+ All Categories
Home > Documents > Covariant Quantum Spaces, the IKKT Model and Gravity

Covariant Quantum Spaces, the IKKT Model and Gravity

Date post: 13-Mar-2022
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
50
Covariant Quantum Spaces, the IKKT Model and Gravity Harold Steinacker Department of Physics, University of Vienna Paris, march 2017 H. Steinacker Covariant Quantum Spaces, the IKKT Model , and Gravity
Transcript

Covariant Quantum Spaces, the IKKT Modeland Gravity

Harold Steinacker

Department of Physics, University of Vienna

Paris, march 2017

H. Steinacker Covariant Quantum Spaces, the IKKT Model , and Gravity

Motivation IKKT model Matrix geometry Fuzzy S4N fields & kinematics Fluctuations Gravity Generalized spheres Quantization

Motivation

need “fundamental” quantum theory of space-time and matter

issues with string theory:

compactification (why 4D? landscape?)constructive definition

proposal:

Matrix Models as fundamental theories of space-time & matter

IKKT model (IIB model) (this talk!), BFSS model (M-theory)

conjecture:4D physics arises on suitable “brane” solutionswithout target space compactification (avoid landscape!)

goal:identify promising “matrix geometries” for space-timeunderstand mechanism of 4D physics, 4D gravity

H. Steinacker Covariant Quantum Spaces, the IKKT Model , and Gravity

Motivation IKKT model Matrix geometry Fuzzy S4N fields & kinematics Fluctuations Gravity Generalized spheres Quantization

Motivation

need “fundamental” quantum theory of space-time and matter

issues with string theory:

compactification (why 4D? landscape?)constructive definition

proposal:

Matrix Models as fundamental theories of space-time & matter

IKKT model (IIB model) (this talk!), BFSS model (M-theory)

conjecture:4D physics arises on suitable “brane” solutionswithout target space compactification (avoid landscape!)

goal:identify promising “matrix geometries” for space-timeunderstand mechanism of 4D physics, 4D gravity

H. Steinacker Covariant Quantum Spaces, the IKKT Model , and Gravity

Motivation IKKT model Matrix geometry Fuzzy S4N fields & kinematics Fluctuations Gravity Generalized spheres Quantization

outline:

the IKKT model

covariant quantum spaces: fuzzy S4, generalizations

fluctuation modes & higher spins

geometry: metric, vielbein

realization in IKKT model:eom, (lineariz.) Einstein equations

discussion & outlook

HS, arXiv:1606.00769Marcus Sperling & HS, in preparation

H. Steinacker Covariant Quantum Spaces, the IKKT Model , and Gravity

Motivation IKKT model Matrix geometry Fuzzy S4N fields & kinematics Fluctuations Gravity Generalized spheres Quantization

The IKKT model

IKKT or IIB model Ishibashi, Kawai, Kitazawa, Tsuchiya 1996

S[Y ,Ψ] = −Tr(

[Y a,Y b][Y a′,Y b′

]ηaa′ηbb′ + Ψγa[Y a,Ψ])

Y a = Y a† ∈ Mat(N,C) , a = 0, ...,9, N large

gauge symmetry Y a → UY aU−1, SO(9,1), SUSY

proposed as non-perturbative definition of IIB string theory

origins:

quantized Schild action for IIB superstring

reduction of 10D SYM to point, N large

N = 4 SYM on noncommutative R4θ

H. Steinacker Covariant Quantum Spaces, the IKKT Model , and Gravity

Motivation IKKT model Matrix geometry Fuzzy S4N fields & kinematics Fluctuations Gravity Generalized spheres Quantization

numerical results:Kim, Nishimura, Tsuchiya arXiv:1108.1540 ff

”expanding universe“, 3+1-dim. space-time emerges

time evolution of size R(t):

3+1 large dimensions

H. Steinacker Covariant Quantum Spaces, the IKKT Model , and Gravity

Motivation IKKT model Matrix geometry Fuzzy S4N fields & kinematics Fluctuations Gravity Generalized spheres Quantization

leads to “matrix geometry”: (≈ NC geometry)

S ∼ Tr [X a,X b]2 ⇒ configurations with small [X a,X b] 6= 0should dominate

i.e. “almost-commutative” configurations, geometry

∃ basis of quasi-coherent states |x〉, (overcomplete)

minimize∑

a〈x |∆X 2a |x〉 = O([X a,X b]) � (X a)2,

X a ≈ simult. diagonal,spectrum =: M ⊂ R10

〈x |X a|x ′〉 ≈ δ(x − x ′)xa, x ∈M

embedding of branes in target space R10

X a ∼ xa : M ↪→ R10

H. Steinacker Covariant Quantum Spaces, the IKKT Model , and Gravity

Motivation IKKT model Matrix geometry Fuzzy S4N fields & kinematics Fluctuations Gravity Generalized spheres Quantization

examples of matrix geometries:

2× 2 matrices

X a =

(xa

(1)

xa(12)

xa(21)

xa(2)

)= xa

(1)|1〉〈1|+ xa(2)|2〉〈2|, a = 1, ...,D

+xa(12)|2〉〈1|+ xa

(2)|1〉〈2|

describe two points at x(1), x(2) ∈ RD

• • (“point branes”)

off-diagonal matrices ≈ strings connecting branes

spectrum of X a ↔ location in RD

choose X 3 = σ3 diagonal, & off-diagonal X 1 = σ1, X 2 = σ2

→ minimal fuzzy sphere S22 ↪→ R3

H. Steinacker Covariant Quantum Spaces, the IKKT Model , and Gravity

Motivation IKKT model Matrix geometry Fuzzy S4N fields & kinematics Fluctuations Gravity Generalized spheres Quantization

examples of matrix geometries:

2× 2 matrices

X a =

(xa

(1) xa(12)

xa(21) xa

(2)

)= xa

(1)|1〉〈1|+ xa(2)|2〉〈2|, a = 1, ...,D

+xa(12)|2〉〈1|+ xa

(2)|1〉〈2|

describe two points at x(1), x(2) ∈ RD

• 66(( • (“point branes”)

off-diagonal matrices ≈ strings connecting branes

spectrum of X a ↔ location in RD

choose X 3 = σ3 diagonal, & off-diagonal X 1 = σ1, X 2 = σ2

→ minimal fuzzy sphere S22 ↪→ R3

H. Steinacker Covariant Quantum Spaces, the IKKT Model , and Gravity

Motivation IKKT model Matrix geometry Fuzzy S4N fields & kinematics Fluctuations Gravity Generalized spheres Quantization

examples of matrix geometries:

2× 2 matrices

X a =

(xa

(1) xa(12)

xa(21) xa

(2)

)= xa

(1)|1〉〈1|+ xa(2)|2〉〈2|, a = 1, ...,D

+xa(12)|2〉〈1|+ xa

(2)|1〉〈2|

describe two points at x(1), x(2) ∈ RD

• 66(( • (“point branes”)

off-diagonal matrices ≈ strings connecting branes

spectrum of X a ↔ location in RD

choose X 3 = σ3 diagonal, & off-diagonal X 1 = σ1, X 2 = σ2

→ minimal fuzzy sphere S22 ↪→ R3

H. Steinacker Covariant Quantum Spaces, the IKKT Model , and Gravity

Motivation IKKT model Matrix geometry Fuzzy S4N fields & kinematics Fluctuations Gravity Generalized spheres Quantization

The fuzzy 2-sphere S2N : Hoppe, Madore

choose X a = Ja(N) ... irrep of SU(2) on H = CN

[X a,X b] = iεabcX c , X aXa =14

(N2 − 1) =: R2N .

quantized symplectic space (S2, ωN)

X a ∼ xa : S2 ↪→ R3

fully covariant under SO(3)

functions on S2N : A = End(H) =

N−1⊕l=0

(2l + 1)︸ ︷︷ ︸Y l

m

H. Steinacker Covariant Quantum Spaces, the IKKT Model , and Gravity

Motivation IKKT model Matrix geometry Fuzzy S4N fields & kinematics Fluctuations Gravity Generalized spheres Quantization

The Moyal-Weyl quantum plane R4θ:

[X a,X b] = iθab 1l ... Heisenberg algebra

quantized symplectic space (R4, ω)

admits translations, breaks rotations

functions on R4θ: A = End(H) 3 φ =

∫d4k eikX φ(k)

any quantized symplectic spaceM⊂ RD

matrices X a = quantized embedding maps

X a ∼ xa : M ↪→ RD

H. Steinacker Covariant Quantum Spaces, the IKKT Model , and Gravity

Motivation IKKT model Matrix geometry Fuzzy S4N fields & kinematics Fluctuations Gravity Generalized spheres Quantization

(quasi)coherent states & string states

given matrix geometry X a and point xa ∈ RD

quasi-coherent state = ground state |x〉 of∑a

(X a − xa)2|x〉 = E(x)|x〉

Berenstein - Dzienkowski arXiv:1204.2788, Ishiki arXiv:1503.01230,Schneiderbauer - HS arXiv:1606.00646

string state: |x〉〈y | ∈ End(H)

strings connecting different branes ↔ block-diagonal matrices

Xa =

(X a |x〉〈y ||y〉〈x | Y a

)string states dominate quantum effects! (UV/IR mixing)

H. Steinacker Covariant Quantum Spaces, the IKKT Model , and Gravity

Motivation IKKT model Matrix geometry Fuzzy S4N fields & kinematics Fluctuations Gravity Generalized spheres Quantization

can measure matrix geometries {X a}:

measure energy E(x) of string connectingM with point x ∈ RD

location ofM⊂ RD ↔ minima of E(x),

Mathematica package “Bprobe” DOI 10.5281/zenodo.45045Schneiderbauer - HS arXiv:1606.00646

examples:

squashed fuzzy CP2N ⊂ R6 fuzzy torus T 2

N

H. Steinacker Covariant Quantum Spaces, the IKKT Model , and Gravity

Motivation IKKT model Matrix geometry Fuzzy S4N fields & kinematics Fluctuations Gravity Generalized spheres Quantization

in IKKT model:IIB supergravity interactions between branesarise upon integrating out off-diagonal “strings”

X a =

(∗

)→ correct ∼ 1

(x−y)8 propagators (gravitons, ...) in R10

IKKT, Kabat-Taylor, van Raamsdonk, Chepelev-Tseytlin,...

H.S. arXiv:1606.00646

H. Steinacker Covariant Quantum Spaces, the IKKT Model , and Gravity

Motivation IKKT model Matrix geometry Fuzzy S4N fields & kinematics Fluctuations Gravity Generalized spheres Quantization

back to IKKT model: perturbative approach:

background = set of matrices (2 + µ2

2 )X a = 0, 2 = [X a, [Xa, .]]

X a ∼ xa : M ↪→ R10

add fluctuations Y a = X a +Aa

expand action to second oder in Aa

S[Y ] = S[X ] +2g2 TrAa

((2 +

12µ2)δa

b + 2[[X a,X b], . ]− [X a, [X b, .]])Ab

fluctuations A describe

gauge theory (NCFT) onM (”open strings“ ending onM)

effective metric Gµν(x) ∼ θµµ′(x)θνν

′(x)gµ′ν′(x) , dynamical

⇒ dynamical geometry, ”emergent gravity“ onM(6= 10D gravity!!) (review: H.S. arXiv:1003.4134 )

cf. Rivelles, H-S. YangH. Steinacker Covariant Quantum Spaces, the IKKT Model , and Gravity

Motivation IKKT model Matrix geometry Fuzzy S4N fields & kinematics Fluctuations Gravity Generalized spheres Quantization

how to choose the background braneM⊂ R10?

quantized 4D symplecticM4 ⊂ R10 :

θµν breaks local Lorentz-invariance”invisible“ semi-classically, significant in quantum corrections

look for Lorentz / SO(4) covariant 4D quantum space:

∃ fully covariant fuzzy four-sphere S4N

Grosse-Klimcik-Presnajder; Castelino-Lee-Taylor; Ramgoolam; Kimura;

Hasebe; Azuma-Bal-Nagao-Nisimura; Karabail-Nair; ...

price to pay: “internal structure” → higher spin theory

here:work out lowest spin modes on S4

Λ in IKKT model→ (linearized) Einstein equations HS arXiv:1606.00769

H. Steinacker Covariant Quantum Spaces, the IKKT Model , and Gravity

Motivation IKKT model Matrix geometry Fuzzy S4N fields & kinematics Fluctuations Gravity Generalized spheres Quantization

how to choose the background braneM⊂ R10?

quantized 4D symplecticM4 ⊂ R10 :

θµν breaks local Lorentz-invariance”invisible“ semi-classically, significant in quantum corrections

look for Lorentz / SO(4) covariant 4D quantum space:

∃ fully covariant fuzzy four-sphere S4N

Grosse-Klimcik-Presnajder; Castelino-Lee-Taylor; Ramgoolam; Kimura;

Hasebe; Azuma-Bal-Nagao-Nisimura; Karabail-Nair; ...

price to pay: “internal structure” → higher spin theory

here:work out lowest spin modes on S4

Λ in IKKT model→ (linearized) Einstein equations HS arXiv:1606.00769

H. Steinacker Covariant Quantum Spaces, the IKKT Model , and Gravity

Motivation IKKT model Matrix geometry Fuzzy S4N fields & kinematics Fluctuations Gravity Generalized spheres Quantization

covariant fuzzy four-spheres

5 hermitian matrices Xa, a = 1, ...,5 acting on HN∑a

X 2a = R2

covariance: Xa ∈ End(HN) transform as vectors of SO(5)

[Mab,Xc ] = i(δacXb − δbcXa),

[Mab,Mcd ] = i(δacMbd − δadMbc − δbcMad + δbdMac) .

Mab ... so(5) generators acting on HN

denote[X a,X b] =: iΘab

particular realization so(6) ∼= su(4) generatorsMab:

X a = rMa6, a = 1, ...,5 , Θab = r2Mab

(cf. Snyder, Yang 1947)

H. Steinacker Covariant Quantum Spaces, the IKKT Model , and Gravity

Motivation IKKT model Matrix geometry Fuzzy S4N fields & kinematics Fluctuations Gravity Generalized spheres Quantization

covariant fuzzy four-spheres

5 hermitian matrices Xa, a = 1, ...,5 acting on HN∑a

X 2a = R2

covariance: Xa ∈ End(HN) transform as vectors of SO(5)

[Mab,Xc ] = i(δacXb − δbcXa),

[Mab,Mcd ] = i(δacMbd − δadMbc − δbcMad + δbdMac) .

Mab ... so(5) generators acting on HN

denote[X a,X b] =: iΘab

particular realization so(6) ∼= su(4) generatorsMab:

X a = rMa6, a = 1, ...,5 , Θab = r2Mab

(cf. Snyder, Yang 1947)H. Steinacker Covariant Quantum Spaces, the IKKT Model , and Gravity

Motivation IKKT model Matrix geometry Fuzzy S4N fields & kinematics Fluctuations Gravity Generalized spheres Quantization

basic fuzzy 4-sphere S4N :

Grosse-Klimcik-Presnajder 1996; Castelino-Lee-Taylor

Ramgoolam; Medina-o’Connor, Dolan, ...

choose HN = (0,0,N)so(6)∼= (C4)⊗SN

satisfiesXaXa = R21l, R2 ∼ 1

4 r2N2

εabcdeXaXbXcXdXe = (N + 2)R2r3 (volume quantiz.)

generalized fuzzy 4-spheres S4Λ:

H.S, arXiv:1606.00769, M. Sperling - H.S in preparation

choose e.g. HΛ = (n,0,N)so(6)

... thick sphere; R2 := XaXa not sharp

bundle over S4N with fiber CP2

n (→ fuzzy extra dim’s!)

H. Steinacker Covariant Quantum Spaces, the IKKT Model , and Gravity

Motivation IKKT model Matrix geometry Fuzzy S4N fields & kinematics Fluctuations Gravity Generalized spheres Quantization

local description: pick north pole p ∈ S4

→ tangential & radial generators

X a =

(Xµ

X 5

), xµ ∼ Xµ, µ = 1, ...,4...tangential coords at p

separate SO(5) into SO(4) & translations

Mab =

(Mµν Pµ−Pµ 0

)where Pµ =Mµ5

rescalePµ =

1R

gµνPν (cf. Wigner contraction)

algebra[Pµ,X ν ] ' iδνµ,

[Pµ,Pν ] = iR2Mµν → 0

[Xµ,X ν ] =: iθµν = ir2Mµν ≈ 0

H. Steinacker Covariant Quantum Spaces, the IKKT Model , and Gravity

Motivation IKKT model Matrix geometry Fuzzy S4N fields & kinematics Fluctuations Gravity Generalized spheres Quantization

start with basic S4N : HN = (0,0,N)so(6)

∼= (0,N)so(5)∼= (C4)⊗SN

geometry from coherent states |p〉:

{pa = 〈p|Xa|p〉} = S4

minimal uncertainty

〈p|∑

(∆Xa)2|p〉 ≈ 4R2

N=: ∆2

closer inspection:

∃ degenerate space of coherent states at p ∈ S4

→ “internal” fuzzy S2N+1 fiber

H. Steinacker Covariant Quantum Spaces, the IKKT Model , and Gravity

Motivation IKKT model Matrix geometry Fuzzy S4N fields & kinematics Fluctuations Gravity Generalized spheres Quantization

start with basic S4N : HN = (0,0,N)so(6)

∼= (0,N)so(5)∼= (C4)⊗SN

geometry from coherent states |p〉:

{pa = 〈p|Xa|p〉} = S4

minimal uncertainty

〈p|∑

(∆Xa)2|p〉 ≈ 4R2

N=: ∆2

closer inspection:

∃ degenerate space of coherent states at p ∈ S4

→ “internal” fuzzy S2N+1 fiber

H. Steinacker Covariant Quantum Spaces, the IKKT Model , and Gravity

Motivation IKKT model Matrix geometry Fuzzy S4N fields & kinematics Fluctuations Gravity Generalized spheres Quantization

hidden bundle structure:

CP3 3 ψ↓ ↓S4 3 ψγ iψ = x i

Ho-Ramgoolam, Medina-O’Connor, Abe, ...

fuzzy S4N is really fuzzy CP3

N , hidden extra dimensions S2 !

local Poisson tensor (↔ commutation relations)

−i[Xµ,X ν ] ∼ θµν(x , ξ)

rotates along fiber ξ ∈ S2 !

is averaged [θµν(x , ξ)]0 = 0 over fiber → local SO(4) preserved,

4D “covariant” quantum space

H. Steinacker Covariant Quantum Spaces, the IKKT Model , and Gravity

Motivation IKKT model Matrix geometry Fuzzy S4N fields & kinematics Fluctuations Gravity Generalized spheres Quantization

fields and harmonics on S4N

”functions“ on S4N :

φ ∈ End(HN) ∼=⊕

m≤n≤N

(n −m,2m)so(5)

(n,0) modes = scalar functions on S4:

φ(X ) = φa1...an X a1 ...X an

(n,2) modes = selfdual 2-forms on S4

φbc(X )Mbc = φa1...an;bcX a1 ...X anMbc ( ∼= φbc(x)dxb ∧ dxc )

etc.tower of higher spin modes

from ”twisted“ would-be KK modes on S2

(local SO(4) acts non-trivially on S2 fiber)H. Steinacker Covariant Quantum Spaces, the IKKT Model , and Gravity

Motivation IKKT model Matrix geometry Fuzzy S4N fields & kinematics Fluctuations Gravity Generalized spheres Quantization

Fluctuation modes on S4Λ

organize tangential fluctuations at p ∈ S4 as

Aµ = θµνAν

where

Aν(x) = Aν(x) +Aνρ(x)Pρ + Aνρσ(x)Mρσ︸ ︷︷ ︸AνabMab ...SO(5) connection

+...

rank 2 tensor field

Aνρ(x) =12

(hνρ + aνρ) hνρ = hρν ... metric fluctuation

rank 3 tensor field

Aνρσ(x)Mρσ ... so(4) connection

rank 1 field Aν(x) ... gauge fieldH. Steinacker Covariant Quantum Spaces, the IKKT Model , and Gravity

Motivation IKKT model Matrix geometry Fuzzy S4N fields & kinematics Fluctuations Gravity Generalized spheres Quantization

gauge transformations:

Y a → UY aU−1 = U(X a +Aa)U−1 leads to (U = eiΛ)

δAa = i[Λ,X a] + i[Λ,Aa]

expand

Λ = Λ0 +12

ΛabMab + ...

... U(1)× SO(5)× ... - valued gauge trafosdiffeos from δv := i[vρPρ, .]

δhµν = (∂µvν + ∂νvµ)− vρ∂ρhµν + (Λ · h)µν

δAµρσ = 12∂µΛσρ(x)− vρ∂ρAµρσ + (Λ · A)µρσ

etc.

H. Steinacker Covariant Quantum Spaces, the IKKT Model , and Gravity

Motivation IKKT model Matrix geometry Fuzzy S4N fields & kinematics Fluctuations Gravity Generalized spheres Quantization

metric and vielbein

consider scalar field φ = φ(X ) (= transversal fluctuation Aa(X ))

kinetic term

−[Xα, φ][Xα, φ] ∼ eαφeαφ = γµν∂µφ∂νφ,

vielbeineα := {Xα, .} = eαµ∂µ

eαµ = θαµ

note: Poisson structure → frame bundle!metric (open string)

γµν = gαβeαµ eβν = 14 ∆4 gµν

averaging over internal S2:

[eαν ]0 = 0, [γµν ]0 = γµν =∆4

4gµν ... SO(5) invariant !

H. Steinacker Covariant Quantum Spaces, the IKKT Model , and Gravity

Motivation IKKT model Matrix geometry Fuzzy S4N fields & kinematics Fluctuations Gravity Generalized spheres Quantization

metric and vielbein

consider scalar field φ = φ(X ) (= transversal fluctuation Aa(X ))

kinetic term

−[Xα, φ][Xα, φ] ∼ eαφeαφ = γµν∂µφ∂νφ,

vielbeineα := {Xα, .} = eαµ∂µ

eαµ = θαµ

note: Poisson structure → frame bundle!metric (open string)

γµν = gαβeαµ eβν = 14 ∆4 gµν

averaging over internal S2:

[eαν ]0 = 0, [γµν ]0 = γµν =∆4

4gµν ... SO(5) invariant !

H. Steinacker Covariant Quantum Spaces, the IKKT Model , and Gravity

Motivation IKKT model Matrix geometry Fuzzy S4N fields & kinematics Fluctuations Gravity Generalized spheres Quantization

perturbed vielbein:

Y a = X a +Aa

ea := {Y a, .} ∼ eaµ[A]∂µ ... vielbein

eαµ[A] ∼ θαβ(δµβ + Aβρgρµ) + 1r2 θ

ανθρσ{Aνρσ, xµ}

using {Pρ,Xµ} ∼ gρµ (!)

effective (open string!) metric (drop radial vielbein)

−[Y a, φ][Ya, φ] ∼ eaφeaφ = γµν∂µφ∂νφ+ ...

γµν ∼ eαµ[A]e να [A]

H. Steinacker Covariant Quantum Spaces, the IKKT Model , and Gravity

Motivation IKKT model Matrix geometry Fuzzy S4N fields & kinematics Fluctuations Gravity Generalized spheres Quantization

linearize & average over fiber →

γµν = γµν + [δγµν ]0

metric fluctuation:

[δγµν ]0 = ∆4

4

(hµν + kµν

)=: ∆4

4 hµν

kµν ∼ ∂ρAµρν + ∂ρAνρµ

note:

metric hµν = combination of

momentum modes hµν

kµν ∼ ∂ρAµρν + (µ↔ ν)

H. Steinacker Covariant Quantum Spaces, the IKKT Model , and Gravity

Motivation IKKT model Matrix geometry Fuzzy S4N fields & kinematics Fluctuations Gravity Generalized spheres Quantization

effective metric & conformal factor

kinetic term for scalar fields:

S[φ] ∼∫M

d4x γµν∂µφ∂νφ ∼∫M

d4x√|Gµν |Gµν∂µϕ∂νϕ

effective metric

Gµν = c∆4 γ

µν , c =√

∆4|γ−1µν | = 1− 1

2 h + ...

metric fluctuation

Gµν = gµν + Hµν , Hµν = hµν − 12

gµν h

de Donder gauge

∂µHµν − 12∂νH = 0

H. Steinacker Covariant Quantum Spaces, the IKKT Model , and Gravity

Motivation IKKT model Matrix geometry Fuzzy S4N fields & kinematics Fluctuations Gravity Generalized spheres Quantization

action for gravitational modes:

quadratic action

S2[A] ∼∫M

d4x(

L2R

(Aµν(2 + 8r2 + 1

2µ2)Aµν

+R4Aνσρ(2 + 8r2 + r2P0 + 1

2µ2)Aνσρ + 2αR4 r2 Aνσρ∂σAνρ︸ ︷︷ ︸

mixing

)

where α = 1 and

L2R = ∆4[pµpµ]0 ... thickness of S4

Λ

Λ = (n1,n2,N)

need L2R > 0, generalized fuzzy sphere S4

Λ with Λ = (n,0,N), n > 0

H. Steinacker Covariant Quantum Spaces, the IKKT Model , and Gravity

Motivation IKKT model Matrix geometry Fuzzy S4N fields & kinematics Fluctuations Gravity Generalized spheres Quantization

coupling to matter:

δAS[matter] ∼∫M

d4x hµνTµν

equations of motion

(2 + 12µ

2)Aµν =g2

YM∆4

4L2R

Tµν + 4αR2

L2R∂σAµσν(

2 + µ2

2

)Aνσρ = (PSD)

(4αR2 ∂σAνρ +

4g2YM∆4

R2 ∂σTνρ).

PSD ... projector on SD antisymm.

set aµν = 0 (decouples)

mixing α → two scaling regimes:

H. Steinacker Covariant Quantum Spaces, the IKKT Model , and Gravity

Motivation IKKT model Matrix geometry Fuzzy S4N fields & kinematics Fluctuations Gravity Generalized spheres Quantization

regime G: p2 � α2

L2R

= m2 : neglect mass terms,

... ”gravity” regime (requires “thick” fuzzy sphere S4Λ !)

e.o.m.2 hµν ∝ Tµν

→ linearized Einstein equations

regime C: extreme IR: p2 � α2

L2R

= m2, (“cosmological”)

kµν ∝ Tµν2hµν ≈ 0

mass terms dominate, no propagation, no gravity

or: α = 0, no mixingarises for momentum embedding (below), or self-dual action(add FµνFρσεµνρσ )

H. Steinacker Covariant Quantum Spaces, the IKKT Model , and Gravity

Motivation IKKT model Matrix geometry Fuzzy S4N fields & kinematics Fluctuations Gravity Generalized spheres Quantization

regime G: p2 � α2

L2R

= m2 : neglect mass terms,

... ”gravity” regime (requires “thick” fuzzy sphere S4Λ !)

e.o.m.2 hµν ∝ Tµν

→ linearized Einstein equations

regime C: extreme IR: p2 � α2

L2R

= m2, (“cosmological”)

kµν ∝ Tµν2hµν ≈ 0

mass terms dominate, no propagation, no gravity

or: α = 0, no mixingarises for momentum embedding (below), or self-dual action(add FµνFρσεµνρσ )

H. Steinacker Covariant Quantum Spaces, the IKKT Model , and Gravity

Motivation IKKT model Matrix geometry Fuzzy S4N fields & kinematics Fluctuations Gravity Generalized spheres Quantization

linearized curvature and Einstein equations

assume regime G

lin. Einstein tensor

Gµν [g + H] ≈ − 3R2 gµν +

12∂ · ∂hµν

drop background curvature ∼ 1R2 (& local effects)

Gµν ≈ 8πGNTµν (linearized)

Newton constant

GN =(

(α +32

)(α

3+ 1)− 4L2

Rµ2)g2

YM∆4

48πL2R

.

H. Steinacker Covariant Quantum Spaces, the IKKT Model , and Gravity

Motivation IKKT model Matrix geometry Fuzzy S4N fields & kinematics Fluctuations Gravity Generalized spheres Quantization

gravity mechanism requires generalized fuzzy sphere S4Λ with

a) thick fuzzy sphere with√

N � n� N

b) or decoupling of ∂σAµσν via α = 0

thick S4Λ:

fuzzy extra dimensions (squashed CP2)H.S. arXiv:1504.05703 , H.S. & J. Zahn, arXiv:1409.1440

interesting for particle physics (chiral gauge thy)

dim. red. to 4D (mass gap?!)

IR cutoff for gravity: only wavelengths ≤ LRα gravitate

details (IR cutoff) depend on representation Λ

(in progress)

H. Steinacker Covariant Quantum Spaces, the IKKT Model , and Gravity

Motivation IKKT model Matrix geometry Fuzzy S4N fields & kinematics Fluctuations Gravity Generalized spheres Quantization

alternative: momentum embedding in M.M.:

Yµ = Pµ, µ = 1, ...,4

fluctuations

Yµ = Pµ + δYµ =(δµν + hµν(x)

)Pν + ...

... avoids mixing term α, no mass term for graviton (Goldstone boson)

(work in progress w/ M. Sperling)

H. Steinacker Covariant Quantum Spaces, the IKKT Model , and Gravity

Motivation IKKT model Matrix geometry Fuzzy S4N fields & kinematics Fluctuations Gravity Generalized spheres Quantization

generalized spheres from coadjoint SO(6) orbits

(co)adjoint orbits

O[Λ] = {g · HΛ · g−1; g ∈ SO(6)} ⊂ so(6) ∼= R15

embedding functions mab : O[Λ] ↪→ R15 defined by

mab = tr(X Σab), a,b = 1, ...,6, X ∈ O[Λ]

Σab ... generators of so(6)

project to R5 via the projection

Π : O[Λ] ⊂ R15 → R5

only xa = ma6 describe embedding in R5

xa = tr(XΣa6) = −12

tr(Xγa)

H. Steinacker Covariant Quantum Spaces, the IKKT Model , and Gravity

Motivation IKKT model Matrix geometry Fuzzy S4N fields & kinematics Fluctuations Gravity Generalized spheres Quantization

generalized spheres from coadjoint SO(6) orbits

(co)adjoint orbits

O[Λ] = {g · HΛ · g−1; g ∈ SO(6)} ⊂ so(6) ∼= R15

embedding functions mab : O[Λ] ↪→ R15 defined by

mab = tr(X Σab), a,b = 1, ...,6, X ∈ O[Λ]

Σab ... generators of so(6)

project to R5 via the projection

Π : O[Λ] ⊂ R15 → R5

only xa = ma6 describe embedding in R5

xa = tr(XΣa6) = −12

tr(Xγa)

H. Steinacker Covariant Quantum Spaces, the IKKT Model , and Gravity

Motivation IKKT model Matrix geometry Fuzzy S4N fields & kinematics Fluctuations Gravity Generalized spheres Quantization

basic sphere S4N : Λ = (0,0,N)so(6), HΛ = N|ψ0〉〈ψ0|

O[Λ] = SU(4)/SU(3)× U(1) ∼= CP3

projection to 4-sphere (=Hopf map):

CP3 3 ψ↓ ↓S4 3 ψγaψ = xa

xaxa = R2N

mµν selfdual, describes S2

CP3 is a S2 bundle over S4.

H. Steinacker Covariant Quantum Spaces, the IKKT Model , and Gravity

Motivation IKKT model Matrix geometry Fuzzy S4N fields & kinematics Fluctuations Gravity Generalized spheres Quantization

generalized sphere S4Λ: Λ = (n,0,N)so(6)

HΛ = N|ψ0〉〈ψ0|+ n|ψ1〉〈ψ1|

Let P ... spectral projection n→ 0

O[Λ]

P ↓O[NΛ1] ∼= CP3 xa

→ S4 ↪→ R5 .

S4Λ = CP2 bundle over CP3 ∼= S4 × S2

R2 ... non-trivial spectrum, ”thick“ 4-sphere embedded in R5

[R2,X b] 6= 0.

H. Steinacker Covariant Quantum Spaces, the IKKT Model , and Gravity

Motivation IKKT model Matrix geometry Fuzzy S4N fields & kinematics Fluctuations Gravity Generalized spheres Quantization

quantized (“fuzzy”) coadjoint orbits S4Λ

replace functions mab on O[Λ] by generatorsMab acting on HΛ,

Λ ... (dominant) integral weight.

End(HΛ) ... quantized algebra of functions

cf. E. Hawkins, q-alg/9708030

same geometry in target space as O[Λ]

semi-classical limit: [., .]→ i{., .}

H. Steinacker Covariant Quantum Spaces, the IKKT Model , and Gravity

Motivation IKKT model Matrix geometry Fuzzy S4N fields & kinematics Fluctuations Gravity Generalized spheres Quantization

Quantization

defined by

e−Γeff[X ] =

∫dAdΨe−S[X+A,Ψ]

well-behaved due to max. SUSY

one-loop results: using string states H.S. arXiv:1606.00646

TrEnd(H)O =(dimH)2

(VolM)2

∫M×M

dxdy(|x〉〈y |)O(|y〉〈x |) .

stabilization of S4N via vacuum energy, bare mass µ2 > 0

(cf. H.S. : arXiv:1510.05779)

tangential fluctuations:

Γ1−loop[F2] = −8π2

3(dimH)2

(VolM4)2

∫M4

dx Fµν− (ξ)F−µν(ξ)

... anti-selfdual, absorbed via αH. Steinacker Covariant Quantum Spaces, the IKKT Model , and Gravity

Motivation IKKT model Matrix geometry Fuzzy S4N fields & kinematics Fluctuations Gravity Generalized spheres Quantization

summary:

4D covariant quantum spaces in IKKT model→ tower of higher spin modesPoisson structure → frame bundlethick fuzzy sphere S4

Λ → ≈ (lin.) 4-D Einstein equations( provided dim. red. )

classical mechanism, protected by max. SUSY

IR modifications (“cutoff”), additional modes

many open issues(mass gap, Minkowski, non-lin. regime, conf. factor, ...)

H. Steinacker Covariant Quantum Spaces, the IKKT Model , and Gravity

Motivation IKKT model Matrix geometry Fuzzy S4N fields & kinematics Fluctuations Gravity Generalized spheres Quantization

outlook

more general embeddings of S4Λ: (ongoing w/ M. Sperling)

fuzzy extra dim’s→ mass gap, 4D ?!momentum embeddings Pa

chiral gauge theory expected

new view on string theory: no target space compactification !4D gravity on brane independent of bulk gravity

issues, open questions:

nonlinear case, higher spin modes, fermions, ...more complete mode expansion

Lorentzian case

H. Steinacker Covariant Quantum Spaces, the IKKT Model , and Gravity

Motivation IKKT model Matrix geometry Fuzzy S4N fields & kinematics Fluctuations Gravity Generalized spheres Quantization

→ equations of motion

L2R(2 + 8r2 + 1

2µ2)Aµν = − g2

YM∆8

16 Tµν + αR2∆4∂σAµσν

R2(2 + 8r2 + µ2

2

)Aνσρ = (PSD)σ

′ρ′

σρ

(− α∆4∂σ′Aνρ′ + g2

YM∆8∂σ′Tνρ′)

(2 + 4r2 + 12µ

2)κ = − g2YM∆8

8R T .

P0SD = 1

4 (δδ − δδ + ε) ... SD antisymmetric projector

neglect radial fluctuations κ, set aµν = 0

use 2 = [X a, [Xa, .]] ∼ ∆4

4 ∂ · ∂

→ equations for kµν ∼ ∂ρAµρν and hµν :

H. Steinacker Covariant Quantum Spaces, the IKKT Model , and Gravity

Motivation IKKT model Matrix geometry Fuzzy S4N fields & kinematics Fluctuations Gravity Generalized spheres Quantization

separate kµν into a “local” and a propagating ”gravitational“ part,

kµν = k (loc)µν + k (grav)

µν , k (loc)µν ∝ −Tµν .

eom

(∂ · ∂ −m2k ) k (grav)

µν =g2

YM∆4

3

2L2R−m2

k

)Tµν + 4α

3 m2 hµν ,

(∂ · ∂ − 4m2)hµν =g2

YM∆4

2L2R

Tµν − αL2

Rkµν

where m2k := 4m2 − α2

3L2R≥ 0

formal solutions:

k (grav)µν =

g2YM∆4

3L2R

(α3

(α + 3

2

)− 4L2

Rm2)

12g−m2

kTµν

hµν =g2

YM∆4

3L2R

( (α+ 3

2

)2g−4m2 Tµν −

α

L2R

(α3

(α+ 3

2

)−4L2

Rm2

)(2g−m2

k )(2g−4m2)Tµν

).

effective gravitational metric

h(grav)µν := hµν + k (grav)

µν

(drop ”contact term“ k (loc)µν )

H. Steinacker Covariant Quantum Spaces, the IKKT Model , and Gravity


Recommended