+ All Categories
Home > Documents > Cosmic censorship in overcharging a black hole with a charged …isoyama/papers/chargeup.pdf ·...

Cosmic censorship in overcharging a black hole with a charged …isoyama/papers/chargeup.pdf ·...

Date post: 30-Jan-2021
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
29
Cosmic censorship in overcharging a black hole with a charged particle SI, N. Sago and T. Tanaka: Phys. Rev. D 84 (2011) 124024; arXiv 1108.6207. Soichiro Isoyama (Yukawa Institute for Theoretical Physics: YITP) Kyoto University
Transcript
  • Cosmic censorship in overcharging a black hole

    with a charged particle

    SI, N. Sago and T. Tanaka: Phys. Rev. D 84 (2011) 124024; arXiv 1108.6207.

    Soichiro Isoyama (Yukawa Institute for Theoretical Physics: YITP)

    Kyoto University

  • Overviews of Talk

    3.Conclusion.

    2.Backreaction effects in overcharging process ✔”Self-energy” of the charged particle ✔Energy loss due to the radiation.

    1.Motivation and aim of this work.

    ✔Overcharging a static charged black hole ✔Cosmic censorship conjecture.

    ✔The problem in proposed scenario.

  • Cosmic censorship conjecture ・ A space time singularity is almost inevitable in GR

    ✔ Indicate the breakdown of space time structure

    [Penrose (1969,1979)]

    [Hawking and Penrose (1970)]

    Need to assure the predictability of GR

    No.1: All singularities of gravitational collapse are hidden within black holes, where they cannot be seen by a distant observer.

    Cosmic censorship conjecture

    No.2: All “physically reasonable space time” is globally hyperbolic (singularity free)

  • Violation of the censorship ・Neither of the statements have been proved yet.

    ・ What is worse, we know some counter examples

    ✔ Critical collapse of the matter field

    ✔ Spherical symmetric system (Dust collapse) [Joshi (1993)]

    [Choptuik (1993)]

    ✔ Higher dimensions: BH-BH scattering, Gregory-Laflamme instability of a black string

    [Okawa+ (2011), Lehner+(2010)]

    ✔ Overcharging/overspinning a black hole [Hubeny (1999), De felice+(2001),Jacobson+(2010),Saa+(2011)]

  • Overcharging/spinning a BH

    ? Kerr-Newman:

    Point particle

    ✔ The particle can fall into the black hole. ✔ Then, saturate the extreme condition:

    ・We can overcharging (overspinning) the BH if

    NB: The 3rd-law of the BH thermodynamics is NOT applicable.

    [Wald (1974)]

  • E.g. Reisner-Nordström (RN) B.H. ・ Radial infall of a charged particle into RN black hole

    Charged particle

    RN black hole

    ✔Overcharging condition :

    ✔Causality condition :

    for

    ✔Absorption condition :

    ・ We have 3 conditions for overcharging the RN-B.H.

    [Hubeny(1999)]

    http://maru.bonyari.jp/texclip/texclip.php?s=%5Cbegin%7Balign*%7D%0Ax%0A%5Cend%7Balign*%7Dhttp://maru.bonyari.jp/texclip/texclip.php?s=%5Cbegin%7Balign*%7D%0Ay%0A%5Cend%7Balign*%7Dhttp://maru.bonyari.jp/texclip/texclip.php?s=%5Cbegin%7Balign*%7D%0Az%0A%5Cend%7Balign*%7D

  • Overcharging scenarios

    ✔ Extremal case:

    ・Find allowed parameter space for a test particle.

    [Wald (1974)]

    ✔ Near extremal case.No.1:

    No allowed parameters.

    [Cohen+(1974)]

    ✔ Near extremal case No.2: [Hubeny(1999)]

    Overcharging parameters

  • Back reaction effects ? ・ The analysis is NOT consistent to the test particle limit.

    ・Absorption condition ・Overcharging condition

    The same scaling as the proposed scenario.

    Back reaction: perturbations

    ✔ Need to re-examine the proposed process with the back reaction effects at accuracy.

    (Kinematics) (Energetics)

  • Overviews of Talk

    3.Conclusion.

    2.Backreaction effects in overcharging process ✔”Self-energy” of the charged particle ✔Energy loss due to the radiation.

    1.Motivation and aim of this work.

    ✔Overcharging a static charged black hole ✔Cosmic censorship conjecture.

    ✔The problem in proposed scenario.

  • Radial marginal orbit ・ The particle orbits can be classified into 3 categories

    ・ Assumption: the marginal orbit exists with self-forces

    The marginal orbit

    ✔ Repulsive orbit (Not absorbed by the B.H.)

    ✔ Plunge orbit (O.K. if the marginal orbit cannot overcharging the B.H.)

    ✔ Marginal orbit (The most danger case)

    http://maru.bonyari.jp/texclip/texclip.php?s=%5Cbegin%7Balign*%7D%0Ar%0A%5Cend%7Balign*%7Dhttp://maru.bonyari.jp/texclip/texclip.php?s=%5Cbegin%7Balign*%7D%0A0%0A%5Cend%7Balign*%7Dhttp://maru.bonyari.jp/texclip/texclip.php?s=%5Cbegin%7Balign*%7D%0Ar_%2B%0A%5Cend%7Balign*%7Dhttp://maru.bonyari.jp/texclip/texclip.php?s=%5Cbegin%7Balign*%7D%0Ar_0%0A%5Cend%7Bslign*%7D

  • The double RN (DRN) solution [Alekseev+(2007),Manko(2007)]

    ✔ Equilibrium configuration in marginal orbit

    Why not get “self-energy” from an exact solution?

    NB: No Wyel strut on the symmetry axis.

    Black Hole

    Singularity

    ✔ An asymptotic flat solution

    ✔ 5-parameters

    ・ The particle’s “self-energy” is very problematic in RN.

    ✔ Static, axis-symmetric solution.

    http://maru.bonyari.jp/texclip/texclip.php?s=\begin{align*}z\end{align*}http://maru.bonyari.jp/texclip/texclip.php?s=\begin{align*}l\end{align*}http://maru.bonyari.jp/texclip/texclip.php?s=\begin{align*}z=z_1\end{align*}http://maru.bonyari.jp/texclip/texclip.php?s=\begin{align*}z=z_2\end{align*}http://maru.bonyari.jp/texclip/texclip.php?s=\begin{align*}z=z_2 + \sigma_2\end{align*}http://maru.bonyari.jp/texclip/texclip.php?s=\begin{align*}z=z_2 - \sigma_2\end{align*}http://maru.bonyari.jp/texclip/texclip.php?s=\begin{align*}(m_2,~e_2)\end{align*}http://maru.bonyari.jp/texclip/texclip.php?s=\begin{align*}(m_1,~e_1)\end{align*}http://maru.bonyari.jp/texclip/texclip.php?s=%5Cbegin%7Balign*%7D%0Ads%5E2%20%3D%20H%28%5Crho%2C%7Ez%29dt%5E2%20-%20f%28%5Crho%2C%7Ez%29%28d%20%5Crho%5E2%20%2B%20dz%5E2%29%20-%20%5Cfrac%7B%5Crho%5E2%7D%7BH%28%5Crho%2C%7Ez%29%7Dd%20%5Cphi%5E2%0A%5Cend%7Balign*%7Dhttp://maru.bonyari.jp/texclip/texclip.php?s=%5Cbegin%7Balign*%7D%0AA_%7Bt%7D%20%3D%20%5CPhi%28%5Crho%2C%7Ez%29%2C%20%7EA_%7B%5Crho%7D%3DA_%7Bz%7D%3DA_%7B%5Cphi%7D%20%3D%200%2C%0A%5Cend%7Balign*%7D

  • Features of the DRN solution

    ・ 5-parameters cannot be independent

    ・ Total mass and charge are easily read out.

    Total mass: Total charge:

    ✔ Balance condition:

    (“Gravitational attractive force” = “electromagnetic repulsive force”)

    ✔ RN black hole: ✔ Singularity:

    http://maru.bonyari.jp/texclip/texclip.php?s=\begin{align*}\sigma_1^2 := m_1^2 - e_1^2 + 2 e_1 \left( \frac{m_2 e_1 - m_1 e_2}{l + m_1 + m_2 } \right)\end{slign*}http://maru.bonyari.jp/texclip/texclip.php?s=\begin{align*}m_1 m_2 = \left[ e_1 - \frac{\sigma_1^2 - m_1^2 + e_1^2}{2e_1} \right ]\left[ e_2 - \frac{\sigma_2^2 - m_2^2 + e_2^2}{2e_2} \right ]\end{align*}

  • Constraints on the total mass ・We only need the total energy of the system including particle’s “self-energy” correction.

    ✔ The RN black hole: , the singularity

    ・The total energy > the total charge in DRN geometry

    ✔Assumption:

    Balance condition

  • Mapping between the 2 pictures ・Relate the DRN geometry to the equilibrium point of the marginal orbit

    RN black Hole

    singularity

    RN Black hole

    Charged particle

    ✔ Re-parameterize the 5 DRN parameters w.r.t

    ・NB.

    1 to 1 mapping

    http://maru.bonyari.jp/texclip/texclip.php?s=%5Cbegin%7Balign*%7D%0Az%0A%5Cend%7Balign*%7Dhttp://maru.bonyari.jp/texclip/texclip.php?s=%5Cbegin%7Balign*%7D%0A%28m_1%2C%7Ee_1%29%0A%5Cend%7Balign*%7Dhttp://maru.bonyari.jp/texclip/texclip.php?s=%5Cbegin%7Balign*%7D%0A%28m_2%2C%7Ee_2%29%0A%5Cend%7Balign*%7Dhttp://maru.bonyari.jp/texclip/texclip.php?s=%5Cbegin%7Balign*%7D%0Az%20%3D%20-l%0A%5Cend%7Balign*%7Dhttp://maru.bonyari.jp/texclip/texclip.php?s=%5Cbegin%7Balign*%7D%0Az%20%3D%200%0A%5Cend%7Balign*%7Dhttp://maru.bonyari.jp/texclip/texclip.php?s=%5Cbegin%7Balign*%7D%0Az%20%3D%20-%20%5Csigma_2%0A%5Cend%7Balign*%7Dhttp://maru.bonyari.jp/texclip/texclip.php?s=%5Cbegin%7Balign*%7D%0Ar%0A%5Cend%7Balign*%7Dhttp://maru.bonyari.jp/texclip/texclip.php?s=%5Cbegin%7Balign*%7D%0A%28E%2C%7Eq%29%0A%5Cend%7Balign*%7Dhttp://maru.bonyari.jp/texclip/texclip.php?s=%5Cbegin%7Balign*%7D%0A%28M%2C%7EQ%29%0A%5Cend%7Balign*%7Dhttp://maru.bonyari.jp/texclip/texclip.php?s=%5Cbegin%7Balign*%7D%0Ar%20%3D%200%0A%5Cend%7Balign*%7Dhttp://maru.bonyari.jp/texclip/texclip.php?s=%5Cbegin%7Balign*%7D%0Ar%20%3D%20-r_%2B%0A%5Cend%7Balign*%7Dhttp://maru.bonyari.jp/texclip/texclip.php?s=%5Cbegin%7Balign*%7D%0Ar%20%3D%20-r_0%0A%5Cend%7Balign*%7D

  • Conclusion: ①

    ✔ At the equilibrium position, the total mass of the system is always greater

    than its charge due to the particle’s “self-energy” contribution.

  • Overviews of Talk

    3.Conclusion.

    2.Backreaction effects in overcharging process ✔”Self-energy” of the charged particle ✔Energy loss due to the radiation.

    1.Motivation and aim of this work.

    ✔Overcharging a static charged black hole ✔Cosmic censorship conjecture.

    ✔The problem in proposed scenario.

  • The energy loss via radiation ・ Energy loss with radiation to infinity during the plunge stage can be evaluated via perturbation theory.

    ・ Just need the geodesic motion in RN black hole as a source of the perturbation.

    ✔ e.g. The quadrupole formula Black hole

    ✔linear order is enough

    http://maru.bonyari.jp/texclip/texclip.php?s=%5Cbegin%7Balign*%7D%0Ar%0A%5Cend%7Balign*%7D

  • Gauge invariant perturbation [Kodama and Ishibashi (2003, 2004)]

    ・ Perturbations of the RN-BH is messy. But…

    NB. Radial infalling particle only excites scalar(even)-perturbation.

    ✔ Expand perturbations via the harmonic functions on

    Master equations

    ✔ Summarized in 2 gauge independent variables:

  • The energy flux formula ・ GW- and EM- radiations are decoupled at infinity.

    + ✔ Only asymptotic solution is relevant

    (In: pure-ingoing, up: pure-outgoing modes)

    Field reconstruction

    ・ Solve the master equation with the Green function.

  • ・ The trend of the flux formula is basically determined by

    Suppression of the energy loss

    ✔ Keys: Use identity and do integral by parts

    =

    Suppression

    Regular functions

    Oscillating term

    decompose

    Oscillating term

  • Conclusion: ②

    ✔ In the plunge stage, the particle’s energy lose via radiation is always suppressed

  • Conclusion: ➀+②

    ✔ The particle cannot satisfy the overcharging condition

    as long as following the radial marginal orbit.

  • Relation to other works [Hod (2008), Zimmerman+(2012)] ・ RN black hole vs. overcharging

    [Barausse+(2010,2011)] ・ Kerr black hole vs. overspinning ✔ Conservative self-forces are essential for saving the cosmic censorship conjecture

    ✔ Neither the absorption nor overcharging condition are satisfied due to the electro-magnetic self-forces

    (Consistent with our analysis and expectation)

    (Consistent with the importance of “self-energy” correction)

  • Summary of the talk ・We consider the back reaction effects on the proposed overcharging process, focusing on the marginal orbit

    ✔ At the equilibrium position, the total mass is always greater than its charge because of “self-energy” correction of the particle.

    ✔ At the plunge stage, energy loss due to the radiation is negligibly small.

    The marginal orbit never overcharges the RN-BH.

  • A. No. The back reaction effects do prevent the charged black hole from being overcharged, and save the cosmic censorship.

    Charged particle

    black hole

    Q. Is the charged black hole overcharged via charged

    particle absorption ?

    Final message of the talk

    http://maru.bonyari.jp/texclip/texclip.php?s=%5Cbegin%7Balign*%7D%0Az%0A%5Cend%7Balign*%7Dhttp://maru.bonyari.jp/texclip/texclip.php?s=%5Cbegin%7Balign*%7D%0Ax%0A%5Cend%7Balign*%7Dhttp://maru.bonyari.jp/texclip/texclip.php?s=%5Cbegin%7Balign*%7D%0Ay%0A%5Cend%7Balign*%7Dhttp://maru.bonyari.jp/texclip/texclip.php?s=%5Cbegin%7Balign*%7D%0A%28E%2C%7Eq%29%0A%5Cend%7Balign*%7Dhttp://maru.bonyari.jp/texclip/texclip.php?s=%5Cbegin%7Balign*%7D%0A%28M%2C%7EQ%3B%7E%5Ctextcolor%5Brgb%5D%7B1%2C0%2C0%7D%7BM%20%5Cgeq%20%7CQ%7C%7D%29%0A%5Cend%7Balign*%7D

  • 糸冬 (Fin.)

  • Back up

  • The definition of the parameters in DRN

    ・ Satisfy the local conservation law.

    ✔ Mass parameters (Komar-like integral)

    ✔ Charge parameters Interaction terms

  • Near-singularity metric in DRN geometry

    ✔Singular RN-geometry + multi-pole perturbations ✔Monopole perturbation starts at

    スライド番号 1スライド番号 2スライド番号 3スライド番号 4スライド番号 5スライド番号 6スライド番号 7スライド番号 8スライド番号 9スライド番号 10スライド番号 11スライド番号 12スライド番号 13スライド番号 14スライド番号 15スライド番号 16スライド番号 17スライド番号 18スライド番号 19スライド番号 20スライド番号 21スライド番号 22スライド番号 23スライド番号 24スライド番号 25スライド番号 26スライド番号 27スライド番号 28スライド番号 29


Recommended