+ All Categories
Home > Documents > Corrosion Aspects of Materials Selection for CO2 Transport and … · 2011. 7. 8. · CO2 Transport...

Corrosion Aspects of Materials Selection for CO2 Transport and … · 2011. 7. 8. · CO2 Transport...

Date post: 05-Feb-2021
Category:
Upload: others
View: 12 times
Download: 0 times
Share this document with a friend
32
Federal Instutute for Materials Research and Testing Corrosion Aspects of Materials Selection for CO2 Transport and Storage Dirk Bettge, A.S. Ruhl, R. Bäßler, O. Yevtushenko, A. Kranzmann Federal Instutute for Materials Research and Testing Berlin, Germany Also with the BAM COORAL-Team: T. Bohlmann, S. Bohraus, A. Göbel, P. Wichmann, E. Hoffmann Bettge/Bäßler/Kranzmann ICEPE 20.6.2011 Folie 1
Transcript
  • COORAL – MINIRISKFederal Instutute for Materials Research and Testing

    Corrosion Aspects of Materials Selection for

    CO2 Transport and Storage

    Dirk Bettge, A.S. Ruhl, R. Bäßler, O. Yevtushenko, A. Kranzmann

    Federal Instutute for Materials Research and Testing

    Berlin, Germany

    Also with the BAM COORAL-Team:T. Bohlmann, S. Bohraus, A. Göbel, P. Wichmann, E. Hoffmann

    Bettge/Bäßler/Kranzmann ICEPE 20.6.2011 Folie 1

  • COORAL – MINIRISK

    Contents

    • COORAL Joint Research Project• COORAL Joint Research Project• Materials and Gas Selection

    E i t d CO t• Experiments under CO2 stream• EC Experiments under Aquifer and CO2• Conclusions• Outlook

    Bettge/Bäßler/Kranzmann Folie 2ICEPE 20.6.2011

  • COORAL – MINIRISK

    COORAL Main Goals• COORAL: CO2 Purity for Sequestraion and Storing

    (CO2-Reinheit für Abscheidung und Lagerung)(CO2-Reinheit für Abscheidung und Lagerung)

    • Funding by

    – German Ministry of Economics (50 %)

    – E.ON, Vattenfall, ENBW, VNG, Alstom (50 %)

    • Scheduled term 42 months, start date 01.04.2009

    • Objectives:

    – Limits of impurities

    CO– Developing phases in the CO2 stream

    – Corrosion of compressor and tube materials

    Geochemical reactions– Geochemical reactions

    – Safety issues

    – Cost effectiveness

    Bettge/Bäßler/Kranzmann Folie 3

    Cost effectiveness

    ICEPE 20.6.2011

  • COORAL – MINIRISK

    CCS Transport Chain

    • BAM Fields of Interest:• BAM Fields of Interest:– Compression– Transport– Injection

    T = 170 °C

    T = 5 °C

    Generation Compression InjectionTransport

    Bettge/Bäßler/Kranzmann ICEPE 20.6.2011 Folie 4Storage T = 60 °C

  • COORAL – MINIRISK

    Materials Selection

    N b N Sh Si TNumber Name Short Sign Treatment1.4006 X12Cr13 KM

    1.4313 X3CrNiMo13-4 KR QT650

    essi

    on

    T 170 °C1.4542 X5CrNiCuNb16-4 KS P9301.4562 X1NiCrMoCu32-28-7 KU

    3.7165 Ti-Al6-V4 KXCom

    pre T = 170 °C

    1.1018 Soft Iron TA

    1.0484 L290NB TB

    1.0582 L360NB TC

    rans

    port

    T = 5 °C1.8977 L485MB TD

    1.7225 42CrMo4 IH

    1.4021 X20Cr13 IN

    onT

    1.4034 X46Cr13 IO

    1.4542 X5CrNiCuNb16-4 IS P930

    1.4162 X2CrMnNiN22-5-2 IT

    1 4562 X1NiC M C 32 28 7 IU

    Inje

    ctio

    T = 60 °C

    Bettge/Bäßler/Kranzmann Folie 5ICEPE 20.6.2011

    1.4562 X1NiCrMoCu32-28-7 IU

  • COORAL – MINIRISK

    Gas Selection

    OxyfuelEstimated CO2 stream compositions

    CO2 O2 N2 Ar NOx SOx H2O++ 99,95% 0,01% 0,01% 0,01% 50 ppm 50 ppm 0,01%+ 98,00% 0,67% 0,71% 0,59% 0,01% 0,01% 0,01%- 96,00% 1,34% 1,38% 1,25% 0,01% 0,01% 0,01%

    85 00% 4 70% 5 80% 4 57% 0 01% 0 01% 0 01%

    Oxyfuel

    CO2 O2 N2 NOx SOx H2O Amin+ 99,80% 0,02% 0,02% 0,02% 0,02% 0,02% 0,02%

    99 40% 0 01% 0 01% 0 01% 0 01% 0 01% 0 01%

    Post-Combustion

    -- 85,00% 4,70% 5,80% 4,57% 0,01% 0,01% 0,01%

    - 99,40% 0,01% 0,01% 0,01% 0,01% 0,01% 0,01%

    A. Kather, TUHH

    So called „Worst Case Composition“ to start with:

    CO2 – 2 % O2 – 750 ppm CO – 600 ppm H2O – 70 ppm SOx – 100 NOx2 2 pp pp 2 pp x x

    Bettge/Bäßler/Kranzmann Folie 6ICEPE 20.6.2011

    Variation of amounts of the impurities to determine their influence

  • COORAL – MINIRISK

    Gas Reactions (without intermediates)

    • SO2 + 7 H2O ⇒ H2SO4 (H2O)6 ; liquid sulphuric acid forms up to 120 °C

    • CO + O2 ⇒ CO2 + 1/2O2 ; CO and O2 are consumed

    • NO2 + CO ⇒ CO2 + 1/2N2 + 1/2O2; N2 is formed

    • H2O + 2NO2 ⇒ HNO3 + HNO2, gaseous nitric acid and nitrous acid areformed to low amounts

    • SO2 + 1/2O2 ⇒ SO3 ; is formed at > 60°C

    Bettge/Bäßler/Kranzmann Folie 7ICEPE 20.6.2011

  • COORAL – MINIRISK

    Screening Experiments under Ambient Pressure

    3 Chamber Furnaces

    Gas Mixing

    Compression 170 °C

    DataAkquisition

    Bettge/Bäßler/Kranzmann Folie 8ICEPE 20.6.2011

  • COORAL – MINIRISK

    Screening Experiments60 °C, 600 hours, 600 H2O – 70 SO2 – 100 NO2 – 750 CO – 8000 O2 (in ppm)

    Bettge/Bäßler/Kranzmann Folie 9

    42CrMo4 X2CrMnNiN22-5-2

    ICEPE 20.6.2011

  • COORAL – MINIRISK

    Screening Experiments5 °C, 600 hours, 600 H2O – 70 SO2 – 100 NO2 – 750 CO – 8.000 O2

    • Very slight uniform corrosion of pipeline materials

    Iron L290NB L360NB L485MB

    Bettge/Bäßler/Kranzmann Folie 10ICEPE 20.6.2011

  • COORAL – MINIRISK

    Phase Analysis Using XRD

    - Amorphous or very fine grained layer

    Bettge/Bäßler/Kranzmann Folie 11ICEPE 20.6.2011

  • COORAL – MINIRISK

    Screening Experiments170 °C, 600 hours, 600 ppm H2O – 70 ppm SO2 – 100 ppm NO2 – 750 ppm CO –

    8 000 ppm O8.000 ppm O2Compressor materials

    TiX12Cr131.4562 1 4313 1 4542 TiX12Cr131.4562 1.4313 1.4542

    Bettge/Bäßler/Kranzmann Folie 12ICEPE 20.6.2011

  • COORAL – MINIRISK

    Screening Experiments170 °C, 600 hours, 600 ppm H2O – 220 ppm SO2 – 1.000 ppm NO2 – 750 ppm CO

    8 000 ppm O– 8.000 ppm O2From here, the amount of impurities was increased beyond „worst case“

    Ti 42CrMo41.4562 X12Cr13 1.45421.4313

    Bettge/Bäßler/Kranzmann Folie 13ICEPE 20.6.2011

    Pipeline steelsX20Cr13 X46Cr13 1.4162

  • COORAL – MINIRISK

    60°C, 240 hours, 8.000 ppm H2O, 220 ppm SO2, 1.000 ppm NO2Amount of H2O was increased beyound “worst case”

    Screening Experiments

    Amount of H2O was increased beyound worst case

    Pipeline steels X46Cr1342CrMo4

    Bettge/Bäßler/Kranzmann Folie 14ICEPE 20.6.2011

    Injection materials1.4562

  • COORAL – MINIRISK

    Screening Experiments30°C, 120 hours, 8.000 ppm H2O, 220 ppm SO2, 1.000 ppm NO2

    Pipeline steels X46Cr1342CrMo4

    Bettge/Bäßler/Kranzmann Folie 15ICEPE 20.6.2011

    X20Cr13 X12Cr131.45621.41621.4542 1.4313

  • COORAL – MINIRISK

    Screening Experiments5°C, 8.000 ppm H2O, 220 ppm SO2, 1000 ppm NO2A id d ti d t ditiAcid condensation under extreme conditions

    Bettge/Bäßler/Kranzmann Folie 16ICEPE 20.6.2011

  • COORAL – MINIRISK

    Screening Experiments5°C, 8.000 ppm H2O, 220 ppm SO2, 1000 ppm NO2A id d ti d t ditiAcid condensation under extreme conditions

    Pipeline steelsPipeline steels

    Bettge/Bäßler/Kranzmann Folie 17ICEPE 20.6.2011

  • COORAL – MINIRISK

    L290NB, Experiments over 120 h at 5°C

    atio

    n [p

    pm]

    Con

    cent

    ra

    Bettge/Bäßler/Kranzmann Folie 18ICEPE 20.6.2011

  • COORAL – MINIRISK

    Thickness Measurement L290NB5 °C, 2 % H2O, 650 ppm SO22 pp 2=> condensating acidapprox. 0.7 .. 1.0 mm loss/year

    Bettge/Bäßler/Kranzmann Folie 19ICEPE 20.6.2011

  • COORAL – MINIRISK

    Conclusions Screening ExperimentsPipeline Steels under Ambient Pressurep• At temperatures of 60°C and higher no corrosion observed under the

    described conditions• At 30°C corrosion only under very high H2O content ≥ 8 000 ppm due toAt 30 C corrosion only under very high H2O content ≥ 8.000 ppm due to

    acid condensation• At 5 °C corrosion only under high water content ≥ 2.000 ppm due to acid

    condensationcondensation

    Injection and Compression• „Compressor materials“ without corrosion• High alloyed „injection materials“ without corrosion• 42CrMo4 and X46Cr13 behave similar to pipeline steels42CrMo4 and X46Cr13 behave similar to pipeline steels

    Bettge/Bäßler/Kranzmann Folie 20ICEPE 20.6.2011

  • COORAL – MINIRISK

    C

    Conditions:

    Electro Chemical Experiments on Injection Materials

    Conditions:

    • Wet CO2 stream

    • High temperature high pressure• High temperature, high pressure

    • Aquifer water (“brine”) with high Cl- content

    A if t i i th i li t th i j ti i t d i• Aquifer water can rise in the pipeline to the injection point during

    the downtime

    Bettge/Bäßler/Kranzmann Folie 21ICEPE 20.6.2011

  • COORAL – MINIRISK

    Experimental

    Chemical composition of the steels, %

    C, max. Cr Mo Mn S, max. Ni Si, max. P, max. Cu N

    1.4162 0.04 21-22 0.1-0.8 4-6 0.03 1.3-1.7 1 0.04 0.1-0.8 0.251.4021 0.25 12-14 1.5 0.015 1 0.041.7225 0.45 0.9-1.2 0.15-0.3 0.6-0.9 0.035 0.4 0.035

    Simulation of the “real conditions” in the lab:

    • Artificial brine similar to onshore CCS-site in Germany• Brine saturation with CO2• Continues CO2 flowContinues CO2 flow• Temperature 60 °C known as critical for CO2 corrosion

    Bettge/Bäßler/Kranzmann Folie 22ICEPE 20.6.2011

  • COORAL – MINIRISK

    Reference Temperature Brine composition

    Experimental setup

    electrodep

    controllerBrine composition

    Cations mg L-1 Anions mg L-1Ca2+ 1760 Cl- 143300K+ 430 SO42- 3600

    CO t

    Mg2+ 1270 HCO3- 40Na+ 90100

    T 333 KCO2 in

    CO2 out T = 333 KCO2 flow 3-5 L/hpH = 5.8-6.0

    Counterelectrode

    HeaterWE= test specimen

    Bettge/Bäßler/Kranzmann Folie 23ICEPE 20.6.2011

  • COORAL – MINIRISK

    Localized corrosionTheoretical background

    CO2 corrosion:

    H2O + CO2 + Fe = FeCO3 + H2CO2 + H2O H2CO3

    Anodic:Anodic:

    Fe Fe++ + 2e-

    Cathodic:

    2HCO + 2 2CO 2 + H2HCO3- + 2e- 2CO32- + H22H+ + 2e- H2

    Bettge/Bäßler/Kranzmann

    Maurice V., Marcus P. in Modern Aspects of Electrochemistry, 2009

    Folie 24ICEPE 20.6.2011

  • COORAL – MINIRISK

    1 4021 (X20C 13) i CO2 t t d li b i80

    90

    1.4021X20Cr13

    0.0

    1.4021 (X20Cr13) in CO2 saturated saline brine

    50

    60

    70

    kΩ •

    cm

    2

    X20Cr13

    -0.5 g/AgC

    l, V

    20

    30

    40Rpo

    l, k

    -1.0

    EAg

    0 2 4 6 8 10 12 14 1610

    20

    t, days

    Bettge/Bäßler/Kranzmann Folie 25ICEPE 20.6.2011

  • COORAL – MINIRISK

    1 021 ( 20C 13) CO2

    240

    260

    1.4021 (X20Cr13) in CO2 saturated saline brine

    180

    200

    220

    240

    , µm

    1.4021X20Cr13

    120

    140

    160

    180 P

    it de

    pth

    -390 -380 -370 -360 -35080

    100

    120

    -350 mV -400 mV-390 mVE applied, mV vs Ag/AgCl

    -380 mV

    Bettge/Bäßler/Kranzmann Folie 26ICEPE 20.6.2011

  • COORAL – MINIRISK

    1 22 ( 2C ) CO2

    600

    1.7225 (42CrMo4) in CO2 saturated saline brine

    160

    -600

    120

    140

    Ω •

    cm

    2

    -620

    AgC

    l, m

    V

    100

    R

    pol, -640

    E A

    g/A

    0 2 4 6 8 10 12 14 16

    80-660

    Time, days

    Corrosion rate 1 9

    Bettge/Bäßler/Kranzmann

    Corrosion rate 1.9 mm/a

    Folie 27ICEPE 20.6.2011

  • COORAL – MINIRISK

    1 22 ( 2C ) CO2O

    1.7225 (42CrMo4) in CO2 saturated saline brine

    FeFe

    FeFe

    O

    FeFe

    Bettge/Bäßler/Kranzmann

    FeCrCr

    Folie 28ICEPE 20.6.2011

  • COORAL – MINIRISK

    1.4162 (X2CrMnNiN22-5-2) in CO2 saturated saline brine

    220

    X2CrMnNiN22-5-2 150

    -100

    200

    210

    cm2

    -250

    -200

    -150

    mV

    180

    190

    R

    pol,

    kΩ •

    c

    -350

    -300 E

    Ag/

    AgC

    l, m

    150

    160

    170

    R

    500

    -450

    -400

    0 2 4 6 8 10 12 14 16150

    Time, days

    -500

    Bettge/Bäßler/Kranzmann Folie 29ICEPE 20.6.2011

  • COORAL – MINIRISK

    700

    8001.4162 (X2CrMnNiN22-5-2) in CO2 saturated saline brine

    400

    500

    600

    h, µ

    m

    200

    300

    400

    Pit

    dept

    h

    150 V-190 -180 -170 -160 -150

    0

    100

    E V-190 mV -150 mVE, VAg/AgCl-170 mV -160 mV

    Bettge/Bäßler/Kranzmann Folie 30ICEPE 20.6.2011

  • COORAL – MINIRISK

    C CConclusions EC Experiments

    • In CO2 saturated saline brine material 1.4021 is not resistant to pittingcorrosion, 1.7225 shows uniform corrosion, alloy 1.4162 is resistant topitting corrosion

    • Cl- ions concentration controlls the corrosion kinetics

    Outlook

    • Corrosion of piping steels in a circulating supercritical impure CO2environment

    Bettge/Bäßler/Kranzmann Folie 31ICEPE 20.6.2011

  • COORAL – MINIRISK

    Laminary Flow

    Outlook: High Pressure Tests

    Laminary Flow• Autoclaves with CO2 circuit, max. 120 bar, max. 200 °C• Installed, first experiments launched

    Turbulent Flow• Max. 200 bar, 200 °C, Turbulent gas stream, max. 10 m/s, , g ,• Mechanical stress (ball on ring)• To be assembled

    Bettge/Bäßler/Kranzmann Folie 32ICEPE 20.6.2011


Recommended