+ All Categories
Home > Documents > Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This...

Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This...

Date post: 11-Jul-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
64
Transcript
Page 1: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development
Page 2: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

Cover photo: SCaN testbed under GRC thermal vacuum testing.

Cover photo: Laser Communication RelayDemonstration (LCRD).

Page 3: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—I—

NASA’s mission to pave the future of space exploration through innovations

in science and technology is reflected in a balanced technology development

and maturation program supported by all NASA Mission Directorates.

Stimulating technology innovation through Small Business Innovation

Research (SBIR)/Small Business Technology Transfer (STTR) programs, NASA

has empowered U.S. small businesses to make significant contributions to

the future of space exploration.

This technology investment portfolio highlights SBIR Phases I and II

investments in optical communications technology development for the

Space Operations Mission Directorate (SOMD)/Human Exploration and

Operations Mission Directorate (HEOMD) from 2005 to 2014. This report

summarizes technology challenges addressed and advances made by the

SBIR community in optical communications technology. The goal of this

document is to encourage program and project managers, stakeholders,

and prime contractors to take advantage of these technology advancements

to leverage their own efforts and to help facilitate infusion of technology

advancements into future NASA projects. A description of NASA’s SBIR

Program can be found at www.sbir.nasa.gov.

Foreword

Page 4: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—II—

Small BuSineSS innovation reSearch

Page 5: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—III—

The Small Business Innovation Research (SBIR) Program provides opportunities for small high-

technology companies to participate in Government-sponsored research and development efforts

in key technology areas of interest to NASA. The SBIR Program provides significant sources of seed

funding to foster technology innovation. The SBIR Phase I contracts are awarded for 6 months with

funding up to $125,000; Phase II contracts are awarded for 24 months with funding up to $750,000.

Page 6: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—IV—

human exploration

Page 7: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—V—

The Human Exploration and Operations Mission Directorate (HEOMD) is chartered with the development

of core transportation elements, key systems, and enabling technologies required for beyond-low-Earth-

orbit (LEO) human exploration that will provide the foundation for the next half-century of American

leadership in space exploration.

This new space exploration era starts with increasingly challenging test missions in cislunar space,

including flights to the Lagrange points, followed by human missions to near-Earth asteroids (NEAs),

the Moon, the moons of Mars, and Mars as part of a sustained journey of exploration in the inner

solar system. HEOMD was formed in 2011 by combining the Space Operations Mission Directorate

(SOMD) and the Exploration Systems Mission Directorate (ESMD) to optimize the elements, systems,

and technologies of the precursor directorates to the maximum extent possible.

HEOMD mission goals include key technology developments in Space Communications and Navigation,

Space Transportation, Human Research and Health Maintenance, Radiation Protection, Life Support

and Habitation, High-Efficiency Space Power Systems, and Ground Processing/International Space

Station (ISS) Utilization.

HEOMD looks forward to incorporating SBIR-developed technologies into current and future systems

to contribute to the expansion of humanity across the solar system while providing continued cost-

effective space access and operations for its customers, with a high standard of safety, reliability, and

affordability.

andoperationS miSSion directorate

Page 8: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—VI—

Scan: Keeping theSCaN NotioNal iNtegrated Network arChiteCture

Page 9: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—VII—

univerSe connectedProgram aNd teChNology develoPmeNt overview

The Space Communications and Navigation (SCaN) Program resides within HEOMD and is responsible for the development of

technologies and capabilities to support all current and future NASA missions. The SCaN Program provides the communication,

navigation, and mission science data transfer services that are vital to the successful operation of NASA space flight missions. To

accomplish this, SCaN operates three networks: the Deep Space Network (DSN), the Near Earth Network (NEN), and the Space

Network (SN). Combined together, the services and network assets provide capabilities that enable space exploration for over

100 NASA and non-NASA missions. SCaN also provides scheduling services to new missions through the Network Integration

Management Office (NIMO) and Deep Space Network Commitment Office (DSNO).

To accomplish the above, the SCaN Program’s vision is to build and maintain a scalable, integrated, and mission support

infrastructure that can evolve to accommodate new and changing technologies, while providing comprehensive, robust,

cost-effective, and exponentially higher data rate services to enable NASA’s science and exploration missions. Today, NASA

communication and navigation capabilities using radiofrequency technology can support spacecraft to the fringes of the solar

system and beyond. The anticipated new missions for science and exploration of the universe are expected to challenge the

current data rates of 300 Mbps in LEO and of 6 Mbps at Mars to rise significantly. The SCaN Program aims to

• DevelopaSCaNnetworkinfrastructurecapableofmeetingbothroboticandhumanexplorationmissionneeds.

• Evolveinfrastructuretoprovidethehighestdataratesfeasible.

• Developinternationallyinteroperabledatacommunicationsprotocolsforspacemissions.

• OffercommunicationsandnavigationinfrastructureforlunarandMarssurfaces.

• OffercommunicationsandnavigationservicestoenablelunarandMarshumanmissions.

SCaN technology development interests include optical communications, advanced antenna technology and Earth stations,

cognitive networks, access links, reprogrammable communications systems, spacecraft positioning, navigation, and timing (PNT),

and communications in support of launch services. Innovative solutions to operational issues are needed in all of the areas.

Emphasis is placed on size, weight, and power improvements. All SBIR technologies developed under the SCaN topic area are

aligned with the SCaN Program technical directions.

This document catalogs SCaN SBIR investments in optical communications technology development from 2005 to 2014.

Page 10: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—VIII—

SBir phaSe i awardS

Page 11: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—IX—

CoNteNtSOptical Communication Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Optical Communication TechnologySBIR Phase I Awards(2005to2014) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

AdvancedThree-Dimensional(3D)ObjectIdentificationSystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4OPTRA Inc. (2005)

Three-Dimensional(3D)VisualizationSystemforTrackingandIdentificationofObjects. . . . . . . . . . . . . . . . . . . . . . . . . 5Photon-X, Inc. (2005)

DigitalImage-BasedAutomaticTrackingCapability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6OPTRA, Inc. (2005)

High-CountingRatePhotonDetectorsforSpaceOpticalCommunications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7aPeak, Inc. (2006)

Space-Qualifiable1064-nmFiber-BasedTransmitterforLong-RangeOpticalCommunications . . . . . . . . . . . . . . . . . . . . . 8Fibertek, Inc. (2006)

HyperspectralFoveatedImagingSensorforObjectsIdentificationandTracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9New Span Optot-Technology Inc. (2006)

Range-BasedAuto-Focus(RBAF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Maracel Systems & Software Technologies, LLC (2006)

SpectralImagingVisualizationandTracking(SPIVAT)System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Physical Optics Corporation (2007)

HyperspectralImager-Tracker. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12Light Prescriptions Innovators, LLC (2007)

VeryLargeSolarRejectionFilterforLaserCommunication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Surface Optics Corporation (2007)

High-BandwidthPhoton-CountingDetectorsWithEnhancedNear-InfraredResponse . . . . . . . . . . . . . . . . . . . . . . . . . 14aPeak, Inc. (2008)

High-Efficiency,High-PowerLaserTransmitterforDeepSpaceCommunication . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Vega Wave Systems, Inc. (2008)

High-PowerUplinkAmplifierforDeepSpaceCommunications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Optical Engines, Inc. (2009)

High-PerformanceNegative-FeedbackNear-Infrared(NIR)Single-PhotonCountingDetectorsandArrays. . . . . . . . . . . . . . . 17Amplification Technologies, Inc. (2009)

NegativeFeedbackAvalancheDiode(NFAD)ArraysforSingle-PhotonOpticalCommunications. . . . . . . . . . . . . . . . . . . . 18Princeton Lightwave, Inc. (2009)

Hole-Initiated-Avalanche,Linear-Mode,Single-Photon-SensitiveAvalanchePhotodetectorWithReducedExcessNoiseandLowDarkCountRate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19Voxtel, Inc. (2010)

Multi-kWUplinkFiber-LaserBeaconWithAgileSignalFormat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Fibertek, Inc. (2010)

High-EfficiencyData-Rate-ScalableLaserTransmitterforInterplanetaryOpticalCommunication . . . . . . . . . . . . . . . . . . . 21RAM Photonics (2011)

DownlinkFiberLaserTransmitterforDeepSpaceCommunication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22Fibertek, Inc. (2011)

Page 12: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—X—

SBir phaSe i awardScontinued

Page 13: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—XI—

High-EfficiencyReasonantlyPumped1550-nmFiber-BasedLaserTransmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23nLight Photonics (2012)

AMiniaturePointingandTrackingIsolationPlatform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24American GNC Corporation (2012)

VibrationIsolationPlatformforLong-RangeOpticalCommunications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25Controlled Dynamics, Inc. (2012)

Compact,LightweightIsolationPlatform(CLIP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26Applied Technology Associates (2012)

LargeOpticalTelescopeBasedonHigh-EfficiencyThin-FilmPlanarDiffractiveOptics . . . . . . . . . . . . . . . . . . . . . . . . . 27BEAM Engineering for Advanced Measurements (2014)

HighCountRateSingle-PhotonCountingDetectorArray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28Voxtel, Inc. (2014)

HighEfficeiencyandPowerLaserTransmitterforDeepSpaceCommunications. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29Freedom Photonics LLC (2014)

20-WHigh-Efficiency1550nmPulsedFiberLaser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30Polaronyx, Inc. (2014)

Page 14: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—XII—

SBir phaSe ii awardS

Page 15: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—XIII—

CoNteNtS (CoNtiNued)Optical Communication Technology

Optical Communication TechnologySBIR Phase II Awards(2005to2012) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

AdvancedAutomatedDebrisTrackingandRecognitionSystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32OPTRA, Inc. (2005)

VeryLargeSolarRejectionFilterforLaserCommunication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33Surface Optics Corporation (2007)

High-BandwidthPhoton-CountingDetectorsWithEnhancedNear-InfraredResponse . . . . . . . . . . . . . . . . . . . . . . . . . 34aPeak, Inc. (2008)

High-Efficiency,High-PowerLaserTransmitterforDeepSpaceCommunication . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35Vega Wave Systems, Inc. (2008)

High-PowerUplinkAmplifierforDeepSpaceCommunication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36Optical Engines, Inc. (2009)

High-PerformanceNegative-Feedbacknear-Infrared(NIR)SinglePhotonCountingDetectorsandArrays . . . . . . . . . . . . . . . 37Amplification Technologies, Inc. (2009)

NegativeFeedbackAvalancheDiode(NFAD)ArraysforSingle-PhotonOpticalCommunicationsat1.5mm . . . . . . . . . . . . . . 38Princeton Lightwave, Inc. (2009)

Multi-kWUplinkFiber-LaserBeaconWithAgileSignalFormat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39Fibertek, Inc. (2010)

DownlinkFiberLaserTransmitterforDeepSpaceCommunication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40Fibertek, Inc. (2011)

IsolationPlatformforLong-RangeOpticalCommunications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41Controlled Dynamics, Inc. (2012)

Compact,LightweightIsolationPlatform(CLIP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42Applied Technology Associates (2012)

Company Names. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

SBIR Points of Contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Page 16: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—XIV—

optical communicationtechnology

Optical Ground Station

Page 17: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—1—

NASAseeksinnovativetechnologiesforlong-rangeInterplanetaryOpticalTelecommunicationssupportingthe

needsofspacemissionswhereroboticexplorerswillvisitdistantbodieswithinthesolarsystemandbeyond.

NASA’sgoalsareincreasedduplexdata-ratecapability,alongwithsignificantreductionsofsize,weightand

power(SWAP)consumptionatthespacecraft.Proposalsaresoughtinthefollowingareas:

Systemsandtechnologiesrelatingtoacquisition, trackingandsubmicroradianpointingof theopticalcommunicationsbeamundertypicaldeepspacerangesandspacecraftmicrovibrationenvironmenttechnologyreadinesslevel(TRL)3atPhaseI,andTRL4atPhaseII).

• Vibration IsolationandRejectionPlatformsandRelatedTechnologies—Compact, lightweight,spacequalifiablevibrationisolationandrejectionplatformsforpayloadswithamassbetween3and20kgthatrequirelessthan5Wofpowerandhavemasslessthan3kgthatwillattenuateanintegratedspacecraftmicrovibrationangulardisturbanceof150microradianstolessthan0.5microradians(1-sigma),from<0.1to~500Hz(TRL3PhaseIandTRL4PhaseII).Also,innovativelow-noise,low-mass,low-power,directcurrent(DC)kHzinertial,angular,position,orratesensors.Compact,ultra-low-power,low-mass,kHzbandwidth,tip-tiltmechanismswithsubmicroradianpointingaccuracies,angularrangesof±5mradandsupportingupto50-grampayloads.

• LaserTransmitters—Space-Qualifiable,>25%DC-to-optical(wall-plug)efficiency,0.2to16nspulsewidth1550-nmlasertransmitterforpulse-position-modulated(PPM)datawithrandompulsesatdutycyclesof0.3%to6.25%,<35pspulseriseandfalltimesandjitter,<25%pulse-topulseenergyvariation(atagivenpulsewidth)neartransformlimitedspectralwidth,singlepolarizationoutputwithatleast20dBpolarizationextinctionratio,amplitudeextinctionratiogreaterthan45dB,averagepowerof5to20W,massinglessthan500g/W.Lasertransmittertofeatureslot-serialPPMdatainputatCMLoralternatingcurrent(AC)-coupledPCEL levelsandanRS–422orUSBcontrolport.AllpowerconsumedbycontrolelectronicswillbeconsideredaspartofDC-to-opticalefficiency.Alsoofinterestforthelasertransmitterisrobustandcompactpackagingwith>100-kradradiationtolerantelectronicsinherentinthedesign.Detaileddescriptionofapproachestoachievethestatedefficiencyisamust(TRL3PhaseIandTRL4PhaseII).

• PhotonCountingNear-InfraredDetectorsArraysforGroundReceivers—Readoutelectronicsandclose-packed(notlens-coupled)kilo-pixel arrayssensitive to1520 to1650nmwavelength rangewith singlephotondetectionefficienciesgreaterthan90%.Singlephotondetectionjitterslessthan40picoseconds1-sigma,activediametergreaterthan500microns,1dBsaturationratesofat least10mega-photons(detected)perpixel,falsecountratesoflessthan1MHz/square-mm,allatanoperationaltemperature>1.2K.

• PhotonCountingNear-InfraredDetectorsArraysforFlightReceivers—64x64orlargerarraywithread-outintegratedcircuitforthe1030to1080nmor1520to1650nmwavelengthrangewithsingle-photondetectionefficienciesgreaterthan40%and1dBsaturationlossratesofatleast2mega-photons/pixelandoperationaltemperaturesabove220Kanddarkcountratesof<10MHz/mm.Radiationdosesofatleast5Krad(unshielded)shallresultinlessthan10%dropinsingle-photondetectionefficiencyandlessthan2Xincreaseindarkcountrate.

• Ground-BasedTelescopeAssembly—Groundstationtelescope/photon-buckettechnologiesfordevelopingeffectiveaperturediameterofe10meteratmodestcost.Operationswavelengthismonochromaticatawavelengthintherangeof1000to1600nm.Keyrequirements:amaximumimagespotsizeof<20microradian;capableofoperationwhilepointingtowithin5°oftheSun;andfield-of-viewof>50microradian.Telescopeshallbepositionedwithatwo-axisgimbalcapableof<50microradianpointingaccuracy,withdynamicerror<10microradianRMSwhiletrackingaftertip-tiltcorrection.

Research should be conducted to convincingly prove technical feasibility (proof-of-concept) during Phase I ideally throughhardwaredevelopment,withclearpathwaystodemonstratinganddeliveringfunctionalhardware,meetingallobjectivesandspecificationsinPhaseII.

Page 18: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—2—

Page 19: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—3—

optical communication technology

SBir phaSe i awardS2005 to 2014

Lunar Lasercomm Ground Terminal

Page 20: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—4——4—

ADVANCED ThrEE-DimENsioNAl (3D) oBJECT iDENTiFiCATioN sYsTEm

OPTRAInc.

2005PhaseI02.01-7854

Identification and Significance of Innovation

• There is a requirement for improvedcapabilities to record the initial phaseof spacecraft launches. The goal is toobtain high-resolution optical data withthe capability of identifying and trackingmultiple objects, down to 1 m² in area,along the track of the launch vehicle.By using multiple cameras and object-tracking algorithms (to be developed) itwillbepossibletorecognizeobjectsandto determine trajectories in near realtime. Knowledge of these trajectoriesandidentificationoftheseobjectswillaidgreatlyduringsearchandrecoveryefforts.

• The significance of optical trackingsystems, rather than the radar trackingsystemscurrentlyinuse,isthatitshouldbe possible to significantly improvethe resolution with which objects areidentified, while at the same timereducingthesizeandcostofthetrackingstations.Byachievingnear-real-timedataacquisition and interpretation, it may bepossible to take immediate responsiveactions in response to launch vehiclesystemfailures.

Technical Objectives

• Developrobustalgorithmsforrecognizingandtrackingobjectswiththreecamerasandforestablishingtheirabsolutepositionsandvelocitiesatmoderateframerates.

• Developthedigitalcameraandlenssystemsneededtoachievetheneededspatialresolution,field-of-view,andpositionaccuracy.

• Maximizetheframeratethatcanbeachievedwhilemeetingallothersystemrequirements.

WorkPlan

• Reviewprogramobjectiveswithtechnicalmonitor.

• Reviewexistingvideodataofrelevantevents.

• Clearlydefinetherequirementsforobjectrecognitionandtracking

algorithms.

• Developthesealgorithms.

• Testrecognitionandtrackingalgorithms.

• Writefinalreport.

NASA Applications

• Trackingspacecraftlaunches

• Aidinginrecoveryofjettisonedcomponents

• Providingaccidentanalysisdata

• Aidinginreal-timeresponsetolaunchmishaps

Non-NASA Applications

• Aircrafttrackingandidentification

• Surveillance

Page 21: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—5——5—

ThrEE-DimENsioNAl (3D) VisuAlizATioN sYsTEm For TrACkiNg ANDiDENTiFiCATioN oF oBJECTs

Photon-X,Inc.

2005PhaseI02.01-7857

Identification and Significance of Innovation

The Photon-X imaging technology is calledspatialphaseandgeneratesacrisp3Dimagemosaicusingthefollowinginnovations.

• Single camera to generate 3D real-timemosaics

• Image is angle invariant to the surfaceareabeingmeasured

• Image is resolution and scale invariantoverextendedranges

• Image is invariant to lighting changes,surface area, and textures or curvatureand can detect objects better in smokeandfog

• Small in size and easily adaptable touniqueconfigurations

Theoutputofthe3DVisualizationSystemforTrackingObjectshasaresolutionsufficienttodetectmany3Dobjectsandtracktheobjectsthrough space. ThePhoton-X technology isthefirst3Dtechnologythathasthepotentialto be used in a space application, with itsstrong passive techniques coupled with ahigh-precision measurement in a singlecamerapackage.

Technical Objectives

ThePhaseIobjectivesaretodemonstratehowPhoton-X’soptical-basedspatialphasetechnologycanbeusedtogenerateefficientandhigh-resolution3Dviewsoftumblingobjectsinspace.Aproof-of-conceptdemonstrationoftheunderlyingtechnologywillbeperformedtodemonstratetheapplicabilityofthetechnologyforthisapplication.InPhaseI,weproposetodemonstratetheabilitytotrackmultiple3Dobjectsinascaledversionofobjectsinspace.

Initiallaboratorytestswillbeperformedonscaled3Dtumblingmodelsandafinalproof-of-concepttestwillbeperformedonseveral3Dobjectsthatwillbetumblingthroughthefieldofviewwhilebeingidentifiedbyshapeaswellasbeingtracked.Thesuccesswillbebasedonsuccessfultrackingofseveral3Dtumblingobjectsthroughthecamerasfieldofview.

NASA and Non-NASA Applications

Photon-Xhasdevelopedapatentedimagingprocessthatcanprovideanefficientandaccuratemeanstogenerateahigh-resolution3Dimagemosaicoutputtobeusedfortracking3Dtumblingobjectsinrealtime.ThePhoton-Xtechnologyusesasinglecamerathatwouldpassivelyallowforcrisp3Dimagemosaicstobeconstructedfromflybysnapshotviewsgeneratingavolumetricviewofthesurfaceareaunderinspection.Thesystemcouldalsobeusedasapretactilesensorallowingforobjectrecognitionorroboticvision.Thesensorhaspotentialinmanycommercialapplicationssuchas3Danimation,sportsmotion,andmachinevision.

Page 22: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—6——6—

DigiTAl imAgE-BAsED AuTomATiC TrACkiNg CApABiliTY

OPTRA,Inc.

2005PhaseI02.01-7865

Technical Objectives

• DeveloparobusttrackingalgorithmtogenerateALTandAZerrorsignals;servocontroleachtrackingmounttokeepitsopticalaxisaccuratelyalignedwiththetarget.

• Developaprotocoltogeneratereal-timetrajectorydatabasedontheinputsfromtrackingstations.

• Designandassembleaprototypefocalplanearray(digitalimager),opticalsystem(telescope),andservo-controlledALT/AZmounttotestandevaluatetargetacquisitionandtrackingalgorithms.

• Determinetrackingdistance,errorsasafunctionofdistance,processingspeed,anddatadeliverytimetocommandcenter.

WorkPlan

• Developtargetacquisitionalgorithm(s).

• Developautomatedtrackingalgorithm.

• Designprototypetrackingsystem(digitalcamera,telescope,servo-controlledtrackingmount,andPCwithfastframe-grabbercard).

• Determinetrackingdistance,errorsasafunctionofdistance,processingspeed,andmeansfordeliveringanalyzeddatatocommandcenter.

• Testprototypesystemandassessresults.

• Writefinalreport.

NASA Applications

Trackingspacecraftlauncheswithhigh-resolutionimagery

Non-NASA Applications

• Monitoringofmilitaryweaponsandaircrafts

Identification and Significance of Innovation

Thelaunchesandlandingsofspacecraftarethe most demanding phases of missions.Duringlaunchitiscriticalthatthespaceve-hiclebeaccuratelytrackedtoensureitssuc-cessful insertion into orbit, and to monitorseveralphasesofthelaunchsequence(liftoff,boosterseparation,separationfromthemainfueltank,transitiontoorbitalflight,etc.).

To date, optical tracking atNASA’sKennedySpace Center has been accomplished bymanually guided tracking stations, whichmay carry auxiliary video cameras. Thisproposal describes an automated approachto optical tracking where multiple opticaltrackingstationscanautomaticallytrackthespacevehicle following launch,whileat thesametimeprovidinghigh-resolutionimageryofthespacevehicle.Thecombineddatafrommultipletrackingstationswillallowaccuratedetermination of vehicle trajectory and ex-trapolationof real-timetrajectory tostayontarget.

GRAPHICUNAVAILABLE

Page 23: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—7——7—

high-CouNTiNg rATE phoToN DETECTors For spACE opTiCAl CommuNiCATioNs

aPeak,Inc.

2006PhaseIO1-06-9886

Technical Objectives

• Modificationofthehigh-gaindetectorfabricationflowfortheintegrationoftheinfraredconverterdepositionprocess

• Processdevelopment,verification,andperformancequalification• Development,qualification,andidentificationofpathwaysforimproving

thebandwidthofhigh-gaindetectorarrays

WorkPlan

• Task1:Kickoff/updatemeeting

• Task2:Processmodificationtoimproveinperformanceininfrared

• Task3:Infraredconverter-high-gaindetectorprocessintegration

• Task4:Test-structurefabrication

• Task5:Timingperformanceimprovement

NASA ApplicationsFree-spacecommunications,intersatellitelinks,spacedocking,landing,mapping,andhigh-resolutionaltimetry,LaserDetectionandRanging(LADAR)andLightDetectionandRanging(LIDAR).

Non-NASA Applications

Low-lightleveltwo-dimensional(2D)andthree-dimensional(3D)imagingcamerasfordefenseandsecurityapplications,airportsecurity,collisionavoidance,roboticsystems,andautonomousvehicles,aswellasgenericapplicationsrequiringactivelaserilluminationateye-safewavelengths.

Identification and Significance of Innovation

Weproposedtodemonstrateanovel,photon-counting detector, with integrated infraredconverter,gain>106,>50%detectionefficien-cyfrom1064to1550nm,morethan500MHztarget bandwidth, and more than 100 MHzbackgroundcountingratecapabilitybyusinghigh gain silicon detector arrays in conjunc-tionwith infrared converters.This innovationprovidesasimplesolutiontohigh-bandwidthground-space and space-space optical com-munications by mitigating conflicting opticalaperture-noise requirements,while providingphoton-counting sensitivity at infraredwave-lengths.Thisnovelphotoncountingdetectorarchitecturepromises tomeetall the techni-calrequirementsofthedetectorsforthelong-range optical telecommunications programand has the potential to exceed the targetbandwidth.

Technologyreadinesslevel(TRL)attheendofPhaseI

• 2to3

ExpectedTRLattheendofcontract

• 4

Page 24: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—8——8—

spACE-QuAliFiABlE 1064-nm FiBEr-BAsED TrANsmiTTEr For loNg-rANgE opTiCAl CommuNiCATioNs

Fibertek,Inc.

2006PhaseI06-9244

Technical Objectives• Demonstratearbitrarypatternopticalpulsegeneration,withpulse

widthfrom0.15to10nsec,andatupto60MHzrate.• Addressopticalnonlinearityimpairmentsanddemonstrate

amplificationofopticalpulsetrainto~10Waveragepowers.• Developanoverallpackagingdesignandsystemreliabilitymodel,

targetinganeventualspacequalification.

WorkPlan

• DesignofanFPGA-basedarchitectureforlasercontroller• PCBdesign,development,andtestingforabovearchitecture• DemonstrateopticalamplificationtoPo~1Wandassessnonlinear

opticalimpairmentsforfurtherpowerscaling• Assesspackagingforaradiation-hardeneddesign• Developasystemreliabilitymodelwithredundancy

NASA Applications• High-bandwidthdeepspaceopticalcommunicationsforplanetary

mission• High-bandwidthintersatellitecommunication

Non-NASA Applications• Free-spaceopticalcommunicationlinks• Applyingaboveapproachtohigh-speedmodulatedimagingand

communicationforunderwaterapplication

Identification and Significance of Innovation

An all-fiber polarization-maintaining trans-mitter operating at 1064-nm wavelengthis proposed, suited for deep space opticalcommunication. The compact, rugged andefficientdesignisbasedonamaster-oscilla-tor-power-amplifier(MOPA)architecture.Theoscillatorisafiber-coupledsingle-frequencylaserdiode, fromwhichanarbitrarypatternofpulse-trainsasshortas150pseccanbecarvedout,basedonaproprietarydesignus-ingstate-of-the-arthigh-speedFPGAsfortheelectronic modulation. A multistage poweramplifier using Yb-doped fibers is used forpower-scalingwhilemitigatingall nonlinearoptical impairments.The design is compat-ible with M-ary pulse-position-modulation(PPM)scheme(M=2,4,…,256),withtime-slot down to 150 ps, that is required forhigh-bandwidth high-sensitivity deep-spaceoptical communications. Space qualifiablepackagingandoverallsystemreliabilitymod-elarealsoaddressed.

Page 25: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—9——9—

hYpErspECTrAl FoVEATED imAgiNg sENsor For oBJECTs iDENTiFiCATioN AND TrACkiNg

NewSpanOptot-TechnologyInc.

2006PhaseIO2.01-8509

Identification and Significance of Innovation

• Optical identification and tracking sen-sorshavenumerousNASAandnon-NASAapplications.

• These applications require sensors thathavewidefield-of-view,highspatialreso-lution,highspectraldiscriminationability,andfastresponse.

• Existing sensors cannot satisfy all of theaboverequirements.

• Proposedhyperspectral foveated imagingsensor simultaneously possesses proper-ties ofwide field of view for global situ-ationawareness,hyperspectral ability forspectralsignatureidentification,highlocalspatialresolutionforobjectdetailsreveal-ing, and potentially multiplying objects’trackingability.

• Using fully“solid-state”opticalandelec-tronicdevicesenablesfastresponse,light-weightandlowpowerconsumption.

• Allinvolvedcomponentsarecommerciallyavailableoreasytofabricateresultinginacost-effectivesystem.

Technical Objectives

DevelopanddemonstrateaninnovativeopticalhyperspectralimagingsensorforidentificationandtrackingofNASA’slaunchandlandingobjects.Thesensorisexpectedtopossesswidefield-of-viewwithhigh-resolutionmeasurementofspectral,spatial,andtemporalsignatures.

WorkPlan

• Exploreoveralltechnicalscheme;constructpanoramicimagingoptics.

• Buildcomputedhyperspectralimagingsystem.

• Constructlocalimagemagnificationchannel.

• Developalgorithmforsimplifiedhyperspectralimagereconstruction.

• Constructbenchtopexperimentalsetuptodemonstratefeasibility.

NASA Applications

• Launchobjecttrackingandidentification

• Roboticperceptionandmappingforunmannedspaceoperations

• Tackingandidentificationofspacedebrisorothermanmadeobjects

• Detectingandtrackingofon-Earthobjectsmovementfromspacevehiclesorballoons

Non-NASA Applications

• Missiledefense,weaponandsensorplatformguidance

• Wideareasurveillance

• Aero-vehiclerendezvous,docking,navigation,andguidance

• Qualitycontrol,mechanicalpartsinspection,andnondestructiveevaluation

Page 26: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—10——10—

rANgE-BAsED AuTo-FoCus (rBAF)

MaracelSystems&SoftwareTechnologies,LLC

2006PhaseIO2.01-9758

Identification and Significance of Innovation

Range-Based Auto-Focus (RBAF) is a real-time capability that combines both range-basedandpixel-basedfocustechniquesandwill represent a significant increase in thefocus performance of exisiting and newlydevelopedlong-rangeopticalsystems.

ThesignificanceoftheRBAFsystemdevelop-ment is twofold: consistently accurate real-timedataproductswillbecomeavailable toendusers,andmoreusabledatacanbereli-ablycollected.

Technical Objectives

• Determineanoptimalstatisticalmeasureofimagequalitythatisidealformovingtargets.

• Designandvalidateanalgorithmthatcombinesexternalrangewithimagequalitytocontrolfocus.

• Refinethealgorithmstoachieveidealfocus.• Implementanarchitecturalframeworkthatfacilitatesfieldcalibration,

variousvideoinputtypes,andintegrationwithdifferenttypesoffocuscontrollers;takeadvantageofexistingsystems’capabilities;andfocusonlyonthesubjectoftheimagery.

WorkPlan• Task1:Captureanddisplayliveimages.• Task2:Implementcomputer-basedfocusalgorithm.• Task3:Developrange-basedfocusalgorithm.• Task4:Determineimagequality.• Task5:Developimagery-aidedfocusalgorithm.• Task6:UseRegion-of-Interestforauto-focuszones.• Task7:Developfeaturetrackingcapability.• Task8:Developautomatedcalibrationtechniques.

NASA Applications

• Long-rangeoptics

• Videodocumentationsystems

• Opticaltrackingsystems

Non-NASA Applications

• U.S.andforeigntestranges

• Tacticalsystems

• Surveillanceandsecurity

Page 27: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—11——11—

spECTrAl imAgiNg VisuAlizATioN AND TrACkiNg (spiVAT) sYsTEm

PhysicalOpticsCorporation

2007PhaseIO2.01-9551

Identification and Significance of Innovation

NASA is seeking technologies to enable asaferandmorereliablespacetransportationcapability; specifically, innovative ways areneededtovisualizeandtrackvehiclesduringlaunchand landing.Current optical imagingsystemsusuallyusestandardcameras,whichare light sensitive, only to visible light,withsufficientcontrastonly indaytimeoperationunder good weather conditions. POC’sproposedSPIVATsystemoffersasuperiorandreliable visualization and tracking capabilityfordayandnightoperationunderallweatherconditions.

Expected technology readiness level (TRL)rangeattheendofcontract(1–9)• PhaseI:4• PhaseII:6

Technical Objectives

TheoverallgoalofthisprojectistodemonstrateforthefirsttimethefeasibilityofSPIVATinPhaseI.Specifictechnicalobjectivesinclude• DevelopmentofapreliminarydesignoftheproposedSPIVATsystem• IdentificationoftechnologiesforimplementingtheSPIVATsubsystems• Integration,testing,andevaluationoftheSPIVATsystemforenhanced

visualizationandtracking• PreliminaryestablishmentoftheSPIVATtechnologyforcommercial

applications

WorkPlan• DevelopdetailedtechnicalrequirementsforproposedSPIVATsystem• DesignSPIVATPhaseIsystem.• AnalyzeCOTScomponentstoensurethesystemrequirementsare

fulfilled.• ProcureandtestCOTScomponents.• Develophyperspectral/multispectralimagefusionalgorithmsfortarget

visualizationandtracking.• Performfeasibilityanalysis.• Explorethecommercialpotentialandproductviability.

NASA and Non-NASA Applications

• ThesuccessoftheSPIVATprojectwillensuretechnologyisavailabletoNASAtovisualizeandtrackvehiclesduringlaunchandlanding,withgreatlyextendedcapability.TheSPIVATtechnologycanbedirectlyappliedtoairtrafficcontrol,lawenforcement,security,searchandrescue,firefighting,hunting,andtheautomotiveindustry.

Page 28: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—12——12—

hYpErspECTrAl imAgEr-TrACkEr

LightPrescriptionsInnovators,LLC

2007PhaseIO2.01-9731

Identification and Significance of Innovation

The challenges of launching and landingspace vehicles put extreme requirementson NASA operational centers. Use of opticaltracking techniqueallowprecisecontrolandin-flightinspection.However,theenvironmentof the two landing areas make visibilitydifficult. Light Prescriptions Innovators (LPI)proposestoimprovethetargetimagingusingahyperscopewithhighlight-gatheringpowerand high magnification. Adaptive spectralfilteringalgorithmwillproduceahighcontrastimage.

Expectedtechnologyreadiness level (TRL)attheendofPhase1• 4

Technical Objectives

• Developdesignoftheimager.

• Developoptomechanicaldesignofimagerprototype.

• Developalgorithmsandsoftwareforspectrallyadaptivefiltering.

• Demonstratefeasibilityoftheproposedconceptbyfabricatingproof-of-conceptprototypeandevaluatingitsperformanceinlaboratoryconditions.

• Evaluatepotentiallycommercialapplications.

NASA Applications

NASAapplicationswillincludeopticalspaceobjectsdetectionandtracking,spacebiologybyimplementationofthistechnologyinmicroscopy,remoteEarthobservationforenvironmental,andresourcemonitoring.

Non-NASA Applications

Commercialapplicationswillincludethedevelopmentofcamerasforenvironmentalmonitoring(hazardgasesandwastedetection),camerasforforensicanalysis,andcamerasforsearchandrescueteams.TheimportantapplicationareaofhyperscopetechnologyisdetectionandtrackingofcamouflageobjectsforDepartmentofDefense(DOD)programs.Itcanincludecompactunmannedvehiclescamerasandhand-heldcamerasforMarineCorpsandarmy.

Page 29: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—13——13—

VErY lArgE solAr rEJECTioN FilTEr For lAsEr CommuNiCATioN

SurfaceOpticsCorporation

2007PhaseIO1.08-8373

Identification and Significance of Innovation

Surface Optics Corporation will develop aband-passfiltercomprisesavisibledielectricmirror and an induced transmission filterapplied to two sides of a cast polyimidemembrane.Themirror/filtercombinationwillblock 95% of the incident solar radiation,while allowing a narrowpass-band forYAG-lasercommunication.

Expectedtechnologyreadiness level (TRL)attheendofPhaseIContract(1–9)• 6

Technical Objectives

• Generateopticalconstantsforthinmetalfilms.

• Generateandevaluatecoatingdesigns.

• Buildandtestcoatingdesigns.

• Optimizeadhesionofcoatingstopolymersubstrate.

• Fabricatesubscalefiltersonpolymersubstrate.

• Environmentaltestingofsubscalefilters.

NASA and Non-NASA Applications

• Long-rangelasercommunications;interplanetarymissions

• Solarcoverforlasercommunicationreceiverondefensesatellite

Page 30: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—14——14—

high-BANDwiDTh phoToN-CouNTiNg DETECTors wiTh ENhANCED NEAr-iNFrArED rEspoNsE

aPeak,Inc.

2008PhaseIO1.06-9563

Identification and Significance of Innovation

Newest designs in long-range optical com-munication systems require high-gain,photon-counting arrays operated with highdetection efficiency, outstanding temporalresolution,andcapabilitytohandlehighpho-tondetectionrates.

We propose to develop a novel large area,silicon photon-counting detector array innearinfrared,operatedwithmoderatecool-ing, high-detection efficiency, high satura-tioncountingrate,andcapableof20pstim-ing resolution. Detector and readout circuitdesignwillbe improved tomeet thedetec-tion efficiency, noise, timing resolution, andlinearityrequirementsoftheapplication.

Expected technology readiness level (TRL)rangeattheendofcontract

• 5

Technical Objectives

• Developmentofthetunedcavityandmirrorfabrication.

• Developmentofphotoncountingarraysandfastelectronicsforincreaseddatarateandimprovedtimingresolution.

WorkPlan

• Detectorstructuremodeling

• Detectorprocessdevelopment

• Detectorarrayprototyping

• Electronicsdevelopment

NASA and Non-NASA Applications

Thenovelphoton-countingarraywillfindapplicationinfreespaceopticalcommunications,space-groundopticallinks,detectionorimaginginmediawithhighturbidity,interferometry,mapping,roboticvision,veryhighresolutionthree-dimensional(3D)imaging,hyperspectralimaging,andspacedocking.Inadditiontolong-rangeopticalcommunications,largerarrayscouldbefabricatedforsingle-photonimagingintheinfraredandvisiblewithapplicationstosecuritycameras,imagingofnoncooperativetargets,single-moleculedetection,integrationintomicrofluidicdevices,biochipsforbiomedicalapplications,fluorescencecorrelationspectroscopy,etc.

Exampleoftheinnovationembodimentofthedetectorarraywithintegratedelectronics.Thecenterpackagecontainsthephoton-countingarraymountedinflip-chip,andtheperimetercontainstheelectronics.

Page 31: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—15——15—

high-EFFiCiENCY, high-powEr lAsEr TrANsmiTTEr For DEEp spACE CommuNiCATioN

VegaWaveSystems,Inc.

2008PhaseIO1.06-9602

Identification and Significance of Innovation

We propose improvements to fiber MOPAtransmittersfordeepspacecommunicationslinksusingseveralnewtechniques:

• Operating wavelength of 1560 nmreducesthesizeandweightoftheopticalcomponents

• Resonant pumping in the 1430 to 1530nmbandimprovespumpabsorptionandhence,wallplugefficiency

• Wavelength-stabilized laser (WSL) pumpsources: eliminates power-hungry ther-moelectric (TE) coolers, producing asignificant improvement in wall plugefficiency

• High-powerseed laserwithdouble-passfirst-stage amplifier: reduces number ofamplifierstagesandimprovesefficiency

Technical Objectives

• Design,fabricate,andcharacterizeawavelength-stabilizedpumpsourceforresonantpumpinginthe1430to1530nmEr+-dopedabsorptionband.

• ModeltheEr+-dopedMasterOscillatorPowerAmplifier(MOPA)todeterminefiberlengths,pumpcouplingmethods,andpowerrequirementstoachieve1kWpeakpulsepower.

WorkPlan

• Wavelength-stabilizedpumplasers

–Design,fabricate,andcharacterizepumpsourceforresonant pumpinginthe1430to1530nmrangeusingproprietary technology.

• ModeltheEr+-dopedMOPAtodeterminefiberlengths,pumpcouplingmethods,andpowerrequirementstoachieve1kWpeakpulsepower.

NASA Applications

• High-speed,high-powerpulsepositionmodulationopticalcommunicationslinksfordeepspaceapplications

Non-NASA Applications

• Eyesafepulsedfiber-laser-basedsourcesformaterialprocessingandotherscientificapplications

• High-powerwavelength-stabilizedpumpsourcesatlongwavelength

Page 32: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—16——16—

Identification and Significance of Innovation

Weproposetodemonstrateacompact1-kWfiberamplifiersuitedforuplinkapplications:

• Useofmultifibercoupled2.5-Kwlaserdi-odestackgreatlyreducessizeandcost

• Etchedtaperbundlecombinercreatesanallfiberarchitectureforreliableoperation

• PCFFiberamplifiersimprovetheefficien-cyofthesystem,andallowsforahigherlevel of pump integration also reducingpotentialnonlinearities

Expectedtechnologyreadinesslevel(TRL)attheendofthecontract

• 4

Technical Objectives

Usethemultifibercoupled2.5-kWlaserdiodestackandetchedtaperbundleallfiber4+1to1combinerwithphotoniccrystalfiber(PCF)toassemble,demonstrate,andcharacterizeandYb-based1064-nm1-kWpoweramplifier.

WorkPlan• Construct2.5-kWfibercoupledstackinto4500-umfibers.

• Construct4+1to1etchedtaperbundlefibercombiner.

• AssemblefiberamplifierwithabovecomponentsandPCFFiber.

• Demonstrateandcharacterize1-kWfiberamplifier.

NASA Applications

• High-poweropticalcommunicationsuplinktransmitterandbeaconlaser

• Highpowersourceforremotesensing

Non-NASA Applications

• Highpowersourcefordirectedenergyapplications

• Fiberlasersourceformaterial-processingapplications

high-powEr upliNk AmpliFEr For DEEp spACE CommuNiCATioNs

OpticalEngines,Inc.

2009PhaseIO1.06-8122

Page 33: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—17——17—

Identification and Significance of Innovation New photon-counting photodetectors andarraysareproposedtoadvancethestateoftheart in long-rangespaceopticalcommu-nications.Theproposeddetectoroperatesat1000to1600nmwavelengthsandhavehighdetection efficiency, low jitter, high band-width,veryhighinternalgain,andextremelylowexcessnoise.Thedetectordesignwillbebased on the invented breakthrough tech-nology of discrete amplification. The newdetector will enable meeting the goals oflong-range space optical communicationapplications.

Technical Objectives

• DeveloptheinternaldiscreteamplificationdesigninInGaAs/InPmaterialsystemtoachievestatedgoals.

• Developinitialdesignofthedetectorarraythatmeetsorexceedsthedesiredperformancecharacteristics.

• Developfabricationprocessesforthefabricationoftheinternaldiscreteamplifierdetectorsandarrays.

• Fabricate,test,andanalyzetheresultsofthefabricateddevicesinPhaseII.

• DeliverfullyfunctionalInGaAs/InP-basedphotodetectorsandarrayswithinternaldiscreteamplificationtoNASAattheconclusionofPhaseII.

NASA Applications

• Long-rangespacetogroundcommunicationlinks

• Intersatellitelinks

• Earthorbitingtogroundopticalcommunication

• Quantumcryptography

• Three-dimensional(3D)imaging

• Nightvision

NASA and Non-NASA Applications

• Opticalcommunication

• LightDetectionandRanging/LaserDetectionandRanging(LIDAR/LADAR)remotesensing

high-pErFormANCE NEgATiVE FEEDBACk NEAr iNFrArED (Nir) siNglE phoToN CouNTiNg DETECTors AND ArrAYs

AmplificationTechnologies,Inc.

2009PhaseIO1.06-8219

Page 34: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—18——18—

Identification and Significance of Innovation

We propose to develop large pixel-count(e.g.,80x80)singlephotoncountingdetectorarrayssuitablefordeploymentinspacecraftterminal receivers supporting long-rangelaser communications. We will leverageinitial success inmonolithically integrating“negative feedback” elements with state-of-the-art single photon avalanche diodestorealizelarge-scale(NFAD)arraysinwhicharray pixels have high counting rate, highdetectionefficiency,lowdarkcountrate,lowafter pulsing, and low timing jitter. Thesedevices rapidlyself-quench,which reducesafterpulsing and supports higher photoncounting rates. Since NFADs self-quenchand self-arm, they can be deployed withgreatly simplified back-end circuitry. NFADarrayshavesignificantpromiseforenablingspace-qualifiable focal plane arrays thatserve applications requiring 1.5 µm singlephotondetection.

Expectedtechnologyreadinesslevels(TRLs)atstartandendofcontract• 2• 4

Technical Objectives

• DesignNFADtoreduceafterpulsingby3X.• DesignNFADtoachievetimingjitter<70ps.• Establishreproducibilityanduniformityofnegativefeedbackonscale

oflargearrays.WorkPlan• 1.A.CharacterizeafterpulsingofexistingPLIdiscreteNFADs.• 1.B.DevelopafterpulsingmodelstodescribeTask1.A.results.• 1.C.DefineoptimalNFADdesignfor3Xreductioninafterpulsing.• 2.A.CharacterizetimingjitterofexistingPLIdiscreteNFADs.• 2B.DeveloptimingjittermodelstodescribeTask2.A.results.• 2C.DefineoptimalNFADdesigntoachieve<70pstimingjitter.• 3.A.Fabricatenegativefeedbackthin-filmteststructures.• 3.B.Characterizefeedbackteststructuresforuniformityand

scalability.• 4.DefinitionofoptimalNFADpixeldesignandarraystructure.

NASA Applications

• Free-spaceopticalcommunications,includingspace-basedlasercommunicationslinks

• ActiveremotesensingopticalinstrumentsLightDetectionandRanging(LIDAR)

Non-NASA Applications

• Range-findingandLaserDetectionandRanging(LADAR)applications• CommercialLIDARsystems• Freespaceoptical(satellite)communications• Singlephotoncountingforfluorescence,photoluminescence,and

photoemissionapplications

NEgATiVE FEEDBACk AVAlANChE DioDE (NFAD) ArrAYs For siNglE- phoToN opTiCAl CommuNiCATioNs AT 1.5 mm

PrincetonLightwave,Inc.

2009PhaseIO1.06-9687

Page 35: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—19——19—

Identification and Significance of Innovation

• Multi-gain-stage APD process proventoexhibithighgain(M>1000)with lowexcessnoise(k=0.02).

• Reliable back-illuminated mesa InGaAs/InPAPDprocess.

• Proven tolerant toproton irradiation>10krad.

• Eliminating aluminum alloys will reducedarkcurrentby2ordersofmagnitude.

• Hole-initiatedavalancheisanticipatedtoincrease temporal response by 5 to 10times,allowingGHzcountratesinsingle-elementdevices.

• Technology readiness levels (TRLs)3 and 4 at commencement. Electronavalanchedevicehasbeenbuilt, thoughthe hole-initiated multistage device hasnot.Similarly, radiation testinghasbeenperformed on the electron-avalanchedevice.

Technical Objectives

• Fabricatesingleelementsofvaryingdiameter

–Allowsverificationofchangesingainanddarkcurrentvs.diameter

• Testandcharacterizedevicegain,darkcurrent,capacitance,andcountrate

–Verifygain(>1200),excessnoise(k<0.02),breakdownuniformity

(<2VPhaseIand<1VPhaseII)

• Fabricatesegmentedarrays

• Designsegmenteddetectorreadoutintegratedcircuit(ROIC),includinglow-noise(<40e−RMS)segmentedpixeluniformitycorrection,in-pixelthresholding,etc.

• PhaseII:Fabricateworkingsingle-photon-sensitivereceiver,testforgammaandprotonradiationtolerance,lifetimetest,anddeliverworkingreceiverinhermetichousing

NASA Applications

• Deepspaceopticalcommunications• LightDetectionandRanging(LIDAR)receiverforatmosphericprofiling• Rangefinderforprofiling• Startrackers• Three-dimensional(3D)imagingLightDetectionandRanging/Laser

DetectionandRanging(LIDAR/LADAR),whenconfiguredintoarrays• AstronomicalimagingoverUV-SWIRrange(withsubstrateremoved)

Non-NASA Applications

• Automotivenavigation(adaptivecruisecontrol)• Telecommunications• Quantumcryptography• Militarymissileseekersandunmannedaerialvehicles/unmanned

groundvehicle(UAV/UGV)navigation

holE-iNiTiATED-AVAlANChE, liNEAr-moDE, siNglE-phoToN-sENsiTiVE AVAlANChE phoToDETECTor wiTh rEDuCED ExCEss NoisE AND low

DArk CouNT rATE

Voxtel,Inc.

2010PhaseIO1.04-9119

Page 36: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—20——20—

mulTi-kw upliNk FiBEr-lAsEr BEACoN wiTh AgilE sigNAl FormAT

Fibertek,Inc.

2010PhaseIO1.04-9435

Identification and Significance of Innovation

Uplink laser beacons for deep space com-munications,benefitgreatlyfrommigratingto 1010 to 1030 nmwavelengths, via useof siliconAPD receivers on the spacecraft.Fibertek has developed an uplink lasertransmittertestbedusingamultistagefiberMOPA platform, that is scalable to a mul-tiaperturearchitecture.Preliminarydemon-stration for 1064 nm operation has shownmulti-kW peak powers using long-pulseslot (>100nsec)basedM-aryPPM format.The highly flexible platform developed atFibertek, also corrects for pulse-distortion,andpulse-trainvariations, inherentinsuchmulti-kW long-pulse variable-symbol PPMdataformat.ThisSBIRproposalaimstode-velop and demonstrate the feasibility of acleartechnicalroadmaptotranslatethistoshorterwavelengths<1030nm,aswellastofurtheroptimizetheuplinklaserbeacontransmitterforM-aryPPMdataformats,us-ingFPGA-basedadaptivecontrol.

Expected technology readiness level (TRL)atendofSBIRPhII

• 6

Technical Objectives

• DemonstrateCWandpulsed(M-arypulsepositionmodulation(PPM))fiberMasterOscillatorPowerAmplifier(MOPA)forefficientoperationinthe1010to1030nmwavelengthregion.

• Developanoverallsystemdesignforuplinklaserbeaconontheroadmapfordeepspacemissions.

WorkPlan• BuildandtestverificationofmultistagefiberMOPAproducing

Pavg>30W,optimizedfor1010to1030nmwavelengthregion.• Developaniterative/adaptivealgorithmcontrolofM-aryPPMsymbol

format,withneededopticalpulsecontrol.

NASA Applications

• Uplinklaserbeaconfordeepspacecommunicationandtelemetry.• Subscaleversionasuplinkbeaconforlunarcommunicationsand

ground-stationtolow-Earth-orbit/geostationary-Earth-Orbit(LEO/GEO)satellitecommunication.

Non-NASA Applications

• Groundstationtomilitarysatellitecommunication/telemetry• Groundtospace(near-Earth)powerprojectionforsmallpayload

propulsion• Powerprojectionfordirectedenergyapplicationandtesting

Page 37: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—21——21—

Identification and Significance of Innovation

Identificationofopportunity:

• High-ratedirectionalcommunication

• Deepspaceandintermediate-rangedatalinks

Significanceofinnovation:

• Self-regeneratedparametricamplifier

• High-fidelity, high-power pulse genera-tion

• Brillouin-mitigatedpoweramplification

• Propagationpenaltymitigation

Estimatedtechnologyreadinesslevels(TRLs)atbeginningandendofcontract

• 1

• 2

Technical Objectives

• Modulatorqualification• Digitizingparametricamplifierextinctionassessment• Digitizingparametricamplifiergainlimits• Pulsesharpeningqualification• SBSlimitationsonfiberamplification• Poweramplifierefficiencyandin-bandnoiseassessment• Assessmentofpropagationpenalty• Lasertransmittersystemdesign• Documentationandreporting

WorkPlan• Task1:Masteroscillatorandmodulatorqualification(1month)• Task2:Parametricamplifiermodeldevelopment(2months)• Task3:Digitizingparametricamplifieroptimization(3months)• Task4:ImposedSBSlimitations(1month)• Task5:Er-dopedfiberamplifiermodeldevelopment(1month)• Task6:Confined-gainfiberpoweramplifierefficiencyoptimization(3months)• Task7:Receiverpenaltyduetobeamquality(1month)• Task8:Documentationandreporting

NASA Applications

• Rate-scalableopticalcommunication• Sensorandimaginglinks• High-precisionranging•Non-NASA Applications

• Deep-seasensing• Opticalwireless

high-EFFiCiENCY DATA-rATE-sCAlABlE lAsEr TrANsmiTTEr For iNTErplANETArY opTiCAl CommuNiCATioN

RAMPhotonics

2011PhaseIO1.04-8043

Page 38: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—22——22—

DowNliNk FiBEr lAsEr TrANsmiTTEr For DEEp spACE CommuNiCATioN

Fibertek,Inc.

2011PhaseIO1.04-9718

Identification and Significance of Innovation

NASA’s SCaN roadmap, calls for an inte-grated network approach to communica-tion and navigation needs, fromnear-Earthto planetary missions. Laser based opticalcommunication links for spaceprovidesanorder of magnitude higher data rates thancorresponding RF links. In addition, due tomuchsmaller size,weight&powerburdentospacecraft,resourcesareavailabletoen-hanceorextendsciencemissions.Tremen-dousprogressmadein1.5um&1-umfiberlaser/amplifier technologies, their powerscaling, and availability of reliable high-power components, makes such transmit-tersfeasibleforspacemission.InthisSBIRproposal, we propose to develop 1.5 umfiber-amplifierbasedlasertransmitters,withPav>4W, and compatible with a variety ofM-aryPPM formats, thathaveaclearpathtospace-qualificationroadmap. Inaddition,power-scaling to 10W, athermal operationovertemperaturerange,andimprovedpow-er efficiency, are addressed. Limited scopequalificationtestsarealsoplanned.

Estimatedtechnologyreadinesslevels(TRLs)atbeginningandendofcontract

• 4• 6

Technical Objectives• 1.5umfiberlasertransmitter,withP>4W(Ppk>0.64kW)compatible

witharangeofM-arypulsepositionmodulation(PPM)formats.StretchgoalofdesignvalidationtoPav~10W,Ppk1.6kW.

• Athermaloperationoverwidetemperaturerange,whilemaintaininghighoverallpowerefficiency(>15%)

• Packagingdesign(fiber-amplifierassemblyonly,i.e.,excludingelectronics)consistentwithspace-qualificationroadmap

• Limitedscopequalificationtesting(inPhaseII)WorkPlan• DesignandLabverificationof1.5mmfiberMasterOscillatorPower

Amplifier(MOPA)forallkeyperformanceparameters,withtechniquesforSBSmitigation

• OptimizeandvalidatedesignbycomparingwithpredictedperformancefromacomprehensivefiberMOPAsimulationmodel

• Evaluateathermaloperation,viauseofwavelengthstabilizedpumps,andfiber-amplifierthermalmanagement

• Packagingconceptandqualificationplanforaspacequalificationroadmap

NASA Applications

• High-bandwidthlasercomflightterminalforplanetarymissions,aswellasforvariouslunarandMarsrelaylinks,perSpaceCommunicationsandNavigation(SCaN)roadmap.

• Space-qualifiable,robust,compact,andefficientLightDetectionandRanging(LIDAR)component,e.g.,CO2sensing,pumpingopticalparametricoscillator/opticalparametricamplifier(OPO/OPA)foramid-InfraredLIDARsource.

• CoherentLIDARcomponenttechnologyforaviation-safetysensor,e.g.windshear/turbulence,wake-vortexhazard,etc.

Non-NASA Applications• Highbandwidthlow-Earth-orbit/geostationary-Earth-Orbit(LEO/GEO)

satellitecommunicationforthemilitary• Highbandwidthreal-timefeedfrommultipleunmannedaerialvehicles

(UAVs),viaLEO/GEOcrosslinks• HighbandwidthGEOcrosslinksforcommercialsatcom• In-flightwindsensor,toaidprecisiondroppingofsuppliesinwarzone.

Page 39: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—23——23—

high-EFFiCiENCY rEsoNANTlY pumpED 1550-nm FiBEr-BAsED lAsEr TrANsmiTTEr

nLightPhotonics

2012PhaseIH9.01-8264

Identification and Significance of Innovation

Thereisaconsiderableinterestindevelopingfiber-basedlasertransmittersatthe1.5umwavelengthforfree-spaceopticalcommuni-cations.Atthiswavelengthrange,theatmo-sphere is largely transparent. Also, reliablecommercial off-the-shelf components foropticalpulsegenerationandcontrol,aswellas mature, high-performance detectors arereadilyavailable.Tomeetthehighwall-plugefficiency requirement of laser transmittersin space communication, nLight proposeshigh-efficiency, high-average power 1550-nmlasertransmittersystemthatisbasedonEr-dopedfiber amplifier resonantly pumpedby high efficiency 1532-nm fiber-coupleddiode laser pumps. The overall efficiencyis improved by (1) optimizing diode laserand fiber coupling for maximum efficiencyof1532-nmpumps, (2)developingresonantpumpingof thefiberamplifier forminimumquantumdefect,and(3)designanddevelop-mentofEr-dopedfiberamplifier capableofachievinghighoptical-to-opticalefficiency.

EstimatedTechnologyreadinesslevels(TRLs)atbeginningandendofcontract

• 3

• 4

Technical Objectives

UndertheproposedPhaseIprogram,nLightwilldesignanddemonstratehigh-efficiency1532-nmsingleemitterdiodelasersthatmeetthespecifiedpowerandefficiencyobjective.nLightwilldesign,fabricate,test,anddelivertoNASA(orarecipientoftheirchoosing)two15-W(rated)conductivelycooleddiodelaserpumpmodules,coupledtoa105-umcore,0.22-NAfiber,with>32%wall-plugefficiency.ThemodulesarebasedonnLight’sPearlplatform.ThiseffortwillrepresenttheconfluenceofmultipletechnologiesinwhichnLighthasdeepexperience,makingnLightwell-positionedtomeetthespecificationssetforthinthesolicitation.Ifsuccessful,nLightwillproposeaPhaseIIcontinuationoftheprogramtofurtherimprovethepowerandefficiencyofthe1532-nmpumpmoduleto>20Wand40%,respectively.DuringthePhaseIprogram,nLightwillperformmodelingandassessmentoneye-safefiberamplifierarchitecturessuitableasalasertransmitterforspacecommunication,anddevelopinPhaseIIahigh-efficiency1550-nm-fiberlasertransmitterbasedonresonantlypumpedEr-dopedfiberamplifiersystem,demonstrating>23Waveragepowerand>23%wall-plugefficiency.

NASA Applications

ApotentialNASAapplicationoftheproposedfiber-basedmasteroscillatorpoweramplifiersat1550nmislasertransmittersthatmeettheefficiency,powerandmodulationrequirementofdeepspaceopticalcommunication.Inaddition,suchsystemcanprovideprecisionrangeandvelocitytrackingforspacecraftnavigation,andcanalsobeusedindirectenergydetectionLightDetectionandRanging(LIDAR)systemsforatmosphericresearchandmeteorology.

Non-NASA Applications

Commercialapplicationsmaybeinmaterialsprocessingwheretheeye-safewavelengthandhighpeakpowercapabilityofthefibersdevelopedmayprovideanadvantageintermsofapplicationspeedorquality.Itisexpectedthatthesehighaveragepower,highpulseenergyeye-safefiberlaserswillbeusefulinmaterialsprocessing,biomedical,andotherlightindustrialapplications.

Page 40: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—24——24—

A miNiATurE poiNTiNg AND TrACkiNg isolATioN plATForm

AmericanGNCCorporation

2012PhaseIH9.01-8425

Identification and Significance of Innovation

Inertial stabilization and relative attitudecontrolarethetwokeyelementsconstitut-ingtheproposedaccuratepointingcontrol.Inertial stabilization allows isolation frominterferenceandvibration.Relativeattitudecontrol is used for target tracking and tocompensate pointing drift caused by gyrodrift and the Earth’s rotation. The point-ing and tracking platform is an inertiallycontrolled/stabilized compact, light weight,low power, broad bandwidth disturbancerejection and/or isolation platform. Theoperation of the laser designator requiresstableandaccurate line-of-sightalignmentandstabilizationforthebeamline.Theaccu-ratepointingandattitude/orientationcontrolisrealizedbytwoparts:inertialstabilization/controlandrelativeattitude/orientationcon-trol.Theformeristhebasisfortheaccurateattitude/orientationcontrolthatisolatestheinterferenceandvibrationofthevehicle.

Estimatedtechnologyreadinesslevels(TRLs)atbeginningandendofcontract• 3• 4

Technical Objectives

Theobjectiveofthisprojectistodemonstratethefeasibilityofaminiature,microelectromechanicalsystems(MEMS)intertialmeasurementunit(IMU)based,accuratealignmentandstabilizationsystemforbeampointingofalaserdesignator.InPhaseIofthisproject,first,usingthesimulationtoolsandexperimentalsystemsofAmericanGNCCorporation,modelingandimplementationevaluationoftheproposedMEMS-basedinertialpointingsystemareperformed.Throughthemodelingandsimulationoftheclosed-loopsystem,theimplementationmethodandthespecificationoftheMEMSdevicesandpointingsystemwillbefurtherinvestigated.Then,aninertialmotionmeasurementdevicetestandtuningareperformed.MEMSgyrosforpointingstabilizationareintegratedintotheplatformstructure.Next,systemintegrationoftheMEMSstabilizationplatformisinvestigated.Anaccuracyevaluationofthepointingstabilizationsystemisperformed.Finally,themechanicalstructureofthestabilizationplatformandtheintegrationoftheMEMSwiththesystem’smechanicalandelectroniccomponentsisproposedandinvestigated.

NASA Applications

Thisstabilizationpointingandtrackingisolationplatformisofsmallsize,lightweight,lowpower,faststeering,andreducescostindesignandproduction.Itfindswideapplicationsinspacebornevehiclesforlargetelescopestabilizationcontrol,opticalcommunications,antennapointing,telescopestabilization,laserpointingandcontrol,andvehicleguidance.

Non-NASA Applications

Itspropertiesofsmallsize,lowcost,lightweightandbroadbandwidthdisturbancerejectionallowsitsutilizationinmanycommercialapplicationsincludingpointingcontrol,motion,andvibrationisolation.Specificexamplesincludetargetdesignation,stabilizationcontrol,opticalpointing,andlaserandtelescopepointingcontrol.

Page 41: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—25——25—

ViBrATioN isolATioN plATForm loNg-rANgE opTiCAl CommuNiCATioNs

ControlledDynamics,Inc.

2012PhaseIH9.01-9372

Identification and Significance of Innovation

Optical communication links provide higherdatatransferrateswith lowermass,power,andvolumethanconventionalradiofrequencylinks. For deep space applications at longoperational ranges, high performance sta-bilization of the space terminal data link isrequired.Tomeet this need, ControlledDy-namics,Inc.,proposesanovelapplicationofour free-floating isolation platform. Basedupon a shuttle-proven technology, this ap-proach yields 6 degrees of freedom (DOF)isolation from the disturbances of the hostvehiclewhile providing high-bandwidth ac-tive stabilization to attenuate both payloaddisturbances as well as any residual dis-turbances transferred fromthebaseacrossthepower/dataumbilical.Theproposedap-proachisdesignedtoachievebetterthan0.5microradian-rmsstabilizationforallfrequen-ciesabove0.1Hzwhenoperatinginaspaceenvironment.

Estimatedtechnologyreadinesslevels(TRLs)atbeginningandendofcontract

• 3

• 5

Technical Objectives

PhaseIdevelopstheproposeddesignconcept,performsarchitecturetradestudies,andpredictsperformancetoestablishthefeasibilityoftheapproach.Usinganavailablefree-floatingisolationplatformandatwo-axislow-gtestbed,thedesignconceptisprototypedanddemonstratedonhardwareinasimulatedlow-genvironmenttechnologyreadinesslevelof5(TRL–5).

PhaseIIproceedswiththedevelopmentofaprototypesystemthatwillbespacequalifiedthroughcomprehensivegroundtesting(TRL–6).TechnologydemonstrationflighttestswillbeproposedonsRLVsand/orInternationalSpaceStation(ISS)platforms(e.g.,WORFandOPALSupgrade),achievingaTRL–7maturitybytheendofPhaseII.

NASA Applications

• DeepSpacePlanetaryMissions• DeepSpaceOpticalTerminal(DOT)Project• SpaceCommunicationsandNavigation(SCaN)Program• LaserCommunicationsRelayDemonstration(LCRD)Mission• OpticalPayloadforLAsercommScience(OPALS)upgrade

Non-NASA Applications

Byprovidingcomponent-levelisolationandstabilizationattheopticalpayload,thisapproachdoesnotimposeanyunusualconstraintsonthehostvehicle.ThismakesthetechnologybroadlyapplicabletoawiderangeofvehiclesincludingsRLVs,orbitalRLVs,Earth-orbitingsatellites(eventhesimplestthruster-onlydesigns),anddeepspacevehicles.

Page 42: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—26——26—

CompACT, lighTwEighT isolATioN plATForm (Clip)

AppliedTechnologyAssociates

2012PhaseIH9.01-9621

Identification and Significance of Innovation

NASA has a critical need for improved bi-directional data transmission rates from avariety of spacecraft to Earth. NASA esti-matesthatthecurrentMarstoEarthtrans-ferrateof6Mbpsmightbeincreasedto600Mbpsusingalasercommunicationsystem.Beam jitter caused by spacecraft-basedmotionmustbereducedtosubmicroradianlevels to enable beaconless optical beampointing.ATAwillcreateaCLIPthatwillhostthe laser communication (LC) collimatortelescopeandprovideastabilizedplatformto prevent the 150-microradian spacecraftdisturbance environment from reachingthe LC terminal. To enable that stabiliza-tion,ATAwill develop an ultra-low angularnoiseCAPS.Theproposedsensorwillhavelowpowerandhighreliability,whichATAwilldemonstratebyproducingTRL4prototypesinPhaseI. ATAwilldeveloptheCLIP,a0.5microradianresidualmotionstableplatform,inPhaseIIforprogramslikeiROC.

Estimatedtechnologyreadinesslevels(TRLs)atbeginningandendofcontract• 3• 4

Technical Objectives

• DeveloptheCapacitiveAngularPositionSensor(CAPS).• DevelopdesignconceptforCompact,LightweightIsolationPlatform

(CLIP)withCAPS.

Thegoalistoproduceastableplatformattechnologyreadinesslevel(TRL)4tohostlasercommunicationpayloadsbyreducingspacecraftjitterto0.5micro-rad.PhaseIIwillbuild(CLIP)engineeringdevelopmentunit(EDU)tosupportlong-rangeopticalcommunicationsforspace.

WorkPlan• DesignandcharacterizeprototypehardwarefortheCAPSusingap-

pliedtechnologyassociates(ATA’s)newinnovativecapacitivesensingtechnology.TheCAPSwillprovidebasemotionmeasurementsimilartoworld-classgyros,butforsmallersize,weight,andpower.

• Gatherrequirements,developsystemarchitecture,andperformancemodelsfortheCLIP.

• SpecifydesignconceptanddevelopplanforbuildingaCLIPEDUforaPhaseIIproof-of-conceptdemonstration.

NASA Applications

ATA-developedCLIPconceptisthebasisforNASA’slasercommunicationterminalfortheLLCDandLCRDprograms.ATA’sproposedCLIPandCAPSmaysupportNASAintegratedRadioandOpticalCommunications(iROC)project’slasercollimator.

Non-NASA Applications

AirForce’sSpaceLaserCommunicationTerminal(SLCT),DARPA’sLaserWeaponSystemModule(LWSM),LockheedMartin’sSpaceOpticalTracking(SpOT),Navy’sLaserWeaponSystem(LaWS),andMarine’sGroundBasedAirDefense(GBAD).

Page 43: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—27——27—

lArgE opTiCAl TElEsCopE BAsED oN high-EFFiCiENCY ThiN-Film plANAr DiFFrACTiVE opTiCs

BEAMEngineeringforAdvancedMeasurements

2014PhaseIH9.02-8530

Identification and Significance of Innovation

• Apply diffractive optics to the designof the optical telescope, a part of theGround-BasedTelescopeAssembly.

• Useofdiffractiveopticswillallowdras-tic optical telescope cost and weightreductions.

• Costreductionisduetotheeliminationof tightly toleranced reflective opticsusedinconventionaltelescopes.

• Weightreductionisduetoreplacementoftightlytoleranced,massivereflectiveopticswith looselytoleranced, thindif-fractiveoptics.

• Additional indirect cost reduction ofpointingsystemduetoreducedweightoftelescopestructure.

Estimatedtechnologyreadinesslevels(TRLs)atbeginningandendofcontract• 5• 7

Technical Objectives

• Subscalediffractiveopticalelementswillbedesigned,fabricated,andtestedinPhaseI.

• Intermediateobjectiveistodevelopmethodsforpreciseandaccuratewritingofgratingpatternonlargeaperturediffractiveopticalelements.

• Testingwilladdresscriticalperformanceparametersrelatedtotop-leveltelescoperequirements.

• Opticalresolutiontestingonsubscalediffractiveelementswillvalidatedesignconceptforachieving<20micro-radspotsizewithfull-scaleelements.

• Testingoftheamplitudesofscatteringandparasiticdiffractionwillvalidatedesignconceptforachievingoperationascloseas5degreesfromtheSun.

NASA Applications

• MajorapplicationistotheGround-BasedTelescopeAssemblyfordeep-spaceopticalcommunications

• AlsoapplicabletootherfutureNASAlasercommunicationsprograms

• Possibleapplicationtotheflightlasertransceiverofdeepspaceopticalcommunicationssystems

Non-NASA Applications

• Fabricationmethodstobedevelopedonthisprogramareapplicabletocommerciallasercommunicationstransmittersandreceivers

• PossibleDepartmentofDefense(DoD)applicationsincludelaserrangefinders,lasertargetmarkers,andlaserdesignators

Page 44: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—28——28—

high CouNT rATE siNglE-phoToN CouNTiNg DETECTor ArrAY

Voxtel,Inc.

2014PhaseIH9.01-8912

Identification and Significance of Innovation

Anopticalcommunicationsreceiverrequiresefficient and high-rate photon-countingcapability so that the information fromevery photon, received at the aperture, isprocessed.Thisisparticularlytrueinspaceplatforms,wherethe informationcontainedineveryadditionalphotondetecteddirectlytranslates into lower system size, weightandpower (SWAP).Toaddress thisneed,anear-infrared (NIR) high-gain, low-excessnoiseAPDarraywillbedevelopedforphotoncountingflightreceivers.

The proposed APD array technology iscapable of a single photon detectionefficiency (SPDE) greater than 50% at 100Mhzcountrate.Itwillbeshownpossibletodiscriminate photo-generated events fromdark-initiatedevents,sothatwhentheAPDis configuredwitha lownoise readout cir-cuit,withsufficientbandwidthdetectioncir-cuits, that lowfalsealarmrates(FARs)canbeachieved.

Estimatedtechnologyreadinesslevels(TRLs)atbeginningandendofcontract

• 3• 4

Technical Objectives

• Usingnumericalmodels,optimizeavalanchephotodiode(APD)epitaxiallayers.

• GrowtheAPDepitaxialmaterial.• FabricateAPDdetectorarraysandtesttheirperformance.• PrepareaGHz-ratereadoutintegratedcircuit(ROIC)fortestingand

characterizetheSCMAPD.

WorkPlan• UsingMonteCarloanalysis,theAPDdesignwillbeoptimized.

Simulationswillshowahighprobabilityofphotondetectionat10sMhzcountrates.

• Candidatedevicedesignswillbeepitaxiallygrown,andaseriesofsingle-elementandsmallsizearrayswillbefabricatedandtested.Amulti-GHzROIC,withsamplingcircuits,willbepreparedtotestandevaluatetheAPD.

Tasks• Performsystemengineering.• Optimizehigh-gainAPDepitaxialstructures.• OptimizeAPDarchitecture,fabrication,andprocessing.• PrepareVX–805bROICfortestinganddemonstratingAPD.

NASA Applications

NASAapplicationsfortheinnovationincludeopticalcommunications,LaserDetectionandRanging(LADAR)basedautonomousnavigationandlandingsystems,three-dimensional(3D)imagingfordockingsystems,andlaserranging.

Non-NASA Applications

Militaryapplicationsincludelaserrangefinding,LADARimagingandautonomousnavigation.Commercialapplicationsincludeautomobiledriverassistancesystemsandcollisionavoidancesystems.

A high gain APD is proposed, which hasextremely low excess noise during thedecision event of the optical receiver.

Using time-over-threshold photo-eventsare discriminated from dark events

Page 45: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—29——29—

high-EFFiCiENCY AND powEr lAsEr TrANsmiTTEr For DEEp spACE CommuNiCATioNs

FreedomPhotonicsLLC

2014PhaseIO9.02-8941

Identification and Significance of Innovation

WeproposeaninnovativeresonantlypumpedEr-based1550-nmlasertransmittersuitablefor PPM for deep space communications.ResonantlypumpedErlasersprovideforhighopticalconversionefficiency,whichcoupledwith high-efficiency pumping using highlyefficientdiodepumplasersat1480nmcanlead tounprecedentedwallplugefficienciesfortheselasers.

We will use a novel diode laser pumped,actively Q-switched solid-state laser archi-tecture.Ouruniqueapproach, of optimizingthediodepumplaserdesigntotheErcavitydesign,willallowustoextractmaximumeffi-ciencyfromthesystem(greater>25%).Thisisauniquelaser,notavailableonthemarket.Usingourminiaturecommunicationsmodulebackground and commercial products, weintend to integrate this solution in a mini-mumfootprintpossible,minimizingthesize,weightandpower(SWaP)andlaunchcosts.

Estimatedtechnologyreadinesslevels(TRLs)atbeginningandendofcontract

• 3

• 6

Technical Objectives

TheoveralltechnicalobjectiveforthisPhaseIeffortistoperformcriticaldesignstudies,simulations,andkeyexperimentalevaluationtoprovethefeasibilityoftheapproachforgeneratingaradiationhardPhaseIIprototypepulse-position-modulation(PPM)transmitterdesignwithrobustpackaging,whichmeetsthefollowingperformancetargets:• Wavelength:1550nm• Spectralbandwidth:Transform-limited• Optical-to-opticalefficiency:>70%• Pulsewidth:0.2to16ns• Averageoutputpower:20W• Totalwallplugefficiency:>25%• Totalmass:<5kg

WorkPlan• Task1:Epitaxialdesignandgrowthof1480-nmpumplasermaterial• Task2:High-efficiency1480-nmpumplaserfabricationandtesting• Task3:Er-dopedglassQ-switchedlaserdesignandbenchtop

demonstration• Task4:PhaseIIPPMtransmitterdesignandlayoutThedeliverablesofthePhaseIprogramwillbeprogressreportsandacriticalhardwaredemonstration

NASA ApplicationsThefirstplannedproductforthePPMopticaltransmittertechnologytobedevelopedinthisprogramisalong-rangeFreeSpaceOptics(FSO)linkforInterplanetaryOpticalTelecommunicationssupportingroboticexplorers.ThesecondplannedproductswillbeFSOlinksforNASAsatellite-to-groundapplicationsaswellasintersatellitecommunications.Subsequentproductswillbeforair-to-ground,air-to-air,andground-togroundcommunications.

Non-NASA ApplicationsCommerciallasercommlinks—bothintersatellite,andterrestrial.Air-to-airandair-to-groundapplicationsintheUnmannedAerialVehiclesapplications.

Page 46: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—30——30—

Identification and Significance of Innovation

A pulse shaping and spectral shaping 20W high-efficiency (>25%) short pulse fiberlaserisintroducedforthefirsttimetomeetthe needs of deep space communications.Theinnovationsare• Pulse shaping technique to obtain >45

dB extinction ratio shaped pulses with<35psrise/falltime

• Spectral shaping technique to obtaintransform limited spectrum and highopticalsignaltoratio(OSNR).

• Pulseshapingtechniquetomitigatenon-linear effects such as stimulated Bril-louinscattering(SBS).

• State-of-the-artfiberamplifier,electron-ics,andthermalmanagementtechniqueto achieve compact 20-W fiber laseroriginal equipmentmanufacturer (OEM)modulewith>25%wallplugefficiency.

PolarOnyx has been leading both the R&Dandcommercialproductionintheworld.Wehave recently commercialized the highestenergy (0.5 mJ) fs fiber laser product andwon2014PrismAwardFinalist(categoryofindustrial lasers).Weareconfident that theproposedshortpulsefiber laserwillbeac-complished in both scientific breakthroughandcommercialization.

Estimatedtechnologyreadinesslevels(TRLs)atbeginningandendofcontract

• 3• 6

Technical Objectives

• Studyandapplythepulseshapingtechniquetoachieveshortpulseoperationwiththerequiredwaveformat(<35psrise/falltime).Incooperatingwithourpulseshapingtechnologyandsuccessfulexperienceindevelopinghighefficiencyandhighpowershortpulsefiberlasers,aproof-of-conceptdemonstrationfora10-Wfiberlaserwillbegiven.

• Investigatepulseinteractionwithnonlinearmediaandpulse/spectralshapingeffectsoftheproposedshortpulsefiberlaser.DesignandselectFBGandEYDFtoachievehigherpowerconversionefficiency,mitigatenonlineareffects,andcorrectpulsedistortionandmodulationchirp.

• Investigatehigh-speedelectronicsforprocessingandsynchronization,protocolinterfaces,andradiofrequencysignalgenerationforthemodulator.Designradiationhardnesselectronicsforbothhigh-speedelectronicsandhigh-powerdiodedrivers.

NASA Applications

InadditiontoNASA’sdeepspacecommunications,theproposedshortpulsehigh-powerfiberlaserapproachcanalsobeusedinotherapplications,suchasspace,aircraft,andsatelliteapplicationsofLaserDetectionandRanging(LADAR)systemsandcommunications.PolarOnyxwilldevelopaseriesofproductstomeetvariousrequirementsforNASA/militarydeployments.

Non-NASA Applications

High-powerfiberlasersrepresentthenextgenerationofcriticalopticalcomponentsneededtobuildthecoherentopticalcommunicationsofthefutureandcableTVsthatwilldeliverincreasedcommunicationbandwidthandimprovedQualityofService(QoS)endusers.Themarketfortheapplicationisgrowingandwillbeofgreatpotentialofhundredsofmillionsmarket.

20-w high-EFFiCiENCY 1550-nm pulsED FiBEr lAsEr

PolarOnyx,Inc.

2014PhaseIH9.02-9962

Page 47: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—31——31—

optical communication technology

SBir phaSe ii awardS2005 to 2012

Optical Module for Space

Page 48: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—32——32—

ADVANCED AuTomATED DEBris TrACkiNg AND rECogNiTioN sYsTEm

OPTRA,Inc.

2005PhaseIIO2.01-7854

Identification and Significance of Innovation

Thisprogramconcernsthedevelopmentofadigital imagingand tracking capabilitywithtwoprimarygoals:(1)toprovidethemeansfortrackingandpredictingthetrajectoriesofmultiple objects following the breakup of alaunchedspacevehicleand(2)toprovideameansforidentifyingsuchobjectsbyshapeand3Dsizeparameters.

Providingadetailedreportthatdetailsshape,size, and ground impact positions for eachpiece of a debris cloud minutes after thefailureoccurssignificantlyincreasesNASA’scurrent capabilities during search andrecovery efforts following a launch failure.Theinnovationliesbothintheuseofastate-of-the-artopticalsystemtocarryoutataskpreviously performed by radar and in thetrackingand identificationalgorithmsbeingdeveloped.

Technical Objectives

ThegoalofthePhaseIIeffortistocontinuethedevelopmentofthedetection,tracking,andidentificationalgorithms,designandbuildaprototypesystemutilizingcommercial-off-the-shelf(COTS)components,andtestthesystemwithrepresentativescenarios.

• Review/refine/improveeachstepinthecurrentalgorithmicprocessfordetection,tracking,andidentification.

• DevelopandbuildacompletesystemarchitectureusingCOTScomponent.

• Fusedatafromtwoorsensortoproducethree-dimensional(3D)objecttrajectoriesandgroundimpactpointsinGPScoordinates.

• FieldtestthesystematOPTRAandatNASA.

NASA and Non-NASA Applications

ThisprogramhasaclearandimmediateNASAapplication:toestablish3Dtrajectoryandshape/sizeinformationforsearchandrecoveryeffortsfollowingalaunchfailure.

ThesystemisapplicabletoDepartmentofDefense(DoD)inweaponstestingapplicationsandtotheDoDandcommercialaircraftmanufacturersformonitoringtestflightsofmannedandunmannedaircraft.

Page 49: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—33——33—

VErY lArgE solAr rEJECTioN FilTEr For lAsEr CommuNiCATioN

SurfaceOpticsCorporation

2007PhaseIIO1.08-8373

Identification and Significance of Innovation

Surface Optics Corporation will developa band-pass filter comprising a visibledielectricmirrorandaninducedtransmissionfilter,appliedtotwosidesofacastpolyimidemembrane.Themirror/filtercombinationwillblock 95% of the incident solar radiation,whileallowinganarrowpass-bandforlasercommunication.

Expectedtechnologyreadinesslevel(TRL)attheendofPhaseIcontract

• 6

Technical Objectives

• Fabricate2-mfilterwithgoodcoatingadhesionatallpositionsoncoatedsurface.

• Developn,kdataforselectedmaterialsoutto1.1-meterradius.• Gainfundamentalunderstandingoftheeffectofionizedgason

coatingadhesiontothepolymermembrane.• Buildandtestcoatingdesignsonsubscalemembranes.• Applymultilayerdesignto2-metersubstrates.

NASA and Non-NASA Applications

• Long-rangelasercommunications;interplanetarymissions

• Solarcoverforlasercommunicationreceiverondefensesatellite

Page 50: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—34——34—

high-BANDwiDTh phoToN-CouNTiNg DETECTors wiTh ENhANCED NEAr-iNFrArED rEspoNsE

aPeak,Inc.

2008PhaseIIO1.06-9563

Identification and Significance of Innovation

Newest designs in long-range opticalcommunication systems require high-gain,photon-counting arrays operated with highdetection efficiency, outstanding temporalresolution, and capability to handle highphotondetectionrates.Weproposetodevelopa novel large area, silicon photon-countingdetectorarrayinnearinfrared,operatedwithmoderate cooling, high detection efficiency,high saturation counting rate, and capableof 500 ps timing resolution. Detector andreadout circuit design will be improved tomeet the detection efficiency, noise, timingresolution,and linearity requirementsof theapplication.

Expectedtechnologyreadinesslevel(TRL)attheendofthecontract

• 4

Technical Objectives

• Developmentoftheintegratedelectronicstoperformcounting,afterpulsingcontrolandhigh-resolutionfunctionsanddataoutcontrol

• Developmentofthehardwareandtuningproceduresofthecavityresonanceatthetargetwavelength(1050,1060,or1064nmasperinputfromJPL)

• SeamlessprocessintegrationofDBR,flip-chipstepsintotheprocessflow

• RC–GPDarraydesign,fabrication,andqualification

WorkPlan• Task1:Readoutintegratedcircuit(ROIC)arraydesignandsimulation• Task2:RC–GPDarraydesignandsimulation• Task3:Arrayfabricationplan

NASA and Non-NASA Applications

Thenovelphotoncountingarraywillfindapplicationinfreespaceopticalcommunications,space-groundopticallinks,detectionorimaginginmediawithhighturbidity,interferometry,mapping,roboticvision,veryhigh-resolutionthree-dimensional(3D)imaging,hyperspectralimaging,andspacedocking.Inadditiontolong-rangeopticalcommunications,largerarrayscouldbefabricatedforsingle-photonimagingintheinfraredandvisiblewithapplicationstosecuritycameras,imagingofnoncooperativetargets,single-moleculedetection,integrationintomicrofluidicdevices,biochipsforbiomedicalapplications,fluorescencecorrelationspectroscopy,etc.

Page 51: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—35——35—

high-EFFiCiENCY, high-powEr lAsEr TrANsmiTTEr For DEEp spACE CommuNiCATioN

VegaWaveSystems,Inc.

2008PhaseIIO1.06-9602

Identification and Significance of Innovation

We propose improvements to fiber MOPAtransmittersfordeepspacecommunicationslinksusingseveralnewtechniques:

• Operating wavelength of 1560 nm re-duces thesizeandweightof theopticalcomponents

• Resonant pumping in the 1430-to 1530-nmbandimprovespumpabsorptionand,hence,wallplugefficiency

• Wavelength-stabilized laser (WSL) pumpsources: eliminates power-hungry ther-moelectric (TE)coolers,producingasig-nificant improvement in wall plug effi-ciency

• PhotonicCrystalFiberamplifiersimprovetheefficiencyofthesystem

Expectedtechnologyreadinesslevel(TRL)attheendofthecontract

• 4

Technical Objectives

• Design,fabricate,andcharacterizeawavelength-stabilizedpumpsourceforresonantpumpinginthe1430to1530nmEr+-dopedabsorptionband

• DesignandfabricateanEr+-dopedMasterOscillatorPowerAmplifier(MOPA)toachieve1kWpeakpulsepower

WorkPlan• Wavelength-stabilizedpumplasers• Design,fabricate,andcharacterizepumpsourceforresonantpumping

inthe1430to1530nmrangeusingproprietarytechnology• FabricatetheEr+-dopedMOPAtoachieve1kWpeakpulsepowerat

1560nm.

NASA Applications

High-speed,high-powerpulsepositionmodulationopticalcommunicationslinksfordeepspaceapplications

Non-NASA Applications

• Eyesafepulsedfiber-laser-basedsourcesformaterialprocessingandotherscientificapplications

• Highpowerwavelength-stabilizedpumpsourcesatlongwavelengths

Page 52: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—36——36—

high-powEr upliNk AmpliFiEr For DEEp spACE CommuNiCATioN

OpticalEngines,Inc.

2009PhaseIIO1.06-8122

Identification and Significance of Innovation

We propose improvements to fiberMaster Oscillator Power Amplifier (MOPA)uplink power amplifiers for deep spacecommunications links using several newtechniques:• 2.5-kWmulti-fibercoupledlaserdiode

stack technology adapted to pumpingfiberlasersandamplifiers

• Efficient Etched Air Taper Combinersallow for integration of high pumppowers into fiber based amplifiers andLasers

• PCFamplifiersprovidehighpeakpoweroperation while also providing for highaveragepoweroperation

• Ahybridamplificationsystemthatusesbothcoiledandrod-typePCFs

Expectedtechnologyreadinesslevel(TRL)attheendofthecontract

• 4

Technical Objectives

• Design,fabricate,andcharacterizeacoiledandrod-typephotoniccrystalfiber(PCF)amplifierandcompareitsperformancetorequirements.

• Fromtheresultsobtainedfrombothamplifiers,design,fabricate,characterize,anddeliveranuplinktransmitterchannelthatmeetsorexceedsthecurrentrequirementsforintegrationintoexistingNASAuplinktestbedinfrastructure.

WorkPlan

• Designhighpeakpowerfiberamplifiers

• Design,fabricate,andcharacterizebothacoiledandrod-typePCF-basedamplifierandcompareunderworstcaseoperationalscenarios

• Fabricateanddeliveranuplinktransmittermeetingthecurrentproposedrequirements

NASA Applications

High-speed,high-powerpulsepositionmodulationopticalcommunicationslinksfordeepspaceapplicationsLightDetectionandRanging(LIDAR)andremotesensingapplications.

Non-NASA Applications

• Pulsedfiber-laser-basedsourcesformaterialprocessingandotherscientificapplications

• Directedenergyapplications

Page 53: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—37——37—

high-pErFormANCE NEgATiVE-FEEDBACk NEAr-iNFrArED (Nir) siNglE-phoToN CouNTiNg DETECTors AND ArrAYs

AmplificationTechnologies,Inc.

2009PhaseIIO1.06-8219

Identification and Significance of Innovation

New photon-counting photodetectors andarrays are proposed to advance the stateof the art in long-range space opticalcommunications. The proposed detectoroperatesat1000nmto1600nmwavelengthsand have high detection efficiency, lowjitter, high bandwidth, very high internalgain, and extremely low excess noise. Thedetectordesignwillbebasedontheinventedbreakthrough technology of discreteamplification. The new detector enablesmeeting the goals of long-range spaceopticalcommunicationapplications.

Technical Objectives

• DeveloptheinternaldiscreteamplificationdesigninInGaAs/InPmaterialsystemtoachievestatedgoals.

• Developthedesignofthedetectorarraythatmeetsorexceedsthedesiredperformancecharacteristics.

• Developfabricationprocessesforthefabricationoftheinternaldiscreteamplifierdetectorsandarrays.

• Fabricate,test,andanalyzetheresultsofthefabricateddevices.• DeliverfullyfunctionalInGaAs/InP-basedphotodetectorsandarrays

withinternaldiscreteamplificationtoNASAattheonclusionofPhaseII.

NASA and Non-NASA Applications

• Long-rangespace-to-groundcommunicationlinks

• Intersatellitelinks

• Earthorbitingtogroundopticalcommunication

• Quantumcryptography

• Three-dimensional(3D)imaging

• Nightvision

NASA and Non-NASA Applications

• Opticalcommunication

• LightDetectionandRanging/LaserDetectionandRanging(LIDAR/LADAR)remotesensing

Page 54: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—38——38—

Identification and Significance of Innovation

We propose to develop large-format128 x 128 single-photon counting detectorarrayssuitablefordeploymentinspacecraftterminal receivers supporting long-rangelaser communications. We will leverageinitial success in monolithically integrating“negative feedback” elements with state-of-the-art single-photon avalanche diodesto realize large-scaleNFADarrays inwhicharray pixels have good detection efficiency,low dark count rate, low afterpulsing, lowtiming jitter, and high counting rate. SinceNFADsself-quenchandself-arm,theycanbeimplementedwithgreatlysimplifiedbackendcircuitryandenablesingle-photonsensitivefocalplanearrayswithvastlyreducedsingle-photonsensitivefocalplanearrayswithvastlyreduced complexity relative to the state-of-the-art. NFAD arrays have significantpromiseforenablingspace-qualifiablefocalplanearraysthatserveapplicationsrequiring1.5µmsinglephotondetection.

Expectedtechnologyreadinesslevels(TRLs)atstartandendofcontract• 2• 4

Technical Objectives

• Optimizepixel-levelNFADdesign.• Implementoptimizedpixel-levelNFADsintolarge-formatarrays.• Developcharacterizationcapabilityfortestinglarge-formatNFAD

arrays(i.e.,128x128x100μmpitch).

WorkPlan• NFADwaferepitaxialdesignandfabrication• NFAD32x32array-leveldesignandphotomaskfabrication• NFAD32x32arraywaferprocessingandwafer-leveltesting• Designoffan-outboardtestplatform• Testelectronicsdevelopment,includingFPGAandtestcode• NFAD32x32arrayprototypecharacterization• SeconditerationofA.1toA.6for128x128NFADformat• SummarizeresultsanddefineinputsforfullFPAdevelopment

NASA Applications

• Free-spaceopticalcommunications,includingspace-basedlasercommunicationslinks

• ActiveremotesensingopticalinstrumentsLightDetectionandRanging(LIDAR)

Non-NASA Applications

• Range-findingandLADARapplications• CommercialLaserDetectionandRanging(LADAR)systems• Freespaceoptical(satellite)communications• Singlephotoncountingforfluorescence,photoluminescence,and

photoemissionapplications

NEgATiVE FEEDBACk AVAlANChE DioDE (NFAD) ArrAYs For siNglE- phoToN opTiCAl CommuNiCATioNs AT 1.5 mm

PrincetonLightwave,Inc.

2009PhaseIIO1.06-9687

Page 55: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—39——39—

Identification and Significance of Innovation

Laser beacons with scalable powers areneeded for ground to deep space opticalcommunication uplinks. They serve asabsolutereferencefortrackingofspacecraftduringthedownlinklasercommunication.Forsuchspacecommunicationlinkdistancesthebeamspreadduetodiffractionissignificantenough thatonly fewphotonsarecollectedby a moderate size optical telescopes onthe spacecraft. This necessitates photon-counting detectors suited for the spaceenvironment,alongwithincreasingtheoutputpower of the laser beacon. Ultralow noisesilicon avalanche photodetector (Si-APD)based position-sensing detectors are usedonthespacecrafttodetectthelaserbeacons.Such Si-APDs are also radiation-hardenedand compatible with space-environmentoperation.Itisthereforedesirabletooperateatshorterwavelengths~1000nm,whereSi-APDs have improved spectral responsivity.Thishelps to improve theSNR for tracking,and consequently reduce the uplink laserpowerrequirements.

Estimatedtechnologyreadinesslevels(TRLs)atbeginningandendofcontract

• 3

• 5

Technical Objectives

• High-efficiencyYb-fiberamplifiersofPavg~500W,withhighspectralresponsivitySi-APDphoton-countingdetectors

• Fibermaster-oscillatorpower-amplifier(fiberMOPA)design,withtailoredspectralandtemporalcharacteristicsofnear-diffractionlimitedbeam-quality(M2<1.5)

• Widerangerepetition-ratesandpulse-pattern/formatscapability,likethetwo-levelnestedpulsepositionmodulation(PPM)desiredforanuplinklaserbeacon.

• DesignisaidedbycomprehensivefiberMOPAsimulationtool,robust“all-fiberoptic”design,withnolaseralignmentrequirements

• Operatewithelectro-opticpowerefficiency(estimated>25%).Modulararchitecturescalabletoatemporallysynchronized,multi-apertureconfiguration

WorkPlan

• Reconfigurepoweramplifierfromafree-spacesignalcoupledtoanall-fiberform,leadingtoanall-fiberimplementationofthelaserchannel

• Averageandpeakpowerat1030-nmto500Wunder500kHzPPM-16aryoperation

• Improvemultistageseedamplifierchain

• Design,build,test,anddeliverprototypehardware

NASA Applications• Compacthigh-efficiency1030-nmlasertransmitterfordeep-space

communication

• Lowpoweruplinklaserbeaconsfornear-Earthopticalcommunicationlinks,or,smallerapertureopticaltelescopes(~30-cm)toenablehigh-bandwidthopticallinks

Non-NASA ApplicationsLaserilluminatorfordirected-energy(DE)applications.MDAapplicationsfortargetidentificationanddesignation.

mulTi-kw upliNk FiBEr-lAsEr BEACoN wiTh AgilE sigNAl FormAT

Fibertek,Inc.

2010PhaseIIO1.04-9435

Page 56: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—40——40—

DowNliNk FiBEr lAsEr TrANsmiTTEr For DEEp spACE CommuNiCATioN

Fibertek,Inc.

2011PhaseIIO1.04-9718

Identification and Significance of Innovation

NASA’s Space Communications and Navi-gation (SCaN) roadmap, calls for an inte-grated network approach to communica-tionandnavigationneeds, fromnear-Earthto planetary missions. Laser-based opticalcommunication linksforspaceprovidesanorder ofmagnitude higher data rates thancorrespondingradiofrequencylinks.Inaddi-tion,due tomuchsmallersize,weightandpowerburden to spacecraft, resources areavailabletoenhanceorextendsciencemis-sions.Tremendousprogressmadein1.5umand1-umfiberlaser/amplifiertechnologies,theirpowerscaling,andavailabilityof reli-able high-power components,makes suchtransmitters feasible for spacemission. Inthis Small Business Innovation Research(SBIR)proposal,weproposetodevelop1.5-umfiber-amplifier-basedlasertransmitters,withPav>4W,andcompatiblewithavarietyofM-aryPPMformatsthathaveaclearpathto a space-qualification roadmap. In addi-tion,power-scalingto10W,athermaloper-ationovertemperaturerangeandimprovedpower efficiency are addressed. Limitedscopequalificationtestsarealsoplanned.

Estimatedtechnologyreadinesslevels(TRLs)atbeginningandendofcontract

• 4• 6

Technical ObjectivesProposedprogramobjective:design,build,andtestatechnologyreadinesslevel(TRL)6qualitylaserandconductNASAGEVsvibrationandthermalvacuumtestingtovalidatethedesign.Phase1experimentalresultsdemonstratesthatthelasercomplieswithJetPropulsionLaboratory(JPL)specifiedM-arypulse-position-modulation(PPM)variableformattingwithpeakpowers>640Wover10C-50C.Duetoplanetarylasercomdemonstrationmissionbeingthetargetapplication,thedesignisbasedontheuseofmatureandhigh-reliability1.5-umfiber-opticcomponenttechnologyandafiber-amplifierarchitectureconsistentwithaspacequalificationroadmap.

WorkPlan:• CompleteOpticalDesignTradeStudies:Finalizetheopticaldesignand

improveefficiency.• DesignFlightQualityTransmitterPackage:Acomprehensiveoptical,

thermal,mechanical,electricaldesign.• MissionAssurance:Continuereliabilityassessmentsandopticalparts

ImprovementsfromphaseITVACtestparts.• Fabricateaflight-likeprototype.Afull-scalelasertransmitterwillbebuilt

andperformancetested.• TRL6Testing:Thelaserwillbevibrationandthermalvacuumtestedto

NASAGEVslevels.

NASA ApplicationsHighbandwidthlasercomflightterminalforplanetarymissions,aswellasforlunarandMarsrelaylinks.• Space-qualifiable,robust,compact,andefficientLightDetection

andRanging(LIDAR)component,e.g.,CO2sensing,pumpingopticalparametricoscillator/opticalparametricamplifier(OPO/OPA)foramid-infraredLIDARsource.

• CoherentLIDARcomponenttechnologyforaviation-safetysensor,e.g.,wind-shear/turbulence,wake-vortexhazard,etc.

Non-NASA Applications• High-bandwidthlow-Earth-orbit/geostationary-Earth-Orbit(LEO/GEO)

satellitecommunicationformilitary• High-bandwidthreal-timefeedfrommultipleunmannedaerialvehicles

(UAVs),viaLEO/GEOcrosslinks• High-bandwidthGEOcrosslinksforcommercialsatcom.

Page 57: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—41——41—

Identification and Significance of Innovation

Optical communication links provide higherdata transfer rateswith lowermass, power,andvolumethanconventionalradiofrequencylinks. For deep space applications at longoperational ranges, high-performancestabilization of the space terminal data linkis required. To meet this need, ControlledDynamics Inc., has developed a novelapplication of our free-floating isolationplatform. Based upon a shuttle-proventechnology, this approach yields 6 DOFisolation from the disturbances of the hostvehicle while providing high-bandwidthactive stabilization to attenuate bothpayloaddisturbancesaswellasanyresidualdisturbancestransferredfromthebaseacrossthe power/data umbilical. The proposedapproach isdesignedtoachievebetter than0.5 microradian-rms stabilization for allfrequenciesabove0.1Hzwhenoperating inaspaceenvironment.

Estimatedtechnologyreadinesslevels(TRLs)atbeginningandendofcontract

• 4• 6

Technical Objectives

Compact,LightweightIsolationPlatform(CLIP)conceptwasdevelopedtomeasureandestablishthefeasibilitytomeetspaceterminalisolationrequirements.Sensorandactuatorcomponenttestinghavefurtherdemonstrateddesignattechnologyreadinesslevel(TRL)4.

PhaseIIgoalsaretogroundtestanend-to-endprototypeonasoftsuspensiontestbedtodemonstrateperformanceinasimulatedlow-goperationalenvironment.Bothsearchandbeacontrackwillbedemonstrated.Environmenttestingiterationswillbeperformedtoproducespacequalifiedtwo-axisstrutassembliesfordeliverytoNASA.Three-strutassembliesrigidlymountedtoanyspaceterminalwillprovide6degreesoffreedom(DOF)isolationandhigh-bandwidthstabilization.Thesestrutsaredesignedforrobustnessandcanbeusedasadd-ontoanyrigidstructure,thusenablingabroadrangeofspaceapplicationsrequiringhigh-precisionstabilization,isolation,andpointing.

NASA Applications

• DeepSpacePlanetaryMissions(e.g.,Mars2020)• DeepSpaceOpticalTerminal(DOT)Project• SpaceCommunicationsandNavigation(SCaN)Program• IntegratedRadioandOpticalCommunications(iROC)Project• AlternativeforLaserCommunicationsRelayDemonstration(LCRD)

Mission

• UpgradeforOpticalPayloadforLAsercommScience(OPALS)

Non-NASA Applications

Thetwo-axisisolationstrutstechnologybroadlyisapplicabletoawiderangeofvehiclesincludingorbitalRLVs,Earth-orbitingsatellites,anddeepspacevehicles.

isolATioN plATForm For loNg-rANgE opTiCAl CommuNiCATioNs

ControlledDynamics,Inc.

2012PhaseIIH9.01-9372

Page 58: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—42——42—

Identification and Significance of Innovation

NASA has a critical need for improvedbidirectional data transmission rates froma variety of spacecraft to Earth. NASAestimates that the current Mars-to-Earthtransfer rateof6Mbpsmightbe increasedto600Mbpsusinga lasercommunication(LC) system. Beam jitter caused byspacecraft-basedmotionmustbereducedtosubmicroradianlevelstoenablebeaconlessoptical beam pointing. ATA will create aCLIP thatwill provide a stabilized platformto prevent the 150-microradian spacecraftdisturbanceenvironment fromreaching theLC terminal. To enable that stabilization,ATAwilldevelopanultra lowangularnoiseCAPS. CAPSwill have low-power and highreliability, which ATA will demonstrate byproducingprototypes inPhase IandaCLIPEDU inPhase II. ATAwilldevelop theCLIP,a 0.5 microradian residual motion stableplatform,forprogramslikeiROC.

Estimated technology readiness levels(TRLs)atbeginningandendofcontract

• 4• 5

Technical Objectives

• Fine-tuneCapacitiveAngularPositionSensor(CAPS)sensorelectronicsandmeasuresensornoise

• IncorporatelessonslearnedfromtheCAPSprototypebuild/testintoanupdatedCAPSdesignforuseontheCompact,LightweightIsolationPlatform(CLIP)

• Design,build,andtesttheimprovedCAPSsensors• Designanengineeringdevelopmentunit(EDU)CLIPplatformthatwill

interfacetoacommercialoff-the-shelf(COTS)control/drivesystem• BuildtheCLIPEDU• TesttheCLIPEDUinaquiescentenvironmentandarepresentative

vibrationenvironment

Thegoalistoproduceastableplatformthatcanhostlasercommunicationpayloadsbyreducing150micro-radspacecraftjitterdownto0.5micro-rad.PhaseI,willproducealowfrequencyCAPSdesignattechnologyreadinesslevel(TRL)4.PhIIplanstobuildaCLIPandEDUtosupportlong-rangeopticalcommunicationsinspace.

WorkPlanCAPSprototypecharacterization;buildathirdsensorusingalternatepottingmaterial;buildafinalversionforCLIPassembly.Performassemblyintegrationandtest.CompletedetailedCLIPdesignandbuildandtestacompletedCLIPplatform.

NASA Applications

AppliedTechnologyAssociates(ATA)developedCLIPconceptisthebasisforNASA’slasercommunicationterminalfortheLLCDandLCRDprograms.ATA’sproposedCLIPandCAPSmaysupportNASAintegratedRadioandOpticalCommunications(iROC)project’slasercollimator.

Non-NASA Applications

AirForce’sSpaceLaserCommunicationTerminal(SLCT),DARPA’sLaserWeaponSystemModule(LWSM),LockheedMartin’sSpaceOpticalTracking(SpOT),Navy’sLaserWeaponSystem(LaWS),andMarine’sGroundBasedAirDefense(GBAD).

CompACT, lighTwEighT isolATioN plATForm (Clip)

AppliedTechnologyAssociates

2012PhaseIIH9.01-9621

Page 59: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—43——43—

Page 60: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—44——44—

Page 61: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—45——45—

American GNC Corporation, Simi Valley, CA ....................................................................24

Amplification Technologies, Inc., New York ...............................................................17, 37

aPeak, Inc., Newton, MA ..................................................................................... 7, 14, 34

Applied Technology Associates, Albuquerque, NM .....................................................26, 42

BEAM Engineering for Advanced Measurements, Winter Park, FL .....................................27

Controlled Dynamics, Inc., Huntington Beach, CA ......................................................25, 41

Fibertek, Inc., Herndon, VA ....................................................................... 8, 20, 22, 39, 40

Freedom Photonics LLC, Santa Barbara, CA ....................................................................29

Light Prescriptions Innovators, LLC, Altadena, CA ............................................................12

Maracel Systems & Software Technologies, LLC, Crestview, FL ........................................10

New Span Optot-Technology Inc., Miami, FL .....................................................................9

nLight Photonics, Vancouver, WA ....................................................................................23

Optical Engines, Inc., Crystal Lake, IL .......................................................................16, 36

OPTRA, Inc., Topsfield, MA .................................................................................... 4, 6, 32

Photon-X, Inc., Huntsville, AL. ..........................................................................................5

Physical Optics Corporation, Torrance, CA .......................................................................11

PolarOnyx, Inc., San Jose, CA ........................................................................................30

Princeton Lightwave, Inc., Cranbury, NJ ....................................................................18, 38

RAM Photonics, San Diego, CA ......................................................................................21

Surface Optics Corporation, San Diego, CA ...............................................................13, 33

Vega Wave Systems, Inc., West Chicago, IL ..............................................................15, 35

Voxtel, Inc., Beaverton, OR .......................................................................................19, 28

company nameS

Page 62: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

—46—

JamesD.StegemanTechnologyManagerSpaceCommunicationsandNavigationProgramNASAGlennResearchCenterM.S.142–2Cleveland,Ohio44135Telephone:216–433–3389E-mail:[email protected]

AfrozJ.ZamanNASAGlennResearchCenterM.S.54–1Cleveland,Ohio44135Telephone:216–433–3415E-mail:[email protected]

PS–01398–0914

SBirpointS oF contact

—46—

Page 63: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

Cover photo: SCaN testbed under GRC thermal vacuum testing.

Cover photo: Laser Communication RelayDemonstration (LCRD).

Page 64: Cover photo: SCaN testbed under GRC...aligned with the SCaN Program technical directions. This document catalogs SCaN SBIR investments in optical communications technology development

Recommended