+ All Categories
Home > Documents > CPE542 - 3 - Classifiers_Bayes

CPE542 - 3 - Classifiers_Bayes

Date post: 08-Jul-2018
Category:
Upload: ronald-santos
View: 213 times
Download: 0 times
Share this document with a friend

of 28

Transcript
  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    1/72

    1

     Sergios Theodoridis 

    Konstantinos Koutroumbas

    Version 2

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    2/72

    2

    PATTERN RECOGNITIONPATTERN RECOGNITION

     Typical application areas

    Machine vision Character recognition (OCR)

    Computer aided diagnosis

    Speech recognition

    Face recognition

    Biometrics

    mage !ata Base retrieval

    !ata mining

    Bion"ormatics

     The tas#$ %ssign un#no&n o'ects patterns  into thecorrect class* This is #no&n as classi+cation*

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    3/72

    ,

     Features$  These are measura'le -uantities o'tained

    "rom the patterns. and the classi+cation tas# is 'asedon their respective values* 

    Feature vectors$  % num'er o" "eatures

    constitute the "eature vector

    Feature vectors are treated as random vectors*

    ,,...,1   l  x x

    [ ]   l T l    R x x x   ∈= ,...,1

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    4/72

    /

    %n e0ample$

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    5/72

     The classi+er consists o" a set o" "unctions. &hosevalues. computed at . determine the class to&hich the corresponding pattern 'elongs

    Classi+cation system overvie&

     x

    sensor

    "eaturegeneration

    "eatureselection

    classi+erdesign

    systemevaluation

    atterns

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    6/72

    3

    Supervised unsupervised pattern recognition$

     The t&o maor directions

    Supervised$ atterns &hose class is #no&n a4priori are used "or training*

    nsupervised$ The num'er o" classes is (ingeneral) un#no&n and no training patterns areavaila'le*

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    7/72

    5

    C!ASSI"IERS #ASE$ ON #A%ESC!ASSI"IERS #ASE$ ON #A%ES

    $ECISION T&EOR% $ECISION T&EOR% 

    Statistical nature o" "eature vectors

    %ssign the pattern represented 'y "eaturevectorto the most pro'a'le o" the availa'le classes

     That is  ma0imum

    [ ]T l 21   x ,..., x , x x =

     x

     M ω ω ω    ,...,, 21

    )(:   x P  x ii   ω ω →

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    8/72

    6

    Computation o" a4posteriori pro'a'ilities %ssume #no&n

    7 a4priori pro'a'ilities

    7  

     This is also #no&n as the li#elihood o"

    )()...,(),(21   M 

     P  P  P    ω ω ω 

     M i x p i ...2,1,)(   =ω 

    ... i to r w  x   ω 

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    9/72

    8

    ∑=

    =

    =

    ⇒=

    2

    1

    )()()( 

    )(

    )()(

    )(

    )()()()(

    i

    ii

    ii

    i

    iii

     P  x p x p

     x p

     P  x p

     x P 

     P  x p x P  x p

    ω ω 

    ω ω 

    ω 

    ω ω ω 

      The Bayes rule ( Μ 92)

    &here

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    10/72

    1:

     The Bayes classi+cation rule ("or t&o classes M 92)

    ;iven classi"y it according to the rule

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    11/72

    11

    )()(2211

      ω ω    →→   R R  and

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    12/72

    12

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    13/72

    1,

    ndeed$ Moving the threshold the total shadedarea ?CR

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    14/72

    1/

     The Bayes classi+cation rule "or many (M2)classes$

    ;iven classi"y it to i"$

    Such a choice also minimies the classi+cationerror pro'a'ility

    Minimiing the average ris# For each &rong decision. a penalty term is assigned

    since some decisions are more sensitive than others

    i j x P  x P   ji   ≠∀>  )()(   ω ω 

     x  iω 

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    15/72

    1

    For M 92

    7 !e+ne the loss matri0

    7  penalty term "or deciding class .although the pattern 'elongs to . etc*

    Ris# &ith respect to

    )(2221

    1211

    λ λ 

    λ λ = L

    12λ 

    1ω 

    1ω 

     xd  x p xd  x pr  R R

    )()( 112111121

    ω λ ω λ  ∫ ∫    +=

    2ω 

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    16/72

    13

    Ris# &ith respect to

     

    %verage ris#

    2ω 

     xd  x p xd  x pr  R R

    )()( 222221221

    ω λ ω λ  ∫ ∫    +=

    )()( 2211   ω ω    P r  P r r    +=

    ⇒ ro'a'ilities o" &rongdecisions. &eighted 'y thepenalty terms

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    17/72

    15

    Choose and so that r  is minimied

     Then assign to i"

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    18/72

    16

    y probabiliterror

    tionclassificaMinimumif 

    )()( if 

    )()( if 

    0and

    2

    1)()(

    1221

    21

    12122

    12

    21211

    221121

    ⇒=

    >→

    >→

    ====

    λ λ 

    λ λ ω ω ω 

    λ 

    λ ω ω ω 

    λ λ ω ω 

     x P  x P  x

     x P  x P  x

     P  P  "

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    19/72

    18

    %n e0ample$

       

      

     =−

    ==−

    −−=−

    −=−

    00.1

    5.00

     

    2

    1)()( 

    ))1(exp(1

    )( 

    )exp(1

    )( 

    21

    2

    2

    2

    1

     L

     P  P 

     x x p

     x x p

    ω ω 

    π ω 

    π ω 

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    20/72

    2:

     Then the threshold value is$

     Threshold "or minimum r 

    2

    1

     

    ))1(exp()exp( :: minimumfor

    0

    22

    0

    0

    =

    ⇒−−=−

     x

     x x x P  x e

    2

    1

    2

    )21(ˆ 

    ))1((exp2)(exp :ˆ

    0

    22

    0

    <−

    =⇒−−=−

    n x

     x x x

    0ˆ x

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    21/72

    21

     Thus moves to the le"t o"

    (DEG)0

    ˆ x 02

    1 x=

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    22/72

    22

    $ISCRI'INANT "NCTIONS$ISCRI'INANT "NCTIONS

    $ECISION SR"ACES$ECISION SR"ACES

    " are contiguous$

    is the sur"ace separating the regions* On oneside is positive (H). on the other is negative(4)* t is #no&n as !ecision Sur"ace

    )()( :

    )()( :

     x P  x P  R

     x P  x P  R

    i j j

     jii

    ω ω 

    ω ω 

    >

    >

     ji   R R  , 0)()()(   =−≡   x P  x P  x g  ji   ω ω 

    H

     4   0 x g    =)(

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    23/72

    2,

    " f (.) monotonic. the rule remains the same i" &euse$

      is a dis(riminant )un(tion

    n general. discriminant "unctions can 'e de+nedindependent o"  the Bayesian rule* They lead tosu'optimal solutions. yet i" chosen appropriately.can 'e computationally more tracta'le*

     ji x P  f  x P  f  x  jii   ≠∀>→  ))(())(( :if  ω ω ω 

    ))(()(   x P  f  x g  ii   ω ≡

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    24/72

    2/

    #A%ESIAN C!ASSI"IER "OR NOR'A!#A%ESIAN C!ASSI"IER "OR NOR'A!

    $ISTRI#TIONS$ISTRI#TIONS

    Multivariate ;aussian pd" 

    called covariance matri0

    [ ]

    [ ] ))((

    inmatrix

    )()(2

    1exp

    )2(

    1)( 1

    2

    12

    Τ

    −Τ

    −−=Σ

    ×=

       

       −Σ−−

    Σ=

    iii

    ii

    iii

    i

    i

     x x E 

     x E 

     x x x p

     µ  µ 

    ω  µ 

     µ  µ 

    π 

    ω 

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    25/72

    2

      is monotonic* !e+ne$

     

     

     

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    26/72

    23

     

     That is. is -uadratic and thesur"aces

    -uadrics. ellipsoids. para'olas.hyper'olas.pairs o" lines*

    For e0ample$

    iiii

    iii

    C  P 

     x x x x x g 

    +++−

    +++−=

    )ln()(

    2

    1

    )(1

    )(2

    1)(

    2

    2

    2

    12

    22112

    2

    2

    2

    12

    ω  µ  µ 

    σ 

     µ  µ σ σ 

    )( x g i0)()(   =−   x g  x g   ji

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    27/72

    25

    !ecision Eyperplanes

    Iuadratic terms$

    " %==  (the same) the -uadraticterms are not o" interest* They are notinvolved in comparisons* Then.

    e-uivalently. &e can &rite$

    !iscriminant "unctions are =?

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    28/72

    26

     =et in addition$

    7  

    7  

    7  

    7   22

    02

    2

    )(

    )(ln)(

    2

    )( 

    0)()()( 

    1)( 

    !en .

     ji

     ji

     j

    i

     jio

     ji

    o

     jiij

    i

    i

    i

     P 

     P  x

    w

     x xw

     x g  x g  x g 

    w x x g 

     !  Σ 

     µ  µ 

     µ  µ 

    ω 

    ω σ  µ  µ 

     µ  µ 

     µ 

    σ 

    σ 

    −−+=

    −=

    −=

    =−=

    +=

    =

    ?ondiagonal$ ΙσΣ   2≠

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    29/72

    28

    ?ondiagonal$

    7  

    7  

    7  

    !ecision hyperplane

    Ι  σ Σ  ≠

    0)()( 0   =−=   x xw x g   T 

    ij

    )(1 ji

    w   µ  µ   −Σ=   −

    2

    1

    1

    20

    )(

    )

    )(

    )((n)(

    2

    1

    1

    1

     x x x

     P 

     P  x

     ji

     ji

     j

    i

     ji

    −Σ

      Σ≡

    −−+=

    −Σ µ  µ 

     µ  µ 

    ω 

    ω  µ  µ   

    )(tonormal

     tonormalnot

    1

     ji

     ji

     µ  µ 

     µ  µ 

    −Σ

    −−

    Minimum !istance Classi+ers

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    30/72

    ,:

    Minimum !istance Classi+ers

      e-uipro'a'le

     

     

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    31/72

    ,1

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    32/72

    ,2

     :tionclassifica$ayesianusin#2.2

    0.1 %ector !eclassify t

    &.1'.0

    '.01.1

     ,'

    '

     ,0

    0

    ),,()(

    ),,()(and)()( :,i%en

    2122

    112121

    =

    =

    ==

    ==

     x

     Σ  #  x p

     Σ  #  x p P  P 

     µ  µ  µ ω 

     µ ω ω ω ω ω 

    −=•55.015.015.0&5.0  1 Σ 

    [ ]

    [ ] *+2.'.0

    0.2

    .0,0.2,&52.22.2

    0.1

     

    2.2,0.1:,fromsMa!alanobi-ompute 

    1

    2,

    21

    1,2

    21

    =

    Σ−−==

    =•

    −−"

    ""

    d  Σ 

    d d    µ  µ 

    1,,21  t!atbser%e .-lassify  E  E    d d  x  

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    33/72

    ,,

    Ma0imum =i#elihood

     

     

     

     

    { }

    :met!od!e

     to/.r.of ieli!ood t!easno/nis/!ic!

    )(

    ),...,()(

    ,...,

    )()( : parameter

    ctor unno/n %eaninno/n /it!)(et

    tindependenandno/n,....,,et

    1

    21

    21

    21

     $ 

     x p

     x x x p $  p

     x x x $ 

     x p x p

     x p

     x x x

     # 

     # 

     # 

     # 

    θ 

    θ 

    θ θ 

    θ θ 

    =Π=

    ≡=

    ESTI'ATION O" NKNO*N PRO#A#I!IT%$ENSIT% "NCTIONS  S u p

     p o r t  S l

     i d e

    ide

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    34/72

    ,/

     

     

      0)(

    )(

    )(

    1

    )(

    )( :ˆ

    )(ln)(ln)(

    )(maxar# :ˆ

    1

    1

    1M

    =∂

    ∂Σ=

    ∂∂

    Σ=≡

    Π

    =

    =

    =

    θ 

    θ 

    θ θ 

    θ θ 

    θ θ θ 

    θ θ  θ 

     # 

    %  ML

     # 

     & 

     x p

     x p

     L

     x p $  p L

     x p

     S u p p o r

     t  S l i d e

    ide

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    35/72

    ,

     S u p p o r

     t  S l i d e

    lide

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    36/72

    ,3

     

    %symptotically un'iased and consistent

    0ˆlim 

    34lim 

    t!en,)()( 

    suc! t!ataist!ereindeed,If,

    2

    0 5

    0 5 

    0

    0

    =−

    =

    =

    ∞→

    →∝

    θ θ 

    θ θ 

    θ 

    θ 

     ML

     ML

     E 

     E 

     x p x p

     S u p p o r

     t  S l i d e

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    37/72

    ,5

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    38/72

    ,6

    Ma0imum %posteriori ro'a'ility

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    39/72

    ,8

     The method$

     ML M'P 

     M'P 

     M'P 

     p

     $  p P 

     $  p

    θ θ θ 

    θ θ θ 

    θ 

    θ θ θ 

    ∂∂

    =

    ˆenou#! broadoruniformis)(If 

    ))()((:ˆ

    or )(maxar#ˆ

     S u p p o r

     t  S l i d e

    Slide

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    40/72

    /:

     S u p p o r

     t  S l i d e

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    41/72

    /1

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    42/72

    /2

    Bayesian n"erence

     

    8o/99

    ) p(estimate :#oal!e

    )(and)(,,...,; :i%en

    follo/ed.isrootdifferenta 8ere

    .forestimatesin#leaM"7M,

    1

     $  x

     p x p x x $   #    θ θ 

    θ 

    =

     S u p p o r

     t  S l i d e

    ∫ Slide

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    43/72

    /,

    ∑=

    =+

    =++

    =

    →•

    →•

    →•

     # 

    %  #  # 

     #  # 

     x # 

     x #  # 

     x # 

     #  $  p

     #  p

     #  x p Let 

    122

    0

    2

    0

    22

    22

    0

    0

    22

    0

    2

    2

    00

    2

    1 ,, 

    ),()( :out t!atIt turns 

    ),()( 

    ),()( 

    exampleanainsi#!t %imore bit"

    σ σ 

    σ σ σ 

    σ σ 

     µ σ σ  µ 

    σ  µ  µ 

    σ  µ  µ 

    σ  µ  µ 

    )()(

    )()(

    )()(

    )(

    )()()(

    )()(

    1θ θ 

    θ θ θ 

    θ θ θ θ θ 

    θ θ θ 

     # 

    %  x p $  p

    d  p $  p

     p $  p

     $  p

     p $  p $  p

    d  $  p x p $  x p

    =Π=

    ==

    =

    ∫ 

    ∫ )( S u p

     p o r t  S l

     i d 

    Slide

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    44/72

    //

     The a'ove is a se-uence o" ;aussians as

    Ma0imum

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    45/72

    /

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    46/72

    /3

     

     %ssume parametric modeling. i*e*.

     The goal is to estimate

    given a set

    Dhy not M=G %s 'e"oreG

    ∑   ∫ 

    =

    =

    ==

    =

     M 

     j

     j

     + 

     j

     j

     xd  j x p P 

     P  j x p x p

    1 x

    1

    1)(,1

    )()(

     ) j x(  p   θ 

     j P  P  P  ,...,, and  21θ { } # 21   x ,..., x , x $  =

    ),...,,(max1,...,,

      ji% 

     # 

    %  P  P 

     P  P  x P  ji

    θ θ 

      =Π

     S u p p o r

     t  S l i d

    Slid e

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    47/72

    /5

     This is a nonlinear pro'lem due to themissing la'el in"ormation* This is a typicalpro'lem &ith an incomplete data set*

     The

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    48/72

    /6

    7 =et

    7 Dhat &e need is to compute

    7 But are not o'served* Eere comes the

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    49/72

    /8

    g

    7

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    50/72

    :

    Jn#no&n parameters

    7

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    51/72

    1

     

     

     2

     2

     x3  x3 

     x3    +−

    0,,0 

    if  ,as)()(ˆ , continuous)(If 

    →∞→→

    ∞→→

     # 

    % % 2

     #  x p x p x p

     #  #  # 

    2ˆ,

    1)ˆ(ˆ)(ˆ

     totalin

     x x

     # 

     x p x p

     # % 

     # %  P 

     # 

     #  # 

    ≤=≡

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    52/72

    2

    aren Dindo&s

    !ivide the multidimensional space inhypercu'es

    !e+ne

    ≤11

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    53/72

    ,

    7 That is. it is 1 inside a unit side hypercu'e centered at :

    7  

    7  

    7 The pro'lem$

    7 aren &indo&s4#ernels4potential "unctions

    ))(1

    (1

    )(ˆ1

    ∑=

    −=

     # 

    i

    i

     x x

     #  x p   ϕ 

     x

     # 

    atcentered!ypercubeside!an

    inside pointsof number>

    1

    >%olume

    1

    ousdiscontinu (.)

    continuous )(

    ϕ 

     x p

    ∫  =≥

     x

     xd  x x

     x

    1)( ,0)(

    smoot!is)(

    ϕ ϕ 

    ϕ 

    ≤=ot!er/ise

    2

    1

    0

     1)(   iji

     x xϕ 

    Mean valuet Sl

     i d e

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    54/72

    /

    7  

    7  

    7  

    7  

    Eence un'iased in the limit

    ∫ ∑  −=

    −=

    = =1

    =)=()=

    (1

    )3)(41

    (1

    )3(ˆ4 x

     # 

    i

    i

    l   xd  x p

    2

     x x

    22

     x x E 

     # 2 x p E    ϕ ϕ 

    ∞→→l 2

    1  ,02

    0)=

    (of /idt!t!e0

      →

     x x   ϕ 

    ∫    =−

    1)=

    (1

     xd 2

     x x

    2l  ϕ 

    )()(1

     0   x

    2

     x

    2

    2l 

      δ ϕ    →→

    ∫    =−==

    )(=)=()=()3(ˆ4 x

     x p xd  x p x x x p E    δ 

     S u p p o r

     t  S l

    Kariance

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    55/72

    7 The smaller the  the higher the variance

    40.1, #41000 40.5, #41000

    40.1, #410000

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    56/72

    3

     The higher the #  the 'etter the accuracy

    " 2 0

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    57/72

    5

    7  

    7  

    7  

    asymptotically un'iased

     The method

    7 Remem'er$

    7  

    ∞→

    ∞→

     & 

    2

     # 

    2 0

    θ λ λ 

    λ λ 

    ω 

    ω 

    ω 

    ω ≡

    −><−

    =

    = # 

    i

    i

     # 

    i

    i

    2

     x x

    2 # 

    2

     x x

    2 # 

    CJRS< OF !M

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    58/72

    6

    CJRS< OF !M

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    59/72

    8

    ?%K< B%

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    60/72

    3:

    N ?earest ?eigh'or !ensity

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    61/72

    31

    θ )( 11

    22

    22

    11 >

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    62/72

    32

    g

    Choose %  out o" the  #  training vectors. identi"ythe %  nearest ones to x

    Out o" these %  identi"y % i that 'elong to class :i

     

     The simplest version

      %41 AAA

    For large #  this is not 'ad* t can 'e sho&n that$i" P  ; is the optimal Bayesian error pro'a'ility.

    then$

     ji% % →  "ssi#n ω 

     2)1

    2(  ; ; ; ##  ;   P  P  M 

     M  P  P  P    ≤

    −−≤≤

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    63/72

    3,

     

     

     For small P  ;$

     P 2 P  P  P    ##  ;%##  ;   +≤≤

     ;%##    P  P  ,%    →∞→  

    2

    ' )('

    2

     ; ; ## 

     ; ## 

     P  P  P 

     P  P 

    +≅≅

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    64/72

    3/

    Koronoi tesselation

    { } ji x xd  x xd  x R  jii   ≠

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    65/72

    3

    Bayes ro'a'ility Chain Rule

    %ssume no& that the conditional dependence

    "or each  xi is limited to a su'set o" the "eaturesappearing in each o" the product terms* That is$

    &here

    )()@(... 

    ...),...,@(),...,@(),...,,(

    112

    1211121

     x p x x p

     x x x p x x x p x x x p

    ⋅⋅

    ⋅⋅=   −−−  

    ∏=

    ⋅=

    2

    121 )@()(),...,,(i

    ii   ' x p x p x x x p

    { }121  ,...,,   x x x ' iii   −−⊆

     S u p p o r

     t 

    ort  S l i d

     e

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    66/72

    33

    For e0ample. i" ℓ93. then &e could assume$

     Then$

     The a'ove is a generaliation o" the ?ave Bayes* For the ?ave Bayes the assumptionis$

     'i B C, for iB1, 2, 7, 6 

    ),@(),...,@( D5*15*   x x x p x x x p   =

    { } { }15D5* ,...,,   x x x x '   ⊆=

     S u p p o r

     t

    ort  S l i d

     e

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    67/72

    35

    % graphical &ay to portray conditionaldependencies is given 'elo&

    %ccording to this +gure&e have that$

    E   x* is conditionally

    dependent on xD , x5.

    E   x=

     on  x>

     

    E   xD on  x1 , x2

    E   x? on  x2

    E   x1 , x2 are conditionally

    independent on other

    varia'les*

    For this case$)()()@()@(),@(),...,,( 122'D5D5**21   x p x p x x p x x p x x x p x x x p   ⋅⋅⋅⋅=

     S u p p o r

     t

    Bayesian ?et&or#s port  S l i

     d e

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    68/72

    36

    Bayesian ?et&or#s

    $e+nition, % Bayesian ?et&or# is a directedacyclic graph (!%;) &here the nodescorrespond to random varia'les*

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    69/72

    38

     The +gure 'elo& is an e0ample o" a Bayesian?et&or# corresponding to a paradigm "rom the

    medical applications +eld*  This Bayesiannet&or# modelsconditionaldependencies "or an

    e0ample concerningsmo#ers (S).tendencies todevelop cancer (C)and heart disease

    (E). together &ithvaria'lescorresponding toheart (E1. E2) andcancer (C1. C2)

    medical tests*

     S u p p o r

     

    O !%; h ' t t d th i tpor t  S l

     i d e

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    70/72

    5:

    Once a !%; has 'een constructed. the ointpro'a'ility can 'e o'tained 'y multiplying themarginal (root nodes) and the conditional (non4

    root nodes) pro'a'ilities*

     Training$ Once a topology is given. pro'a'ilitiesare estimated via the training data set* Thereare also methods that learn the topology*

    ro'a'ility n"erence$ This is the most commontas# that Bayesian net&or#s help us to solveeLciently* ;iven the values o" some o" the

    varia'les in the graph. #no&n as evidence. thegoal is to compute the conditional pro'a'ilities"or some o" the other varia'les. given theevidence*

     S u p p o r

    por t  S

     l i d e

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    71/72

    51

  • 8/19/2019 CPE542 - 3 - Classifiers_Bayes

    72/72

    For a). a set o" calculations are re-uired thatpropagate "rom node x to node w* t turns out that P (w0@ x1) B 0.*'*

    For '). the propagation is reversed in direction* tturns out that  P ( x0@w1) B 0.D.

    n general. the re-uired in"erence in"ormation iscomputed via a com'ined process o" @messagepassingA among the nodes o" the !%;*

    Comple0ity$For singly connected graphs. message passing

    algorithms amount to a comple0ity linear in thenum'er o" nodes*

     S u p p o r


Recommended