays

  at

depth  and firm  tropical red  clays

N ormally Consolidated alluv ial clays

such as estuarine and  delta deposits,

and sensitivo

  clays

Highly  organic alluvial clays and peats

Very  lo w

compressibility

L ow

compressibility

M é d i u m

compressibility

High

compressibili ty

Very

  high

compressibility

<0.05

0.3-1.5

< 0.005

0.05-0.1

  0.005-0.01

0.1-0.3  0.01-0.03

0.03-0.15

>0.15

Table

 5.2

1981)

T Y P IC A L V A L Ú E S

 O F

  C O M P R E SS IB IL IT Y I N D E X ,  Cc  A F T E R H O L T Z

  A N D

  K O V A C S

Soil

Normally Consolidated médium   sensitivo  clays

Chicago  silty  clay CL)

Boston blue clay CL)

Vicksburg Bucksho t clay CH )

Swedish médium sensitive clays

  CL-CH)

Canadian

  Leda clays

  CL-CH)

México City clay M H )

O rganic clays O H )

Peats Pí)

Organic silt

 and

  clayey

 silts

  ML-MH)

San  Francisco Bay Mud

  CL)

Sa n  Francisco Oíd Bay  clays CH )

Bangkok clay CH )

0.2 to 0.5

0.15 to 0.3

0.3 to 0.5

0.5 to 0.6

1

 t o3

1 to4

7to 1 0

4 and up

10tol5

1.5 to 4.0

0.4 to 1.2

0.7 ío 0.9

0.4

compression Ín dex,

 C

c

,

 is

 usually preferred. T ypical v alué

 of

 com pres-

sion

  índex

  are

  given

  in Table 5.2.

Skempton 1944) proposed  th e

  folio wi n g

  relationship between

compression

  índex

  and liquid limit

  LL)

  fo r  normally-consolidated

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 68/136

62 CORRELATIONS  OF

  SOIL

 PROPERTIES

Table 5 3   S O M E   P U B L I S H E D C O R R E L A T I O N S  F O R  C O M P R E S S IO N Í N D I C E S A F T E R A Z O U Z  E T

A L .

 1976)

Equation

Regions  of

  applicability

Cc=0.007

 (LL-7)

Ce,=0.208e0+0.0083

Cc

 =  17. 66xKT5 > v j

Cc=1.15(e0-0.35)

Cc=0.30(e0-0.27)

=

 l.15x10

 2

Cc

 = 0.75(e0-0.50)

€« = 0.1566

C   = O . O l H >

3 wn-1.35x10

-1

Remoulded

  clays

Chicago

  clays

Chicago clays

All  clays

Inorganic,

 cohesive

 soil; silt,

some clay; silty  clay; clay

Organic

  soils-meadow

  mats,

peats, and organic silt and clay

Soils  of  very  low

  plasticity

All  clays

Chicago

  clays

As

 summarised by A zzouz,  Krizek,  and Corotis (1976).

Note:  w0

 =

 natural water

 contení.

clays:

C  =

 0.007(LL-10).

Terzaghi and  Peck (1967) proposed a similar relationship, based  on

research with clays of low and médium sensitivity:

CC = 0.009(LL-10).

This

  relationship

  has a

  reliability range

  of

  +30

and is valid for

inorganic clays

 of

 sensitivity

 up to 4

 (see Chap ter

 6) and

 liquid

 limit

up to  100. Based on the work of Skempton and Northey (1952) and

Roscoe  et al (1958), W ro th and Wood (1978) used critical sta te soil

niechanics

 considerations

 to deduce a relationship between cornpres-

sion

  índex and

  plasticity  índex  (PI)

 for

  remoulded clays:

where

 Gs is the

 specific

 gravity of the soil solids. Table 5.3 produced by

Azzouz

  et  al (1976) gives

  a

  summary

  of a

  number

  of

  published

correlations.

The recompression índex,  C

r

,  is

 defined

  in the same way as C

c

except tha t it applies to the unlo,?ding phase of the cons M idation test.

Typical valúes of

 C

r

 range from 0)15 to 0 .35 (Roscoe ei

  ¡ I

1958) and

are  often

  assumed

  to be

  5-10

of

 Cc.

5 5  ettlement

 corrections

If  the results of oedometer tests are used directly to calcúlate

settlements, the valúes obtained tend to ov er-estimate the settlements

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 69/136

CONSOLIDATION

  AND

  SETTLEMENT

  63

that actually occur, particularly   wi th

  overconsolidated

  clays.   An

exception

  to

  this

 is in the

 case

 of  very

 se nsitive clays, wh ere predicted

settlements m ay slightly und er-estim ate actual valúe s. Th e reason for

this is  that the p ore pressure response of ciays in the fíeld  differs   from

that  of

 confined   laboratory  specimens. This

  has

  been discussed

  by

Skempton

  and

  Bjerrum (1957),

  w ho

  show that

  th e

  ratio

  of

 actual

settlement  to   calculated settlement depends   on   both   th e   response  of

th e

  pore water pressures

  to

  applied

  loads and the

 geom etry

  of

 each

problem.

  The

 response

  of the

 pore w ater pressures

  to

 loading

 can be

measured  in the   triaxial test   and is  expressed  in terms of Skem pton s

(1954) pore pressure

  parameters A

 and

 B

For  saturated clays,  actual

settlement

p f ie id,  is   given   by:

h«av¡ly  ovar- over -

een so I ¡ di

  f d  onsolidated  normally

 

•nd?  clays

  clayí  consolida t d

  clays

clay

1 2

0 2 0 4 0 6 0 8 1 0 1 2

Pore pressure

 coefficient, 

Figure

  5.3

  Typical

  valúes of the factor

  \ifor afoundaíion

  width  b on a  compressible

layer  of

  thickness

  h  afíer

  Skempton, 1954)

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 70/136

Table  5 4   T Y P I C A L V A L Ú E S

  O F

  C O N S O L I D A T I O N   F A C T O R

  n  F O R

  V A R I O U S T Y P E S

  O F

  S O IL A T E R C Á R T E R  1983

Ty pe   o f  clay

Definiti

=

 0 5

  H b=l

V e r y

  sensitive clays

  soft  al luvial ,

e s t u a r i n e , ma r i n e c l a y s )

N o r m a l l y

  Consol idated c lays

O v e r -con so l id ate d   clav

  Lias,

L o n d o n ,  O x f o r H  , ,i ld clays)

H e a v i l y   over-consol idaí v-J

  clays

  B o uld e r c lay , m ar l )

1.0-1.1 1.0-1.1  1.0-1.1

0.8-1.0  0.7-1.0 0.7-1.0

0.6-0.8

  0.5-0.7 0.4-0.7

0.5-0.6 0.4-0.5  0.2-0.4

1

 

1

  j

b

tompresslble layer

Surface

  la yer

 

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 71/136

CONSOLIDATION   AND SETTLEMENT 65

where  p is the

  calculated oedometer settlement

 and

  ¡

is a

 factor which

depends  on the pore  pressure parameter.

The  distr ibution  of

  stresses across

  a

  layer

  of

  soil depends

  on the

ratio

  of

 w id th , b of

 a foundat ion  to

 thickness, H

of the

 layer. Valúes

of

 ^

 can be

 obtained

  for

 given valúes

 o f

 pore p ressure parameter,

  A

from

 Figure 5.3. Valúes

 of

 parameter

  A are not

 normally measured

 in

the  laboratory tests commonly used  for  foundation design  but  they

are  found  to

  depend

  on the

  consolidation history

  of the  clay,

particularly

  the

  degree

  of overconsolidation. For

  most practical

purposes

  it is  suffícient  to use

  valúes

  of  \i

  selected  from  Table  5.4.

5.2

  RATE

 OF  CONSOLIDATION OF

  CLAYS

The

 rate

 of

 set t lement

 of a

 saturate d soil

 is

 expressed

 by the

  coefflcient

of

  consolidation,

  c

v

.

  Theoretically, consolidation takes

  an

  infínitely

long  time to be completed and it is usual to calcúlate the time taken

for a

 given degree

 of

 cons olidation,  U

to

 occur, w here U

 is defined

  by :

Consolidation

  settlement  after  a  given time,

 

r

Final consolidation settlement

The

  time,

 í for a

 g iven degree

  of

 consolidation

  to

  occur

  is

 given

 b y:

where  d  is the  máximum length  of the  drainage path

  equal

  to  half

the

  layer thickness

  for

  drainage

  top and

  bottom)

and  7 ^ ,  is called  the  basic time facto r. Valúes of T

v

 for various valúes

of   U   are  given  in  Table 5.5.

The

  rate

  of

  settlement

  of a

  soil,

  an d

  henee

  th e

  valué

  of cv, is

governed

  by two

  factors:

  th e

  amount

  of

 water

  to be

  squeezed

 out of

th e

 soil

 and the rate a t

 w hich that water

 can flow

 out.

 The

 amount

 of

water to be squeezed out depends on the coeñlcient of compress-

ibility,

 mv,

 and the

 rate

 at

  which

 it

 will

 flow

 depends

 on the

  coefficient

of

 permeability,

  k.

  The relationship between

  c

v

,

  m

v

  and

  k

  is :

m

  v

* v /

W

 w

where  y

w

  is the  weight density unit weight)  of water .

Because

 of the

 wide range

  of

 permeabilities  that  exist

 in

  soils,

  th e

coefficient  of

  consolidation

  can itself

  vary widely,  from

  less

  than

Im2/yr

  for

 clays

  of low

  permeability

  to

  1000m

2

/yr

  or

  more

  for

 very

sandy clays, fissured clays and w eathered rocks. Some typical valúes

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 72/136

A n y   p ressure d i s t r i bu t ion ,

dra inage

  t o p a nd

  bo t tom

Decrea sing pressure, drain age

a t

  bo t tom on ly

 

Table

r r

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

5.5  V A L Ú E S OF

  TIME

Casel

0.008

0.031

0.071

0.126

0.197

0.287

0.403

0.567

0.848

T ,

Case

  2

0.047

0.100

0.158

0.221

0.294

0.383

0.500

0.665

0.940

:

 

'

 

F A C T O R , Tv 

• •

  J

Drainage   condit ions   an d   pressure distrib

Case

 3

  Casel Case

 2

 

0003  . . - . - . . - .  ; • - . . .

 

• •

  : : • • •

  : • : • • .

  :: :•.••::••

  - 6 ií 4 < « < > s í í? s X s a i « S ^ i » » < > i x .

 

0.009

0.024

0.048

0.092

0.160

0.271

0.440

0.720  ; . . ' •  . i . ; . : . - . . ..:.'....  . . . - .

  i - 1

 

..

,

. .

.

i-   ¡•.•'.•'.-••V;'."..-.

 • • ? . ' . ' •

*  Case  1 m a y b e  used  fo r  un i f orm pre s sure d i s t r ibut ion wi th  d r a i n a g e  a t top o r  b o t t o m   o n l y .

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 73/136

CONSOLIDATION

  AND

  SETTLEMENT

  67

Table   5 6   T Y P I C A L   V A L Ú E S   O F T H E  C O E F F IC I E N T   O F C O N S O L I D A T IO N

v

Soil

  cm2/sxl T4)

  m2/yr)

Boston

  blue

  clay

  CL)

 Ladd  and

  Luscher, 1965)

Organic  silt  OH)

 Lowe, Zaccheo, and Feldman,  1964)

Glacial  lake clays  CL)

 Wallace

  and

  Otto,  1964)

Chicago

  silty

  clay CL)

 Terzaghi and  Peck, 1967)

Swedish médium

  sensitive

 clays  CL-CH)

 Holtz

  and  Broms, 1972)

1.  laboratory

2.  field

San Francisco  B ay Mud  CL)

México City clay MH)

 Leonards  an d Girault, 1961)

40

 + 20

2-10

6.5-8.7

8.5

0.4-0.7

0.7-3.0

2-4

0.9-1.5

12±6

0.6-3

2.0-2.7

2.7

0.1-0.2

0.2-1.0

0.6-1.2

0.3-0.5

1-1OO

Undisturbed

 samples

C v  in  ra n g o  of  virgin  c o m p re s s i o n

Cy  in  ranga  of

  r

 «compres

 s

 ¡ en

  lies

above  this lower  l i m i t

Completeiy

remoi e s mples

lies  below

  this  upper limit

4

60 8O 100 120

Liquid  limit  -

140 160

Figure  5.4  Approximate  correlations between

  coefficient

  of

  consolidation

  and liquid

limit

  after  US

  Navy, 1988

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 74/136

68  CORRELATIONS

 OF

  SOIL PROPERTIES

fo r  clays a re given in Table 5.6 and an a ppro xima te corre lat ion with

liquid limit  is

  shown

 in

  Figure 5.4.

5 3   SECOND ARY COMPRESSION

Secondary compression is a  vólume  change under load  that takes

place

 at

  constant  efíective  stress; that

  is , after  th e

  excess pore water

pressure

  has

  dissipated.

  It

  is

 thought

  to

  result f rom  compression

 o f

the co nstituent  soil

 particles

 at a

 microscopic

 or molecular

 scale

 and

is particularly

  signifícant  in

  organic soils.

  Coefficients  of

  secondary

compression may

  be

  defíned

  in a way

  tha t

  is

  analogous

  to the

definitions  o f co mpression  Índex  and  modified  compression Índex,

except that the  índices  are related to time instead of pressure. Thus,

th e

  secondary compression  índex,

 C

a  is :

de

  ~ d ( l o g í )

(5.11)

where

 de

 is the change in voids ratio o ver a time interval , di f rom time

í

x  to time

  í2:

  see Figure  5.5.  Similarly, the  modified  secondary

compression Índex, C a£  is :

dh/h

d( log í )

(5.12)

o

 >

O

su

 

e

 

o

e

 

Primary

  con

 «oí ¡dat

 ion

Secondary  compression

Log  time t

Figure

  5 5

  lotting

  an d

 calculation

  of

  secondary compre ssion

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 75/136

 ONSOLID TION

  ND SETTLEMENT  69

where  e

p  is the

  voids ratio

  at the

  start

  of the

  linear portion

  of the

e-logp  or  áh — logp curve.  The modified  secondary compression

Índex

  is  sometimes  also

  referred

  to as the  secondary compression

ratio  or the rate  of  secondary compression.

Calculations o f secondary compression  are  obtained  by  rearrang-

in g  Equation

  5.12:

 specimen com pression

  dh

  becomes secondary

settlment,

 p

c

;

 specimen thickn ess, h , becomes layer thickness, H; and

the time is  taken over a  specifíc  interval,  from  í  to

 í2:

pc

 =

 CMHlog(t2/í1)

or

For the  purpose  of  secondary settlement calculations, secondary

settlement  is  assumed  to  start when primary settlement is  substan-

tially complete. Thus,  if  primary settlements  were  substantially

complete  in 12 years,  the  valué  of

 

í  would  be 12. The  valué  of í

2

depends

 on the

 assumed lifespan

 of the

 structure under

 consideration.

Valúes of

 C

a or  CZ£ are  obtained  from  e —

 logp

 o r

 áh—  log

  p plots,

as indicated  in Figure 5.5.

 Ca

 is usually assumed  to be related to Cc,

with

 valúes o f

 CJCC

  typically  in the  range 0.025-0.006 for  inorganic

soils and 0.035-0.085 fo r organic soils. Some typical

 valúes

 a re given

in  Table 5.7. M esri

  1973)

  obtained  a relationship between

 C

aE  and

natural moisture content, given in  Figure

 5.6.

Table

 5.7

Soil

  J

Organic silts

  0.035-0.06

Amor phous

 and fibrous

  peat

  0.035-0.085

Canadian muskeg  .  0.09-0.10

Leda

 clay  (Canadá)

  0.03-0.06

Post-glacial

 Swedish

  clay

  0.05-0.07

Soft

  blue clay Victoria,

  B.C.)  0.026

Organic

  clays and

  silts

  0.04-0.06

Sensitive clay, Portland, ME  0.025-0.055

San

 Francisco Bay Mud  0.04-0.06

New Liskeard  (Canadá)  varved clay  0.03-0.06

México City clay

  0.03-0.035

Hudson  River  silt  0.03-0.06

New Haven

  organic

  clay silt  0.04-0.075

*

 M odified

  after

  Mesri

 and Goldlewsk'(197  -

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 76/136

70

  CORRELATIONS

  OF SOIL

  PROPERTIES

10O

ü

M

X

»

TJ

c

o

 

c o

 

a

 

o

u

a

c

o

 

«

o

TJ

o

 

10

1

0 1

10

 i  i  III lili  I I I I I I I I I

i  i r

r M I

  O O

i

  f i

  i

1

Natural

  moisture contení -

Figure 5.6  Correlation  between

  modified

  secondary

  compression

  índex and

  natural

moisture contení

  after

  Mesri ,

 1973)

5 4

  S TTL M NT

  OF SANOS AND

 GRAVELS

5 4 1 Probes  and  standard  penetrador  tests

As

  mentioned

  in the

  introductory

  re rks to

  this chapter

th e

near-impossibility  of

  obtaining

  and

  testing

  imdisturbed

  samples

  of

granular  soils  means that consolidation   testing

  is not

  possible.

Instead settlements  are  usually estimated  from  insitu

  test

  results

most comm only using

 th e

 standard penetration test althoug h

 the use

of

 probes

in the  form   of

 static

 or

 dynamic cones

has

 become  more

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 77/136

CONSOLIDATION AND  SETTLEMENT  71

widespread   in  recent years ESO PT, 1982;

 INSITU

1986; ISOPT

1988). A useful  review of the  interpretaron of some penetration tests

for  sands  is given  by  Rober t son  and  Campanel la

  1985).

The  most commonly-used correlat ions for set t lement

 estímales

  in

sands, based

  on SPT

  results,

  are  those

 established

  by

 Terzaghi

  and

Peck 1967), sho w n

  in

  Figure 5.7. Terzaghi

  and

  Peck point

  out tha t

the correlations show wide scatter  and  shou ld  not be  regarded  as

anything  more than

  a

  rough-and-ready guide.

  Considering the

practical problems of obtaining me aningfu l SPT results, especially in

sands  below  the water  table,  and the disagreements over various

corrections to be applied  to the results, th e correlations a re o f dub ious

valué  in

 many

 cases.  Yet settlement estimates are of crucial import-

ance for the determination of allowable f ou nda tion p ressures on

granula r

  soils,

  whose high

  u l t ímate

  bearing capacity means that

ruu

6OO

CM

E

H

  5OO

3

S  40O

a

c

 OO

 0 •

S

 

200

<

100

— —

\

\

 •*•».

  —

e

  —

ry

 den

••^—  

— —

se

^

^

 s  Dense

X

Med

V

 

íí 30

um  d <

S5o

Loóse

.

••••  i»

snse

 

—™— —

• -—

•  i

••

  i.

70

6O

50

4O

 «

x

e

c

30 o

4-1

2O

10

O  2 3 4 5 6

Footing width m

Figure  5.7  Chart fo r  estimating

  allowable bearing pressures

  on

 sands

  using

  standard

penetration test  results based on 25mm

  settlement.

  Continuous  Unes  are based on the

original

  chart

  by

  Terzaghi

  an d

  Peck

  1967);

  broken

  Unes  are iníerpolations

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 78/136

72  CORRELATIONS OF  SOIL PROPERTIES

settlement rather

 than bearing

 failure is the controlling factor. In

 view

of all

 these considerations it is surprising that settlement calculations

fo r  granular

  soils have

 for so long

 relied

  on

  such

  an

 unsatisfactory

procedure. Perhaps  it

 reflects

  a

 lack

 of problems

 w ith foundat ions

  on

granular soils.

Meyerhof

  1956, 1974) also produced relationships between

  SPT

results and

 settlement which gave similar valúes

 to

  those

  o f

 Figure

5.7. However, both

  th e

 Meyerhof

 and the

 Terzaghi

  and

 Peck valúes

are  considered to be conservative, and Bowles 1982) suggests that, in

th e

  light

  of field

  observations

  and the

  stated opinions

  o f  many

authors,  th e  Meyerhof equations should  be

  adjusted

  to

  give

  an

approximate

 50 increase in allowable

 bearing

 capacity for 25mm of

settlement  qa), thus:

for foundation w id ths

 

metres,

up

 to

  1.2m

05  d

4

a

(kN/m

2

)

 =

N

fo r

 foundation widths

 

metres,

greater

  than

  1.2m

.08

 

where N

  is the SPT N-valué  standard  blows per 300mm)

K

á

 =

 1 +0.33D/5 up to a máximum valué of 1.33

and  D is the

  depth

  to the

  foundation base,

  in

 metres.

Plots of

 these equations,

  for

 D

 = 0

  i.e.

 a  surface

  foundation)

 are

shown

  in

  Figure 5.8.

  For

  founding

  depths

  up to

  D

 =

 B

valúes

obtained  from this chart

 may be

 multiplied

 by

 K

á

. Terzaghi

 and

 Peck

suggest  that,

  fo r

  saturated sands, allowable bearing pressures

  ob-

tained  from  Figure  5.7  should  be  reduced  by a  half  for  shallow

foundations

 and by a

 third where depth

 D is

 approximately equal

  to

width B.

  Bowles 1982) gives

 no

  mention

  of

 such reductions

  but it

seems

 prudent  to  also

  apply

 them when using th e  above equations

and  Figure  5.8. Allowable bearing

  pressures

 for  settlements other

than  25mm

 may be

 obtained pro-rata.

Raft

  foundations  are known to settle

 less than strip

 footings, and

Tomlinson 1980) suggests that

  the

 allowable settlements obtained

from Figure 5.7 be doubled  for this type o f foundation. Alternatively,

Bowles gives

  a mo dified

  form

  of the

 Meyerhof equation

 for  rafts:

N

Work

  by

  Menzenbach 1967) established

  a

  rough relationship

between deformation modulus, E¿ and SPT

  N-value,

 as shown in

Figure 5.9. This can be used in conjunction with

 elasticity

 theory to

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 79/136

CONSOLIDATION  AND

 SETTLEMENT

  73

8

1 2 3 4

Footirvg width

 

m

Figure 5.8

  Allowable

  bearing  pressure  fo r

  footings

  founded  ai  surface  level, for

settlement limited

  lo approximately

  25mm

  after

  Bowles, 1982)

obtain sett lem ent

 predictions. For

  instance

for a  strip

 foundation

 o f

width  B,

  loading

  intensity

 q

settlement  p

  is

 given

  by:

 2 25

where

 Poisson s

  ratio v is usu ally taken as  0.15   for sands. Valúes of

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 80/136

74  CORRELATIONS

  OF SOIL

  PROPERTIES

 

8

6

•o

 

O

  40

 

2

l

Overburden pr ssur kPa

2O   40

SPT

 N value  b l o w s / S O O m m

60

Figure 5.9

  Correlation

 between

 deformation

  modulas,

 E

d and SPT

  N-value

 for granular

soils  after

  Menzenbach, 1967

allowable  bearing  pressure

  fo r

  25mm settlement obtained

  in

  this

way

a re

 broadly

  in

  line

 with

 the

 valúes obtained

  from

  Figure 5.8.

It  should  be   noted that although  the   rate  of  settlement  is not

determined  from   SPT  results the high permeability of  granular soils

produces rapid response to  loading so

 seti-

  ment times a re  very  short

a nd  rarely considered.

5 4 2 Píate bearing

 t sts

Píate bearing tests  offer  a  more direct method  of measuring settle

ments  but the  usefulness  of the  results is  limited  by tw o  constraints:

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 81/136

CONSOLIDATION

 AND  SETTLEMENT  75

 1)  the  depth  of sand stressed  by a píate is

 only

  a  fraction  of that

stressed

  by a

 full-sized  foundation,

  and

  2)  settlement predictions require knowledge  of the  scale  effects

between

  the  settlement  of a  píate  and  that  of a  full-sized

foundat ion.

The

  most

  commonly-used

  correlation

  fo r

  scale

  effects

  between

píate

  and

  fou ndation settlements

 is

 that given

 by

 Terzaghi

  and

  Peck

 1967):

where

  p  is the  settlement of a  square foundation o f side  B  ft, and

pt

  is the  settlement  of a  1-foot  square  píate

If  th e  foundat ion width is measured  in  metres, this becomes:

2B

 0 3

A n  alternative,  and  more general,  relationship was  derived  by

Menard and Rousseau 1962):

P i  =

P2

where pí

  and

  p

2  are the

  settlements

  of the

  píate

  and

  footing

  and

  B

 

are

  the ir respective w idths

and a depends on the soil type. Ty pical a valúes are:

Sands  and  gravéis  to ^

Saturated

  silts 

Clays  and dry

  silts

 § to

 

Compacted  fu l  1.

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 82/136

 hapter

 

SHE R  STRENGTH

It is usually assumed that the shear stren gth of soils is governed by the

Mohr-Coulomb

  failure

  criterion:

s =  c  +

  < 7

 tan   >

 6.1)

where s is the  shear  stress  i  failure  along

  any

  plañe

a is the  normal stress  on  that plañe

and   c  and  f )   are the shear strength parameters; cohesión  and

  angle

 of

shearing  resistance.

This is sho wn graphically on the

  Morir

 diagram  given in Figure  6.1.

A  complication  arises because  th e norm al stresses within a soil are

c rried

 pa rtly b y the soil skeleton  itself and p artly by water within th e

soil voids. Considering  only  th e  stresses

  within

  th e  soil skeleton,

equation

  1)

  is

 modifíed

  to

or

s  =  c

+

  a

tan

  >

where   u   is the pore water pressure

a

=

 (a—u),

  th e

  effective  norm l  stress

  on the

  soil skeleton)

and   c an d   < / > are the  shear strength parameters related  to  effective

stresses.

Th us wh en considering the shear strength of soils, ther e is a cho ice:

either  th e  total, combined reponse  of the  soil and  pore  rater can be

considered Eq uation 6.1);

 or the specific

 response

 o f the

  s «   l skeleton

can be separated  from  the pore water pressure by

 considen   - .  effective

stresses Eq uation 6.2).

The

 effective stress appro ach  gives

 a

 truc

 measure

 of the

 response

 of

th e soil skeleton to the loads imposed on it. Perhaps  th e

 simplest

 case

is  that  of a  load applied to a saturated soil that is allowed to drain. If

the rate of application of the

  lo d

  is

  sufficiently

  slow,

  pore water

76

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 83/136

S H E A R

  STRENGTH

  77

Figure

  6.1 Mohr diagram   representing   th e

 g eneral Mohr-Coulomb failure

  criterion

  ire t

 str ss

Figure 6.2   Mohr diagram  for a normally-cons olidated clay for  effective  s tresses

pressures will

 not

 bu ilt

 up and the

 tota l stresses will equ al

 the

  effective

stresses Fo r  drained conditions,   or in  terms  of  effective   stresses,   it is

found

  that the shear strength of

  soils

  is principally a frictional

phenomenon, with

 c = 0, as

  ülustrated

  in

  Figure 6.2. This does

  not

appear to b e the  case  f or  ov erconsolidated   clays  which  have a

 bu ilt-in

pre-stress

  (see Singh   et al.  1973),

  or for

  partially saturated clays

  in

which

  th e   particles  are

  drawn together

  by

  surface

  tensión

  effects,

giving them some cohesión.

When   soil

  is

 loaded,

  th e

  increase

  in

  confming   pressure within

  th e

soil skeleton  squeezes   the  particles closer together, reducing   the

volume of the voids. However, in a saturated clay this cannot take

place unless some of the pore water can drain   f rom   the voids.

 Thus ,

for

  a saturated clay in c onditions of no d rainage, an increase in

confining

  pressure cannot   be   carried  by the   soil skeleton   but   results

instead  in an  equal increase   in  pore water pressure. Since   shear

strength depends on the effectiv e   stresses, trans m itted by interparticle

contacts,  and

  these

  remain unchanged

  irrespective

  of the   applied

confining pressure,  it   follows  that  undrained shear strength will  also

be   independent   of   confining pressure. Because   of   this, samples   of

saturated clay tested

  in a

  quick undrained triaxial test

  give   Mohr s

circles

 of  co nstant diameter and an  apparent c ohesión v alué  as

 shown

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 84/136

78 C O R R E L A T IO N S

  OF

  SOIL PROPERTIES

xjjl---Effective

  s t r e s s failure

e n v e lo p e

 Total  stress f i lu re enve lope

Figure 6.3  Mohr  diagram for  s tur ted  clay  in  terms  of  tot l an d  effective  síresses

in   Figure 6.3,   even   though,   in   effective   stress terms,   the   material   is

basically

  frictional.

  Thus ,

  in a sense, the phenomenon of cohesión is

an   illusion  brought  abouí

  by

  the response of pore

  water

 pressures to

imposed

 loads.

 T o

 underline

  this poin t,   the  term apparent  cohesión

is often

 used. Partially saturated soils, tested  in  undrained co nditions,

will show  a  behaviour whic h  is  intermedíate between that   for  drained

co nditions and f or saturated und rained co nditions, depending on the

degree   of

 saturation.

6 1

  THE CHOICE OF TOTAL OR EFFECTIVE STRESS

ANALYSIS

When the

 soil

 is

  loaded rapidly

 so

 that  there

 is no

 t ime

 for

 movement

of  pore w ater  to  tak e place,  its  imm ediate response  - the  proport ions

of

  the resulting   confining   pressures that are   carried   by the soil

skeleton   and the   pore water  - is   itself   a   property  of the   soil. This

instantaneous response can,

  in

  fací ,

  be   quantifíed   in

  terms

  of

Skempton s  1954)  pore pressure parameters, which are described in.

Chapter  5 . This m eans tha t the total response of the soil to an applied

load, including

  th e

  pore pressures generated,

  can be

  s imulated

  and

measured

  in a

 laboratory test

 a nd

  there

 is no

 need

  to

 take account

 o f

the

 sepárate responses  of the

  skeleton

  and the  pore

 w ater.

 Only   the

total applied stresses need be considered in the analysis and only the

corresponding total stress strength   parameter~   need be measured

when   testing.

  Strictly

  speaking, this

  is not

  qui

  ;

  true because soil

strength  is   usually measured   in the   triaxial

  test,

  in   which axially

symmetric

  stress conditions exist, whereas many soil problems

approximate to plañe strain conditions, for which the soil response

diíiers slightly,

 but the

 errors involv ed

 are

 small  enough

 to be

 ignored

for   practical purposes.

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 85/136

SHEAR STRENGTH  79

The equilibrium

  pore water pressures that

  are

  eventually estab-

lished

  are,

  unlike

  the imm ed iate response, not a pro perty of the soil

but depend on the  surrounding  conditions. Long-term pore water

pressures cannot  therefore  be simulated in the laboratory must be

considered  separately. Henee,  efíective  stress analysis must

  be

  used

where

 long -term

 stability

 is

 important .

  In

  testing,

 the

 response

  of the

soil skeleton can be

  measured

  either by allowing drainage of the

specimen so tha t no m ore pressures build up or by measuring the pore

water pressure within the specimen. In either case, tests must be

carried

  out

  slowly enoug h

 to

 allow c omp lete dissipation

 or

 equalisa-

tion

  of

 excess

  pore

  water  pressures within

  the

  test specimen.

6 1 1

  he

 choice

 in

  practice

Foundations impose both shear stresses

  and

  compressive stresses

  confining  pressures) on the und erlyin g soil. The shear stresses m ust

be

 carried

 by the

 soil skele ton

 but the

 com pressive stresses

 are

 initially

carried largely by the resulting increase in pore w ate r pressures. This

leaves

  th e  effective

  stresses  little  changed, which implies that

  th e

foundat ion

  loading

  is not

  accompanied

  by any

  increase

  in

  shear

streng th. As the excess pore pres sures d issipate, the soil

 consolídales,

and

 effective

 stresses increase, leading to an increase in shear str en gth .

Thus,

 for

 foundations,

 it is the

 short term co ndition

  the

 imm ediate

response  of the

 soil

  that is mo st critical.

 This

 is the justifícation for

the use of quick undrained shear strength tests and

  total

  stress

analysis

  for

  foundation design.

W ith excavations, com pressive stresses are reduced by removal of

soil but shear stresses are imposed on the sides of the exca vation

owing

  to  removal  of  lateral

  support.

  Initially,  th e  reduction  in

compressive stresses

  is

  manifested within

  the

  soil mainly

  as a

reduction

  in

  pore  water pressures, with little change

  in

  eífective

stresses so th at , as with foun da tion s, soil shear strength remains little

aífected

  by the changed loading. Ev entua lly, wa ter flows into the soil

that

  forms

  the excavation sides, restoring  th e

 pore-water

  pressures.

This reduces the

  effective

  stresses, causes swelling and reduces shear

strength. Thus,

  for

  excavations, long-term conditions

  are the

  most

critical. Since long-term pore pressures depend

  on

  drainage condi-

t ions and can not be simulated by soil tests, an eífective stress analysis

must  be  used  so  that  pore  water  pressures  can be

  considered

separately  from  stresses

  in the

  oil skeleton.

During embankment construction, additional layers of material

impose a pressure on the

  lower

  part  of the embankment. As with

foundations, this tends to  créate increased pore water pressures and,

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 86/136

80

  CORRELATIONS

  OF SOIL

  PROPERTIES

by

  the  same argument,  short-term  conditions  are an

  important

consideration. This  implies  that total stress analysis and quick

undrained shear strength tests are approp riate, and

 up

 to the 1960s it

w as  not

  uncommon

  for

  emb ankments

  to be

  designed

  in

  this way.

However,

  additional stresses

  can be

  created

  by the

  compaction

process itself but,

  offsetting

  this,

  th e

  material

  is

  unlikely

  to be

saturated

  so

 that

  a significant

  proportion

  of the

 added pressures

 m ay

be  carried

  immediately

  by the  soil

  skeleton. These complications

make it  impossible  to  simúlate the  total response of the soil in a  test

specimen and,  to overeóme this,

 effective

  stress analysis is now  used.

Also it is usually more economical to design embankments  fo r

long-term stability

  and to

  monitor pore water pressures during

construction, slowing dow n the rate of construction

 where

 necessary,

to

  keep

  them

  within

  safe

  limits.

A

 special case

 o f

 emban km ent stabili ty,

 often

  quoted

 in

 text books,

is that  of the  rapid drawdown of water

 level

 behind an embankment

dam. In this case, the soil in the embankment has had time to

consolídate

 under

 its ow n

 weight implying long-term cond itions)

 but

support  from

  th e

  adjacent water

  is

  w ithdraw n rapidly implying

short-term conditions). This  can be  simulated  by the C onsolidated

undrained triaxial test,

  in

  which

 th e

  test specimens

  are

  allowed

  to

drain and

  consolídate

 under the applied

  cell

 pressure. Once consoli-

dation

  is

 complete, specimens

 are sheared

 rapidly un der conditions

 of

no drainage. In this way, the response of the soil to both long-term

consolidation

  and

  short-term shearing

  is

  simulated

  in the

  test,

allowing a

  total

  stress analysis to be used. The simulation of

long-term conditions

  in a

 test

  is

 assumed

  to be

  possible

 in

  this case

because  the water in the reservoir ensures that the soil on the

up-stream

  face

  of the dam  will  al w ay s be  saturated. However,  the

rapid drawdown condition can be better more thoroug hly, analysed

in   terms  of  eífective

  stresses, using

  the

  effective

  stress strength

parameters which musí  be  measured anyway for n ormal long-term

stability analysis

  of the dam

  slopes.

  The use of the

 Consolidated

undrained test witho ut pore pressure measurem ent is therefore  more

of

 historical

  interest than practical application.

With

  natural slopes,

  we are

  alw ays dealing

  with

  conditions that

have

 been in equilibrium for a long period  of time, although seasonal

variations will occur,

  an d  effective

  stress analysis

  is

 appropri

  e.

6 2  UNDR INED

 SHEAR STRENGTH

  OF

 CLAYS

Shear strength is obtained

 from

  the

 M ohr-Coulomb failure criterion,

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 87/136

S H E A R S TR E N G TH

  81

Table   6 1   E S T I M A T I N G   THE  S H E A R S T R E N G T H   O F C L A Y S

Shear

  strength

  kN / m

2

)

<20

20-^W)

40-75

75-150

150-300

>300

Descriptive

term

Very  so f t

Soft

Firm

Stiff

Very  stif

Hard

Characteristics

Exudes between f ingers  when  squeezed

Moul ded

  by

  light

  finger

  pressure

Moul ded  by  s t r ong  f inger pressure

Can be indented  by  t h u m b

Can be

  indeníed

  by

  t h u m b nail

Note: thesc

 strength

 descriptions and tests conform w i th standard practice and  with the recommendations of  B.S.

5930  1981).

Table   6 2   T Y P I C A L S H E A R S T R E N G T H P R O P E R T IE S  O F  C O M P A C T E D C L A Y S

Soil

  description

Class

Undrained shear

  strength

  kN/m)

As

  compacted

  Saturated

Silty

  sands sand-si l t  m ix

Clayey sands sand-clay m ix

Silts   and clayey  silts

Clays  o f

  lo w

  plastici ty

Clayey silts, elastic silts

Clay of high  plasticity

SM

SC

M L

CL

M H

CH

50

74

67

86

72

103

20

11

9

13

20

11

 

Uniíied

  classif icat ion system.

Equat ion   6.1). Ho wever, fo r mos t sa turated

 clays,

 tested under quick

undrained condi t ions ,

  the

  angle

  o f

 she aring resistance

  is

 zero.

  This

means that the shear s t rength of the

 clay

 is a fixed valué and is equal to

the apparent coh esión.

 T he

 valué

 o f the

 undrained shear s t rength

 may

be

  est imated

  by

  mould ing

  a

  piece

  o f

  clay between

  the fingers and

applying

  the observations indicated in Table  6.1.

Typical

 valúes

 for the

 shear

 s t rengths of

 compacted

 clays

 are

 given

in  Table 6.2. Valúes

  refer

  to  soils compacted  to the  m á x i m um dry

densi ty  obta ined in the s tandard compact ion tes t : AASHTO   T99

 5.51b

  rammer method)

  or BS

  1377:1975 Test

  12

  2.5kg ramme r

method) .

6 2 1   Remoulded   shear strength

As discussed

  in

 Chapter

  1,  the

  liquid

 and

  plástic limits

 are

  mois ture

contents

 at

 w hich soi l

 has

 specific valúes

 o f

 undrained sh ear s t rength.

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 88/136

82  CORRELATIONS

 OF

  SOIL PROPERTIES

2

1.8

1 6

1.4

x  1.2

o

 

1 0

2

 

cr

 0 8

  6

  4

  2

 Liquid

 limt

  0 .2

Plástic

  l i m i t

Clay

Horten

London

Gosport

Shellhaven

LL

  PL

30

  16

73

  25

80 30

97 32

Pl

 Activity

14  0 36

48

  0 96

50  0 89

65

  1 27

  I I I l i l i  

J  

I I I I I

 

l i l i

  1

O.5 1 5 1O

Undrained

 shear strength  kN/ra

5O   100

2

 

Figure

 6 .4

  Correlation between shear strength

 and liquidity índex  after  Skempton  and

Noríhey,

  1952)

It  therefore follows  that for a rem oulded soil the shear strength

depends  on the valué of the

 natural

 m oisture

 c ontení

 in  relation  to the

liquid   an d

 plástic

  limit valúes. This  can be convenie ntly expressed by

using

  th e

  concept

  of

  liquidity índex  defined  by :

w

n

  PL wn  PL

Liquidity índex = -—

  P

Pl

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 89/136

SHEAR

  STRENGTH  83

where

  LL and  PL  are the  liquid  and

  plástic lim its, respectively

PI  is the

  plasticity

  índex

and  w

n

  is the natural moisture  content.

Curves relating remoulded undrained shear strength   to liquidity

índex

 hav e been established by Ske m pton and No rthe y 1952). These

are   given  in Figure  6.4.

6 2 2 Undisturbed shear strength

The shear strength o f undisturbed clays depends on the  consolidation

history  of the clay as  well  as the  fabric  characteristics.

The ratio of natural shear strength to remoulded shear strength is

known

  as the

  sensitivity.

  It  is

  most marked

  in  soft,

  lightly con-

solidated clays which have

  an

  open structure

  and a high

  moisture

content

Sensitivity  m ay

  be

  related

  to

  liquidity Índex,

  and

  this

  has

indeed been found  so by a num ber of researchers, whose findings are

given and discussed by Holtz and K ovacs 1981). M uch of this data is

for  the

  sensitive clays

  of

 Canadá

  and

  Scandinavia

  but the

  work

 of

Skempton  and  Northe y 1952) relates m ainly  to  clays  of  relatively

modérate sensitivity with natural mo isture co ntents

  below

 th e liquid

limit. Their fíndings are

  given

  in

  Figure 6.5.

Fu rther, since both remoulded shear stren gth

 an d

 se nsitivity

 can be

correlated with liquidity Índex, it foliows that a

 correlation

 m ust exist

between undisturbed shear strength and liquidity índex.  Such  a

relationship,

  obtained

 by

 combining

  the

 correlations

 given

 in

  Figures

2

5O

 

20

 

§ 1

0 2  O 0 2 0 4  0 6 O 8 1 0 1 2 1 4 1 6  1 8  2 0

Liquidity  ndax

Figure 6.5  Correlation between sensitivity  and   liquidity

  índex

  after  Skempton  an d

Northey, 1952)

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 90/136

84

  C O R R E L A T I O N S  OF SOIL  PROPERTIES

200

100

g 5O

x

JS 

O

e

o

  o

 

1

i

 

I I I 1

 

.

ti

0 2 0 4 0 6 0 8

  iquidi ty  indax

1

1 2

2

 a

Figure 6.6 Relationship

  between

  th e  natural shear slrength   of undisturbed   clays  and

liquidity índex

6.4

  and

  6.5

is

  shown

  in

  Figure  6.6 which then provides

  a  useful

predictive  tool  for  assessing  the  shear strength of un disturbed soils.

It  is

 found

  that  for

 m ost norma lly-consolidated clays, und rained

shear strength  is

 proportional

 to eífective  overburden pressure. This

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 91/136

S H E A R  STRENGTH  85

is to be

  expected when

  it is

  remembered that ,

  in  terms  of

 eñective

stress,

  shear

  strength is basically a

  frictional

  phenomenon and

depends  on  confming  pressure.  If

  th e

  constant  of  proportionality

between shear strength

  and

  eñective overburden pressure

  is

 k n own

then shear strength

  can be

  inferred

  from

  eñective overburdenpressure; that  is ,

 from

  depth.

 This

 problem h as been investigated by a

number

  of

  researchers, with

  a  view  to

  establishing

  a

  correlation

between

  the

 shear strength/ove rburden pressure ratio

  and

  some  soil

classification param eter, typically the plasticity índex. Such a correla-

tion   would be of  great practical valué, since  it would  enable  the

undrained  shear  strength  (S u)

  to be

  estimated

  from  a

  simple

classification test.

Historically,

  muc h use has been m ade for normally consolidated

clays  of the  relationship  of  Skempton  1957):

<7V

 

0.11 0.0037P/

where,

  P I

  is the plasticity Índex. At first  sight  it is not  evident that

SJ(j v  should b e related to the plasticity Índex. Ho we ver, the valué of

 0

can be

  expected

  to

  depend

  on the

  shape, size, packing

  and

  mineral

composition of the  clay  particles, as

 will

  the plasticity

 índex,

  so the

two properties

  are

 related

  in

 some man ner see Figure 6.12). Figure

  8

i

0)

 

n

Bjer rum(1972 )  aged

Skempton

  (1957)

Bjerrum (1972)  young'

Kenn0y(1976)

 

100

Plas ticity index

200

Figu re 6.7 Relationship betwee n the ratio of undrained shear strength to  effective

overbu rden pressure

  an d

 plasticity index

 for

  normally-consolidated clays

 (modified

  after

Holtz   and

  Kovacs ,

  1981).

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 92/136

86

  C O R R E L A T I O N S

  OF

  SOIL  P R O P E R T I E S

6.7  includes

 other results obtained

  by a numb er of

 researchers.

  As can

be seen, their findings vary and should only be used   wi th  caution.

Ho w ever, such correlations particularly that

 of

 Skempton 1957)

 are

useful  for  preliminary  estímales  and  checking laboratory data  on

normally Consolidated  clays. For  overconsolidated

  clays,

  Kenney

  1959), stated that the relationship is influenced  mainly by the stress

history and is essentially independent of plasticity Índex. A correla-

tion  between

  the

  shear strength/overburden

  pressure ratio and

liquidity

  índex for

  Norwegian quick clays

 w as

 presented

  by

 Bjerrum

and Simons 1960), as

 indicated

 in Figure 6.8. Ag ain, results show  so

much

 scatter that the interp retatio n of the results is open to q uestion,

and   all  that can be said with certainty is that, for Norwegian quick

clays,  the

  ratio

 is around  0.1 to  0.15.

Besides

  th e

  influence

  of  geological  history  on  undrained shear

strength,

 the

 stress history du ring test also

 affects

  results. Thus, shear

strengths obtained

  by

  unconfined

  compression testing  or triaxial

testing  can be expected  to  difíer  from  those

  obtained

 by  shear vane

  Wroth, 1984). The  relative valúes  of the

 shear

  strengths have been

examined   by a  number  of  researchers,  and the

  ratio

  of

  true

und rained shear strength based on the back-analysis of em ban km ent

failures)

 to shear vane valúes seems to depend on the plasticity índex,

as  indicated  by  Figure 6.9.

Strictly, undraine d shear strength depends on the

 effective

  consoli-

dation pressure, which  is the  average  of the

  effective

  overburden

o »

o

 

O

 »

o

 

0 4

 

0

 °3

 

•o

 

0.2

w

 

o

Liquidity  Ín ex

Figure  6.8

  Relationship between

  the

  ratio

  of

  undrained

  shear

  strength

  an d  effective

overburden

  pressure  and liquidity  Índex  for  Norwegian  clays  after  Bjerrum and

Simons, 1960)

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 93/136

S H E A R   STRENGTH  87

 

3k

o

 

v.

u.

 

Ü

1.4

1.2

1.0

0.8

  6

0.4

 

D O

 

Bjerrum  1972)

  Milligan  1972)

Ladd and

 Foott  1974)

  -

Flaate

 and Preber

  1974)

  LaRochella et al. 1974)

D  Holtz and Holm

  1979)

*

  -  Layered and varved clays

B j e r r um s  1972)

recommended curve

« CH

20 40 6O

P l a s t i c i t y

  í n d e x

80

1 0 O

120

Figure

 6.9

  Correlation factor

  fo r

  field vane test results, depending

  on

 plasticiíy índex ,

basedon b ack-analysis  of  embankment failures  after  Ladd, 1975 and Laddet al. 1977)

pressure

  and the   lateral pressures.   For   overconsolidated clays,

comparison  of   shear strength with   effective   consolidation pressure

gives  better correlations than with

  effective

  overburden   pressure.

According to   Bjerrum (1972), w ork ing with normally-consolidated

late

 g lacial clays , w hilst recent sediments

  are normally

 Consolidated,

older  clays tend to be slightly overconsolidated, the overconsolida-

tion ratio depending somew hat on the  plasticity Índex,  as  indicated  in

Figure 6.10. Combining this w ith Bjerrum s shear

  strength/overbur-

den

 pressure relationships (Figure 6.7),

 and

  correcting

 th e

 resulting

shear strengths using  the   factor

  //

  from

  Figure

  6.9

Mesri (1975)

concluded

  that   the   ratio   of the field   shear strength   to   effective

consolidation pressure was independent of plasticity   índex  and was

equal to 0.22.  The   scatter   of  results which  ha

 ve

 gone into producing

this  conclusión

  are so

 w ide that

  it

 mus t

 be

 viewed  with  great caution

but,  if  validated,   it

  could

  be of   practical valué.

Although   the  literature contains m uch debate

 concerning

 S

u

/a;

 and

overconsolidation ratios

 (Ladd

 e t al,

 1977; W roth , 1984), in p ractical

terms it is   more straightforward   to   measure   the   undrained shear

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 94/136

88

  CO RRE L A T I O N S  OF   SOIL PRO PERT IES

2

2

40 6O

Plasticity índex

1

Figure  6.10

  Relationship  between  overconsoliation  ratio  an d plasticity

  Índex

  fo r

late-glacial clays  after

  Bjerrum,

 1972

5

4

3OO

 

•H

 

20 0

0

•a

 

D

.

 Soil

  groups refer

to

 Unified

  system

Terzaghi and Peck

1O  2 3O 4 5

SPT N valué blows/SOOmm

6O

Figure 6.11  Approximate correlations beíween undrained shear strength and standard

penetration test N-values

  after

  Terzaghi

  an d Peck,

  1967

 and

  Sowers,

 1979}

strength of overconsolidated clays tha n to predict it  from   other

índices.

6 2 3 Predictions using  the  standard penetration test

Attempts

  have been made

  to

  correlate

  th e

  unconfined  compressive

strength

  or the

  undrained shear strength

  of

 clays with

  the

  results

 of

standard penetration tests with  varying degrees  of  success. Some

suggested relationships  are

  given

 in  Figure

  6 11

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 95/136

S H E A R

  STRENGTH  89

 

DR INED  AND  EFFECTIVE SHE R STRENGTH  OF

CL YS

As   discussed previously   it is   often   impor tan t   to   carry   out   stability

calculations   in

  terms

  of

  effective

  stresses. This   is  particularly truc  o f

slope

 s tabili ty calculation s.

 T he

 soil streng th param eters

 used in

 these

calculations   are   obtained   f rom   ei ther drained shear   box or   triaxial

tests (giving cd   and   < / > d   or

  f rom

  Con solidated un drain ed triaxial tests

with

 pore  pressure measurement (giving   < / > é

u   and   c

cu

).  I n

  theo ry there

should

 be little

 difíerence

 between  the tw o  sets  o f  valúes,  for   sa turated

clays, although   in  practice  there

 may

  be

 minor  differences.

*

  A

 relationsh ip between

 diaÍnecLshjea£.stEejftgth   and

 p lasticity  Índex

for   remoulded clays

  has

  been established

  by

  Gibson (1953),

  as

indicated   in  Figure  6.12.   Also   shown   is a   relationship between   th e

residual shear strength, or true angle of internal

  f r iction,

  an dplasticity índex. The existence of these relationships arises because

both plasticity Índex and shear strength   reflect   the clay mineral

composition of the soil: as the clay mineral content increases,

4O

 

3

£  2

w

o 1

o

i

Drained »h««r  ¿

d

  [_U  ^M 

Truo

  angl©

 of

 internal friction

i

  /

2

4

6 8

Plasticity  indox

1

Figure

  6.12 Relationships between angle

  of

  shearing resistance

  and

 plasticity Índex

  after  Gibson, 1953)

12

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 96/136

90  C O R R E L A T IO N S  OF

  SOIL

  PROPERTIES

Table  6 3

  TYPICAL

 A N G L E S  OF E F F E C T I V E S H E A R I N G R E S I S T A N C E  F OR C O M P A C T E D   C L A Y S

Soil  description

Class*

  d e g )

Silty  clays,

 sand-silt

  m ix

Clayey

  sands,

  sand-clay  m ix

Silts  and

  clayey

  silts

Clays

 of

  lo w

 p lasticity

Clayey  silts, elastic  silts

Clays  of

  high plasticiíy

SM

SC

M L

CL

M H

CH

 

32

28

25

19

* Unified  classification  system.

plasticity índex  mercases and  shear strength decreases.  As described

previously,  the  strength  of clays, in eñective stress

  terms,

 is  basically

frictional so

 c =

 0.

 This

 is

 certainly

 th e

 case w ith rem oulded saturated

clays but

  partially saturated clays, where meniscus

  effects

  draw

  the

particles

  together  to  produce  inter-particle stresses,  m ay appear  to

have a

  small

  cohesión valué, though this  itelf  is a  frictional

phenomenon.

Typical valúes of the angle of shearing resistance, 0 , for  compacted

clays are

  given

  in

  Table 6.3. Valúes

  are for soils

  compacted

  to the

máx imum   dry density according to the standard compaction test

(AASHTOT99,5.51brammermethod;orBS

 1377:1975

 test

 12,2.5kg

rammer

  method) .

6 4 SHEAR STRENGTH OF GR AN UL AR SOILS

Because

 o f

 their high perme ability, pore w ater pressures

 do not  build

up when granular soils are subjected to shearing   forces,  as

  they

  do

with clays. The com plicátion  of total and  effective  stresses is therefore

avoided and the pheno m enon of apparent cohesión, or undrained

shear strength, does

  no t

  occur. Consequently,

 the

 she ar strength

 o f

granular soils is defíned exclusively in terms of the frictional resistance

between the grains,  as measured by the  angle of  shearing resistance.

Typical valúes

  of the

  angle

  of

  shearing resistance

  fo r

  sands

  and

gravéis  are  given  in

 Table

  6.4.

Typical valúes

 for

  compacted soils

 are

  given

  in

 Table 6.5. Valúes

refer to soil

 com pacted

  to

 m á x i m um

 dry

 density

 at

 opt im um mois ture

content

 as defíned in the  standard  compaction  test: AASHTO  T99

 5.51b

  rammer method)

  or BS

  1377:1975 test

  12

  2.5kg ramm er

method) .

A

  relationship between

 dry

 density

 or

 relative de nsity

 and the

  angle

of  shearing resistance  is given  by the US  Navy 1982) , as show n in

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 97/136

S H E A R

  STRENGTH 9 1

  ble

 6 4

  T Y P I C L V L Ú E S OF THE  N G L E O F  S H E R I N G R E S IS T N C E O F  C O H E S IO N L E S S

S O I L S

Material

Unifo rm   sand, round grains

Well-graded sand, angular grains

Sandy gravéis

Silty

  sand

Inorganic

  silt

Loóse

27

33

35

27-33

27-30

 

deg)

Dense

34

45

50

30-34

30-35

  ble  6 5  TYPICAL  V L Ú E S OF THE  N G L E  O F  S H E R I N G R E S I S T N C E F O R  C O M P C T E D

S ANDS

  AND

  G R A V E L S

So// description Class*

Angle

  of

 shearing

resistance,   f >   deg)

Well-graded  sand-gravel  mix tures

Poorly-graded sand  gravel m ixtures

Silty  gravéis, poo rly graded sand-gravel-silt

C layey gravéis, poorly graded san d-gravel-clay

Well-graded clean   sand gravelly  sands

Poorly-graded clean sands, gravelly   sands

GW

GP

GM

GC

SW

SP

>38

>37

>34

>31

38

37

1 Unified  classification

  system.

O

O

c

 

o

 

50

 O

  • 40

 

a

c o

30

20

Material

  type  Unified classification)

Relative

  density

1.2

  1 4 1 6 1 8 2 0

Dry

  density

  -

  t/m

3

  Mg/m

3

)

2.2 2 4

Figure 6.13  Typical  valúes ofdensüy  an d  angle o f  shearing resistance o f  cohesionless

soils  modified  after

  US

  Navy 1982)

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 98/136

92

  CORRELATIONS  OF SOIL PROPERTIES

o

3

 

a

 

8

5

4

2

10

4

X

X

x

x

X

 

/

 

/

Relative density

Very

 dense

 

Loóse

  .

  t*

 ery

 loóse A,

28 3 32 34 36

  38

  4 42

  44 46

g of

 shearing resistance °

Figure  6.14 Estimation

  of the

  angle

  of

  shearing resistance

  of

  granular soils  from

standard

  penetration test result  after  Peck

  et

 ai 1974)

Figure  6.13.

 The

  material types

  indicated  in the figure

  relate

  to the

Unified

  classification

  system . Peck et al.  1974) give

 a

 correla tion with

standard penetration test valúes, shown

 in

  Figure 6.14.

  The

 correla-

tion between

 SPT

 valúes

 and

  relative den sity

 is

 also

 shown , enabling

a

  comparison

  to be

  made with

  the U S

  Navy valúes.

Examination

 of

 Figures 6.13

 and

 6.14 show s reasonab le agreem ent

between  the two  correlations. H ow ever, considerable variation can

exist within each   soil type,  as indicated  by Figure 6.15, which shows

plots

 o f the

  angle

  of

 shearing resistance against relative density

 for a

number of sands.

6 5  L TER L PRESSURES  IN A SOIL

 MASS

Consideration

  of

  lateral pressures

  is  usu;-lly

  associated with

  the

design

  of

  retaining walls, basement  walls  pile foun datio ns

  and

tunnels, where   interest  is centered  on the  m¿ iñ m um  nd  máximum

lateral

 pressures

  that

 can

 occur;

 that  is, on the

  coefficients

  of active

and passive pressure. Approximate solutions for active and

  passive

pressure problem s can be obtained using the simple Cou lomb 1773)

wedge theory or by consideration  of Mohr s circles of stress at failure

  Rankine, 1857). The R ankine

 approach

 is still used for cohesive and

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 99/136

S H E A R S T R E N G T H

  93

<

e

 

o

 

O

O

e

 

20

 

O

  60

Relativo  density -

Figure 6.15 Relationship s  beíween angle ofshearing  resistance and

 relaíive

  density for

various sands  after

  Hilf,

  1975)

cohesive granular c  — < / > soils but both the Rankine and Coulomb

methods give

  signifícant

  over-estimates

  of

  lateral pressure

  for the

passive condition and for granular soils, i t is more usual to obtain

coefficients

  of earth pressure using analyses that postúlate curved

failure surfaces Caq uot  and

  Kerisel,

 1966; Terzaghi  and  Peck, 1967).

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 100/136

9 CORRELATIONS  OF SOIL PROPERTIES

0.8

 

o

0 6

 O

 

o

t_

 

O.4

o

  O.2

U

D

  Sangamon sand subang u la r )

  W a b a s h s a n d s u b a n g u l a r )

O

  Cha ta hooche e sand subangu la r )

 

Bras ted sand

o

  Sand

  Simons, 1958)

 

Belgium  sand

4-  Minnesota  sand  rounded)

X

  Penn sy lvan ia sand angu la r )

O

28 30 32 34 36 38 40 42 44

Angle  of shearing resistance, 0 -  degrees

46

Figure  6.16

  Correlation between  th e  coefficient  of   earth pressure  at  rest  and the

angle  of  shearing resistance  for   normally-consolidated sands  after  Al-Hussaini  and

Townsend,

  1975}

0.8

K

n = 1 -

  sin0 ±0.5

0.3

12 14

Ang le

  of

  s h e a r in g r e s i s t a n c e , 0 -  degrees

Figure 6.17 Corre lation beíween the  coefficient  of   earth pressure at  rest and the angle

of   shearing

 resistance,

  in

 terms

  ofeffective

  stresses

  after

  Laddet al. 1977).

 Key ío

 data:

  1)  Brooker  an d Ireland 1965),  2)  Ladd 1965),  3)  Bishop 1958),  4) Simons 1958),

  5)

  Campanella

 and   Vaid

  1972),

  6)

  Compiled

 by

  Wroth 1972),

  7)

  Abdelhamid

  an d

Krizek

  1976)

 

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 101/136

SHEAR STRENGTH  95

1.0

 

O

••

  0.8

 

O

 

a

§ 0 6

m

0.4

o

ó 0.2

o

 

K

0

=

 0.44  0.42 PI/100)

  o

o o

  Undisturbed

  Disturbed or  laboratory reconsolidated

from a

 sediment

20  40 60 80

Plasticiiy

  índex, Pl

100 120

Figure 6.18 Correlaíion  between the coefficient  ofearthpressure ai rest -

  obtainedfrom

laboratory

  tests and plasücily  índex  afíer  Massarsch,

  1979}

Active

 and passive

 pressures

 represent the limit ing valúes of

 lateral

earth   pressure,  w h e n

  the

  soil

  has reached a

  failure  condi t ion ,

  and

require a certain a mo unt of mo vem ent for pressures to at tain these

valúe s. This

 can be of

 practical impo rtance

  in the

 calculat ion

 of

 design

pressures behind  rigid structures,  such as  strutted retaining

  walls,

 in

which

  m ovem ent m ay

  be

  insufiícient

  to

  allow

  the

  soil

  to reach a

passive state.

 F or

 such condit ions,

  it is

 useful

 to be

 able

 to

 est imate

 t he

valué of hor izon tal s t ress in the un disturbed ground . This can not be

obtained  from  theoret ical considerat ions of limit  equilibrium, as is

th e  case  fo r  active  and  passive

  pressures,

  but

  depends

  on the

geological history o f the soil . H ow ev er,

 using

 an

 approx imate

 theory

  Késdi ,  1974

th e

  coefficient

  of

  earth pressure

  at

  rest ,

  K

Q

  for a

normally-consolidated soil

  can be

  related

  to the angle of

  shearing

resistance:

This  relat ionship  has  been found  to

  hold

  t rue  for  normally-con-

solidated sands  and  clays,  as indicated  in  Figures 6.16 and

  6.17.

  In

addi t ion,  a  relat ionship between K0  and  plasticity

  índex

  has  been

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 102/136

96  C O R R E L A T I O N S O F

  SOIL

 P R O P E R T I E S

3

2 8

2 6

2 4

2 2.2

o

 O

o

  2.0

3

 

£  1.8

a

£

  C

9

°1 4

 

~  1 2

 

Ü

  6

0 4

i

  T í

o Boston blue

 clay, Pl=23

  Ladd,  1965)

Brooker

 and

 ireland  1965)

Plasticity

 índex

  s

34 6 8 10

Overconsolidation ratio

2O 3O

Figure 6.19 Correlation between c oefficient

  of

 earth

 pressure at

 rest

 and

 overc onsolida-

tion ratio for clays of various plasicity índices  data  by Ladd,  1965,  and Brooker and

Ireland,  1965;  replotted by Ladd, 1971

obtained  by  M assarsch 1979),  as  shown  in  Figure

  6.18.

 The  above

relationships are valid for normally Consolidated clays but for

overconsolidated clays the valué  of

  KQ

  is heavily depend ent on the

overconsolidation

  ratio.  For

  these clays,

 K0  can be

  estimated  from

Figure

 6.19

wh ich shows relationships between K

0  and

  overconsoli-

dation

 ratio

 fo r  clays  of different  plasticity

  índex

 valúes.

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 103/136

Chapter

  7

CALIFORNIA BEARING RATIO

7 1

  TH

T ST

  METHOD

The CBR

  test

  was

 originally

 developed  at the

  California División

 of

Highways in the 1930s as parí  of a  study   of  pavement failures.  Its

purpose was to   provide an assessme nt of the relative stability of fine

crushed

 rock

 base

 materials.

 Later

  its use was

 extended

 to

 subgrades.

It

  is now

  widely used

  for

  pavement design

  throughout the

  world.

Ironically it was used  for pavem ent design  in  California  for only  a

 few

years

and was

  superseded

  by the

  Hveem Stabilometer test.

During  testing

a

  plunger

  is

 made

  to

  penétrate

  th e

  soil which

 is

contained

 in a

 standard

 mould at a specified rate of

 penetration.

 The

resulting

  load-deflection

  curve

 i s

 compared

  with

  that obtained

  for a

standard crushed rock.  The  test details  ha  ve  been largely standar-

dized

  and are

  given

  in the

  AASHTO Standard   Speciíications Test

T193

and in BS

  1377:1975 Test

  16 .

 Slight  variations exist between

th e

 Am erican

  and

 British standards

  but

  these should have little

  effect

on the CBR

  valúes

 and

 arise purely

 as a

 result

 of

 converting

 the

  U.S.

specifícation  to metric

  units.  However significant  variations

  in

sample  preparation  and  test procedures  can   occur even within  the

specifications. Th is can  give rise to   difficulties  wh en comparing CBR

results from   different  sources. Table  7.1  show s some of the variations

between

  methods.

The CBR

  test

  is

  used exclusively

  in

  conjunction with pavement

design methods

  and the

  method

  of

  sample preparation

  and

  testing

must

 relate

 to the  assumptions made in the  design method   as well as

to

  assumed site conditions.

  For

  instance

th e

  design method

  m ay

assume that soaked CB R valúes are alw ays used regardless of actual

site conditions.

7.2

  CO RRELATIONS WITH SOIL   CLASSIFICATION

SYSTEMS

In  view of the  fact

  that

 early

 pavem ent design methods were based

 on

soil classification tests rath er  trian

 CBR

 valúes

it

 seems

 a

  reasonable

97

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 104/136

98  C O R R E L A T I O N S  OF  SOIL  P R O P E R T I E S

  ble   7.1  V R I T I O N S  OF  T E S T

  M E T H O D

  FOR CBR  T E S T

Density

The CBR is  usually

  quoted

  for the  assumed density  of the  soil  in place. This

  will

typically

  be 90 , 95 or 100 dry density, as

 specified

  in either a standard

  (2.5kg

rammer)  or  heavy  (4.5kg  rammer) compaction test .

Moisture contení

The aim is to test the specimen under the worst

 likely

 cond itions that w ill

 occur

 within

th e

  subgrade.

  In

  practice, soil

 is

 usu al ly compacted

  at

  opt im um mois ture content ,

 as

specified

  in a

 com paction  test,

 an d

  then either tested imm ediately

 or

 soaked

  for 4

 days

before  testing.

Surcharge

  weights

Surcharge w eights  are placed on the  specimen before testing to simúlate the w eight of

pavement m aterials overlying

 th e

 subgrade.

  In

 practice,

 3

 w eights

 are usually

 used

 b ut

this can  vary . T he  effect  of the surcharge weights is more mark ed w ith granular soils .

Testing

  top and  bottom faces

It is usual A merican practice to test the bo ttom of the specimen w hereas in B ritain both

top and botto m faces are tested and the average take n. Since the top

 face

 usu ally gives a

lower  CB R  valué than  th e  bottom

  face,

  this variation c an  significantly

  affect

  results.

Method

  of

  compaction

The AASHTO

  specification

  stipulates the use of dynam ic compaction

  (using

  a

rammer

but the BS specification allows  the use of

 static

  compaction (using a

 load

frame)  or

  dynamic compaction (using either

  a

  ram m er

  or a

  vibra t ing hamm er) .

Insitu valúes

If

 tests

 are

 carried

  out on

  completed construction,

 the

 lack

 of

 confining

  influence

 o f the

mould  an d  drying  out of the  surface can  affect  results.

assumption that

  CB R

 valúes

 are

 related

  to

 soil

 classification  in

 some

way.

  However , CB R valúes depend not  only on soil type b ut  also on

density,  moisture content and,  to  some extent,

  method

  of  prepara-

tion. These  factors  must  therefore  be  taken into account

  when

considering correlations

  between CBR and

  soil cla ssification tests.

A num ber of attemp ts have been made to correlate CB R w ith soil

plasticity. A

 correlation b etw een plasticity

 Índex

 and

 C B R ,

 for

 design

purposes,

 is

 given

 by the

 Transport

  and

  Road Research Laboratory

(1970) ,

 as

  indicated inTable 7.2. This

 is

 based

 on

  wide

 e-

 perience

 of

subgrade soil  but is  limited  to  British soils

  compacte

  at  atural

moisture  content according  to the  Ministry  of  Transport  1969)

specification.  Thus,  th e  precise density and  m oisture content condi-

tions

 corresponding

  to the  given  CB R valúes is not  specified. This

severely  limits  the use of the

  table

  outside B ritain.

The valúes used b y the Transport and Road Research  Laboratory

 

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 105/136

C A L I F O R N I A B E A R I N G R A T I O

  99

Table

  7 2   E S T IM A T E D

  L A B O R A T O R Y

  C B R

  V A L Ú E S

  F O R

 B R I T I S H   S O I L S

  C O M P A C T E D A T T H E

N T U R L   M O I S T U R E  C O N T E N T

C B R

  ( )

Ty pe

  o f

  soil

Plasticity

  índex

D e pt h  o f  water table

  below

formation  level

More than

 600mm

  600mm o r less

Heavy  clay

Silty clay

Sandy clay

Silt

Sand (poorly graded)

Sand

  (well

  graded)

W ell-graded sandy gravel

70

60

50

40

30

20

10

non-plas t ic

non-plast ic

non-plas t ic

2

2

2.5

3

5

6

7

2

20

40

60

1

1.5

2

2

3

4

5

1

10

15

20

ow e

  m u c h

  to the

  w o r k

  of

  Black (1962),

 w ho

  obtained correlat ions

between

 CBR and

  plastici ty Índex

 for

 various valúes

 of liquidi ty

 Índex

(defined  in

  Chapter

  6), as show n in

  Figure 7.1.

 The

  valúes obtained

from  Figure

  7.1

  refer

  to

  saturated soils.

  For

  unsaturated soils,

  the

CB R can be estimated by applyin g a correction to the saturated valué,

using Figure 7.2.

Mor in

  and

 Todor

  (1977)

  report

  on

  attempts

  to

  correlate soaked

C B R

 valúes,

 at

 op timum mo isture content

  and

 m á x i m u m

 dr y

 density

for  tropical  African  and South American soils with the  producís:

plasticity

 índex

  times

  th e

  perecent passing

  the no. 20 0 or no. 40 US

sieves. They concluded that no

  well-defíned

  relat ionship existed.

However ,  de Graft -Johnson

  et al.

  (1969) obtained a correlation of

CBR

  with plasticity

  and  grading

  using

  th e  concept  of

  suitability

índex,

  defined

  by:

Suitabil ity

  Índex

 =

LL.log P/)

where  A  is the percentage passing a 2.4mm BS sieve. Their  fmdings

are given in Figure 7.3. No te, how ever, that the CB R valúes are for

samples compacted

  to

  máximum

  dry

  density

  at

  opt imum mois ture

content according  to the

  Ghana

  standard  of  compaction. This

specifies

 the use of a standard CB R mould and a  lOlb

 (4.5kg)

 ramm er

w i th

 an

  18-inch  (450mm) drop;

  to

  compact soil

  in 5

 layers using

 25

blows per  layer. Samples  are  tested  after  a  4-day

 soak.

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 106/136

100 CORRELATIONS OF  SOIL PROPERTIES

 iq ui i ty

 índex

 

in

  t í

N;

  i»  CO CO  >

  >

  o O

O O O  O  O  O*  r-*  T-

8

7O

6

5O

  4

09

 O

3

20

1

I  7 i

 

4

Probable •quilibrium

 CBR

under

 pavements

 in

southern England

1

  I  I I I

I

1.25

1.3

4 10 40  1OO

California Bearing Ratio

40O

Figure   7.1 Relationships  between  CBR and plasticity  índex  at  various liquidity

  índex

valúes

  after  Black

1962)

Further work o n lateritic gravéis (de G raft- J o h n s o n

 e t al.

 1972) led

to the

 establishmen t

  of a

  relationship between

  CBR a n d t he

  ratio

 of

m á x i m u m

  dry

  de n s i t y

  to

  plastici ty Índex

  as

  s hown

  in

  Figure 7.4.

Agarwal  an d  Ghanekar (1970), based  on  tests  of 48  I n d i a n

f ine-grained

 soils,

 f o un d n o

  s ignif icant

  correlation between C B R a n d

either

 l iquid

 l imit ,

 plástic l imit

  or

  plast ici ty Ín dex. How ever, they

 d id

obta in better correlat ions w hen opt imum mo isture con tent w as taken

into account .

  T he

  best

  fi t

  relat ionship

  was for CBR

  wi th  o p t i m u m

m oi s t ure c on t en t

  an d

  l iquid l imi t :

T he

  soils tested

  all

 had

  C BR

  valúes

  of less

  than

  9 and the

  s tandard

deviat ion   obtained  w as 1.8.  T hey therefore suggest that  th e  correla-

t ion   is  only  of  sufficient  accuracy  fo r  prel iminary

  identif ication

  of

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 107/136

CALIFORNIA BEARING RATIO 1 1

100

80

5

  60

 

4

20

 

o  London

 Clay

o

  Brickearth Harmondsworth

•  Black cotton soil Ngong

• Red coffee soil Thika Sagana

Unsaturated CBR = K X

 saturated

 CBR at

 same

 moisture

 content

0.2

  4

1.2

1.4

.6

  0.8 1.0

Correction factor K

Figure  7.2  Correction  of CBR  valúes for

  paríial

  saíuration  after  Black, 1962

1.6

120

100

¿ o

  8

i

 

O  6

40

20

O  2 3 4

Suitability índex S

Figure 7.3  Relaíionship beíween suitability  Índex  a nd  soaked  CBR  valus  after  de

Graft-Johnson   eí

 al., 1969}

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 108/136

102

  C O R R E L A T I O N S

  O F  SOIL

 PROPERTIES

140

 2

1OO

 O

3

¿C

 

8O

1 6

o

 

4

20

  i l

1  

l l

10

 

OO   10OO

Máximum

 drydensity

kg/m3

Plasticity

  índex

Figure

  7.4

  Relationship between

  th e  ratio

  of

  máximum  dry  densiíy  lo plasticity

  índex

an d  CBRfor  laterite-quartz gravéis  modified  after  de  Graft-Johnson  et  al., 1972}

materials. They  fur ther  suggest that such correlation m ay be of mo re

use if derived  for

  specifíc

  geological regions.

Both  th e  A A SH T O  and

  Unifíed

  soil

  classification

  systems were

devised for the  specific  purpose of assessing the suitability of soils for

use  in road and

  airfíeld

  co nstru ction . Since the C BR valu é of a soil is

also a m easure of its perform ance as a subg rade, logic suggests that

there

  should be  some  general relationship between the  soil  groups

and C BR v alúes. A p p roxim ate correlations betw een CB R and soil

classes suggested

  by íhe US

  Highways Research Board

  and by the

U S Corps of Engineers are given by Liu 1967) and p resented in

Figures

  7.5 and

  7.6.

  A

 similar correlation,

  for

  South American

  red

tropical soils, is given in Figure 7.7.

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 109/136

C A L I F O R N I A B E A R I N G R A T I O 1 3

AASHTO

 system

A - 1

A - 1 - a

 b

A - 2 - 4

  and

 5

I

  A - 2 - 6 and 7

A-3

A-4

A-5

A -6

 and 7

GW

Unified system

em

 

S P a n

I <

GM

GC

SW

dSM

3P

 

ML

CL and CH

MH

OL and OH

2

  4

  6 8

 1 15 2 3 4 6 8

Figure 7.5 Approximate relationships between soil classes and CBR valúes

  after

Liu, 1967)

GM

[GW

 

GU

SP

ML CL

I su

sel

M H O L

[CH,OH

3 4

6 8 10 15 20 3O 40 60 80

Figure 7.6 Approximate relationships between

  Unified

  soil classes and CBR valúes

 after

  U S

  rmy

  Corps

  of

  Engineers, 1970)

A- 2 - 4

A-4

[A-2-6

A-5

A-6

A-7-5

A 7 6

6 8 10 15 20 30 40 60

  8 1

150

Figure

  7.7 Approximate relationships between

  SHTO

  soil classes and CBR valúes

for  South  American red tropical soils

  after

  Morin and Todor, 1975)

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 110/136

104

  C O R R ELA TIO N S

 OF

  SOIL PROPERTIES

7.3

  CBR ND  SHE R STRENGTH

The CBR test can be thought of as a bearing capacity problem in

m iniature, in w hich the standard plunger acts as a small

  foundat ion.

Terzaghi's bearing capacity equation

  for

 circular fou ndation s

 is:

where

  c

 

Po

B

and

  N

 

is the

  cohesión

  of the

  soil

is

 its  bulk density

is  the overburden pressure at the base of the plunger

is

  the

  diameter

  of the

  plunger

N

  and

  N

  are

  Terzaghi's bearing capacity factors.

For a  saturated

  clay

  in  undrained conditions,  the angle of shearing

resistance,   < / > (in  terms  of  total stress)  is  zero. This  gives  bearing

capacity factors

 of

  J V

C

 =

 5.14

  2

 

n),

  N

a

 =

 l

and

  N

v

 = 0.

 Thus,

  the

third term in the equation

 disappears

 and, since overburden pressure

p

0

  is

  equal  only

  to the

  relatively  light  pressure exerted

  by the

surcharge weights,

  the second

  term

  can

  also

  be

  neglected.

  The

equation thus reduces  to:

This agrees

  with

  experience that  the number of  surcharge w eights

used  affects  the CBR  valué for  sands,  for w hich

 N

q  is

 much

  greater,

but not for

  clays.

Using

  SI

  units,

  the CBR

  valué

  is

  100

for a

  plunger pressure

  of

6900kN/m2  (10001b/in2) at a penetration of 2.5mm, giving:

4

u

x l O O

6900

= 0.09c

where

 q

u and  c are in kN/m

2

.

Work  carried  out by Black  (1961)  on single-sized sand and

correlations  with other work  fo r  clay suggests

  that

  this  approach

gives calculated  CBR valúes that are cióse to m easured valúes for field

tests. Lab oratory CBR v alúes can be expected to be higher for sands

because

  of the

  restraining

 iníluence of the

  mould.  Black (1961) also

sugests that,

  when

  calculating  < j

u

  the su stitu on:

c = s tan 0r

is  used, where s is the  soil suction  and  < ¿ > r is e true  , ngle of  internal

friction.

Since,

  fo r

  cohesive soils

the

  true angle

 oí

 internal  friction

  can be

estimated from

 th e

 plasticity índex (see Figure

 6.12),

 this opens

 up the

possibility  of  predicting both cohesión  and CBR  valúes  from

plasticity Índex and  soil suction valúes.

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 111/136

Chapter

 

SHRINKAGE AND SWELLING

CHARACTERISTICS

Expansiva soils

  are those  tha t  show a marked volume change with

increases and

 decreases

  of

 mo isture

 contení.

 Such

  swelling properties

are  restricted  to soils containin g clay minerals

 which

  are  susceptible

to penetration of their chemical structure by water molecules.

Clay swelling and consequential g round heave is a common ann ual

phenomenon in áreas where prevailing climatic conditions lead to

signifícant seasonal wetting

  and

  drying,

  th e

  greatest

  seasonal

  heave

occurr ing

 in regions w ith semi-arid climates wh ere pronou nced sho rt

wet

 and

 long

 dry

 periods  lead

 to

  major moisture changes

 in the

  soil.

Moisture content changes may  also  res ult, in these regions and

others,

  from

  the activities of m an , such as, remov al of vegeta tion and

construction works.

8 1   IDENTIFICATION

The

  simplest swelling

 identification

  test

  is

  called

  th e  free-swell

  test

(Holtz  and  Gibbs  1956).  The  test  is  performed  by  slowly pouring

lOcm 3

 o f dry

  soil <42 5¿m i) into

  a  lOOcm3

  graduated cylinder

 fílled

with w ater, and observing the equilibrium swelled volume. Free swell

is

  defined

  as:

  Final

  vo lume) — I n i ti al

  v o lume)

Free  swell =  \100( )

Initial volume

Table  8.1 gives

  free

  swelling data  fo r  some  common clay minerals.

In field situations, the am oun t of swelling or shrinkage , or whe ther

any vo lum e change occurs at

 all,

 wiíl depend on a num ber o f factors,

such

  as

  moisture content changes, thickness

  of the

  deposit, initial

density, groundwater chemistry,  confining  pressures,

  and

  possibly

other

  factors. However, commonly a  fundamental

  ingredient

 is the

  5

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 112/136

10 6

  CORRELATIONS

 OF SOIL PROPERTIES

Table

  8 1

  F R E E

  S W E L L I N G

  D A T A

  F O R

  C L A Y M I N E R A L S ,

 

A F T E R M I E L E N Z

  A N D

  K I N G ,

1955)

Ca-Mont.:

Forest

Mississippi

W i ls on C r ee k D a m ,

  Coló

D a vi s D a m , A r iz o n a

  ,

Osage

W y om in g

  (prepared

  f rom

  N a - M o n t. ),

145

95

45-85

125

N a -M o n t ,  Osage W y om in g

  1 400-1 600

N a-Hectorite , Héctor, California   1 600-2 000

I H ite:

Fithian, I l l inois  .

Morris

I l l inois .  .

Tazewell, Virginia

Kaolinite:

Mesa

  A l ta ,

  N e w M é x i co

Macón G e o rg i a

L a n g l e y ,  N.  Carolina  . .

Halloysite, Santa R ita , N ew M éxico

115-120

60

15

 

6

7

Table   8 2   T Y P I C A L   R A N G E S   O F  A T T E R B E R G   L I M I T   V A L Ú E S

Clay   mineral

PL

Dominant  pore water catión

Ca2 Na*

LL PL LL

Montmoril lonite

Illite

Kaolinite

65-79

 6

26-36

123-177

69-100

34-73

86-97

34-41

26-28

280-700

61-75

29-52

presence

 of

 m onm orillonite,

  or

  other smectite,

  and

  more specifícally

its

 propo rtion

  in

 th e

 soil.

 In

 some instances, clay-mineral type

 can

 be

identifica  from  the origin and geological se tting of the soil, tog eth er

with

  consideration

  of

  A tterberg l imits. Typical  tanges

  of

  A t te r b e rg

limits are sh ow n in Table  8.2: note the  effect  of the dom inant catión in

th e

 pore w ater . A nother indicator

  of

 clay-mineral typ e

 is

  Skempton's

(1953) activity  Ac)  which relates plasticity índex

 to the

  proport ion

  of

clay

  present  in the soil:

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 113/136

S H R I N K A G E  A ND  S W E L L I N G C H A R A C T E R I S T I C S  107

where

 C  is the percentage f mer

 th an 0.002m m .

 Typical activity valúe s

are:

Sodium m ontm or i llon i te 7 .2

Calcium montmoril lonite  1.5

Illite

 0.9 and

Kaolinite

 0.33 0.46.

8 2  SWELLING   POTENTIAL

An indication  of the  susceptibility  of a

 soil

  to  shrinkage or swe lling

due to decreases or increases in m oistu re content is provided by the

swelling potential  test.

The

  swelling potential

  is  defmed  as the

  percentage

  swell  of a

laterally  confined  sample which

  has

  been compacted

  to

 m á xi m u m

density

  at

  optimum mois ture conten t according

  to the

  standard

compaction

  test

  (BS  1377:1975 Test  12, 2.5kg ram m er m ethod  or

AASHTO

  T99,  5.51b  ram m er m e thod) and then  allowed  to

  swell

under  a  surcharge  of 6.9kN/m2

  (llb/in

2

) .

In order to give m eaning to the  signifícance  of swelling potential

valúes, descriptive

  terms

  are  used  for  various ranges  of  swelling

potential,  as  indicated  in Table  8.3.

Tabie  J  DESCRIPTIVE TERM S

 FOR

 SWELLING POTENTIAL

Swelling   potential  ( )  Description

0 1.5

  Low

1.5 5  M é di um

5-25 High

25

 +

  V e r y  high

8 2 1 Relation   to  other  properties

The

 sw elling poten tial test

 is not

 no rm ally carried out,

 and a

 n um b e r

of researchers hav e tried to correlate swelling potential w ith plasticity

índex . Since both the liquid an d plástic lim its and the sw elling

properties of a soil are governed by the am oun ts and types of

 clay

minerals present,

  it seems

  reasonable

  to

  postúlate that such

  a

correlation  exists. Seed,

  et al

(1962) established  th e  relationship:

 

— £r\ ÍDJ\2.4 4

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 114/136

10 8

  CORRELATIONS  OF SOIL  PROPERTIES

where

  S

  is the  swelling potential

PI

  is the  plasticity Índex

and

  K

  is a

  constant,

 equal

  to 3.6 x

  10 ~5 .

This

 equatio n applies to soils w ith

 clay

 contents of between 8 and

65 .

 The calculated valué is pro bab ly accura te to

 with in

 about 33

of

 th e laboratory valué. Al th oug h their resul ts are based on w ork wi th

artificial m ixtures

 of

 sands

  and

  clays,

 the

 correlation

  has

 been show n

to be

 applicable

  to

 na tura l soils. Using

 this

 equation

  and

 allowing

 for

th e  possible  33 error  in  calculated valúes  of  swelling potential ,

ranges

  of

  plasticity

  índex

  valúes

  may be  obtained  for the

  various

classes

 o f

 sw elling pote ntial ,

 as

 indicated

 in

 columns

  1 and 2 of

 Table

8.4. Also indicated in the table are valúes suggested by Krebs and

Walker

  (1971) .

A

  correlat ion betw een swel l ing potent ial

 and

  plast ici ty Índex

 w as

found  by Chen

 (1988),

 based on

 tests

 of 321

 undisturbed samples.

 He

proposed:

where 

=

 0.2558

A

 = 0.0838

and e is the

  natura l num ber , 2 .718.

He

  also

  established a correlation of plasticity  índex  againt a

swelling

  potent ial obtained

  for a  surcharge

  pressure

  of

  48kN/m

2

(6.941b/in

2

). A comparison  of various correlations between swelling

potent ia l

  and

  plasticity  índex

  is

  shown

  in

  Figure  8.1. It  should

  be

noted that the Holtz and Gibbs

  (1956)

 correlation given in the figure

is not  really comparable  with  the  others s ince their volum e change

measurements

 w ere carried out on air-dried specimens of undis turbed

soil.

 T he

  valúes given

 in the chart are

 therefore

  not

  strictly swelling

potential . This  is discussed  later  in  this section.

Table  8 4   I D E N T I F IC T I O N

  OF

  S W E L L I N G S O IL S B S E D

 ON

  P L S T IC I T Y I N D E X

Swelling  potential

Plasticity

  índex

 

Plasticity  índex 

Low   (0-1.5 )

Médium   (1.5-5 )

High  (5-25 )

Very  high  (25 +

  )

0-15

10-30

20-55

>40

0-15

15-24

25-46

>46

1 Based

  on the

  relationship given

 by Seed  el al

(1962).

2 Valúes according to Krebs and W alker  (1971).

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 115/136

S H R I N K A G E  A N D

  S W E L L I N G

  CHARACTERI S TI CS   109

1

2

Plasticity índex

 -

4

Figure 8.1 A   comparison  of various correlations between swelling

  potential

  and

plasticity índex  after  Chen, 1988)

Although

 soils

 exhibiting high swelling characteristics usually have

high plasticity Índ ices not all soils with high pla sticity Índices ha ve a

high swelling pote ntial. Thus the plasticity

 índex

 can be used on ly as

a

  rough guide

  to

  swelling potential.

Logic suggests that th ere should   be  re la tionships between p otent ia l

for  expansión

  and

  both shrinkage   limit

  and

  linear shrinkage.

  Table

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 116/136

110

  C O R R E L A T I O N S

  O F  SOIL

  P R O P E R T I E S

  ble   8.5

  S U G G E S T E D C U I D E

 TO THE

  D E T E R M I N T I O N

  OF

  P O T E N T I L

  FOR

 E X P N S I Ó N

US ING  S H R I N K A G E  LIMIT

  A N D

  L I N E A R S H R I N K A G E

Potential for  expansión

Shrinkage

  limit

  ( )

Linear

  shrinkage

  ( )

Critical

  < 1 0

M arg in a l  10-12

Non-critical

  >12

>8

5-8

0-5

8 .5

  shows

  a

  general guide

  for

  these relationships suggested

  by

Altmeyer (1955 ) . H owever , a l though

  a

 knowledge

 of

 shrinkage limit

is

 useful

 in assessing

 potential

 volum e changes, other researchers have

been unable  to  establish  a  conclusive correlation between  it and

swelling

  potential (Chen, 1988).

Work

  by

  Seed

  et al

(1962) suggests that there

  is a

  correlation

between swelling potential and

  trie

  contení of clay-sized paríicles

(finer  than 0.002mm). Unfortunately, the  correlation includes factors

which

 depend

 on the type of clay

 present.

 They therefore suggested  an

al ternat ive

  approach using

 the

 concept

  of

 activi ty . Swelling potent ial

is

  related

  to

  activity

  as

  shown

  in

  Figure 8 .2 . H owev er , Seed

  et al

(1962) suggest that, when using this

 figure,

 activi ty

 be  defmed  as:

A

 

Ac~C

This  is because  a

  plot

  of plasticity

  índex

  against clay

 content

  passes

through the origin for clay contents  in excess of 40 but not for lower

clay

  contents,

  as

  indicated

  in

  Figure 8.3. Using

  th e

  amended

definition  helps  to

  compénsate

  for

  this,

  for

  soils with

 the

  lower clay

contents.

Holtz  and

  Gibbs

  (1956)  correlated  volume change with colloid

content  (defmed

  as finer

  than

  0.00 I m m ) ,

  plasticity Índex

  and

shrinkage limit,

 as

 indicated

  in

 Figure 8.4. T hey suggest that, because

of

  th e  uncer ta in ty  of the  correlations,  th e  potential  for  expansión

should

  be

  assessed

  by the

  simultaneous consideration

  of

  all

  three

correlations,

  as

  indicated

  in

  Table

  8.6. Their procedure

  has

  been

adopted

  by the US

 W ater

 and

  Power R esources Service

 (formerly  the

US

  Bureau

  of

  R eclamat ion) .

  It

  should

  be

  remembered that their

volume  change measurements, whilst being

  m a d e

  at a pressure of

6.9kN/m

2  (llb/ in2) are for  air-dried undisturbed soils and so are not

directly

  comparable

  with

  th e

  valúes

  of

  swelling

 potential discussed

previously (see Figure  8.1).  Also,  their results  are based  on  only 45

samples.

Figure

  8 .5

 shows

 a

 char t given

 by

 H oltz

  and

 K ovacs (1981) which

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 117/136

Plasticity  Índex

  ctivit

'

O-

§

 

í

 

a

o

 

o

 

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 118/136

112

  C O R R E L A T I O N S

  OF SOIL

  PROPERTIES

o

40

32

 4

16

8

 

40

uoiioid

 contení

  iess

than

 O.OOlmm)

 - mm

  20 40 O 8 16  24

PSasiícíty

 ¡ndex

  Shrinkag»

 limit

 -

Figure  8.4 Relationships beíween volume change and  colloid  contení, plasticiíy Índex

and

  shrinkage limit, respectively

  fo r

  air-dry

  to

  saturated conditions under

  a

  load

  of

6.9kN/m

2

  Ipsí)

  afíer

  Holtz  an d  Gibbs, 1956)

Table

  8 6   E S T I M A T I O N  OF  P O T E N T I A L V O L U M E C H A N C E S   OF  C L A Y S

  A F T E R

  H O L T Z   AND

G I B B S  1956)

Data from   Índex  tests

Colloid

  contení

  fin r  than

O.OOlmm

>28

20-31

13-23

<15

PI

  SL

>3 5 <1 1

25-41

  7-12

15-28

  10-16

<18 >15

Probable expansión

 

total

  volume

 change*

>30

20-30

10-30

<10

Potential for

expansión

Very

  high

High

Médium

Low

*Based   on  a  loading  of

 6.9kN/m

2

(llb/in

z

).

gives a guide to the swelling and collapse  susceptibility o f soils relate d

to

  their liquid limit

  and

  in-situ

  dry

  density.

A more sophisticated

  relationship

 which can take im o account th e

change in moisture content

  from

  an initial valué to  ituí  ion is

presented

  by

 Weston(1980).  This correlation,

  established

  foi  soil

  in

the  Transvaal,  is

  essentially

  a  more  fully

  developed versión

  of

previous relationships described  by  Williams (1957)  and Van de

Merwe (1964). Swelling potential

  is

  given

  by:

Swell

  ( ) =

 0.000411

 (WLWr4-17 (P)

  0.386

1 2 33

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 119/136

S H R I N K A G E

  A N D

  S W E L L I N G C H A R A C T E R I S T I C S  113

 

  18

E

 

át

16

•o  14

12

1 O O O

8

Expansión

Collapse

2

4 6O

Liquid

  H m i t

8

OO

Figure 8.5 A guide to the suscepübility  to collapse o r expansión  ofsoils,

  based

 on

  liquid

limit

  and   insitu  dry density  after

  Holíz

  and   Kovacs,

  1981)

whe re

  w ¡

  is the  ini t ia l

  moi s tu r e con t en í

P   is the

  vertical pressure kN /m2) , under which  swell

 takes

place

a n d W Í S t h e

  weighted

  liquid limit  defmed  b y :

  <0.425mm\0

where

  LL

  is the  l iquid l imit

8 3 SWELLING PRESSURE

Once

 a

 potent ia l ly expan sive soil

 has

 been

  identifíed

 and a

 q ual i ta t ive

indica t ion of the poten t ia l

  swell

 has been made , an ev aluat ion of the

swelling pressure

  is

 necessary

  for

  design purposes. Swelling pressure

can be determined  from a one-dimensional oedometer  test; a number

of  variat ion s of this test ha ve been developed  Jennings and Kn ight ,

1957;

 Bu rlan d, 1975) but co mm on ly the specimen is

 flooded

  and the

load  required  to  mainta in

  constant

  volume  is  recorded

  (Fredlund,

1969).

  Alternatively,

  th e  swelling pressure  can be  predicted from

empirical  relat ionships  wi th  more rout inely measured parameters .

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 120/136

114

  CO RRE L A T I O N S

 OF SOIL PROPERTIES

  6

• 0 4

 

•D

C

  3

C D

  2

0 0

Sweil pressure

<30kPa

Swell pressure

30 125kPa

Sweil pressure

125 300

 kPa

Swell

 pressure

>300kPa

30

  40   6

70

80

Liquid limit

Figure

 8.6 Relationship between swell

  índex

 a nd swelling pressure for a range ofliquid

limit

  after  Vijayvergiya  and  Ghassahy,

  1973)

  ble   8 .7   E S T IM A T I N G P R O B A B L E S W E L L I N G P R E S S U R E A F T E R C H E N ,  1988)

Laboratory and

 jield   data

Percentage

passing

75um siete

>35

60-95

30-60

<30

L

  iquid

limit,

( )

>60

40-60

30-40

<30

Standard

penetraí ion

resisíance,

blows¡300mm

>30

20-30

10-20

<10

  rnhflhlp

expansión

percent

  total

volume

  change

>10

3-10

1-5

<1

Swelling

pressure,

  kN/m

2

)

>1000

250-1000

150-250

<50

Degree

of

expansión

Very  high

High

Méd ium

Low

Vijayvergiya  and  Ghassahy  1973 ) suggested  a means  of  esí imating

the  swelling  pressure  using  a  swell  índex

  (/

s

):

LL

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 121/136

S H R I N K A G E  AN D   SWELLIN G CH A RA CTERISTICS   115

where  w n =

 n atural w ater

 contení

 ( ) and

LL = liquid limit.

The

 relationship betw een  

s  an d   swelling

 p ressure, across

 a

 r ange

 of

liquid  limits, is show n in F igure 8.6. Based on experience w ith

expensive

  soils

 in the

  Rocky Mountain

  área

 of the

  United

  States,

Chen  (1988)  suggested  a

 predictive

 relation ship  for  sw elling  pressure

using percentage  of fines,  liquid limit and the

 standard

  penetration

resistance,

  as

 given

 in

 Table 8.7. No te th at

  th e 'probable expans ión

given in   Table   8.7 is the   sw ell ing poten tial  for a coníming   load   of

48kN/m

2  (10001b/ft2), based

  on the

  premise that this

 is a

  typical

foundat ion

  pressure

  for   light

  s tructures.

During

  th e

  past decade

  a

  number

  of

  theoretical equations have

been developed for compu ting heave in expan sive soils. Mo st require

an evaluation of the sw elling pressure (Rama Rao an d Fredlun d,

1980; Fredlund  et al 1980)

 but

 some

 are

 based

 on

 measurement

 of

soil

  suction (Snethen, 1980; Johnson, 1980).

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 122/136

Chapter

 

FROST SUSCEPTIBILITY

Two

 potentially   damaging

  e f fects   are

 associated   wi th  frost   action

  in

soils, the

 e xpansión

 and   lifting   of the

  ground

 in

 win te r  (frost  he aving

and   f rost

  boiling)

 and the

  loss

 of

 be aring capacity d uring

 the

  spring

thaw.

  Soils

  that

  display

  one or

  bo th

  of these

  mani f e s ta t ions

  are

referred

  to as   frost   susceptible ,   The

  problem

  of   f rost

  damage

  is

wides pread: it

 occurs

 in te mpérate regions where the re is seasonal  soil

freezing  as   well   as in the high lati tude permafrost regions.

9 1

  ICE SEGREGATION

Simple

 free zing   of  in ters t i t ial  wa t e r   causes l i t t le ground   uplift .

  Frost

heave

 occ urs to a

 much

 greater e xtent where water i s  free   to enter the

soil

  and

  migrate

  to the

  freezing

  f ront.

  At the

  f reezing

 front

  layers

 of

clear ice grow

  parallel

  to the ground surface by displacing the

overlying

  soil   layer.   The migrating water   must   come largely

  from

groundwater

  below

  the

  layer

  in

 which

 ice is

 s egregat ing,

 for ice and

frozen

  ground

  will   e í fectively

  p r even t

  any

  downward percola t ion

from

  the

  ground   sur face .

  Ic e

  segregation

 c an

  occur ,

  not only

 where

the

  freezing   penetrales   to   saturated soils below   the   wa te r

  table

  but

also

  when the f reezing   front   pene trates unsaturate d soils in the

capillary

  fringe   abo

 ve the water table .

The

  the rmodynamics

  of

 mois ture moveme nt

  to the   f ree zing   front

are   complex;   a   useful   summary   is   given   by   Harris (1987).   One

considera t ion

 is the   prese nce   of films of  unfroze:   adsorbed wa t e r in

frozen

  soils, separating soil

  ic e   f rom

  soil

  partéele,   an d

  enabling

particle-free   ice lenses to develop (Tagaki

  197S

  .

  Another

  is the

concept

  of

 sec ondary   frost   he aving whic h involves

  the

  movement

 of

moisture in a   frozen   fringe   abo ve   the 0°C isotherm (Miller, 1972;

Konrad

  and

  Morganstern,   1981). However,

 for

  practical purposes

the

 mec hanism

 o f

 mois ture movem ent

 can be

 considered

 to be

 driven

by   suc t ion pressure generated

  by ice

 g rowth

  at the

  freezing   f ront .

116

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 123/136

FROST

 SUSC EPTIBILITY  117

Four

 facto rs are of particular

  signifícance

 in

 affecting

 the

 amount

 of

ice

  segregation during

  soil  freezing;  the

  pore size

  of the  soil,  the

moisture supply,

  th e

  rate

  of

  heat extraction

  and the  confming

pressure. Th eory

 and

  observation

 indícate

 that

 the

 suction poten tial

of

 soils and their susceptibility to ice segregation increáses as pore

 size

decreases.

 However,

 th e

 low

 perm eability o f he avy clays m ay

 restrict

water migration  sufficiently  to prevent

  significant

  ice segregation

(Penner, 1968).

 Thus

  highly frost  susceptible soils possess pore size

distributions wh ich produce

 an

 optimum com bination

 of

 soil su ction

and permeability. In view of the cióse correspondence between pore

size and grain size, and the relative ease w ith which the latter may be

measured,

  frost

  susceptibility criteria based  on  soil textures  are

frequently  used.

9 2 GRA IN

 SIZES

The freezing behaviour of soils with varying grain size distributions

has been the subject of m uch s tudy . Beskow (1935) show ed

 that frost

heaving increáses rapidly

  from

  nearly zero

  for

  coarse sand

  to a

máximum in the fine

  silt  sizes,  from  which

  it

  slowly declines

  to

approach zero again

  in

  heavy clays.

  For

  engineering purposes

Beskow

  proposed

  a

  división

 of

 soils into

 non-frost

  susceptible

  and

frost

  susceptible groups,

 and

 presented

  an empiricaly

 derived grading

(Figure

 9.1).

 This

 m ay be simplified to a

 general statemen t

 that

 coarse

and

  médium sands

  are

  generally non-frost susceptible,

  that

  is ice

lenses do not  normally develop w hen they freeze,  whereas fine sands,

silts and all but the

 heaviest clays

 are

 frost susceptible

 and are

 subject

to considerable ice lensing during

 freezing,

  providing a water supply

is

  present. Glossop and Skem pton (1945) observed that

  well sorted

soils

 in w hich less than  30 of the  particles are silt size are  non-frost

heaving.

 Casagran de (1932) suggested tha t

 the

 particle size critical

 to

soil

  heave is 0.02mm : if the  proportion of such

 particles

  is

 less than

1 , no

 heave

 is

 expected,

 but

  considerable heaving

 m ay

 occur

  if

 this

amount

  is  o

 ver

  3 in

  non-uniform soils

  and  o ver  10 in

  very

uniform

  soils. The

  influence

  of the <0.02mm fraction was  also

demonstrated

  by

  Kaplar (1970)

 for

 gravelly sands w here

 the

 coarser

fraction  was

 progressively remo ved. F igure

  9.2

 shows

 th e

  relation-

ship between average rate

 of

 heave

 (mm/day) and the

 percentage

 finer

than 0.02mm; these results were obtained und er

 specific

 laboratory

conditions

  and

  they should

  only  be

  used

  as a

  guide

  to the field

response.  A  qualitative

  classification

  of  frost

  susceptibility based

entirely on grain size and  used in Sw edish

 practice

 (Hansbo, 1975) is

given

 in Table 9.1.

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 124/136

Average

  rate

 o

heave

 

m m d a y

Percent

  p

,-«.

o

 

ti

Ü

C J

«

 5

2

2

O

<3

 

§

sx

 3

«>

 t

U

S

 

V;

?

a

a

B

S

» -

» ^

C3-

 5

EX

2

u

 5

o

 í

 

N

 

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 125/136

FROST

  SUSCEPTIBILITY

  11 9

Table  9 1   F R O S T S U S C E P T I B I L IT Y  O F

 S O I L

  G R O U P S :  S W E D I S H P R A C T I C E A F T E R H A N S B O ,

1 9 7 5 )

Group

I

II

Frost  susceptibility

or

  danger

None

Modéra te

Soils

G rave l, sand ,

Fine clay (>4

gravelly  tills

0 clay f  conten í ) ;

I I I

Sírong

sandy  tills,  clayey t i lls wi th

>16 fines

1

Silt,  coarse clay

  (clay

f  content

15-25 );

 silty  tills

f

 Defined  as  2/j .m.

 

Defined

  sO . O ó m m .

Reed

  et al.

 (1979) noted that predict ions

  from

  grain size distribu-

tions failed  to  take account of the fact that soils c an exist  at

  different

states

 of den sity and therefore porosity, yet they hav e the sam e grain

size

 dis t r ibut ion .

 They derived expressions for pred icting

 frost

  heave

  Y ,

  in m m / d ay ) ,  and one of their sim pler expressions, based  on  pore

diameters,  is:

Y

 =1.694(D

40

/D

80

)-

 0.3805

where

 D40

 and D

80

 are the pore diam eters whereby 40 and 80 of

the pores  are  larger respectively.

9 PLASTICITY

Frost susceptibil i ty tends

 to b e a feature  of

 silty

 and

  sandy clays, that

is, soils of low  to m édiu m plastici ty. Table 9.2 gives a correlation of

Table  9 2   P R E L I M I N A R Y   I D E N T I F I C A T I O N   O F  F R O S T S U S C E P T I B L E S O I L S

Permeability rating

Identification

Frost susceptibility

High permeabi l i ty

Intermedía te

permeabi l i ty

Low

  permeabi l i ty

Granular:

< 10 finer

 than

  5um

G r a n ul a r:

> 10 finer

 than

  5um

Cohesive:

PI<20

Cohesive:

PI>20

Not  susceptible

Susceptible

Not

  susceptible

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 126/136

V«ry

 Hlfh

Hlfh

Madlum

Low

Very

 L ow

30.0

ravolly SAND, SW

Clayey

 QRAVEL. QM-QC

QRAVEL,

 QM-QC

Loan CLAY, CL

Clay«i

QRAVEL

Sandy

QRAVEL

QP

SANOS

SM-8C

and SC

I l tyQRAVELS

Gravo ly

  and

Sandy

 CLAYS

CL

SW-SM,

SP-SM

/and

 SM

h«av«  1 o O

du«

 to

Sandy

QRAVELS

In

  « I t u

  1920

fraozing

 o f

por» water

10

P«rc«ntag fln r than 0-02mm

 100

«aturatlon

r

igure 9.3  Average  rate ofhe^e  plotted  against

  per

  centage finer than 0.02rv°nfrom

labor atory  tests

  of a

  range of   M r

 al

  soils  after  Kaplar, 1974

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 127/136

FROST SUSCEPTIBILITY  121

Table 9 F R O S T

  S U S C E P T I B I L I T Y

  O F S O I L S

  R E L A T E D

  T O

 S O IL C L A S S I F I C A T I O N A F T E R

  us

A R M Y

  C O R P S O F E N G I N E E R S A N D  K R E B S  A N D  W A L K E R

  1971

Group

Description

Fl

  Gravelly

  soils:

  3-20

finer

  than

 0.02mm

F2

  S a n d s :  3-15

finer

  than  0.02mm

F3 (a)  Gravelly soils:

  >20

finer  t h a n  0.02mm

(b )  Sands (except  silty  fine  s a n ds ) :  > 15 f iner  t h a n  0.02mm

(b )

  Cla y s:

 PI>12

(c) Varved

  clays:

  w i t h  uniform  conditions

F4 (a) Silts :  including sandy

  silts

(b )  Fine  silty sands:  > 15 finer than  0.02mm

(c)

  Lean clays:

 PI<12

(d)  Varved clays: with  non-uniform  condit ions

frost

  susceptibility and

  permeab i l ity w ith grading

 and

  plasticity

 Índex

suitable  for  preliminary

  identification

  based  on  recommendations

by the  Tran sp o r t  and  Road Research Laboratory (1970). A similar

classification  sys tem (T able 9.3) involving grading and  plasticity w as

established by Linell

  et al

(1963) and is used by the U.S. Corps of

Engineers

  to

  assess

  frost

  susceptibil i ty

  for

  pavement design. Once

again  th e  critical particle size is given  as 0.02mm. T he

 groups

  are in

order  of  increasing  frost  suscept ibi l i ty , with group  F 4  soils being

particularly

  frost

  susceptible. A

 relationship

 show ing the average rate

of heave

  (mm/day )

 for a

  range

  of

 soil  gro up s ,

  defined  by the  Unified

system,  is  given  in  Figure 9.3.

Migrat ion  of  water  and  frost  heaving  are

  also

  influenced  by the

mineralogy

  of the  clay

  fraction.

  Clay

  minerals with

  expandable

s t ructures are

  able

  to

  hold

  more water but the water is relatively

immobile

  compared  with

  non-expandable

  clay minerals. Conse-

q uent l y , strong frost  heaving

 is

 more likely

 to be

 associated w ith soils

where the fines are  devoid  of montmori l lomite  and  related minerals.

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 128/136

R F R N S

AASHTO, 1982. Standard

  specifications

  fo r transportador materials and methods of

testing

  and sampling. American Association of State Highw ay and Trans portatio n

Officials.

ASTM, 1970. Standard test method  f or

 classification

  of

 soils

 for  engineering purposes.

American Association for Testing and M aterials, ASTM Designation D2487-1969.

Abdelhamid,  M. S. and Krizek, R. J., 1976. At rest lateral earth pressure of a

consolidating

  clay.   Proceedings of  ASCE Journal  ofthe  Geotechnical Engineering

División

102:

  721-738.

Agarwai,

  K. B. and Gh ane kar, K . D., 1970. Prediction o f CBR

  from

  plasticity

characteristics

  of

  soils.   Proceedings  of 2nd  South-east Asían   Conference  on

  Soil

Engineering Singapore,

  571-576.

Al-Hussaini,  M.  M.,  1977. Contribution   to the  engineering   soil  classification   of

cohesionless soils. Final repo rt, misce llaneous paper  S-77-21,  U.S.

  A r my

 Engineer

Waterways Experimení

  Station, Vicksburg, Mississippi, 70pp.

Al-Hussaini,  M. M. and  Townsend,  F. C.,  1975. Investigation   of  K0  testing   in

cohesionless

  soils.'

  Technical Report  S-75-11,  U.S. Army Engineer Waterways

Experimental Station, Vicksb urg, Mississippi, 70pp.

Altmeyer,  W. T.,

  1955. Discussion

  of

  engineering properties

  of

  expansive

  clays.

Proceedings  ASCE   Journal

  of

  Soil  Mechanics and Foundation División 81 .

Atterberg,  A.,

  1911.

  Lerornas

  fórhallande

  till

  vatten, deras plasticitetsgránser

  cch

plastiitetsgrader (The beh aviou r  of  clays

  with

  wate r, their limits   of   plasticity   an d

their degrees

 of

 plasticity).  Kungliga Lantbruksakademiens

  Handlingar

 oc h  Tidskrift

50(2): 132-158; also in  International Mitteilungen   fü r  Bodenkunde 1: 10-43.

Azzouz, A. S.,  Krizek, R. J. and Corotis, R. B., 1976. Regression analysis of soil

compressibility.  Soils and  Found ations 16(2):  19-29.

BS

  1377, 1975. Methods

  of

  test

  fo r

  soils

  fo r

  civil engineering purposes, British

Standards  Institution.

BS 5930,1981. Code of practice for site investigations. British Standards Ins titutio n.

BSI

  1957. Site Investigation. British Standard

  Code of

 Practice,

  CP

  2001.

Beskow, G., 1935. Soil   freezing   an d   frost   heaving with special application to roads and

railways. Swedish Geotechnical Society, Series

 C, no.

  375.

Bishop, A. W., 1958. Test requirem ents of me asuring the coe^cient of earth pressure at

rest.

  Proceedings

 of  Conference  on

  Earth Pressure

  Problt

  is,  Bru;¿   els,  1:

  2-14.

Black, W. P. M.,  1961. The calculation of laboratory and   i n s i t M   valúas   of Californ ia

bearing ratio

  from   bearing

  capacity data.

  Geotechnique

11  -21

Black, W. P. M., 1962.  A  method  o f  estimating  the CBR of  cohesi  „ soils, ai piasticity

data.  Geotechnique

12:

 271-272.

Bjerrum, L., 1954. Geotechnical properties of Norwegian  marim.  clays.   Geotechnique

4:

 49-69.

Bjerrum,  L.,  1972. Embankments

  on

  soft   ground.

  Proceedings

 o f

  SCE  Specialty

Conference

  on

  Performance

  of  Earth  an d  Earth-Supported Structures Purdue

University,

  2:

  1-54.

 

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 129/136

REFERENCES 123

Bjerrum, L. and Simons, N.

 E.

1960. Comparison of shear stre ngth characteristics of

normally  Consolidated

 clays.

  Proceedings  ofthe

  ASCE Research   Conference  on

 the

Shear  Strength of

  Cohesive

  Soils

Boulder:

  711-726.

Bowles,

 J.  E .,  1982.  Foundation Ana lysis and Design. McG raw-H ill, Singapore, 816pp.

Bozozuk,

  M. and

  Leonards

G.  A .,

  1972.

 The

 Gloucester test

 fill.  Proceedings  ofthe

Earth

 and

 Earth-Supported  Structures Purdue University,  1: 299-317.

Brooker, E.W.  and  Ireland,   H.

  O.

1965. Earth pressures  at  rest related   to  stress

history.  Canad ian Geotechnical Journal 2:  1-15.

Burland,

 J. B.  1975. Discussion.

  Proceedings

 ofóth

  Regional

 Conference

  fo r

  África

  on

Soil

  Mechanics  and

  Foundation Engineering 1: 168-169.

Campanella, R. G. and Vaid, Y. P., 1972. A simple

  K 0- t riaxial

  cell.   Canadian

Geotechnical  Journal 9: 249-260.

Caquot, A. and  Kerisel J. 1966.  Traite  de   Mechanique  des Sois Gauthier-Villars,

París 509pp.

Cárter, M. 1983. Geotechnical Engineering Handbook.  Pentech Press, London, 226pp.

Casagrade,  A .,   1932a. Discussion on

  frosí

  heaving.

 Proc.

 Highways

  Research Board

12 :   169.

Casagrande,

  A .,

  1932b. Research

 on the  A tterberg

  limits

 of

 soils.

 Public Roads

13(8):

121-136.

Casagrande A., 1948. Classification   and   identificaíion   of  soils.   Transact ions ASCE

113:

 901-932.

Casagrande,  A. and  Fadum R. E., 1940.  Notes

  on

 soil  testingfor  engineering purposes.

Harvard University

  Gradúate

  School   of Engineering, pu blication 268.

Castro G. 1969.

 Liquefaction

  ofSands.  Ha rvard Soil Me chanics Series, No.  81 112pp.

Chen F.  H. 1988.  F oundations on E xpansive Soils. Developm ent in Geotechnical

Engineering

no. 12, Elsevier, Amsterdam, 280pp.

Cou lom b, C.A., 1773 (1976). Essai sur u ne application des regles de max im us et

minimus   á

  quelques   problémes

  de

  statique,

  relatifs   á

  l architecture. M émoies

  de

Mathématique  et de Physiqu e, Presentes  a  l Académie R oyale  des Siences par divers

Savns,

 et

 lüs

 dans

 ses

 Assemblées

  París

7:

 343-382

  (Volume

  for

  1773 published

  in

1776).

de Graft-Johnson,  J. W. S. and  Bhatia,  H. S. 1969. The  engineering characteristics  of

the   lateritic gravéis   of  Ghana. Proceedings of

  7th

  International  Conference  on   Soil

Mechanics

  and

  Foundation Engineering México,  2:  13-43.

de G raft-Johnson, J. W.

 S.

Bhatia, H. S. and  Yaboa,  S. L. 1972.

 Influence

 of geology

and physical properties on strength characteristics of lateritic gravéis for   road

pavemenís.  Highway Research Board Record 4 5:  87-104.

ESOPT.

  1982.

  Proceedings  of 2nd  European

  Symposium

  on   Penetration Testing

Amsterdam.

Edén W. J.

1971.

 Sample

 triáis

 in overconsolidated sensitive  clay. In:

 Sampling  ofSoil

an d  Rock ASTM special technical publication no. 483.

Flaate

K. and

 Preber

T.

1974. Stability

 of

 road embankm ents.

 Canadian Geotechnical

Journal

11: 72-88.

Fredlund,

  D. G.

  1969.  Consolidometer  test precedural factors  affecting

  swell

  proper-

ties.

  Proceedings

  of 2nd

  International

  Conference

  on

  Expansive Clay Soils Texas

435-456.

Fredlund

D. G. Hasan J. U. and Filson H. L.

1980.

 The

 prediction

  of total

  heave.

Proceedings

  of

  4íh

  International  Conference  on Expansive Soils 1-17.

Gibbs H.J., 1969. Discussion  on  expansive soils  and m oisture movement  in  partially

saturated soils. Proceedings of7th  International

  conference

  on   Soil Mechanics and

Foundation

  Engineering.

  México City.

Gibbs H. J. and Holtz W.

 G.

1957. Research  on determining  the density  of sand  by

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 130/136

124  C O R R E L A T I O N S

  OF SOIL

  PROPERTI ES

spoon

  penetration

  testing.

  Proceedings of

  4th

  International

  Conference on  Soil

Mechantes  and

  Foundation Engineering

London,

 1: 35-39.

Gibson,

 R . E.,

 1953. Experim ental

 determ ination of the

 tru e cohesión

 and

  true angle

 of

internal

  friction

  in  clays.  Proceedings  of 3rd   International  Conference  on  Soil

Mechanics

  and

  Foundation Engineering Zurich,  126-130.

Glossop,

  R. and Skem pton, A. W.

  1945. Particle size

 in

  silts

 an d

  sands.

 J.

 Inst.

 C ivil

Engineers 25:

 81-105.

Gregg,

 L.  E.,  1960. Earthworks.  In: K. B. Woods  Editor), Highway Engineering

Handbook,  McGraw-Hil l .

Hansbo,

  S.,

  1975.

  Jordmatariallára.

  Almquist

  an d

  Wiksell Fórlag

  AB,

  Stockholm,

218pp.

Harrison,

  J. A.

  1988. Using

  the BS

  cone penetrometer

  for the

  determination

  of the

plástic  limit  of  soils.  Geotechnique  38 :

  433—438.

Harris, C. 1987. Mechan isms of  mass mov em ent in periglacial env ironm ents. In:  Slope

Stability

  Eds.  M. G.  Anderson  and K. S. R ichards) , John  Wiley, 531-560.

Hazen, A., 1911. Discussion   of Dams  on  Sand Foundations.  Transactions ASCE 73:

199-203.

Hilf,

  J.

 W.,

  1975. Compacted

  Fill. In: H. F.

  Winterkorn

  and H. Y.

 Fang

  Editors) ,

Foundation   Engineering Handbook.  V an  N os t rand  Reinholcí.

Holtz,  R. D. and  Broms, B. B., Sweden.

 Proceding

 o f ASCE  Speciality  Conference

  on

Performance  of

  Earth

  and Earth-Supported   Structures Purdue  Universi ty, 1:

435-464.

Holtz,  R. D. and  Holm,  G.,  1979. Test em ban km ent  on an  organic  silty  clay.

Proceeding

 oflth

  European

  Conference  on

 Soil Mechanics

  and

 Foundation  Engineer-

ing

Brigh ton , 3: 79-86.

Holtz, R. D. and  Kovacs,  W. D.,  1981. An  Introduction  to

  Geotechnical

  Engineering.

Prentice-Hall,

 New Jersey, 733pp.

Holtz,  W. G. and  Gibbs,  H .

  J.,

  1956. Engineering properties  of  expansive clays.

Transactions

  ASCE 121:

 641-677.

INSITU.

 1986.  Proceedings

 o f

  ASCE Speciality

  Conference.

  INSITU

 86 ,

 Blacksburg.

ISOPT.  1988.

  Proceedings of  Is t  International Symposium on Penetration Testing

Orlando.

Jennings,  J.  E.B.  and  Knight,  K.  1957. The

 prediction

 of  total heave

  from

  the double

oedometer test.  Trans.

 S.

  Afr.  Instn.  Civ. Engrs.

7:

 285-291.

Johnson,  L.

  D.,

  1980.  Field  test sections  on  expansive

  soil.

  Proceedings  of 4th

International   Conference  on   Expansive Soils.

Joslin, J.

 G.,

  1959. Óhio s typical mois ture - de nsity curves. Symposium

 on

 A pplication

of

  Soil  Testing  in   Highway Design   an d   Construction

ASTM Special

  Technical

Publication, 239:  119-123.

Kaplar,

 C .

 W., 1974. U.S.

  Army

 Cold  Regions Research Laboratory, CRREL Report ,

250.

Karlsson,

  R.,

  1977. Consistency Limits. Swedish Council for

  Building

  Research,

document  D6,

 40pp.

Kenney,  T.  C.,  1959. Discussion  of

  Geotechnical properties

  of  glacial  lake  clays.

Proceedings   ASCE   Journal

  of

  Soil Mechanics

  an d

  Foundation División 85:

67-79.

Kenney,

 T.

 C.,  1976.  Formal

 and

  geotechnical  characteristics

  of glacial-lake carved

soils.

  Laurits

  Bjerrum Memorial

  Volume  -

  Contributions

  to

  Soil Mechanics,

Norwegian

  Geotechnical Institute, Oslo,

  15-39.

Kezdi,  A .,  1974.  Handbook  of   Soil Mechanics

Vol.

  J:   Soil Physics.  Elsevier.

Konrad, J-M.

  and Morgenstern, N.  R.,

  1981.

 The

  segregation potential

  of a

  freezing

soil . Canadian Geotechnical  Journal,

 18:

 482-491.

Krebs,

 R. D. and

  Walker,

  E.

 D.,  1971.

  Highway Materials.

  McGraw-Hil l .

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 131/136

REFERENCES 125

Publication

  272, Department

  of

  Civil   Engineering, Massachusetts Institute

  of

Technology, 107pp.

Ladd C.

 C .,

  1975. Foundation Design

  of  Embankments

 Constructed on Connecíicut

Valley

  Varved Clays. Research Report R75-7, Geotechnical Publication 343,

Department   of  Civil Engineering, Massachusetts Institute   of  Technology, 438pp.

Ladd

C. C. and

  Foote,

  R.,

  1974.

  A new

  design procedure

  fo r

  stability

  of   soft

  clay.

Proceedings

 ASCE Journal ofthe  Geotechnical Engine ering División, 100:   763-786.

Ladd,

  C.

  C. Foote

R.,

  Ishihara,

  K.

Schlosser,

  F. and

  Poulos,

  H. G.

1977.

Stress-deformation

  and

  strength characteristics.   Proceedings  of 9th International

Conference  on Soil Mechan ics and

 Foundation

  Engineering, Tokyo 2:  421-494.

Ladd,

  C. C. and

  Luscher,

 U.

1965. Engineering p roperíies

  o f t he   soils   underlying   the

M.I.T. campus.  Research repo rt R65-68, Dep artmen t of Civil Engineering, Mass-

achusetts Institute

  of Technology.

Ladd, R.

 S.

1965. Use of

 electrical

  pressure transducers to measure

  soil

  pressure.

Research Report R65-48. Soil Publication 180, Department of Civil Engineering,

Massachusetts Institute

  of

 Technology, 79pp.

Lambe, T. W. and Whitrnan, R. V., 1979. Soil Mechanics. John   Wiley,   New York ,

553pp.

Lañe

K. S . and Washburn,  D.

 E.

1946. Capillary tests by  capillorimeter   an d

 soil

  filled

tubes.  Proceedings  Highway  Research Board.

La

 Rochelle,

 P.

Trak,

 B. Tavenas F. and

 Roy ,

 M.

1974. Failure of

 a

 test embank ment

on

 a sensitive

 Champlain

 clay deposit.

  Canadian

 Geotechnical

 Journal, 1:142-164.

Leonards

G. A ., 1976. Estimating consolidation settlements of

 shallow

 fo undations on

overconsolidated

  clays,

 Tran spo rtatio n Research Board , special report 163.

Leonards,

 G . A. and

 Girault,

 P.

1961.

 A

 s tudy

 o f t h e

  one-dimensional consolidation

test.  Proceedings

  of the  5th

  International  Conference

  on

  Soil Mechanics

  an d

Foundation  Engineering,

 París

1: 116-130.

Liao,

 S. C. and

 W hi tman,

 R. V.

 1986. Ov erbu rden Correction  Factors

 for SPT in

 Sand.

Proceedings

  ASCE Journal of  Geotechnical

  Engineering

  División,

 112:

  373-380.

Liu,

 T.

 K.

1967.

 A

 review

 o f

 engineering

 soil classification systems. Highway Research

Board  Record,  156: 1-22.

Lowe,

 J.

Zacchea

P. F. and

  Feldman,

  H.

 S. —964. Consolidation testing  wi th   back

pressure.

 Proceeding

 ofASCE  Journal ofSoil

  Mechanics a nd

 Found ation División, 90 :

69-86.

Massarsch K.

  R.,

  1979. Lateral earth pressure   in   normally consolidated clay.

Proceedings

 of7th

  European  Conference  on Soil Mechan ics and Found ation Engineer-

ing,

  Brighton,   2:  245-250.

Menard,  L. and   Rousseau,  J. 1962. L evalu aíion  des  tassements tendances nouv elles.

Sols-Soils,

 1: 13-28.

Menzenbach,

  E.

1967. Le  capacidad  suportante de pilotes y grupos de pilotes.

Technologia Ingeneria  Civil), Series

  2, No.   1.

Mesri

G.

1973. The

 coefficient

  of secondary compression.

 Proceedings

 ASCE Journal

ofSoil  Mechanics an d  Foundation División, 99 :  123-137.

Mesri,

 G. and

 Godlewski,

 P.

 M. 1977. Time

 and

 stress compressibility interrelation-

ships.  Proceedings  ASCE Journal  o f  Geotechnical  Engin eering División,  103:

417- 30.

Meyerhof, G. G. 1936. Penetration  tests  and bearing  capacity   of  cohesionless soils.

Proceedings  ASCE Journal

 o f

  Soil Mechanics

 an d

 F oundation División, 82.

Meyerhof,   G.   G. 1974. General  Report: outside Europe.   Proceedings of

  European

Symposium  on Penetration Testing,

 Stockholm

2: 40-48.

Mielenz R. C. and King M.

 E. 1955.  Physical-chemical  properíies

  and

  engineering

performance of clays.  Calif.  Div. Mine s Bull., 196-254.

Miller

R. D.

1972. Freezing

 and

 heaving

 of saturated and

 unsaturated

  soils. Highways

Research

  Record, 393:  1-11.

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 132/136

126  CORRELATIONS OF SOIL PROPERTIES

Mil l igan

V . 1972.

 Discussion

  of  E m b a n k m e n t s on

  soft

  g r o u n d . Proceedings

  ofASCE

Specialty   Conference  on  Performance  of  Earth  and  Earth-Supported  Structures.

Purdue Universi ty

3: 41-48.

Ministry   of

 Transport

1969.  Specificaíion   fo r  road  and b r idge works . HMSO.

Mitchel l J. K. and   Gardner W. S. 1975. In-si tu measurement  of

  v o l u m e

  change

characteristics.  Proceedings  ofthe  ASCE Specialty

  Conference

  on

  In-situ measure-

ment ofSoil  Properties.  Raleigh N.  Carol ina 2:  333.

Mitchell J. K. 1976.

  Fundamental

  of

  Soil  Behaviour.

  John   Wiley 422pp.

Mor in W. J. and

  Todor

P.C. 1977. La ten tes  and  laíeritic soils and  other  problem

soils

  o f t h e

  t ropics. U ni ted States Agency for Interna tional Developmen t AlO/csd

3682.

Peck R. B. and B azaraa A. R. S .

 S.

1969. D iscussion.  Proceedings ASCE Journal of

Soil  Mechanics and Foundation División, 95:

 305-309.

Peck R. B. H a n s o n W. E. and Thorn burn T . H . 1974. Founda tion Engineering. John

Wiley London

514pp.

Pen ner E. 1968. Pa rticle size as a basis for pred ictin g

  frost

  action in soils.  Soils and

Foundations 8: 21-29.

Poulos

H. G. and

  Davis

E.

 H.

1974.  Elastic Solutions for  Soil and Rock Mechanics.

John Wüey N ew   Y o r k 41ípp.

Ra ma Rao R. and Fredlund D.G. 1988.

 Closed-form

  heave

 solutions

 for expansive

soils. Proceedings

  SCE

  Journal ofGeotechnical  Engine ering División, 114:  573-588.

Rankine W. J . M. 1857. O n

  the

 stab il i ty of loóse earíh.

 Philosophical  Transactions of

the

  Royal

  Society,

  Lon don 147.

Reed M . A .

Lovel

C . W . Alíschaeffi A. G. and Wood L. E.  1979.

 Frost

 heav ing r a te

predicted   from   pore size distribution.

  Canadian Geotechnical

 Journal,  16: 463-472.

Robertson P. K. and   Companel la R. G. 1983. Interpre tat ion of cone pene trat ion tests

Part

  I:

 Sand.

  Canadian Geotechnical Journal,  20: 718-733.

Roscoe K.  H.

Schofield

A. N. and Wroth C.  P. 1958.  On the   y ielding  of  soils.

Geotechnique,

 8:

  2-52.

Seed

H .

 B.

W oodw ard R. J . and  Lu n dg r a n

R. 1962. Prediction

  of

 swelling po tential

of

 compacted  clays.  Proceedings ASCE Journal  of  Soil Mechanics  and  Foundation

División,

 88: 107-131.

Seed H. B. 1976.  Evaluat ion   of   soil  l iquefaction  effects  on

  level

  g round  during

ear thquakes .  SCE  Speciality Session, Liquefaction Problems

  in

  Geotechnical

Engineering,  Prepr int 2752 ASCE Nation al Conv ention

Sept./Oct.

1976

1-105.

Simons

N. E. 1958.  Discussion  of   test requirements  fo r m easuring   th e   coefñcient  of

  earth pressure  at   rest.

  Proceedings

  of  Conference  on

  Earth pressure Problems,

Brussels

3:

 40-53.

Singh R. Henkel D. J. and   Sangrey D.  A. 1973. Shear   an d  K

0

  swelling   of

overconsolidated clay. Proceedings ofSth  International

  Conference  on

  Soil Mechan-

ics

  and Foundation Engineering, 367-376.

Skempton

A .

 W.

1944. Notes

 on the

  compressibil i ty

 o f

 clays. Qu at. Journ. Geol. Soc.,

100:119-135.

Skempton

A .

 W. 1953.

 Th e

  colloidal activity

 of

 clays.

 Proceedings

 of 3rd

 International

Conference

  on Soil Mechanics and Foundation  •qineering, Zur ich 57-61.

Skempton A.  W. 1954. The  pore  pressure

  coeL.

  . snts  A and B.

  Geotechnique

  4:

143-147.

Skempton A. W. and   Nor they R. D. 1952. The  sensitivity  o f clays. G eotechnique, 3 :

30-53.

Skempton A. W. and Bjerrum L. 1957. A contribution to the settlement analysis of

founda t ions

  on   clay.  Geotechnique, 7 :  168-178.

Ske mp ton A. W. 1986. Standa rd penetration test procedures and  effects  in sand of

overbu rden pressure relative density particle size ageing  and   overconsolidation.

Geotechnique

 36:

 425-447.

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 133/136

REFERENCES 127

Snethen D. R. 1980. Characterization   of  expansiva   soils  using  soil  suction  data.

Proceedings

  of  4th

  International

  Conference  on

  Expansive Soils 1:

  54-15.

Sowers

G.

 F.

1979.

  Introductory Soil Mechanics

  and

 F oundations.

  Macmillan.

Tagaki

S.

1979. Segregation

  freezing  as the

  cause

  of

  suction forcé

  for ice

  lens

format ion.

  Engineering Geology  13 :

 92-100.

Tavenas

F.

Lebland

P.

Jean

P.

 and

  Leroueil

S.

1983a.

 The

 p ermeability

 of

 na ture

soft  clays.

  Part

  I:

  Methods

  of

  laboratory measurement.  Canadian  Geotechnical

Journal

20: 629-644.

Tavenas

F.

Jean P. Lebland P. and   Leroueil S. 1983b. The   permeability  o f na tura l

soft  clays. Part II: Permeability characteristics.

 C anadian Geotechnical Journal

  20:

645-660.

Tavenas

F. and

  Leroueil

S.

1987. State

  of the art on

  laboratory

  an d   in-situ

stress-strain-time  behaviour  of clays.  Proceedings of International

  Symposium

  on

Geotechnical  Engineering

 of  Soft

  Soils México City

1-46.

Taylor

D. W.

1948.

 Fundam entáis

  ofSoil

  Mechanics.

 John   Wiley

N ew

 Yo rk 700pp.

Terzaghi K. and Peck R. B. 1967.  Soil Mechanics in Engineering Practice.  John

Wiley

London 729pp.

Teng W. C. 1962. Fou ndatio n Design. Prentice Hall Englewood

  Cliffs

N.J.

Tho rbu rn S. 1963. Tentative correlation chart for the standard penetration test in

non-cohesive soils.

  Civil Engineering Public

  Works

  Review.

Tok imats u K. and Yo shim i Y. 1983. Em pirical correlations of soil liquefactio n based

on

  SPT   N-values  and fines  con ten í .

  Soils

  and

 F oundations

23:

 56-74.

Tomlinson M. J. 1980. Foundation Design   and   Construction. Pitman Lon don

793pp.

Transport  and Road Research La bora tory 1970. A guide to the structural design of

new

  pavements. TRRL Road Note

  29 HMSO.

U.S.  Army  Corps of Engineers 1970. En gineering and design: pavement design for

frost

  conditions. Corps of Engineers  EM-110-345-306.

U.S. A rm y Engineer Waterways Exp erimen t Station 1960. The

 Unified

 Soil  Classifica-

tion System. Technical memorándum

  No.

  3-357.

U.S. Bureau

  of

 Reclam ation 1974.  Earth Manual.  Denver

810pp.

U.S.  Federal  Av iation Agency 1984. Ai rpo rt Paving. Advisory Circular

  150/5320-6.

U.S. Navy 1982. Design Manual: Soil Mechanics Foundations and Earth

 Structures

N avy

  Facilities Engineering Command

Navfac

U.S. Naval Publications   and

Forms  Center.

V an   der Merwe D.  H. 1964. Prediction of heave   from   the plasticity Índex and

percentage

  clay

  fraction

  of

 soils.  Civil Engineer   in  South

  África

6:

  103-107.

Vijayvergiya

V. N. and Ghazzaley O.  L 1973.  Prediction  of swelling p otential  fo r

natural clays. Proceedings

 ofSrd

  International

  Conference  on

 Expansive Soils

Haifi

1:227-236.

Wallace G. B . and  Otto W . C. 1964.  Differential  settlement  at  Selfridge   A ir  Forcé

Base.

  Proceedings ofASCE Journal

  ofSoil

  Mechanics

  and

  Foundation División

9 :

197-20.

Weston D. J. 1980. Expansive roadbed treatm ent for Southern África. Proceedings of

4íh International  Conference  on

  Expansive Soils.

  1:

 339-360.

Williams

A. A.  B.

1957.

 Discussion.

  Trans. S.  Afr.  Instn.  Civ. Engrs.

8.

Wo ods K. B. and Litehiser R .R . 1938. Soil mech anics applied to highway engineering

in

 Ohio.

 Ohio

  State Univ ersity Engineering Experimental Station Bulletin 99.

Wroth

C . P.

1972. General theories

  of

 earth pressures

  and

  deformation.  Proceedings

of5th European

 Conference

  on

 Soil M echanics

 a nd

 Foundation Eng ineering Madrid

2: 33-52.

Wroth C. P. and  Wood D. M. 1978. The  correlation   of índex properties   with some

basic engineering properties of soils.  Canadian G eotechnical Journal 15:

 137-145.

Wroth

C.

 P.

1984.

 The

  interpreta tion

  of

 insitu soil tests.

  Geotechnique

34:

 449-489.

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 134/136

IN X

AASHTO soi l

  classification

  system 14

21 27 34 35

and CBR   valúes  102

compared

  w i th   th e  Uni f íed

  system

  37

38

AASHTO standard compact ion tests

  44

Activity   11

and expansive m inerals 107

and plasíiciíy

  índex

  10 6

and   swell ing potent ial  110

Adsorpt ion

  complex

  4

Angle  of   in ternal  friction   12 89

Angle

  of

  shearing resistance

  12 76 89

ASTM/Unif ied soil classif icat ion

system

  14

and CBR valúes 102

and

  frost  susceptibiliíy

  121

se e

  also   Uni f íed

  soil classification

system

Atterberg

  limits

see   Consistency limits

BS soil classification system 14 17

27-29

BS  soil  descriptions 17

BS   s tandard   compaction tests  44

Bulk

  density 39

California Bearing ratio

  2 97 98

and liquidity Índex 99

and   m áx im um

  dry

  density   99 100

and

  opt imum moisture content

  100

and

  plast ici ty Índex

  98 100

and

  shear strength

  104

an d   soil classification   102

and   suitability índex   99

Casagrande  soil classification

system

  14

Cations

  223

Classifícation  systems   fo r soils

review 13 14

for

  frost  susceptibility

  119 121

see a lso under AA SHT O BS

Unif íed

systems

Collapse  potent ial

and densi ty

  111

112

Coefficient

  of

 c omp ressibil i ty

  56 57

typical

  va lúes

  61

Coefficient

  of  cu rva t u re   17

Coeffícient

  of earth pressure

  92-96

active

  92 93 95

passive 92 93 95

at  rest  95

Coeffícient   of

 p ermeabi l i ty   5 0 5 1

and   consolidat ion   65

and

  grading 51 53

and   soil classification   51

typical

  valúes

  51

Coefficients   of   secondary

con solidation 68 69

Coefficient

  of

  uniformity

  17

Coefficient

  of

  volume

compressibility

  56 57

Cohesión   6 76-78

Cohesión soils   4

Compacted densi ty   43^47

and CBR 99 100

and  shear st rength   81

Compaction tests  43^45 49

Compressibility 55

Coefficient  of 56 57 61

coefficiení  of

  vo lum e

  56 57

Compression   Índex

  58

modified 58

valúes and  corre la t icns   60

Consistency limits . 6 7

and consolidation

  11

an d   expansiveness  106

and shear st rength   11

se e

  also Liquid

Plástic a nd   Shrinkage

limits

Consolidation  2 55

and consistency limits 10

and   compressibility   65

128

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 135/136

and   pe rmeabi i i t y   65

coeff ic ien í

  o f

  65-68

pa r a m e í e r s  55-58

t heory 58

Conso l ídome íe r

  55

C o n s t r a i n e d m o d u l u s   60

Drained

  shear

  s t r en g t h

see shear  s trength

D e f o m a t i o n m o d u l u s

  60

Dry

  density

  39

Effec t ive

  shear

  s t reng íh

se e   shear

  s í r eng th

Effec t ive

  stresses

  76,  78-80

E x p a n s i v e

  soils   11,

  12,

  105-107

Free

  swell   105

Frost

  heave

  11 9

Frost  susceptibility   116 11 7

and  g rad ing   117-119

and  plasticiíy

  Índex

  119-121

and soil classificaíion

  119,

 121

iden í i f í ca t i on  o f

  soil

  119

Grad ing

  1-3

and   frost   suscept ib i l i ty   117-119

and   pe rmeabi i i ty   53

classifications  4

effects  o n

  o the r prope r í i e s

  2

Hazen s fo rm ula

  53

Hveem s íabi lometer

116

97

Ice

 segregaíion

Ilute

  107

In te rna l  f r i c t i on ,   angle

  o f

Kaol in i t e 107

1 2 , 8 9

Lateral earth pressures

  92-96

se e  also  coefficient   o f

  earíh pressure

Linea r shr inkage

and

  swelling

  poíential  110

Liqu id i ty   Índex

  82

and CBR 99

and

  shear stren gth 81-84

and

  sens i t ivi ty

  83

Liquid

  l imit   6-8 10-12

and CBR 99

and   swe l ling po ten t ia l   1 10

and swell ing pressure

  115

M á x i m u m d r y

  dens i íy

  45

and CBR

  99,100

a n d o p í i m u m

  m o i s í u r e c o n t e n t

  46

and   s he a r   s t r eng th   81

s t a n d a r d   cu rves   f o r 49

M o d i f i e d   compress ion Índex

  58

M o i s íu r e c o n t e n t

and

  swell ing   p o t e n t i a l

  112,   11 3

Mois íure-densi ty curves , íypical  49

M o n t m o r i l l o n i t e

  106, 107,

  121

O e d o m e í e r

  55

O p t i m u m   m o i s t u r e   c o n t e n í

  45

and CBR 100

an d

  m á x i m u m

 d ry

  d ens i ty

  46

and

  p las t i c i íy

  46

íypical

  mo is lu re -dens i íy cu rves

  49

Overconso l ida íed

  c lays

  86, 87

Parl ic le s ize d is t r ibut ion

see

  Grading

Perm eab i l i í y 2

and

  conso l ida l ion

  65

and grading 51, 53

and

  soil classification

  51

coeff ic ient   of 50, 51

Plast ic i íy   3, 6

Plasíiciíy

  í ndex

  7, 11

and

  a c í iv i íy

  106

and CBR 98, 100

and

  f rosl   susceplibi l i íy

  119-121

an d   swelling  poíeníial  107, 112, 113

Plástic limit  6-8 10-12

and  op t imum   moisture  co n tent   46

Píate

  bear ing

  tesí

  74, 75

Poisson s raíio 60, 73

Relaí ive

  dens i íy

  40

Secondary com press ion

  55

coefficienís   of 68, 69

Sensiíiviíy 83

Seítlement   58, 59

co r rec í ions  6 2 , 6 5

of

  sands

  and

  gravéis

  70-75

Shear ing

  resisíance, angle

  of 76

Shear s í rengíh   2

76-92

and CBR 104

and   cons is íency l imiís   10

and

  l iqu id i íy

 í ndex 82

and SPT va lúes 88

7/18/2019 Correl Soils Properties Carter&Bentley

http://slidepdf.com/reader/full/correl-soils-properties-carterbentley 136/136

P R C

i K í ic,b

and   s we l í ing   pote ní ia l 110

dra ined   89

eífective

  89, 90

of   ciays

  89, 90

of   granular soi ls   90-92

parameters   76

r e m o u l d e d

  81-83

tota l and

  e ffecí ive   78-80

u n d r a i n e d

  80-88

Shrinkage   l imit   6 ,  9-11

Sieve

  analys is

se e

  Grading

Sieve

  sizes

  3

Smectite 106

Soil   c lass i f icat ion sys tems,

see

  Class i f icat ion sys tems

see

 also   under AASHTO,

  BS,

  U n i f i e d

systems

Stabil i ty

  analysis

  79, 80

Standard compact ion te s i s  43-45

one

  p o i n t

  test   49

Standard peneíra í ion

  test

  40-43,

 70-72

and seí t leme ní 71,

  72

and

  undrained shear

  s t r eng t h

  8 8

Suct ion   pressure

  116

S ui íab i l i ty índe x   99

Swell   Í n d e x   11 4

Swel í ing   p o t e n t i a í   Í 0 7

and   d e n s i í y   111, 112

and l inear shrinka ge 110

and   l iqu id   l imit   112

and

  m oi s t ure   c o n t e n í

  112-,

  113

and

  p la s t i c i íy Índe x   107-109,

  112

and

  shr inkage l imi t

  110,

  112

and   vert ica l pressure

  112,

  113

Swel í ing

  pressure   113-115

and   l iqu id   l imit   115

an d  SPT

  va lu é

  115

and   swel l

  Í nde x

  114

Tota l   and

  efiective   stress

analysis   78-80

76

Undra ined shear  s t reng íh

see

  shear s í rengíh

*Unified   soi l c lass i f icat ion sys tem

and CBR

  v a l ú e s

  102

and   frost

  suscept ibí l i ty

  121

compared   w i t h   o íher sys tems

Y o u n g s   m o d u l u s

  59

 4

 8


Recommended