+ All Categories
Home > Documents > Correlations among fruit traits and evolution of different...

Correlations among fruit traits and evolution of different...

Date post: 20-Jan-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
24
BolankdJournul oJ/h Linnean Sociplv (20OO), I.?.?: 303-326. With G figures doi:l0.lOOS/lmjl. 1999.0340, available online at http://www.idealibrary.rom on I hi" Correlations among h i t traits and evolution of different hits within Melastomataceae GUDRUN CLAUSING'*, KARSTEN MEYER' AND SUSANNE S. RENNER' ' Institut$r Spezielh Botanik, Universitat Main<, 0-55099 Main< Germany, 'Department of Biology, Universip of Missouri-St. Louis, 8001 Natural Bridge Rd., St. Louis, M063121- 4499, us;4 RecciwdJu~ 1999; accepted for publicdwn Februaty 2000 The anatomy and morphology of nearly mature fruits in 85 mainly palaeotropical species of Melastomataceae were examined using microtome- and hand-sectioning, and differential staining. Much structural heterogeneity was observed in both capsules and berries. Mul- tivariate analyses of 31 of the 52 characters recorded for each species, revealed that indehiscence is associated with fusion of ovary and hypanthium tissues, placenta persistence, lack of a persistent endocarp, and a dearth of srlereids in these tissues, while dehiscenre is correlated with the opposite states and a persistent exocarp. Other fruit characters such as lignification or fleshiness of tissues do not show a consistent association with dehiscence. Break down of broad fruit types, such as 'berry' and 'capsule', into their individual morphological and anatomical traits shows how unusual fruit types, such as woody berries, fleshy capsules, and capsules containing fleshy placentas (display fruits), which are common in palaeotropical Melastomeae and Dissochaeteae, contribute to a loosening of expected correlations. Thus, discriminant analysis clearly differentiated display fruits from the other fruit types because of their combination of fleshy placentas with a persistent endocarp and absence of ovary/hypanthium fusion. The evolution of fruit types within Melastomataceae, and especially Dissochaeteae, and their reliability as phylogenetic indicators is discussed in the light of molecular phylogenies for these groups that show that berries and capsules evolved several times independently, explaining the observed heterogeneity of outwardly similar fruits. Fruit diversity within Melnrtoma, a monophyletic genus of 22 species, provides an example of the plasticity afforded by the particular construction of Melastomataceae fruits, which has contributed to ecological diversification in melastome seed dispersal. 0 2000 The Linnean Society of London ADDITIONAL KEY WORDS:-berries ~ capsules ~ dispersal mechanisms - display fruits - Dissochaeteae - multivariate analysis - phylogeny. CONTENTS Introduction. ...................... 304 Material and methods ................... 305 Results ........................ 308 General anatomy and morphology of melastome fruits ....... 308 * Corresponding author. E-mail: [email protected] OO2&4O74/OO/07O303 + 24 $35.00/0 303 0 2000 The IdinnranSociety of London
Transcript
Page 1: Correlations among fruit traits and evolution of different ...renners/Clausing_Melast_fruits_BJLS2000.pdf · an example of the plasticity afforded by the particular construction of

BolankdJournul o J / h Linnean Sociplv (20OO), I.?.?: 303-326. With G figures

doi:l0.lOOS/lmjl. 1999.0340, available online at http://www.idealibrary.rom on I hi"

Correlations among h i t traits and evolution of different h i t s within Melastomataceae

GUDRUN CLAUSING'*, KARSTEN MEYER' AND SUSANNE S. RENNER'

' Institut$r Spezielh Botanik, Universitat Main<, 0-55099 Main< Germany, 'Department o f Biology, Universip o f Missouri-St. Louis, 8001 Natural Bridge Rd., St. Louis, M063121- 4499, us;4

RecciwdJu~ 1999; accepted for publicdwn Februaty 2000

The anatomy and morphology of nearly mature fruits in 85 mainly palaeotropical species of Melastomataceae were examined using microtome- and hand-sectioning, and differential staining. Much structural heterogeneity was observed in both capsules and berries. Mul- tivariate analyses of 31 of the 52 characters recorded for each species, revealed that indehiscence is associated with fusion of ovary and hypanthium tissues, placenta persistence, lack of a persistent endocarp, and a dearth of srlereids in these tissues, while dehiscenre is correlated with the opposite states and a persistent exocarp. Other fruit characters such as lignification or fleshiness of tissues do not show a consistent association with dehiscence. Break down of broad fruit types, such as 'berry' and 'capsule', into their individual morphological and anatomical traits shows how unusual fruit types, such as woody berries, fleshy capsules, and capsules containing fleshy placentas (display fruits), which are common in palaeotropical Melastomeae and Dissochaeteae, contribute to a loosening of expected correlations. Thus, discriminant analysis clearly differentiated display fruits from the other fruit types because of their combination of fleshy placentas with a persistent endocarp and absence of ovary/hypanthium fusion. The evolution of fruit types within Melastomataceae, and especially Dissochaeteae, and their reliability as phylogenetic indicators is discussed in the light of molecular phylogenies for these groups that show that berries and capsules evolved several times independently, explaining the observed heterogeneity of outwardly similar fruits. Fruit diversity within Melnrtoma, a monophyletic genus of 22 species, provides an example of the plasticity afforded by the particular construction of Melastomataceae fruits, which has contributed to ecological diversification in melastome seed dispersal.

0 2000 The Linnean Society of London

ADDITIONAL KEY WORDS:-berries ~ capsules ~ dispersal mechanisms - display fruits - Dissochaeteae - multivariate analysis - phylogeny.

CONTENTS

Introduction. . . . . . . . . . . . . . . . . . . . . . . 304 Material and methods . . . . . . . . . . . . . . . . . . . 305 Results . . . . . . . . . . . . . . . . . . . . . . . . 308

General anatomy and morphology of melastome fruits . . . . . . . 308

* Corresponding author. E-mail: [email protected]

OO2&4O74/OO/07O303 + 24 $35.00/0 303

0 2000 The Idinnran Society of London

Page 2: Correlations among fruit traits and evolution of different ...renners/Clausing_Melast_fruits_BJLS2000.pdf · an example of the plasticity afforded by the particular construction of

304 G. CLAUSING ETA.

Characters and their states . . . . . . . . . . . Multivariate analyses . . . . . . . . . . . . .

Discussion . . . . . . . . . . . . . . . . . . Structural heterogeneity of berries and capsules . . . . .

Dissochaeteae/Sonerileae complex . . . . . . . . Fruit evolution in Melastomataceae, especially in the

Fruit variation at the intrageneric level: the case of Melastoma Fruit types as phylogenetic indicators Fruit character plasticity and dispersal ecology

. . . . . . . . . . . . .

Acknowledgements . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . .

. . . . . 310

. . . . . 312

. . . . . 314

. . . . . 314

. . . . . 316

. . . . . 319

. . . . . 320

. . . . . 320

. . . . . 321

. . . . . 322

INTRODUCTION

Fruit types such as capsule, nut, drupe, samara and berry have sometimes been regarded as evolutionarily conservative (Stebbins, 1974; Spjut, 1994); indeed, many older classification systems accorded fruit type a high taxonomic weight. However, molecular phylogenetic studies are showing that fruits often are unreliable indicators of natural alliances and that their use in higher-level classification has created artificial groups (Apiaceae: Plunkett, Soltis & Soltis (1996); Lamiales d.: Wagstaff & Olmstead (1 997); Myrtaceae: Johnson & Briggs (1 984); Ranunculaceae: Hoot (1995); Rhamnaceae: Richardson & Medan (pers. co rn . , Sept. 1997); Rosaceae: Rohrer, Robertson & Phipps (1991), Morgan, Soltis & Robertson (1994); Saxi- fragaceae: Soltis, Soltis & Bothel (1990)). In Rubiaceae, for example, tracing of fruit evolution on a molecular phylogenetic tree suggests that fleshy fruits have evolved 12 times independently within that family (Bremer & Eriksson, 1992; Bremer, Andreasen & Olsson, 1995). Moreover, molecular data are showing that fruit evolution may be rapid when morphogenetic genes of major effect are involved that can cause dramatic morphological differences (cf. Kadereit , 1994).

The striking homoplasy of fruit types may have two causes. First, it may result from strong directional selection on fruit characters; the latter are highly adaptive and directly correlated with the dispersal agent. For example, fleshy fruits normally are associated with dissemination by animals. Second, fruit characters may appear more homoplastic than they really are because of incorrect homology assessments. This is a problem particularly in large tropical families, such as Rubiaceae and Melastomataceae, where detailed morphological and anatomical studies based on appropriately preserved material are scarce (but see Igersheim, 1993; Rohwer, 1996).

Here we investigate the morphological and anatomical plasticity of fruits in Melastomataceae. Melastomataceae are part of Myrtales, which include families with both dry and fleshy fruits. Examples are Myrtaceae (capsules, nuts, drupes, and berries), Lythraceae s.1. (capsules and berries), Onagraceae (capsules, nuts, berries), and Melastomataceae (capsules, berries, and several intermediate types). Johnson and Briggs ( 1984) concluded from their morphology-based phylogenetic study of Myrtaceae that the traditional three subfamilies delimited by succulent and indehiscent versus dry and dehiscent fruits had to be abandoned since fleshiness of the ovary, and fleshiness of both ovary and hypanthium, each arose independently at least twice. In Lythraceae, berries of Sonneratiu and rZlnicu evolved independently (Graham, Crisci & Hoch, 1993), and in Onagraceae, the nut-like fmits of Heterguuru originated from ancestors that had septicidal Clarh-type capsules (Sytsma & Gottlieb , 1986).

Page 3: Correlations among fruit traits and evolution of different ...renners/Clausing_Melast_fruits_BJLS2000.pdf · an example of the plasticity afforded by the particular construction of

FRUIT TRAITS IN MEIASTOMATACEAE 305

These examples from close relatives of the Melastomataceae (Conti, Litt & Sytsma, 1996) suggest that phylogenetic investigations, followed by critical morphological homology assessments, are needed if fruit characters are to be used in phylogenetic analyses of this family. Tribal classifications of Melastomataceae (De Candolle, 1828; Naudin, 1851; Triana, 1871; Cogniaux, 1891; Renner, 1993) have relied heavily on fruit types, both as diagnostic characters as well as supposed phylogenetic markers (Renner, 1993). Based on outgroup comparison, Renner considered dry capsules as plesiomorphic for the family and fleshy fruits from inferior ovaries with seeds embedded in pulp (her ‘true berries’) as apomorphic. Because she was aware of the plasticity of fruit characters, especially the different origins of fleshy fruit walls and modes of dehiscence, she used only one fruit character in her analysis, namely the presence and absence of true berries, suggesting that further critical examination of fruit attributes was needed (Renner, 1993: 529).

The present study examines the fruit anatomy and morphology of 85 species of Melastomataceae, representing the mainly palaeotropical Astronieae, Dissochaeteae, Kibessieae, Melastomeae, and Sonerileae, and a few neotropical Blakeeae, Me- lastomeae, Miconieae, and Bertolonieae (for tribal classification, see Material and methods). Our major goal was to investigate whether the terms capsule and berry as traditionally applied in these groups describe structurally homogeneous phenotypes. To this end we performed multivariate analyses of 31 anatomical and morphological characters to identifjr states that might correlate with fruit dehiscence (or a lack thereof). We also investigated the pattern of plasticity of fruit characters at different hierarchical levels and within monophyletic groups, as identified by molecular sequence data, and tried to relate it to ecological determinants.

MATERIAL AND METHODS

Fruits of 85 species of Melastomataceae, representing 3 1 genera and eight tribes were investigated (see Appendix in which we follow the classification of Renner (1 993); we recognize Bertolonieae and Dissochaeteae semu Cogniaux (1 89 1) based on molecular phylogenetic results (Clausing, 1999; Clausing & Renner, in press), although the circumscription of these tribes at present is unclear). Fruits came from alcohol samples (70 spp.) collected in South-east Asia, Madagascar, and South America, from herbarium specimens (7 spp.), or from plants cultivated at the Botanical Garden Mainz (8 spp.). We analysed nearly mature fruits. Cross-sections of fruits of ten species were made using a microtome and then stained with toluodine blue, which stains cell walls; the remaining material was hand-sectioned. Herbarium material was boiled prior to sectioning. Manual sections were stained with phloroglucine + HC1 or with iodine in potassium iodide solution, staining lignin and starch, respectively. They were preserved in Hoyer’s solution (Kearns & Inouye, 1993), which bleaches tissue, bringing out lignified cells and mineral crystals.

Fifty-two characters were coded in binary fashion (Table 1) and scored for 85 species. The original uncoded observations are available upon request from the first author. Multistate characters were split into multiple characters. Thus, the 3-state character ‘sclereid abundance’ was divided into ‘few sclereids @resent/other)’, ‘intermediate abundancy @resent/other)’, and ‘many sclereids (present/other)’. Definitions used in this and other problematic coding situations are given below

Page 4: Correlations among fruit traits and evolution of different ...renners/Clausing_Melast_fruits_BJLS2000.pdf · an example of the plasticity afforded by the particular construction of

306 G . CLAUSINC ETAL.

TABLE 1. Characters and their states; see text for definitions of problematic states. Of the 52 characters listed here atid scored for all species, the 31 shown in Tables 2-6 were included in the contingency

analyses

Tissue

Plarenta Endorarp

Mesorarp

Hypanthium

Fusrd tissues

Exocarp

Ovary

Character State

Persistenre ahscnt (0) Rrsistrnce alxcnt (0) Lignification ahsent (0). Cell pattern mosaic-like ( I ) Ditto undulate ( I ) Dittn elongate ( I ) Ditto elongate-undulate ( I ) '~hickness thin (0) Sclerrid presenre absent (0) Few sclereids present ( I ) Intermediate numher of sclereids prrsent ( I ) Many sclereids present ( I ) Sclercid distribution scattered ( I ) Ditto rlustered ( I ) Ditto in a ring ( I ) Calcium oxalate presencc ahsent (0) Stiirrh granule presence allsent (0) Thickness thin (0) Srlereid presence ahsent (0) Few sclereids present ( I ) Intermediate number of srlereids present ( I ) Many srlereids presrnt ( I ) Srlereid distribution scattered ( I ) Ditto clustered ( I ) Ditto in a ring ( I ) Calcium oxalatr presence absent (0) Starch granule presence ahsent (0) Size of inner epidermis rells relative to ground tissue rells larger ( I ) Ditto same size ( I ) Ditto smaller (1) Outer epidermis cell surfare smooth ( I ) Thickness thin (0) Sclerrid presence absent (0) Few srlereids present ( I ) Intermediate numher of sclrreids present ( I ) Many sclereids present ( I ) Sclereid distribution scattered ( I ) Ditto clustered ( I ) Diito in a ring (1) Calcium oxalate presence absent (0) Starch granule prescnce ahsent (0) Ovary and hypanthium free present ( I ) Extent of ovary/hypanthium fusion complete ( I ) Ditto partial ( I ) Distinrtness in mature fruits absent (0) Lignifiration absent (0) Size of exocarp cells relative to mesocarp cells larger ( I ) Ditto same size ( I ) Dittn smaller ( I ) Length relative to hypanthium Ditto same length ( I ) Ditto smaller (<2/3) (I)

longrr (1)

present (I) present ( I ) present ( I ) other (0) other (0) other (0) other (0) thick ( I ) present (1) other (0) other (0) other (0) other (0) other (0) other (0) present ( I ) present ( I ) thick ( I ) present ( I ) other (0) other (0) other (0) other (0) other (0) other (0) present ( I ) present (1)

other (0) other (0) other (0) other (0) thirk ( I ) present (1) other (0) other (0) other (0) other (0) other (0) other (0) present ( I ) present ( I ) other (0) other (0) other (0) present ( I ) present ( I ) other (0) other (0) other (0) other (0) other (0) other (0)

Page 5: Correlations among fruit traits and evolution of different ...renners/Clausing_Melast_fruits_BJLS2000.pdf · an example of the plasticity afforded by the particular construction of

FRUIT 'I'MITS IN MELAST'0MATAC:FAE

TABLE 2. Standardized canonical coefficients of a discriminant analysis that included 81 spccies and nine fruit characters. Values indicate the contribution of each variable to the ca-

nonical axis separating dehiscent and indehiscent fruits

Character and state Can I

307

Placenta persistence (0, I ) Endocarp persistence (0, I) Outer epidermis cells smooth ( I , 0) Fused tissues (0, I ) Ovary/ hypanthium fusion complete ( I , 0) Ovary/hypanthium fusion partial ( I , 0) Exocarp distinctness at maturity (0, I ) Ovary longer than hypanthium ( I , 0) Ovary as long as hypanthium ( I , 0)

-0.21 0.75 0.47 0.16

-0.78 -0.44

0.00 0.34 0.42

(Results: Characters and their states). Of the 52 characters scored, five were excluded from multivariate analysis because breaking-up of multistate characters for binary coding resulted in the statistical redundancy of seven characters. Another 14 characters were excluded because not all characters applied to all species or had been observed in all species. For example, characters referring to fused tissues cannot be scored in species with free ovaries. The multivariate matrix for all characters and species comprised 42 12 cells, and empty cells due to such characters preclude analysis. Of the excluded characters, five dealt with endocarp lignification and cell pattern, and nine with types of sclereid distribution in the mesocarp, hypanthium, or fused tissues.

T o determine which characters were associated with dehiscence or indehiscence we first performed a discriminant analysis that included nine characters scored for all species (Table 2) and pooled display fruits (i.e. fruits that dehisce to expose fleshy placentas) with dehiscent fruits. Blakea paucgora, Centradenia grandgora, Medinilh homoeandra, and Sonerila malgaritacea were excluded from this analysis because they lacked values for some characters. In a second discriminant analysis that included 60 species for which the relevant data were available, placenta fleshiness (absent/ present), was added as a character, and fruits were categorized as indehiscent-fleshy ( =soft berries), dehiscent-dry (= capsules), indehiscent-dry (dry berries), or dehiscent- fleshy (=display fruit). Two further discriminant analyses were run on subsets of species, one consisting of the 28 species with a fused ovary and hypanthium (two additional such species had to be excluded because of missing values), the other of the 52 species lacking a fused ovary and hypanthium (four such species had missing values). For the first subset, an additional five characters were included in the analysis that apply to fused tissues, yielding a total of 14 characters (Table 3), while for the second subset a total of 25 characters could be used (Table 4). T o characterize the major axes of variation in fruit characters we used principal component analysis on the full set of 81 species. Analyses were carried out with the statistics program SAS 6.12 using procedures CANDISC and PRINCOMP (SAS Institute Inc., 1987).

Fruit types were also traced on a molecular phylogenetic tree for Melastomataceae and Memecylaceae (Clausing & Renner, in press) using MacClade 3.04 (Maddison & Maddison, 1992), with ACCTR4N character state optimization.

Page 6: Correlations among fruit traits and evolution of different ...renners/Clausing_Melast_fruits_BJLS2000.pdf · an example of the plasticity afforded by the particular construction of

308 C . CLAUSING ET AL.

‘hu 3. Standardized canonical coefficients of a discriminant analysis that included 81 species and nine fruit characters, and for which fruits were separated into the four categories indehiscent-fleshy, dehiscent-dry, in- dehiscent-dry, and dehiscent-fleshy ( = display fruits). High values indicate high contributions of the respective character to the canonical axis separating dchiscent-fleshy fruits from indehiscent or dehiscent-dry fruits. Thus, ovary/ hypanthium fusion and fleshy placentas explain much of the difference between fruit types, while placenta persistence per Je does not explain

differences between fruit types

Charartrr and state Can I Can2

Squared canonical rorrelation K’ Placenta fleshy (0, I ) Placenta persistence (0, I ) F,nclocarp persistence (0, 1) Fused tissues (0, 1) Ovary/hypanthium fusion complete ( I , 0) Ovary/hypanthium fusion partial ( I , 0) Exocarp distinrtness at maturity (0, I ) Ovary longer than hypanthium ( I , 0) Ovary as long as hypanthium ( I , 0)

0.54

0.00 0.40 0.25

-0.83 -0.17

0.27 0.03

0.83

0.17

-0.50 4.65

0.00 0.63

-0.13 -0.23 -0.46

0.36 0.40 0.29

TABLE 4. Standardized canonical coefficients of a discriminant analysis that included 28 species with fused tissues and 14 fruit characters. Values indicate the contributions of the characters to the canonical axis separating dehiscent and indehiscent fruits. Thus, endocarp persistence and abundant calcium oxalate in the fused tissues vs few sclereids

in fused tissues most clearly separate dehiscent from indehiscent fruits

‘ Character and state Can I

Placenta prrsistence (0, I ) Endocarp pemistencr (0, I ) Hypmthium outer rpidrrmis cells smooth ( I , 0) Fused tissues thick (0, I ) Ovary/hypanthium fusion complete ( I , 0) Ovary/hypanthium fusion partial ( I , 0) Exocarp distinctness at maturity (0, 1) Ovary longrr than hypanthium ( I , 0) Ovary as long as hypdnihium ( I , 0) Sclereid prrsencc in fused tissues (0, I ) Fused tissues with few sclereids ( I , 0) Fused tissues with an intermediate numlier of sclereids ( I , 0) Calcium oxalate presence in fused tissues (0, I ) Starch ,pnule presence in fused tissues (0, I )

-0.59 0.87 0.56

-0.55 -0.44 - 0.02

0.00 -0.06

0.1 1 0.30

-0.74 0.07 0.66 0.06

RESULTS

General anatomy and morphology of melmtome b i t s

Of the 85 species in our sample, 25 had dry dehiscent fruits (capsules), eight dry and lignified but indehiscent fruits (dry berries), 36 fleshy indehiscent fruits (soft

Page 7: Correlations among fruit traits and evolution of different ...renners/Clausing_Melast_fruits_BJLS2000.pdf · an example of the plasticity afforded by the particular construction of

FRUIT TRAIlS IN MEIASI'OMATACEAE 309

Figure 1. Examples of melastome fruits. A-C, capsules. A, Dionycha bqjent B, Oxypora e x b a ; C, Sonerila obliqua; D & E, Berries: D, Medinilla subemsa; E, Dissochaeta bracteata; F, Pternandra hirlella.

berries), and 16 fleshy fruits that dehisce (Figs 1 , 4). The latter kind of fruit was termed display fruit by Wiehler (1983) because, when mature, these capsule-like fruits split to display bluish-black, cream, or reddish juicy placentas in which small

Page 8: Correlations among fruit traits and evolution of different ...renners/Clausing_Melast_fruits_BJLS2000.pdf · an example of the plasticity afforded by the particular construction of

310 G. CIAUSING ET AL

seeds are embedded. The general shape of melastome fruits varies from globose to campanulate or urceolate (Fig. l), with some capsules being obpyramidal (e.g. Sarcopyramis nepalensk) or cubic (e.g. Phyllagathis dispar). In Dionycha (Fig. 1A) and Dichaetanthera, half of the ovary is exposed due to a short cup-shaped or campanulate hypanthium.

Melastome fruits develop from epigynous or perigynous flowers, and the fruit wall thus consists of two parts of different morphological origin. The pericarp derives from the ovary and consists of endo-, meso-, and exocarp. [IThe terms endo- and exocarp are used in the strict sense (Cave, 1869)) referring only to the inner and outer cell-layer of the ovary, respectively]. The outer fruit wall derives from the hypanthium and includes inner and outer hypanthium epidermis and hypanthium ground tissue. The most important differences in the anatomy of mature fruits are the extent of fusion of ovary and hypanthium, presence or absence of an endocarp, and the location and degree of lignification (the importance of these characters was also evident in all statistical analyses; see Results: Multivariate analyses). Placentation is predominantly axillary, but some genera have basal-axillary placentation or placentas located on the ovary wall between the septs. Mesocarp and hypanthium tissues comprise several layers of parenchymatous cells that are usually larger than the epidermal cells. An inner hypanthium epidermis and an exocarp occur only in parts of the fruit where ovary and hypanthium are not fused. In species that have pockets that house the stamens in bud stage, these are located between pericarp and hypanthium tissue (Fig. 4E). They appear as compressed lacunae covered by epidermis. The epidermis on the inside of the pockets eventually grades into the exocarp and that on the outside continues into the inner epidermis of the hypanthium. Enations or hairs may be found on both epidermises and on the exocarp. Bristles, uni- or multiseriate hairs, glandular hairs or scales are common on Melastomataceae fruits, although some fruits are entirely glabrous, e.g. those of Medinilla and Sonen’la.

Characters and their states

See Table 1.

Placentation. Placentation is predominantly axillary. In Kibessieae (Rernandra; Fig. 4F), the placentas are located on the ovary wall between the locule septs, and in some Astronieae and Dissochaeteae (Creochiton) they are positioned basal-axillary. Placentas can disintegrate or persist in mature fruits. In the statistical analyses this character showed a consistently high association with fruit type (below). Where the placenta disintegrates, the seeds lie loosely in the locule or are embedded in fruit pulp. The latter is the case in most species of Medinilla (Fig. 4C). Where the placenta persists it can be club-shaped, V- to T-shaped, branched, or stalked (Fig. 2). In most species of Melastoma, a fleshy placenta fills the entire locules (Figs 4A, 6C). Rarely does the placenta consist of only the central column, as for instance in Blastus borneensis.

Endocarp. Three endocarp characters were coded, viz. whether the endocarp dis- integrates or persists in mature fruits, whether it is lignified, and which of four patterns its cells form in surface view. Endocarp cell patterns were categorized into four states-mosaic-like, undulate (the commonest situation), elongate-undulate, or

Page 9: Correlations among fruit traits and evolution of different ...renners/Clausing_Melast_fruits_BJLS2000.pdf · an example of the plasticity afforded by the particular construction of

31 1

Figure 2. Placenta shapes. A, fleshy; B, stalked; C, club-shaped; D, V- or T-shaped; E, branched.

Figure 3. Endocarp cell patterns in surface view. A, mosaic pattern; B, undulate pattern; C, elongate- undulate pattern; D, elongate pattern.

elongate (Fig. 3)-but the character was excluded from the multivariate analyses (Material and methods).

Mesocarp. The mesocarp consists of parenchymatous cells that may be dead in mature fruits. Mesocarp thickness is highly variable, with the number of cell layers varying between 3 and 25; 3-12 layers were coded as thin, and more than 12 as thick. Another mesocarp character showing continuous variation is the number and

Page 10: Correlations among fruit traits and evolution of different ...renners/Clausing_Melast_fruits_BJLS2000.pdf · an example of the plasticity afforded by the particular construction of

312 G. CIAUSING E7‘4L

distribution of sclereids, which are elongate and/or branched cells with lignified walls. We recorded the presence or absence of sclereids and three classes of sclereid abundance, namely few sclereids (c0.4 per one degree and cell layer), intermediate abundance (0.5-0.8 per one degree and cell layer), and many sclereids ( > 1 per one degree and cell layer). Sclereids may be scattered throughout the tissue, clustered in small groups, or form closed rings, but these patterns were not included in the statistical analyses. Further mesocarp characters concerned the presence of calcium oxalate crystals (found in most species) and starch granules (found in Medinilla and Plethiandra).

Hypanthium. The hypanthium ground tissue is very similar to that of the mesocarp. Like the mesocarp, it is characterized by a varying density and distribution of sclereids and calcium oxalate crystals, with sclereid and crystal abundance normally being higher than in the mesocarp. Definition of classes of abundance was as for the mesocarp. In two instances, Arthmstemma ciliaturn and Blastus borneensis, the subepidermal cell layers are lignified. Another hypanthium character included in some statistical analyses was the size of the inner hypanthium epidermis cells relative to those of the exocarp. We distinguished two states, viz. whether the cells of the inner hypanthium epidermis are smaller (the commonest condition) or larger than those of the exocarp. Different from exocarp cells, cells of the inner hypanthium epidermis remain unlignified. The outer hypanthium epidermis cells can be smooth, convex or papillose (coding, see Table 1).

Fused tissues. Where ovary and hypanthium are fused, their tissues become in- distinguishable, resulting in the category ‘fused tissues’ for which the same characters were recorded as for the mesocarp and hypanthium. The fusion df ovary and hypanthium can be complete or partial, with much plasticity even within genera, especially in Medinilla and Melastoma. Difficulties in determining the extent of fusion arise from the stamen pockets, which extend downwards into the region where ovary and hypanthium are adnate and which appear as compressed lacunae in cross-sections (Fig. 4E). We scored ovaries as free if no septs connected them to the hypanthium.

Exocaq. Four exocarp characters were included in the statistical analyses, namely whether the exocarp was distinct in mature fruits, whether it was lignified, and what the size of its cells was relative to those of the mesocarp.

Ovaly. An ovary character included in the statistical analyses addressed its length relative to that of the hypanthium, the states being ovary longer than hypanthium, of the same length, or shorter.

Multivariate anabses

The discriminant analysis of nine characters for 81 species (see Material and methods; Appendix) was able to separate dehiscent and indehiscent fruits (Wilk’s lambda = 0.48, F= 9.7, df= 8,72, RO.0001). Although character distributions over- lapped to some degree, dehiscence accounted for 52% of the variation in the nine characters. Dehiscence was positively correlated with endocarp persistence and negatively with ovary/hypanthium fusion (whether complete or partial) and a persistent placenta (Table 2).

Page 11: Correlations among fruit traits and evolution of different ...renners/Clausing_Melast_fruits_BJLS2000.pdf · an example of the plasticity afforded by the particular construction of

A

FRUIT TRAITS IN MELASTOMATACFAE

B

313

Figure 4. Cross sections of melastome fruits. A, Melastoma malabathricum; B, Oxyspora e e a ; C , Medinilla submsa; D, Sonerih malgeniacea; E, Dirsochaeta bracteatu; F, pternandra hirtella.

Page 12: Correlations among fruit traits and evolution of different ...renners/Clausing_Melast_fruits_BJLS2000.pdf · an example of the plasticity afforded by the particular construction of

314 C. CLAUSING ETAL.

If fleshiness of the placenta was included in the data set and fruits were placed in the four categories indehiscent-fleshy (soft berries), dehiscent-dry (capsules), indehiscent-dry (dry berries), and dehiscent-fleshy (display fruit), discriminant analysis found three axes of which the first two were most significant (WWs lambda=0.22, F= 4.8, df= 24,168, RO.000 1; n = 60 species). The first axis primarily separated dehiscent-fleshy ( = display) fruits from indehiscent-fleshy and indehiscent-dry fruits (RO.0001, p=54%). It was associated positively with a fleshy placenta and a persistent endocarp. It was negatively associated with ovary/hypanthium fusion (Table 3). The second canonical axis separated dehiscent-dry fruits (=capsules) from the three other types (RO.001, p=50%) and was positively associated with a persistent endocarp and negatively with fusion of hypanthium and ovary.

Discriminant analysis of 28 species with a fused ovary and hypanthium, using 14 characters, again separated dehiscent and indehiscent fruits, with 56% of the variance in the data set accounted for by dehiscence, but only marginal significance because of the small sample size (Wilk's lambda = 0.44, F= 1.4, df= 13,14, P= 0.27). As in the analyses based on larger sample sizes, dehiscence was positively correlated with a persistent endocarp and negatively with a persistent placenta and complete ovary/ hypanthium fusion (Table 4). Weaker correlations existed between dehiscence and the presence of calcium oxalate crystals and sclereids. The 25 characters included for the 52 species lacking fused tissues easily discriminated dehiscent and indehiscent fruits, with 83% of the variance attributable to mode of dehiscence (Wilk's lambda = 0.17, F= 5.6, df= 24,27, RO.000 1). The highest correlations existed between dehiscence and the presence of sclereids in the mesocarp, followed by a persistent endocarp (Table 5).

Principal component analysis based on nine characters revealed a single dominant axis that accounted for 40% of the total variation present in the data. Species at one end of the axis have fruits with a complete fusion of ovary and hypanthium tissues, while fruits at the other end have distinct exocarps and only partial ovary/ hypanthium fusion (Table 6).

DISCUSSION

The general picture that emerges from the five multivariate analyses is that a small number of characters, addressing the persistence and fusion of tissues, are consistently correlated with mode of fruit dehiscence. Indehiscence is associated with ovary/hypanthium fusion, placenta persistence, lack of a persistent endocarp, and a dearth of sclereids in these tissues, while dehiscence is correlated with the opposite states and a persistent exocarp. Specific to the Old World are display fruits, which in the principal component analysis were clearly differentiated from other fruit types, mainly because of their combination of features otherwise associated with dehiscent fruits, such as persistent endocarp and absence of ovary/hypanthium fusion, with a feature otherwise found in indehiscent fruits, namely persistent, fleshy placentas.

Structural heterOgaep of berries and capsules

Berries. In New World Blakeeae and Miconieae, berries (i.e. indehiscent fruits) usually have fleshy placentas and fused tissues, while in the Old World this correlation is

Page 13: Correlations among fruit traits and evolution of different ...renners/Clausing_Melast_fruits_BJLS2000.pdf · an example of the plasticity afforded by the particular construction of

FRUIT TRAITS IN MELASTOMATACEAE 315

TABLE 5. Standardized canonical coefficients ofa discriminant analysis that included 52 species without fused tissues and 25 fruit characters. Values indicate the contributions ofeach character to the canonical axis separating dehiscent and indehiscent fruits. Characters that most clearly separate dehiscent from indehiscent fruits are sclereids in the mesocarp and endocarp per- sistence. Sclereid presence vs presence in low or intermediate numbers make inverse con-

tributions to the separation of fruit types because of O / 1 coding (cf. Table 1)

Character and state Can 1

Placenta persistence (0, I ) Endocarp persistence (0, I ) Hypanthium outer epidermis cells smooth (1, 0) Hypanthium thick (0, I ) Ovary/hypanthium fusion complete (1, 0) Ovary/hypanthium fusion partial (1, 0) Exocarp distinctness at maturity (0, I ) Ovary longer than hypanthium (1, 0) Ovary as long as hypanthium (1, 0) Sclereid presence in hypanthium (0, 1)

Hypanthium with few sclereids (1, 0) Hypanthium with an intermediate number of sclereids ( I , 0) Calcium oxalate presence in hypanthium (0, I ) Starch granule presence in hypanthium (0, 1) Inner epidermis cells larger than hypanthium cells ( I , 0) Inner epidermis cells of same size as hypanthium cells ( I , 0) Mesocarp thick (0, 1) Sclereid presence in mesocarp (0, 1) Mesocarp with few sclereids (I, 0) Mesocarp with an intermediate number of sclereids (1, 0) Calcium oxalate presence in mesocarp (0, I ) Starch granule presence in mesocarp (0, I ) Exocarp lignification (0, 1) Exocarp cells larger than mesocarp cells ( I , 0) Exocarp cells of same size as mesocarp cells ( I , 0)

-0.30 1.13 0.77 0.28

-0.19 -0.11

0.00 0.44 0.25

- 0.80

0.15 - 0.6 I -0.18 -0.32 - 0.20

0.14 -0.04 -1.15

1.36 1.10

-0.07 0.43 0.22 0.45

-0.41

TABLE 6. Relative contributions of nine fruit characters in a principal component analysis of fruits from 81 species. As in Tables 2-5, values indicate the contributions of each character to the canonical axis separating dehiscent and indehiscent fruits. Thus, presence or absence of fused tissues, exocarp distinctness in mature fruits, and ovary/hypanthium fusion contribute most strongly to the canonical axis separating

dehiscent and indehiscent fruits

Character and state Prin 1

Placenta persistence (0, I ) Endocarp persistence (0, 1) Hypanthium outer epidermis cells smooth Fused tissues (0, 1) Ovarylhypanthium fusion complete (1, 0) Ovary/hypanthium fusion partial ( I , 0) Exocarp distinctness at maturity (0, I) Ovary longer than hypanthium (1, 0) Ovary as long as hypanthium (1, 0)

0.1 1 0.22 0.08

- 0.50 - 0.49

0.44 0.50

-0.01 0.09

less strong. This is mainly due to the Old World genus Melastoma, heavily represented in our sample, which has fleshy placentas, but nearly free or only partially fused ovaries and hypanthia, and the Dissochaeta alliance, also strongly represented in the

Page 14: Correlations among fruit traits and evolution of different ...renners/Clausing_Melast_fruits_BJLS2000.pdf · an example of the plasticity afforded by the particular construction of

316 G. CLAUSINC ETAL.

sample, which contains many species with dry or woody berries (Figs lE, 4E). Examples of soft berries with fleshy placentas are Lorga spmceana and Clidemia donnell- smithii (Miconieae), and Medinilla amplectern, and Pachycentria glauca (Dissochaeteae). Soft berries are characterized by the absence of lignified tissues and a dearth of sclereids in the fruit walls, and often by an early-degrading endocarp. Hard berries are characterized by a persistent endocarp as seen in Dissochaeta rgormata and D. aJniS, in which mesocarp and hypanthium ground tissues are not fused and in which the thick ground tissue contains a dense ring of sclereids. Some miconiean berries, such as those of Bellucia aequiloba, also have a dense ring of sclereids in the ground tissue, but their ovary and hypanthium are completely fused and there is no endocarp. In all species of the neotropical genus Blaha investigated, pericarp and hypanthium are fused and heavily sclerified, and in B. mtundijilia the endocarp is even lignified.

As shown by these examples, berries in Blakeeae, Dissochaeteae, and Miconieae are so variable in structure that they cannot be considered a single character, the presence or absence of which can be coded in binary fashion as done by Renner (1993).

Capsules. Roughly half the species sampled had dehiscent fruits. As with berries, capsules in Melastomataceae are very heterogenous, but less of that variation is represented in our sample, which lacks representatives of Microlicieae and Merianieae (all of which have capsules) and includes only one Bertolonieae, a group with particularly diverse capsules (see illustrations in Baumgratz, 1983-85). In our sample, dehiscence is associated with a persistent endocarp and unfused or only partially fused hypanthium and ovary tissues. Exceptions are some species of Sonerila (Sonerileae; Figs lC, 4D) and ptentandra (Kibessieae; Figs lF, 4F). Pternandra fruits represent intermediates between berries and capsules, with variation in fruit dehiscence among species. In some, the fruit walls consist of fused hypanthium and ovary tissues and are strikingly hard due to an abundance of sclereids scattered or clustered in the fruit wall. Such fruits were referred to as capsulae baccatae by De Candolle (1 828). In Sonerila, capsules may have a more or less completely fused hypanthium and ovary, their tissues being indistinguishable (Fig. 4D). If anything, only the endocarp is lignified, and the capsules then resemble the woody berries found in the Dis- sochaeteae.

In other lineages, capsule lignification is also highly variable. Melastomeae, for example, comprise capsules with lignified endocarp, exocarp, and subepidermal layers of the hypanthium ground tissue (e.g. Arthrostemma ciliaturn), capsules with lignified endocarp and exocarp (e.g. Ebouchina uroilleana), capsules in which only the endocarp is lignified (e.g. Dichaetanthera and Dionycha), and capsules lacking lignification (some species of Melastoma; Fig. 4A).

Fruit evolution in Melacrtomataceae, especial4 in the Dissochae&adSonm'leae complex

The heterogeneity of melastome capsules and berries suggests that both may have evolved several times within the family. In addition to the present morphological- anatomical survey, molecular phylogenetic work (Clausing, 1 999; Clausing & Renner, in press) shows that Renner's (1993) grouping of Blakeeae, Dissochaeteae, and Miconieae on the basis of shared soft berries was erroneous. Evidence from combined

Page 15: Correlations among fruit traits and evolution of different ...renners/Clausing_Melast_fruits_BJLS2000.pdf · an example of the plasticity afforded by the particular construction of

FRUIT TRAITS IN MELASTOMATACME 317

h i t s unordered

Soft berry

Dry berry

Woody berry

Fleshy capsule

0 DV capsule

m Drupe

Equivocal

Rhynchanthera Microlicia Lavoisiera Rhexia Arthrostemma Monochaetum Dissotis Tibouchina Pteroplepis Melastoma Osbeckia Dichaetanthera Centradenia Nepsera Aciotos Diplectria Medinilla Calvoa Amphiblemma Driessenia Blastus Phyllagathis Blakea - Molena Monolena Bertolonia ntrazygia Maieta lbcoca Leandra Clidemia G m ffenrieda Merianin Adelobotrys Bellucia - Astronia Astronia Pternandm Pternandra Mouriri Mouriri Memecylon Memecylon Olinia Penaea Rhynchocalyx Alzatea Crypteronia Myrtus Eugenia Ludwigiu

Microlicieae

Melastomead Rhexieae

Dissochaetead Sonerileae complex

Blakeeae

Bertolonieae?

Mi c o ni e a e

Merianieae

? Astronieae

Kibessieae

Memecylaceae

outgroups

Figure 5. Fruit evolution in Melastomataceae and Memecylaceae as traced under ACCTRAN optimization on the highest likelihood tree obtained under the general time-reversible model, using concatenated rbcL, rp116, and ndhF sequences (Clausing & Renner, in press). Soft berries are also found in some members of Melastornu (Melastomeae) and Puchycentria (Dissochaeteae).

rbcL, ndhF, and rpll6 sequence data (Fig. 5) indicates that soft berries evolved at least three times and dry berries at least twice within Melastomataceae. In addition to the three cases shown in Figure 5, soft berries also evolved in Melastoma (Melastomeae) and Puch_centriu (Dissochaeteae). An ndhF phylogeny of the Dis- sochaeteae/Sonerileae complex further suggests that soft berries may have evolved four times within that alliance alone (Clausing, 1999). There also appear to have been two switches to dry berries and two switches to berries with a dense ring of sclereids in the hypanthium.

Page 16: Correlations among fruit traits and evolution of different ...renners/Clausing_Melast_fruits_BJLS2000.pdf · an example of the plasticity afforded by the particular construction of

318 G. CLAUSINC ETAL.

L. 0

w

Page 17: Correlations among fruit traits and evolution of different ...renners/Clausing_Melast_fruits_BJLS2000.pdf · an example of the plasticity afforded by the particular construction of

FRUIT TRAITS IN MELASTOMATACEAE 319

The present study included fruits from 15 genera and many species of Dis- aochaeteae/Sonerileae (Appendix), and their anatomy and morpholo,gy varied greatly. For example, woodiness h some dissochaetcan h i t s is achieved by scler- ification of the hypanthium ground tissue and/or the mesocarp (e.g. Dissochaeta bracteata; Fig. 4E), while in others, such as Dissochaeta a f i k or D. r$ormata, hardness is due to a closed ring of sclereids in the hypanthium ground tissue. The anatomy of these woody berries is very different from that of soft berries found in other Dissochaeteae (compare Dissochaeta bracteata, Fig. 4E, and Medinilla suberosa, Fig. 4C). Another example of the plasticity of fruits in this alliance is provided by Kendrickia and its sister group Catanthera. The former has a thick-walled capsule that opens with four regular longitudinal cracks (Clawing, pers. obs.), while Catanthera has soft berries. Both genera are root-climbers and form a well-supported monophyletic group-

Sonerileae sequenced so far (Amphiblemma, Blastus, Calvoa, Driesseniu, and Ptyllagathk) appear nested within Dissochaeteae (Fig. 5). Capsules in these genera often have a lignified endocarp and sometimes also a lignified exocarp, but at least in Driessenia glandul&ra the hypanthium is fleshy and there is no lignification, making the fruits similar to those of some Dissochaeteae, such as Medinilla serpens.

Fruit variation at the intrageneric level: the case @Melastoma

Another example of fruit variation among closely related species as indicated by ndhF sequences (Meyer, 1999; Renner & Meyer, submitted) is provided by Mehtoma, a member of the pantropical Melastomeae (including Rhexieae), which appear to be monophyletic (Fig. 5) . Melastoma species have a persistent endocarp that is either lignified or parenchymatous (Fig. 4A). The exocarp and the inner epidermis of the hypanthium are always distinct so that mesocarp and hypanthium ground tissue can be distinguished. The fusion of ovary and hypanthium ranges from nearly free to up to 3/4 fused. Mesocarp and hypanthium vary in number of cell layers and distribution of sclereids and calcium oxalate crystals. Often, the subendocarpal, subexocarpal, or subepidermal layers are stuffed with calcium oxalate crystals.

Figure 6 shows three fruit types that have evolved within this genus of 22 species (Meyer, in press). The commonest fruit type is represented by Melastoma beccarianum (Fig. 6C), with irregularly transversal splitting of woody fruit walls and seeds embedded in a soft or solid pulp formed by the placentas. In Melastomataceae, such display fruits are restricted to Melastoma, and discriminant analysis was able to clearly distinguish these fruits from the three other fruit types in our sample (above). Similar display fruits occur in Gesneriaceae (Smith & Carroll, 1997) and Marcgraavia (Meyer, pers. obs.). The seeds are dispersed by birds that feed on the fleshy, sweet placentas (e.g. Gross, 1993 for Melastoma malabathricum (as M. am)).

A second type of fruit is found in M. orientale (Fig. 6B), which also has a fleshy placenta but does not split open. It contains no sclereids in mesocarp and hypanthium ground tissue. Ovary and hypanthium are fused for 3/4 of their length. Like soft berries in Blakeeae, Dissochaeteae, OF Miconieae, this fruit shows a striking increase in size during ripening, but in anatomy it is very different from those fruits, indicating that berries in Melastoma evolved independently.

Finally, a third fruit type is found in M. pellegriniunum (Fig. 6A), the capsules of which open by apical pores. The capsule of this species is characterized by the

Page 18: Correlations among fruit traits and evolution of different ...renners/Clausing_Melast_fruits_BJLS2000.pdf · an example of the plasticity afforded by the particular construction of

320 C . CLAWING LTAL.

complete drying out of the placenta at maturity so that the seeds lie loosely in the ligdied endocarp from where they are released through the pores. The hypanthium is parenchymatous with ten lignified nerves that persist when the fruit has shed its seeds, a striking parallelism to the capsules of Oxyspora e x b a (Figs lB, 4B) and Astronia smihciilia. Capsules of A. smilaciifolia also have a persistent endocarp, but it is not lignified. Their star-like dehiscence results from the irregular disintegration of the fruit wall (which consists of the fused ovary and hypanthium), with sharply triangular parts of the wall persisting as a dome-shaped frame. Capsules of 0. e x b a have a heavily lignified and persistent endocarp and a hypanthium with prominent vascular bundles. The seeds are released loculicidally through five longitudinal slits in the endocarp.

Fruit gpes as phylogaetic indicators

Berries may evolved three times (Fig. 5) within the family, and similar to the examples from other families listed in the introduction, the use of berries as a supposed synapomorphy of Blakeeae, Dissochaeteae, and Miconieae (Renner, 1 993) resulted in the unnatural grouping of a large number of palaeotropical and neotropical genera that do not form a monophyletic clade. Erroneous homology assumptions may have partly resulted from a lack of detailed studies of fruit morphology and anatomy. In Melastomataceae, as in other Myrtales, fruit characters are highly variable even at the intrageneric level (as evidenced by Melastoma), and they may rarely be reliable indicators of monophyletic groups. This does not mean that carefully coded fruit-anatomical characters should not be included in a phylogenetic analysis of the family. Indeed, in some other families, fruit characters have been found to be non-homoplastic even at higher hierarchical levels. Thus, Rohwer (1 996) showed that fruit-anatomical traits are valuable for recognizing generic relationships in Oleaceae. A phylogenetic study of Cornus based on cpDNA restriction site and morphological data also found the two major clades to be congruent with the presence of iridoid glucosides and fruit colour (Xiang et al., 1996): one clade contains the blue-fruited, the other the red-fruited dogwoods, as postulated purely on morphological grounds by Eyde (1985). Also in Eythrina, a phylogeny based on cpDNA restriction site and morphological data indicates that exocarp ornamentation and texture are phylogenetically informative (Bruneau, 1996), and in a study of phylogenetic relationships and dispersal system evolution in Amaryllidaceae, too, fruit characteristics were found to be non-homoplasious synapomorphies of certain groups of genera (Snijman & Linder, 1996). All this supports Stevens' (1991) general conclusion that qualitative morphological characters require critical examination and exact coding. In the end, however, the reliability of fruit characters in any one group can only be tested by considering molecular and morphological data together.

Fruit character plasticig and dirpersal ecology

Fruit character plasticity in Melastomataceae must relate to shifts in seed dispersal mechanisms, which in turn relate to habitat. Thus, changes from fleshy berries to dry capsules may correlate with colonization of more open habitats where wind dispersal may be less costly than bird dispersal or where frugivorous understorey

Page 19: Correlations among fruit traits and evolution of different ...renners/Clausing_Melast_fruits_BJLS2000.pdf · an example of the plasticity afforded by the particular construction of

FRUIT TRAITS IN MELASTOMATACME 32 I

birds may be less abundant (Stiles & Rosselli, 1993). Alternatively, capsular species may undergo selection for increased fleshiness of their exocarp and placentas upon entering more closed forest habitats. Stiles and Rosselli found that in the neotropics the pattern of species richness of small mashers, such as manakins and tanagers, conforms closely to the distribution patterns of berry-fruited melastomes (i.e. Mi- conieae and Blakeeae). These birds, like Miconieae and Blakeeae, are most diverse in wet forests at middle elevations. Similar relationships may exist in the Old World although there are no detailed studies of fruit handling and dispersal of palaeotropical melastomes by birds. Species of Medinilla and other soft-berried Dissochaeteae occurring in montane forests (700-2000 m) at Mt. Kinabalu National Park (Borneo) depend on small to medium-sized birds living in flocks and on small mammals for dispersal of their seeds (Clausing, 1999).

Another selective factor may be habit. In melastomes, an epiphytic habit is strongly associated with baccate fruits adapted to bird dispersal. For example, in the neotropics, 85% of epiphytic melastomes produce berries (Renner, 1986). Some 300 of the 350 Dissochaeteae known are facultative or obligate epiphytes (Clausing, 1999), and thus, a combination of similar growth forms (namely climbing forms) and habitats (tropical forests) may have promoted independent evolution of bird- adapted berries in Dissochaeteae and Miconieae. Once juicy berries had evolved, further adaptive shifts became possible. While most Miconieae offer small red or blue berries, a few have much larger yellow ones adapted for dispersal by bats or monkeys (Renner, 1989), and this may then have selected for hardening of these berries as seen in Bellucia.

Little is known about the biophysical details of capsule function in melastomes (but see Weber, 1987; Stone & Weber, 1988; Cellinese, 1997, on rain splash dispersal in Sonerileae). However, wind tunnel experiments in other groups have shown that capsule morphology can influence the shape of seed shadows (e.g. Blattner & Kadereit, 199 1). This suggests that parallelisms in capsule morphology and anatomy, such as the sclerified vascular bundles that function in capsule opening in Astronia, Ovspora e e a , and Melastoma pellegrinianum, may reflect similar selective conditions in terms of seed dispersal in these species’ habitats. Capsular species also may undergo selection for increased fleshiness of their pericarp and placentas upon entering more closed forest habitats.

Together, our results indicate that berries and capsules evolved several times within Melastomataceae, with anatomical evidence supporting molecular phylo- genetic findings. Ultimately, the exceptional evolutionary flexibility of melastomes fruits may stem from the structure of myrtalean flowers in which hypanthium and ovary tissues are both involved in the construction of the fruit. This allows different degrees of tissue fusion, thickening, hardening, or disintegration, which in turn permits fruit morphology to change dramatically even between closely related species.

ACKNOWLEDGEMENTS

We thank R.E. Ricklefs and H. Bruelheide for statistical advice, J.W. Kadereit and an anonymous reviewer for constructive criticism, J. Rohwer for comments on

, an early version of the manuscript, N. Cellinese and J. Regalado for identifjmg species of Sonerileae, A. Berg for drawing Figures 1,2, and 6, and Barbara Dittmann

Page 20: Correlations among fruit traits and evolution of different ...renners/Clausing_Melast_fruits_BJLS2000.pdf · an example of the plasticity afforded by the particular construction of

322 G. CIAUSING ETdL.

for preparing microtome sections. Financial support for this project came from the Deutsche Forschungsgemeinschaft (grant RE/603/2- 1 to S.S. Renner). Field work and collecting of fruit samples was conducted with kind permission of the Perancang Ekonomi Unit, Kuala Lumpur, and Sabah Parks, Kota Kinabalu, Sabah. Logistic support came from Kinabalu Park, Sabah, the Sabah Forestry Department in Sandakan, the Institute of Biodiversity and Environmental Conservation of the Universiti Malaysia, Sarawak, the Department of Botany of the National University of Hanoi, and the Department of Biology of Prince of Songkhla University, Hat Yai, Thailand.

REFERENCES

Baumgratz JFA. 1983-1985 [1988]. Morfologia dos frutos e sementes de Melastomaticeas brasileiras. Archivos do Jardim Botanic0 do Rio de Janeim 27: 1 13-1 55.

Blattner F, Kadereit JW. 1991. Patterns of seed dispersal in two species of Papaveer L. under near- natural conditions. Flora 185: 55-64.

Boissieu MH de. 1912. Une MClastomacCe asiatique d’un genre africain. Bulletin de la SociM Botanique de France 5 9 33C332.

Bremer By Andreasen K, Olsson D. 1995. Subfamilial and tribal relationships in the Rubiaceae based on rbc L sequence data. Annals ofthe Missouri Botanical Garden 82: 383-397.

Bremer By Eriksson 0. 1992. Evolution of fruit characters and dispersal modes in the tropical family Rubiaceae. Biological Journal ofthe Linnean So&o 47: 7S95.

Bruneau A. 1996. Phylogenetic and biogeographical patterns in Erythrina (Leguminosae: Phaseolcae) as inferred from morphological and chloroplast DNA characters. Systematic Botany 21: 587405.

Candolle de AP. 1828. Melastomaceae. Rudmmus 3: 99-202. Cave C. 1869. Structure et dkveloppement du fruit. Annales des Sciences Naturelles; Botanique, St%s 5 1 0

Cellinese N. 1997. Notes on the systematics and biogeography of the Sonerila generic alliance

Clausing G. 1999. Die Systematik der Dissochaeteae und ihre Stellung innerhalb der Melastomataceae.

Clausing G, Renner SS. (in press). Molecular phylogenetics of Melastomataceae and Memecylaceae:

Cogniaux CA. 1891. Melastomaceae. In: De Candolle A, De Candolle C, eds. Monographiue Phan-

Conti E, Litt A, Sytsma I(J. 1996. Circumscription of Myrtales and their relationships to other

Eyde RH. 1985. The case for monkey-mediated evolution in big-bracted dogwoods. ArnoMia 45: 2-9. Graham SA, Crisci JV, Hoch PC. 1993. Cladistic analysis of Lythraceae smu lato based on

morphological characters. Botanical Journal ofthe Linnean Socieo 113: 1-33. Gross CL. 1993. The breeding system and pollination of Melrrttoma afine (Melastomataceae); a pioneer

shrub in tropical Australia. Biotropica 25: 468-474. Hoot SB. 1995. Phylogeny of Ranunculaceae based on preliminary atpB, rbcL and 18s nuclear

ribosomal DNA sequence data. In: Jensen U, Kadereit JW, eds. The .ystematics and evolution ofthe Ranunculjfforae. Wen: Springer, 24 1-25 1,

Igersheim A. 1993. The characters states of the Caribbean monotypic endemic Strumpja (Rubiaceae). NoNordicJournal o f B o t a y 13: 545-559.

Johnson US, Briggs BG. 1984. Myrtales and Myrtaceae - a phylogenetic analysis. Annalr ofthe Missouri Botanical Garden 71: 700-756.

Kadereit JW. 1994. Molecules and morphology, phylogenetics and genetics. Botania Acta 107: 369-373.

Kearns CA, Inouye DW. 1993. lichniquesforpollinatwn biologkts. Niwot, Colorado: Colorado University Press.

Maddison WP, Maddison DR. 1992. MacClade: anabsis ofptjylogeny and character evolution (version 3). Sunderland, M4 Sinauer & Associates.

1 23- 190.

(Melastomataceae) with special focus on fruit characters. Tivpical Biodiverno 4: 83-93.

Ph.D. dissertation, Johannes Gutenberg-Universitat, Mainz.

implications for character evolution. American Journal ofBotany.

emgamarum vol7. Paris: G . Masson, 1-1256

rosids: evidence from rbcL sequence data. American Journal ofBotany 83: 221-233.

Page 21: Correlations among fruit traits and evolution of different ...renners/Clausing_Melast_fruits_BJLS2000.pdf · an example of the plasticity afforded by the particular construction of

FRUIT TRAITS IN MELASTOMATACEAE 323

Morgan DRY Soltis DE, Robertson KR. 1994. Systematic and evolutionary implications of rbcL sequence variation in Rosaceae. American Journal ofBotany 81: 89Ck903.

Meyer K. 1999. Phylogenic und Systematik der Gattung Melastoma (Melastomataceae) unter besonderer BerUcksichtigung des M. malabathhum-Komplexes. Ph.D. dissertation, Johannes Gutenberg- Universitiit, Mainz.

Meyer K. (in press). Revision of the Southeast Asian Genus Melastoma (Melastomataceae). Blumen. Naudin CV. 1851. Melastomacearum monographicae descriptiones. Annalps des Sciences Naturelles;

Plunkett GM, Soltis DE, Soltis PS. 1996. Evolutionary patterns in Apiaceae: inferences based on

Renner SS. 1986. The neotropical epiphytic Melastomataceae: phytogeographic patterns, fruit types,

Renner SS. 1989. A survey of reproductive biology in neotropical Melastomataceae and Memecylaceae.

Renner SS. 1993. Phylogcny and classification of the Melastomataceae. Nordic Journal of Botany 1 3

Renner SS, Clausing G, Cellinese N, Meyer K. (in press). Melastomataceae. In: Larsen K,

Rohrer JR, Robertson KR, Phipps JB. 1991. Variation in structure among fruits of Maloideae

Rohwer J. 1996. Die Frucht- und Samenstrukturen der Oleaceae - eine vergleichend-anatomische

SAS Institute. 1987. SAS 6.12. $AS/STATguidejr personal computers. Cary, NC. SmithJF, Carroll CL. 1997. A cladistic analysis of the tribe Episcieae (Gesneriaceae) based on ndhF

sequences: origin of morphological characters. $stmatic Botany 22: 7 13-724. Snijman DAY Linder HP. 1996. Phylogenetic relationships, seed characters, and dispersal system

evolution in Amaryllideae (Amaryllidaceae). Annals of the Missouri Botanical Garden 83: 362-386. Soltis DE, Soltis PS, Bothel KD. 1990. Chloroplast DNA evidence for the origins of monotypic

Bensoniella and Conimitella (Saxifragaceae). Systematic Botany 15: 349-362. Spjut RW. 1994. A systematic treatment of fruit types. Memoirs of the New rOrk Botuniral Garden 7 0

Stebbins GL. 1974. Flowerirlg plank evolution above the species level. Cambridge: Harvard University Press. Stevens PF. 1991. Character states, morphological variation, and phylogenetic analysis: a review.

&&matic Botuny 16: 553-583. Stiles FG, Rosselli L. 1993. Consumption of fruits of the Melastomataceae by birds: how diffuse is

coevolution? EgetatiO 107-108: 57-73. Stone BC, Weber A. 1988. A new species of Phyllugathk (Melastomataccae) from the Endau-Rompin

proposed National Park, Malaysia. Aoceedings of the Academy of Natural Sriences of Philadebhia 139:

Sytsma yT, Gottlieb LD. 1986. Chloroplast DNA evidence for the origin of the genus Hetemgaura from a species of Clarkia (Onagraceae). Aoceedirlgs ofthe National Academy ofthe United States ofAmerica 83: 5554-5557.

Botanique, Series 3 17: 305-382.

mat K sequence data. &stematic Botany 21: 477-495.

and floral biology. Sellyana 9: 104-1 1 1.

Annals ofthe Mksouri Botanical Garden 76: 496-518.

5 19-540.

Nielsen I, eds. Flora of77iailand.

(Rosaceae). Amerimn Journal of Botany 78: 16 17-1 635.

Untersuchung. Bibliotheca Botanica 148 1-1 77.

1-182.

307-313.

TrianaJJ. 1871. Les Mtlastomactes. Eansactions ofthe Linnean Socieo oflandon, Botany 2 8 1-188. Wagstaff SJ, O h t e a d RG. 1997. Phylogeny of Labiatae and Verbenaceae inferred from rbcL

Weber A. 1987. Two new species of Phyllqathk related to I! tuberculata (Melastomataceae) from

Wiehler H. 1983. A synopsis of the neotropical Gesneriaceae. Selbyana 6: 1-249. Xiang Q-Y, Brunsfeld SJ, Soltis DE, Soltis PS. 1996. Phylogenetic relationships in Cornus based

on chloroplast DNA restriction sites: implications for biogeography and character evolution.

sequences. Systematic Botany 22: 165-179.

Peninsular Malaysia. Plant &stmatics and Evolution 157: 187-199.

9~tematic Botany 21: 515-534.

Page 22: Correlations among fruit traits and evolution of different ...renners/Clausing_Melast_fruits_BJLS2000.pdf · an example of the plasticity afforded by the particular construction of

w

N

4-

APP

EN

DIX

Frui

t mat

eria

l inv

estig

ated

spe

cies

and

col

lect

ing

loca

tions

. Cla

ssifi

catio

n fo

llow

s R

enne

r (1

993)

, but

rec

ogni

zes

Ber

tolo

niea

e an

d D

isso

chae

teae

sm

Cog

niau

x (1

891)

base

d on

mol

ecul

ar p

hylo

gene

tic r

esul

ts (

Cla

win

g, 1

999;

Cla

usin

g &

Ren

ner,

in p

ress

) alth

ough

the

final

circ

umsc

riptio

n an

d di

spos

ition

of

thes

e tri

bes

is st

ill u

ncle

ar.

Spec

ies

Tri

be

Mat

eria

l C

olle

ctor

C

olle

ctin

g locality

Aner

intlc

irtur

flla

l7nt

hus

Kin

g A

nnin

clci

rh~~

m

anop

/IyuU

r Bak

h.f.

Artk

&m

ma

cilia

iiun

Pav.

ex

G.D

on.

Asbvnio

sm&@

ia T

rian

a Be

ccar

hthu

s sp

.

Belh

cia p

cntm

nna

Nau

din

Berto

bnia

moc

uIalD

DC

. BM

ca m

2om

ola D

onn.

Sm.

BMca

pauc

&ra

Gle

ason

BI

akca

rnat

ndiji

lia D

.Don

B

hh

bom

Mlsi

r Cog

n.

Cahn

thcr

n ta

unm

m (M

en.)

Reg

alad

o C

atan

thna

tefra

ndra

Sta

pf

Cm&

adm

ia gr

and$

Xa

(Sch

ltdl.)

End

l. Cl

idcm

ia do

nncl

l-sn

~i Cog

n.

Cm

hh

man

ticol

a (R

idl.) V

eldk

amp

Dic

haet

anha

arb

ma

Bak

er

Dich

actan

thna

asP

m;na

Cog

n.

hy

ch

bopn

Nau

din

Dtp

htrk

becccariana (

Cog

n.) K

unae

(**

) D

tpht

rk l

atiil

ia (

Tri

a~

) Kun

ae (

**)

Dirro

chnr

to af

iir

Fo

rth

.) C

laus

ing

(***

)=

Mm

k nem

omsa

(Ja

ck) B

akh.

f. Di

Fsoc

harla

muu

clata

Hoo

k. f

. ex

Tri

ana

Diss

ocha

cla b

ecca

hna

Cog

n.

BeIlu

cia ac

gutlo

ba P

ilg.

Sone

rile

ae

Sone

rile

ae

Mel

asto

mea

e A

stro

niea

e A

stro

niea

e M

icon

ieae

M

icon

ieae

B

erto

loni

eae

Bla

keea

e B

lake

eae

Bla

keea

e So

neri

leae

D

isso

chae

teae

D

isso

chae

teae

M

elas

tom

eae

Mic

onie

ae

Dis

soch

aete

ae

Mel

asto

mea

e M

elas

tom

eae

Mel

asto

mea

e D

isso

chae

teae

D

isso

chae

teae

D

isso

chae

teae

Dis

soch

aete

ae

Dis

soch

aete

ae

alco

hol s

ampl

e al

coho

l sam

ple

livin

g pl

ant

alco

hol s

ampl

e he

rbar

ium

spe

cim

en

alco

hol s

ampl

e al

coho

l sam

ple

herb

ariu

m s

peci

men

he

rbar

ium

spe

cim

en

herb

ariu

m s

peci

men

al

coho

l sam

ple

alco

hol s

ampl

e al

coho

l sam

ple

living p

lant

living p

lant

liv

ing

plan

t he

rbar

ium

spe

cim

en

alco

hol s

ampl

e al

coho

l sam

ple

alco

hol s

ampl

e al

coho

l sam

ple

alco

hol s

ampl

e al

coho

l sam

ple

alco

hol s

ampl

e al

coho

l sam

ple

Cla

usin

g 70

C

laus

ing

248

Cla

usin

g 18

9 C

oods

ct a

l. N

GF

4034

7 C

id d

al.

5196

R

enne

r 99

0

Wilb

ur &

Sto

ne 9

861

Mor

i & K

allu

nki

5900

Lu

teyn

& C

otto

n 10

894

Cla

usin

g 25

C

law

ing

109

Cla

usin

g 2 1

4

Cle

men

s 344

55

Cla

usin

g 28

1 C

laus

ing

280

Cla

usin

g 300

Cla

usin

g 14

6 C

law

ing

264

Cla

win

g 65

Cla

win

g 23

4 C

law

ing

245

Cam

eron

Hig

hlan

ds, P

ahan

g, M

alay

sia

Gur

ulau

Rid

ge, S

abah

, Mal

aysi

a G

reen

hous

e BG

Mai

nz

Buk

it M

atan

g, S

araw

ak, M

alay

sia

New

Gui

nea

Cru

zeir

o do

Sul

, Acr

e, B

razi

l Rio

Bra

nco,

Acr

e, B

razi

l G

reen

hous

e BG

Mai

m

Her

edia

, Costa R

ica

Chi

riqu

i, Pa

nam

a C

arch

i, E

cuad

or

Mt.

Kin

abal

u N

. P.

, Sa

bah,

Mal

aysi

a M

t. K

inab

alu

N.

P.,

Saba

h, M

alay

sia

Mt.

Kin

abal

u N

. P.,

Saba

h, M

alay

sia

Gre

enho

use B

G M

ainz

G

reen

hous

e BG

Mai

m

Saba

h, M

alay

sia

Ant

anan

ariv

o, M

adag

asca

r A

ntan

anar

ivo,

Mad

agas

car

Ant

sira

nana

, Mad

agas

car

Buk

it M

atan

g, S

araw

ak, M

alay

sia

Bak

o N

. P.,

Sara

wak

, Mal

aysi

a C

amer

on w

hlan

ds,

Paha

ng, M

alay

sia

Pori

ng H

ot S

prin

gs, S

abah

, Mal

aysi

a R

anau

, Sab

ah, M

alay

sia

p F 3 5

Page 23: Correlations among fruit traits and evolution of different ...renners/Clausing_Melast_fruits_BJLS2000.pdf · an example of the plasticity afforded by the particular construction of

APP

END

IX-c

ontin

ued

Spec

ies

Dircochoetn b

ructa

zfa (J

ack)

Blu

me

Dirsa

chae

ta ce

lebica

Blu

me

Diss

ocha

etu d

ivaric

atu

(wid

.) G

.Don

(**

*) =

Dirrothocta g

ln6r

a M

err.

subs

p. k

inab

aiun

rir

Dtp

lecbi

a diu

arica

ta (W

id.)

Kun

tze

Vel

dkam

p (*

**)=

oipk

bia g

ln6r

a (M

err.)

M

.P.N

ayar

sub

sp. k

inab

alum

rir (V

eldk

amp)

J.F

.Max

wel

l D

irs

ac

~

grad

is (J

ack)

Blu

me

Dksocihactn i

ntcm

udia

Blu

me

Dir

s~ha

etu nformatn

Cla

win

g (*

**) =

Man

olm

cs

stel

lula

ta (J

ack)

Bak

h.f.

Dirso

chae

tu s@

uf&

(Blu

me)

Bac

ker

ex C

laus

ing

(***

) =Lh

phbi

a ~

@~

lat;

(B

lum

e) K

untz

e D

irsot

irfiU

tiCos

a (B

rena

n) B

rena

n &

Kea

y Dt

iess

mia

glon

dulig

cro S

tapf

Gr&

UiFc

osa

H.P

erri

er

Loy

a sp

nuem

Ben

th. e

x T

rian

a M

e&ill

a a

mp

hh

Reg

alad

o M

edin

illa

basa

lturn

Jum

. &

H.P

emer

M

edin

illa clarkei K

ing

Med

inill

a co

ni$d

i~ B

aker

ex.

H.P

emer

M

edhi

lla c

rass

zzlk

~ (Rei

nw. e

x B

lum

e) B

lum

e M

edin

illa

~qel

lfia

Jum

. &

H.P

errie

r hh

tindl

a ho

moea

ndra

(Sta

pf) M

.P.N

ayar

M

edin

ill0

kin

ab

bis

Reg

alad

o M

edm

illa k

mJo

ra Rid.

Med

killa

sip

ens

Sapf

M

edin

illa sp.

Med

inill

a sp

rciOs

a (R

einw

. ex

Blu

me)

Blu

me

Med

inill

a s&

-phan

os@

ia St

apf

Med

inill

0 su

bem

sa R

egal

ado

Mela

tom

a be

ccar

ianw

n Cog

n.

Mcl

atom

a im

brin

rtum

Wal

l. ex

C.B

.Cla

rke

Meh

tom

a ma

labath

rinrm

L.

Tri

be

Dis

soch

aete

ae

Dis

soch

aete

ae

Dis

soch

aete

ae

Dis

soch

aete

ae

Dis

soch

aete

ae

Dis

soch

aete

ae

Dis

soch

aete

ae

Dis

soch

aete

ae

Mel

asto

mea

e So

neri

leae

So

neri

leae

M

icon

ieae

D

isso

chae

teae

D

isso

chae

teae

D

isso

chae

teae

D

isso

chae

teae

D

isso

chae

teae

D

isso

chae

teae

D

isso

chae

teae

D

isso

chae

teae

D

isso

chae

teae

D

isso

chae

teae

D

isso

chae

teae

D

isso

chae

teae

D

isso

chae

teae

D

isso

chae

teae

M

elas

tom

eae

Mel

asto

mea

e M

elas

tom

eae

Mat

eria

l

alco

hol s

ampl

e al

coho

l sam

ple

alco

hol s

ampl

e

alco

hol s

ampl

e

alco

hol s

ampl

e al

coho

l sam

ple

alco

hol s

ampl

es

alco

hol s

ampl

e

livin

g pl

ant

alco

hol s

ampl

e al

coho

l sam

ple

alco

hol s

ampl

e al

coho

l sam

ple

livin

g pl

ant

alco

hol s

ampl

e al

coho

l sam

ple

alco

hol s

ampl

e al

coho

l sam

ple

alco

hol s

ampl

e al

coho

l sam

ple

alco

hol s

ampl

e al

coho

l sam

ple

alco

hol s

ampl

e al

coho

l sam

ple

alco

hol s

ampl

e al

coho

l sam

ple

alco

hol s

ampl

e al

coho

l sam

ple

alco

hol s

ampl

e

Col

lect

or

Cla

usin

g 14

9

Cla

usin

g 32

Cla

win

g 33

clau

sing

46

clau

sing

74

Cla

usin

g 64

‘C

laus

ing

119;

M

eyer

962

3’

Cla

win

g 24

0

Cla

win

g 22

1 C

law

ing

304

Ren

ner

237

clau

sing

9

Cla

win

g 60

C

law

ing

317

Cla

win

g 6

Cla

win

g 3 1

6 C

laus

ing

4 C

laus

ing

227

Cla

win

g 19

1a

Cla

usin

g 26

8 C

laus

ing

309

Cla

win

g 26

C

laus

ing

17

Cla

usin

g 24

9 C

law

ing

112

Mey

er 9

5 13

clau

sing

220

Col

lect

ing

loca

lity

Buk

it M

atan

g, S

araw

ak, M

alay

sia

Porin

g H

ot S

prin

gs, S

abah

, Mal

aysi

a Po

ring

Hot

Spr

ings

, Sab

ah, M

alay

sia

Mt.

Kin

abal

u N

. P.

, Sa

bah,

Mal

aysi

a

3 2 el

Kep

ong,

Pah

ang,

Mal

aysi

a C

amer

on H

ighl

ands

, Pah

ang,

Mal

aysia

4

‘Sab

ah, M

alay

sia;

Son

gkhl

a, T

haila

nd’

E G

reen

hous

e BG

Mai

nz

z R

anau

, Sab

ah, M

alay

sia

2

Mt.

Kin

abal

u N

. P.,

Saba

h, M

alay

sia

Anu

iran

ana,

Mad

agas

car

Man

aus,

Am

azon

as, B

razi

l M

t. K

inab

alu

N. P

, Sab

ah, M

alay

sia

Gre

enho

use

BG M

ainz

C

amer

on H

ighl

ands

, Pah

ang,

Mal

aysia

Mt.

Kin

abal

u N.

P.,

Saba

h, M

alay

sia

Anu

iran

ana,

Mad

agas

car

Mt.

Kin

abal

u N

. P.

, Sa

bah,

Mal

aysia

M

t. K

inab

alu

N. P

., Sa

bah,

Mal

aysi

a Sa

raw

ak, M

alay

sia

Bau

, Sar

awak

, Mal

aysi

a A

ntsi

rana

na, M

adag

asca

r M

t. K

inab

alu

N.

P.,

Saba

h, M

alay

sia

Mt.

Kin

abal

u N.

P.,

Saba

h, M

alay

sia

Mt.

Kin

abal

u N

. P.,

Saba

h, M

alay

sia

Gur

ulau

Rig

e, S

abah

, Mal

aysi

a M

t. K

inab

alu

N.

P.,

Saba

h, M

alay

sia

Songkhla, T

haila

nd

il 4 A

ntsi

rana

na, M

adag

asca

r >

cont

inue

d

Page 24: Correlations among fruit traits and evolution of different ...renners/Clausing_Melast_fruits_BJLS2000.pdf · an example of the plasticity afforded by the particular construction of

APP

END

IX-c

onfin

ued

Spec

ies

Tri

be

Mat

eria

l C

olle

ctor

C

olle

ctin

g lo

calit

y

Meh

tom

a o

hk

Gui

llaum

in

A.icl

arlo

ma p

ik@

bwn

(H.B

oiss

ieu)

K.M

eyer

(**

*)=Di

csor

is

pelk

gnnb

wn

H.B

oiss

ieu

Mela

stom

a pt

rnkm

ce Rid.

Mela

stom

a sa

ngui

nnnn

Sim

s M

tlasto

ma

sefth

nmriU

m L

our.

Me

hh

mu

sp.

Mel

ashm

u ac

lutin

oswn

Rid

l. M

onol

ma

prim

uhJo

ra H

ook.

f. Os

beck

ia au

rafo

H.P

enie

r Os

becla

b ncp

almrrc

Hoo

k.

Osbe

ckia

slcllo

ro B

uch.

-Ham

. ex

Ker

Gaw

l. O

gspo

ra b

ulla

h (G

riff

.) J.F

.Max

weU

O

ppor

a e+

(Jac

k) J.

F.M

axw

ell

Pach

yccn

hia

conr

hitto

(Blu

me)

Blu

me

Po&e

nmh

ghca

Tri

ana

(***

) fiy

ltiga

this

ellip

tica

Stap

f fiy

lloga

this

pnan

lha

Kor

th.

Pleih

innd

ra h

ookm

’ Sta

pf

PInn

andr

a co

mtlc

scnr

r Jac

k PI

nnan

dra

co

gn

d M

.P.N

ayar

pk

man

dra

CGhin

ata Ja

ck

Ptem

andr

a hi&&

(Cog

n.) M

.P.N

ayar

Sarc

opyr

amis

nepa

lnrrir

Wal

l. So

nnila

berc

ariat

la C

ogn.

So

netih

mag

arito

cra (

Lind

l.) T

rian

a So

m’h

neru

ulosa

Rid

l. So

m’h

obliq

ua K

orth

.

Sow

ih tm

u$&

~ B

lum

e Tz

bouc

hina

unt

ilL?m

(DC

.) C

ogn.

T

rish

ma

mau

n’rii

znwn

J.F.G

me1

.

sone

rila sp.

Mel

asto

mea

e M

elas

tom

eae

Mel

asto

mea

e M

elas

tom

eae

Mel

asto

mea

e M

elas

tom

eae

Mel

asto

mea

e So

neri

leae

M

elas

tom

eae

Mel

asto

mea

e M

elas

tom

eae

Sone

rile

ae

Sone

rile

ae

Dis

soch

aete

ae

Dis

soch

aete

ae

Sone

rile

ae

Sone

rile

ae

Dis

soch

aete

ae

Kib

essi

eae

Kib

essi

eae

Kib

essi

eae

Kib

essi

eae

Sone

rile

ae

Sone

rile

ae

Sone

rile

ae

Son e

ril e a

e on

erile

ae

Sone

rile

ae

Sone

rile

ae

Mel

asto

mea

e M

elas

tom

eae

alco

hol s

ampl

e al

coho

l sam

ple

alco

hol s

ampl

e al

coho

l sam

ple

alco

hol s

ampl

e al

coho

l sam

ple

alco

hol s

ampl

e liv

ing

plan

t al

coho

l sam

ple

herb

ariu

m s

peci

men

al

coho

l sam

ple

alco

hol s

ampl

e al

coho

l sam

ple

alco

hol s

ampl

e al

coho

l sam

ple

alco

hol s

ampl

e al

coho

l sam

ple

alco

hol s

ampl

e al

coho

l sam

ple

alco

hol s

ampl

e al

coho

l sam

ple

alco

hol s

ampl

e

alco

hol s

ampl

e al

coho

l sam

ple

livin

g pl

ants

al

coho

l sam

ple

alco

hol s

ampl

e al

coho

l sam

ple

alco

hol s

ampl

e he

rbar

ium

spe

cim

en

alco

hol s

ampl

e

Mey

er 9

6 17

M

ryer

96 1

9

Mey

er 9

624

Mey

er 9

5 12

Tu

& M

eyer

s.n

. C

laus

ing

200

Mey

er 9

633-

Cla

usin

g 32

4 M

eyer

954

3 M

eyer

960

2 C

laus

ing

6 1

Cla

win

g 63

C

laus

ing

263

Cla

usin

g 15

6 C

laus

ing

2 I2

Cla

usin

g 19

0 C

laus

ing

168

Cla

usii

g 17

5 C

law

ing

47

Cla

win

g 75

C

laus

ing

180,

162

Tu

& M

eyer

0004

Cla

usin

g 20

6

Cla

usin

g 5

I C

law

ing

170

Cla

win

g 22

4 C

law

ing

2 17

Mey

er 9

537

Cla

usin

g 29

2

Cha

ntab

uri,

Tha

iland

T

rat,

Tha

iland

Pera

k, M

alay

sia

Song

khla

, Tha

iland

V

inh

Phu,

Vie

tnam

M

t. Pe

nris

sen,

Sar

awak

, Mal

aysi

a Pe

rak,

Mal

aysi

a G

reen

hous

e BG

Mai

nz

Ant

sira

nana

, Mad

agas

car

Paha

ng, M

alay

sia

hi

, Tha

iland

C

amer

on H

ighl

ands

, Pah

ang,

Mal

aysi

a C

amer

on H

ighl

ands

, Pah

ang,

Mal

aysi

a B

ako

N.

P., S

araw

ak, M

alay

sia

Bak

o N

. P.,

Sara

wak

, Mal

aysi

a M

t. K

inab

alu

N.

P.,

Saba

h, M

alay

sia

Buk

it M

atan

g, S

araw

ak, M

alay

sia

Penr

isse

n, S

araw

ak, M

alay

sia

Mt.

Sant

ubon

g, S

araw

ak, M

alay

sia

Mt.

Kin

abal

u N

. P.

, Sa

bah,

Mal

aysi

a K

epon

g, P

ahan

g, M

alay

sia

Buk

ir M

atan

g an

d M

t. Sa

ntub

ong,

Sa

raw

ak, M

alay

sia

Lao

Cai

, Vie

tnam

M

t. Pe

nris

sen,

Sar

awak

, Mal

aysi

a G

reen

hous

e B

G M

ainz

M

t. K

inab

alu

N.

P.,

Saba

h, M

alay

sia

Buk

it T

imah

, Sin

gapo

re

Mt.

Kin

abal

u N

. P., S

abah

, Mal

aysi

a M

t. K

inab

alu

N.

P.,

Saba

h, M

alay

sia

Saba

h, M

alay

sia

And

asib

e, M

adag

asca

r

(**)

no f

orm

al tr

ansf

er to

Dis

soch

ta h

as b

een

publ

ishe

d; (

***)

nam

es a

ccor

ding

to R

enne

r d

al. (

in p

ress

).


Recommended