+ All Categories
Home > Documents > CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G....

CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G....

Date post: 18-Mar-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
137
ARH-600 CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development Department Chemical Processing Division Atlantic Richfield Hanford Company Richland, Washington 99352 NOTICE THIS REPORT WAS PREPARED FOR USE WITHIN ATLANTIC RICHFIELD HANFORD CO. IN THE COURSE OF WORK UNDER ATOMIC ENERGY COMMISSION CONTRACT AT (45-1)-2130, AND ANY VIEWS OR OPINIONS EXPRESSED IN THE REPORT ARE THOSE OF THE AUTHOR ONLY. THIS REPORT IS SUBJECT TO REVISION UPON COLLECTION OF ADDITIONAL DATA. LEGAL NOTICE THIS REPORT WAS PREPARED AS AN ACCOUNT OF GOVERNMENT SPONSORED WORK. NEITHER THE UNITED STATES, NOR THE COMMISSION, NOR ANY PERSON ACTING ON BEHALF OF THE COMMISSION*. A. MAKES ANY WARRANTY OR REPRESENTATION, EXPRESSED OR IMPLIED, WITH RESPECT TO THE ACCURACY, COMPLETENESS, OR USEFULNESS OF THE INFORMATION CONTAINED IN THIS REPORT, OR THAT THE USE OF ANV INFORMATION, APPARATUS, METHOD, OR PROCESS DISCLOSED IN THIS REPORT MAY NOT INFRINGE PRIVATELY OWNED RIGHTS; OR B. ASSUMES ANY LIABILITIES WITH RESPECT TO THE USE OF, OR FOR DAMAGES RESULTING FROM THE USE OF ANY INFORMATION, APPARATUS, METHOD, OR PROCESS DISCLOSED IN THIS REPORT, AS USED IN THE ABOVE, "PERSON ACTING ON BEHALF OF THE COM M1SS ION" IN- CLUOES ANY EMPLOYEE OR CONTRACTOR OF THE COMMISSION, OR EMPLOYEE OF SUCH CONTRACTOR, TO THE EXTENT THAT SUCH EMPLOYEE OR CONTRACTOR OF THE COMMISSION, OR EMPLOYEE OF SUCH CONTRACTOR PREPARES, DISSEMINATES, OR PROVIDES ACCESS TO, ANY INFORMATION PURSUANT TO HIS EMPLOYMENT OR CON- TRACT WITH THE COMMISSION, OR HIS EMPLOYMENT WITH SUCH CONTRACTOR. UNCLASSIFIED S4-6000-020 (1-69) „£.„, „,C„LAND. WASH.
Transcript
Page 1: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

ARH-600

C R I T I C A L I T Y H A N D B O O K

Volume I

June 30, 1968

R. D. Carter G. R. Kiel K. R. Ridgway

Advance Process Development Section Research and Development Department

Chemical Processing Division

Atlantic Richfield Hanford Company Richland, Washington 99352

NOTICE

THIS REPORT W A S PREPARED FOR USE WITHIN ATLANTIC RICHFIELD HANFORD CO. IN

THE COURSE OF W O R K UNDER ATOMIC ENERGY COMMISSION CONTRACT AT (45-1)-2130,

AND ANY VIEWS OR OPINIONS EXPRESSED IN THE REPORT ARE THOSE OF THE AUTHOR

ONLY. THIS REPORT IS SUBJECT TO REVISION UPON COLLECTION OF ADDITIONAL DATA.

L E G A L NOTICE T H I S R E P O R T W A S P R E P A R E D AS AN A C C O U N T OF G O V E R N M E N T SPONSORED W O R K . N E I T H E R T H E U N I T E D S T A T E S , NOR THE C O M M I S S I O N , NOR ANY PERSON A C T I N G ON B E H A L F OF THE C O M M I S S I O N * .

A . M A K E S ANY W A R R A N T Y OR R E P R E S E N T A T I O N , E X P R E S S E D OR I M P L I E D , W I T H R E S P E C T TO THE A C C U R A C Y , C O M P L E T E N E S S , OR U S E F U L N E S S OF THE I N F O R M A T I O N C O N T A I N E D IN T H I S R E P O R T , OR T H A T THE USE OF A N V I N F O R M A T I O N , A P P A R A T U S , M E T H O D , OR P R O C E S S D I S C L O S E D IN T H I S R E P O R T MAY NOT I N F R I N G E P R I V A T E L Y O W N E D R I G H T S ; OR

B. A S S U M E S ANY L I A B I L I T I E S W I T H R E S P E C T TO THE USE O F , OR FOR D A M A G E S R E S U L T I N G F R O M T H E USE OF ANY I N F O R M A T I O N , A P P A R A T U S , M E T H O D , OR P R O C E S S D I S C L O S E D IN T H I S R E P O R T ,

AS USED IN THE A B O V E , "PERSON A C T I N G ON B E H A L F OF T H E C O M M1SS I O N " I N -C L U O E S ANY E M P L O Y E E OR CONTRACTOR OF THE C O M M I S S I O N , OR E M P L O Y E E OF SUCH C O N T R A C T O R , TO T H E E X T E N T T H A T SUCH E M P L O Y E E OR CONTRACTOR OF THE C O M M I S S I O N , OR E M P L O Y E E OF SUCH CONTRACTOR P R E P A R E S , D I S S E M I N A T E S , OR P R O V I D E S A C C E S S T O , ANY I N F O R M A T I O N P U R S U A N T TO H I S E M P L O Y M E N T OR C O N ­T R A C T W I T H THE C O M M I S S I O N , OR H I S E M P L O Y M E N T W I T H SUCH C O N T R A C T O R .

UNCLASSIFIED

S4-6000-020 (1-69) „ £ . „ , „,C„LAND. WASH.

Page 2: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Page 3: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Page 4: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED ii ARH-6 00

GENERAL CONTENTS

I. ADMINISTRATION

II. ENGINEERING DATA

UNCLASSIFIED

Page 5: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED iii ARH~6 00

PREFACE

This Handbook was produced primarily to aid Atlantic Richfield Hanford Company employees whose work involves criticality safety considerations. Use of this book is not intended to replace final analysis of problems by a qualified criticality safety specialist, but it should permit greater freedom in preliminary studies.

The mere existence of a fissile material in quantities greater than a minimum critical mass creates some finite risk that criticality will occur. This risk of criticality can be held to an acceptably low probability by imposing restrictions on the manner in which the fissile material is processed, trans­ported, and stored. This Handbook provides guidance in such areas for the process engineer or designer in the initial steps of equipment and process design or modification prior to review by a criticality safety specialist. In addition, the Handbook combines a number of fissile material handling requirements into a single reference manual and supplements more widely recognized reference works.

Because the increasing amount of experimental data permits (and sometimes demands) periodic revision of criticality parameters and because those of us in criticality safety work sometimes have peculiar ideas about what constitutes an applicable, useful or safe set of data for our own peculiar problems, we have designed the Handbook in a loose-leaf form. Thus, pages can be updated, new material added or sections rearranged to the desire of the user.

Some of the data included here is less conservative than material from TID-7016 and TID-7028, the normally accepted general references on criticality parameters. This is primarily due to a greater amount of available experimental data and to greater confidence in the computer programs presently used in criticality calculations. The computer codes used are generally indicated with each set of data. Those used within the Atlantic Richfield Hanford Company are currently:

UNCLASSIFIED

Page 6: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED iv ARH-6 00

For cross section generation and reactivity calculations

For critical size and reactivity calculations, one and two dimensions

For reactivity calculations of single units and arrays in three dimensions

No attempt has been made initially to generate "safe" parameters. VJherever generated parameters are considered to have a potential for being nonconservative, comparisons with existing experimental data (if any) are shown or referenced, and an attempt is made to indicate the degree to which the data is nonconservative.

The proper use of the enclosed information requires a basic understanding of criticality. Improper use of this infor­mation can result in a criticality incident with the possible loss of life and many lost man-hours during recovery.

GAMTEC II HAr4I4ER

HFN HAMMER DTF-IV EXTERMINATOR-2 DOT ANISN

GEM 4 KENO

UNCLASSIFIED

Page 7: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED v ARH-600

DISTRIBUTION

Internal

Atlamtic Richfield Hanford Company

1-2. 3. h. 5. 6. T. 8. 9. 10. 11. 12. 13. ll+. 15. IT. 18. 19. 20. 21. 22. 23. 2k. 25. 26. 27. 28. 3h. 36. 37. 38. 39. U8. 5U.

55-56. 56. 65.

75-100.

ARHCO R. L. L, M. R. R. D. J. H. W. R. G. L. G. C.

A. I. E. H. D. P. T. B. H. P. E. R. M. A. E.

Files R. W. L. K. J. J. P. R. R. H. C. R. D. M. R. W. D. R. D.

E. E. M. R. B. W. W, E. A. L. A. J. A. J. E. A. E. 3. J.

Lxtra

Files Yoder Brecke Bruns Campbell Carter Corlew Crawley Fecht Hopkins Ingalls Felt Kiel Ivnights Nicholson Benedict

Olson Matheison Richards Ridgway Fecht Jordan Smith Tomlinson Watrous Caudill Colvin Kofoed hoover Szulinski Isaacson Blyckert Larson Laws Rochon

UlICLASSIFIED

Page 8: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

vi

ARHCO Nuclear Diversification Department

1+1-it2. H. C. Rathvon

External

AEC Richland Operations Office

1+0. J. D. White

AEC Division of Compliance - Region I

kl. H. W. Crocker

66. W. G. Brown

AEC Division of Technical Information Extension

i»3. Files

AEC Headquarters

kk. W. C. McCluggage 61. J. C. Delaney 62. T. G. McCreless 63. R. H. Odegaarden 6 4. R. L. Stevenson

AEC Idaho Operations Office

72. B. F. Estes

Aerojet Nuclear Corporation, Idaho Falls, Idaho

71. J. A. Eggert

Aktiebolaget Atoracncrgi

Studsvik, S-61101 NykSping 1, Sweden

69. R. Ekarv

Allied Chemical Corporation, Idaho Falls, Idaho

70. W. G. Morrison

Atomics International, Canoga Park, California

67. *. Ketzlach

Page 9: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

vii

Babcock and Wilcox, Lynchburg, Virginia

68. Mrs. Anne M. Schwartz

Bettis Atomic Power Laboratory, Westinghouse Electric Corporation

k9. Philip B. Beilin

CEN Mol

Health Physics Boeretung 200 Mol, Belgiiim

52. J. P. DeWorm

Douglas United Nuclear

32. H. Toffer 33. R. L. Miller 51. A. K. Hardin

E. I. diiPont de Nemours & Co. , Inc. , Savannah River Laboratory

60. H. K. Clark

Los Alamos Scientific Laboratory

50. D. R. Smith

Nat ional Lead Company of Ohio

h6. D. L. Dunaway

Nuclear Materials and Equipment Corporation

it5. B. B. Ernst

Oak Ridge National Laboratories

59. J. T. Thomas

Pacific Northwest Laboratories

29. C. L. Brown 30. E. D. Clayton 31. i^. G. Wittenbrock 35. C. L. Brown

73-7^. C. E. Newton (Emergency Control Center)

Page 10: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

viii

WADCO Corporation

16. C. A. Rogers

Westinghouse Electric Corporation, Pittsburgh, Pa.

53. Files

Union Carbide Corporation, Oak Ridge, Tennessee

57. W. T. Mee

Page 11: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED I-l ARH-600

I. ADMINISTRATION

A. INTRODUCTION

B. ADMINISTRATIVE POLICY

C. CRITICALITY CONTROL CRITERIA

D. AUDITS

E. EMERGENCY AND TRAINING

F. CRITICALITY PREVENTION IN FIRE FIGHTING

G. TRANSPORTATION AND STORAGE

UNCLASSIFIED

Page 12: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED I . A - 1 ARH-600

A. INTRODUCTION

l i s !v . t l an t i c

a n d

The a d m i n i t h e A may f i n d i c e d u r e s f o p o r t i n g , s u m m a r i z e d b i l i t y , c r conditions Policy Guid Criteria

trative portion of this book is specific for Richfield Hanford Company (ARHCO), but others

t useful and instructive. The policies and pro-r imposing restrictions on the processing, trans-

storage of fissile materials within ARHCO are here. This material covers lines of responsi-iticality prevention criteria and emergency much of which has been extracted from ARHCO es. Operating Instructions, and Technical

UNCLASSIFIED

Page 13: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED

B. POLICY

guides and policy, re

I.B-1 ARH-600

The management policy of the Atlantic Richfield Hanford Company (AJRHCO) regarding criticality prevention in facilities designed to process,transport,and store fissile materials is defined in a series of policy

operating instructions that delineates ikponsible personnel and the appropriate

authority necessary to assure compliance with the policy. Tlie policy for criticality prevention is that, in all of its activities involving fissionable materials, ARHCO shall exercise control such that the probability of a criticality incident is held at the lowest practical level. Where practicable, the design of manufadjuring and laboratory facilities and equipment handling fissionable materials will include geometric limitations to minimize the probability of a criticality incident. In addition, there will be a criticality prevention system based on written specifications and implemented by written administrative procedures. The specificatz.ons will establish limits so that no single credible ecjuipment failure or human error can cause a criticality incident. The written specifications will define limits in practical and administratively controllable terms. Appropriate personnel training and enforcement assure understanding of the specifications and appropi'iate use of the administrative procedures. Table B.l £;hows the responsibilities and relationships for criticcility control and Figure B.l shows the path for criticcility prevention specification development approval and auditing within ARHCO.

UNCLASSIFIED

Page 14: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED I.B-2 ARH-600

TABLE B.l

CRITICALITY CONTROL RESPONSIBILITIES

Control Mechanisms Initiate (1)

Technical Criteria R&D

Design Review

Hazards Review

Operating Specifications

Quarterly Audits

Annual Review and Audit

Personnel Training

Emergency Plans

Facility Changes

FE

Plant, OSE FE, R&D

R&D, OSE, FE

OSE

R&D

Each Component

Plant

R&D, FE

Approve

Vice President-Operations

R&D

R&D, OSE

Each Component

Plant

OSE, FE

Implement

Plant

Plant, FE, OSE

Plant

OSE, R&D

External Experts

Each Component

Plant

Plant

Advise

External Experts

R&D

R&D, FE

External Experts

R&D, FE, OSE

R&D, FE, OSE

R&D, OSE

(1) R&D

OSE

FE

Plant

= Research and Development Department

= Operations Support Engineering Department

= Facilities Engineering Department

= Any of the operating facilities.

UNCLASSIFIED

Page 15: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED

PATH FOR CRITICALITY PREVENTION SPECIFICATIONS

RESEARCH AND I3EVEL0PMENT

•>©

SEPARATIONS CHEMISTRY

I . B - 3

FIGURE B . l

ARH-600

8d OPERATIONS SUPPORT ENGINEERING

>Q)

MANUFACTURING LEPARTMENT

ADVANCE PROCESS DEVELOPMENT

8c

1 2 3 k 5 6

7 8

CritlcaLity Need for CPS is formulate^ Reviewed for Approved by Ifenai Approved by Mana Accepted by Man' Pu Process

Administered by (a) Continual (b) Continual (c) Quarterly

APD and (d) Annual audit

seLf

NOTE: Criticality Engineering for the Separ^t Engineering i

RESPONSIBLE OSE SECTION

RESPONSIBLE MFG SECTION

- • © - K Z ) - ^

_ J

NUCLEAR MATERIALS

-•N - i

Prevention Specifications (CPS) is identified. ., drafted, reviewed, and signed "by issuer.

tecimical content by Senior Engineer Criticality Prevention. ,?er of Research and Development. ger of Operations Support Engineering,

ufacturing Section, Separations Chemistry Laboratory, or Engineering.

the responsible Section or Laboratory. audit by responsible Section or Laboratory,

audit by responsible OSE Section. formal audit by representatives from Nuclear Materials, OSS.

of Chemical Processing Division by external experts.

Prevention Specifications applicable to the Facilities aptivities follow a route analogous to that outlined

ions Chemistry Laboratory. Operations Support involved only in the quarterly audit function.

UNCLASSIFIED

Page 16: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED

C. TECHNICAL CRITERIA FOR THE PREVENTION OF CRITICALITY -"-

(1)

INTRODUCTION

Atlanti Guide 1 Instruction Process cal of cri for spe of

Proces ti

proces Development is to def developing to be de on the cessing

The mere greater finite critica restri is s as needfed

stored

POLICY

In all ARHCO s of a cr cal levfe

3. SPECIFICATIONS

I.C-1 ARH-600

c Richfield Hanford Company (ARHCO) Policy .6.6, "Criticality Prevention," and Operating

1.6.6.2, "Criticality Prevention in Facilities," present the policy of the Chemi-

sing Division with respect to the control Lcality hazards, and delegate the responsibility cifying safe limits for the design and operation

s facilities to the Manager, Research and Department. The purpose of this document

ine the technical criteria to be used in the limits within which CPD facilities are

signed and operated. These criteria are based JDperating experience accumulated from the pro­of fissile materials since the year 1944.

existence of a fissile material in quantities than a minimum critical mass creates some

risk that criticality will occur. This risk of lity can be held to a very low value by imposing

ctions on the manner in which the fissile material or handled. Such controls are to be imposed

of its activities involving fissile materials, Iiall exercise control such that the probability ticality incident is held at the lowest practi-1.

ARHCO Policy Guide 1.6.6 and Operating Instruction 1.6.6.2 require that criticality prevention specifi­cations define the limits within which operating or experimental work may be performed; before issuance, these s]pecifications must be reviewed for technical adequac;,*- by a specialist in criticality calculations and approved by the Manager, Research and Development.

R. E. Tomlin Criticality, April 1971

son, "Technical Criteria for the Prevention of Chemical Processing Division, ARH-468 REV,

UNCLASSIFIED

Page 17: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED I.C-2 ARH-600

3.1 Materials to be Covered

All fissile materials shall be controlled by specifications unless specifically exempted below. Fissile materials are those nuclides capable of sustaining a nuclear chain reaction. Known fissile nuclides are: ^^^U, ^^U, ^^Np, ^^^Pu, 2^^Pu, - opu, - ipu, - Am, " Am, '' Am, 2'*'*Cm, 2'»7cjn 2I.^cf^ ^^^ 25icf.

The following materials are exempt from need for specifications:

Natural and depleted uranium.

Fifteen grams of " Am or any fissile nuclide with atomic number <95.

Two grams of any fissile nuclide with atomic number 95.

Uranium solutions, compounds and metal, if not latticed, enriched to £1.0 percent ^^^u or its nuclear equivalent.

. ^^^Np, ^^^Pu, "" Am, and '*'*Cm with H/X >5 in any amounts.

3.2 Assumptions

In formulating design and operating limits, the responsible process engineer shall consider all pertinent process conditions and failure possi­bilities. The worst foreseeable combination of fissile material density, diluent composition and distribution, reflection, interaction, and measurement uncertainty must be assumed. Some conditions may be assumed to be incredible if specifically excluded by technical or design considerations. For example, allowances may be made for neutron absorbers, i.e., nitrogen, boron, uranium-238, etc., that will be associ­ated with the fissile material, provided the presence of the absorber can be satisfactorily assured by technical factors or operational control. The use of the assumed conditions by the criticality specialist in reviewing the problem implies his consideration and acceptance of them.

UNCLASSIFIED

Page 18: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIEJD

3.3 Technical Review

o:: ai:i

pe

th^ ca th. ca th«;

specifications that are clearly referable to Lonally recognized criticality prevention data, technical review may be based on agreement

the specification and the data. For cifications based on calculations that cannot checked by simple reference to recognized data, review shall be made using two independent

J.culational methods or a specialist other than one making the original review will check the

Iculations.

th<5 between s be

3. 4 Ex]>erimental Basis

Sa and invo when ab op th^ fid WOlfl pe to

I.C-3 ARH-600

The specified limits shall be derived from ex]3erimental data whenever possible. In the absence of directly applicable experimental measurements, the limits may be based on theo-rei:ical calculations, provided the validity of the calculational method has been proven by co::relation with experimental data. Attempts shall be made to assign limits of error to both ex]3erimental and calculational results.

3. 5 Sa::ety Factors

ety factors must be included in all limits shall be appropriate for the degree of risk Ived. Minimum safety factors may be used the specified limits are directly refer-

e to experimentally verified values, when ns and design limits can be held within

specified limits with a high degree of con-nce, and when an accidental nuclear reaction Id produce a minimum of risk to operating

1 or production continuity and no hazard the public.

operatior

pe::sonne

Th<i keff to be used as peannissible upper limits fo:: the worst foreseeable conditions is defined below for three levels of confidence in the accuracy of the calculated k^ff value:

a. If reliable experimental data exist for closely similar systems and adequate cal­culational techniques exist for relatively

UNCLASSIFIED

Page 19: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED I.C-4 ARH-60 0

small extrapolation of the data, the kgff of spheres and cylinders shall not exceed 0.98 and the k ^ ^ of slabs shall not exceed 0.97. ^^^

b. If limited experimental data exist for a similar system and relatively large but reasonable extrapolations are necessary, the calculated keff of the system shall not exceed 0.95.

c. If no applicable experimental data are available such that calculations must be based on theory derived from experimental data, the calculated k^ff of the system shall not exceed 0.90.

Increased safety factors should be used in some conditions as noted below.

3.5.1 Probability of Error

Safety factors shall be proportionate to the probability that the specified criticality prevention limits will be exceeded. For example, it is pos­sible to specify the exclusion of water or equipment dimensions with a high degree of confidence. On the other hand, a possible operating error has a finite probability of being committed at some time in the future.

3.5.2 Risk to Personnel

Sizable and multiple safety factors are desirable when personnel are to be located in the proximity of fissile materials; conversely, when a massive shield is interposed between the fissile material and personnel, a somewhat higher risk of criticality can be tolerated. In this context, a massive shield is defined as at least two feet of ordinary concrete or its attenuation

»

UNCLASSIFIED

Page 20: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED I.C-5 ARH-600

equivalent for the neutrons and gamma rays emitted during a nuclear excursion; the shield and other containment barriers should have sufficient mechanical strength to confine any materials dispersed by the potential reaction.

3.6 Al!LoWance for Emergencies

Re<3ognizing that gross contamination of the en ?'ironment would create a greater cumulative hazard than would be created by nuclear criti­cality, the specifications may permit actions involving an increased risk of criticality if necessary to protect a facility from incipient loiss of confinement barriers by fire or ex]3losion.

4. SAFETY MECHANISM LIMITS

ted The seve preven safety or combinati given s conside mechani duction

ral mechanisms whereby criticality may be are listed below in decreasing order of

Assurance. The decision as to which mechanism, ion of mechanisms, is to be used in a

ituation shall represent a balanced judgment, :ring the possibility for failure of each sm, the degree of risk to personnel or pro-continuity, and the cost of implementation.

In spec;Lfying limits on dimensions, concentrations, or masses, all credible conditions must be considered.

4.1 Geometrically Safe Equipment

^ARHCO Oper Prevention

Geometrically safe equipment is subcritical by rtue of neutron leakage under all possible

tions of inventory and reflection. To be geometrically safe" the diameter of a cylinder

be specified as no more than 2.8 inches, B inches, or 1.7 inches for handling uranium-5, uranium-233, or plutonium, respectively;

ijnilarly, the thickness of a slab shall be

VI coiidil

shkll 1. 23 s •

ating Instruction 1.6.6.3, "Criticality in Fire Fighting," 19 71.

UNCLASSIFIED

Page 21: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED I.C-6 ARH-60 0

specified as no more than 0.5 inch, 0.2 inch, or 0.25 inch, respectively.

These limits are so restrictive that large-scale processing of fissile materials in "safe" equipment would be prohibitively expensive.

4.2 Geometrically Favorable Equipment

Geometrically favorable equipment is subcritical, by virtue of neutron leakage, under the worst foreseeable process conditions. The absence of water flooding or sufficient inventory to sustain a fast neutron reaction may be assumed if these conditions can be maintained with minimal admin­istrative control; such assumptions, if made, must be recorded as a precluded condition in the criticality prevention specification applicable to that facility. The reliance on one dimension of a vessel controlling the reactivity parameters requires that all other dimensions of the vessels either be physically limited by available space or be included in the calculations as infinite dimensions.

The following values are permissible upper limits under the worst foreseeable process conditions, assuming directly applicable criticality data or standards and normal failure potential. If greater uncertainty exists in either the technical basis for the specification or the assurance of control, proportionately greater safety factors as specified in section 3.5 b and c shall be used.

4.2.1 Cylinders

To be "geometrically favorable" the diameter of a cylinder is limited to a maximum value which corresponds to a keff no greater than 0.9 8 or to 95 per­cent of the critical diameter.

4.2.2 Slabs

To be "geometrically favorable" the thickness (the smallest dimension) of a slab is limited to a value which corresponds to a keff no greater than

UNCLASSIFIED

Page 22: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED I.C-7 ARH-600

0.9 7 or to 90 percent of the critical slab thickness.

4.2.3 Irregular Shapes

For vessels of unspecified or irregular shape, the permitted volume is no more than 75 percent of the minimum volume that would be critical at optimum concentration.

4.3 Fii:ed Poisons

4.4 Nu

Wh^n "fixed poisons" are used to prevent nuclear ticality, the equipment must be so constructed

th^t neutron absorbers in the structure prevent ticality under all foreseeable process condi-

(pns. Fixed poisons are normally used in a sel in such a manner as to permit an increase the size of a critically favorable vessel, allowable fissile mass, the allowable fissile centration, or some combination of the three,

c inspections shall be specified, as ired by the "fixed-poison removal potential

the system," to verify the quantity and loca-^n of the poison in the structure. In no case 11 inspection intervals exceed one year.

cr:L tha cr:L ti ve in th^ con Pe::iodi( re(jui] of ti sh

lear Blanks

A huclear blank consists of a physically removed secrtion of a process line. Nuclear blanks are used in lines from flushing or utility chemical headers to process equipment when the inadvertent addition of a chemical could cause criticality, su:;h as by precipitation.

4.5 Ad:ninistrative Controls

Wh^n it is not practical to prevent criticality using favorable geometries or fixed poisons, liance must be placed either on limitations mass or concentration, or on the presence of

oluble poisons. The process conditions so controlled by operating personnel shall be

to insure that neutron loss by leakage absorption will prevent criticality even

by r e of s

l i t i i t e d o r

UNCLASSIFIED

Page 23: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED I.C-8 ARH-6 0 0

though any single credible error or omission has been committed. Instruments and/or me­chanical devices are provided to assist opera­ting personnel to measure and control the process conditions within prescribed limits.

The following values are permissible upper limits for each mechanism of control, assuming directly applicable criticality data or standards and normal failure potentials. If greater uncertainty exists in either the technical basis for the specification or the assurance of control, pro­portionately larger safety factors shall be used.

4.5.1 Control by Mass Limits

The quantity of fissile material in a given location is to be limited to an amount less than half that required to sustain a nuclear reaction under any credible conditions of geometry, modera­tion, and reflection. A double batched condition shall not result in a keff higher than the applicable limit in Section 3.5 under the worst foreseeable conditions.

In continuous processing systems located behind massive shielding, the quantity of fissile material in a vessel is limited to a maximum of 75 percent of the mass required to cause a criticality in that vessel under the worst credible condition; the keff of the system under this condi­tion must be within the appropriate limits of 3.5 above. If the continuous processing system is located in an area normally occupied by personnel, the mass in a vessel is limited to less than 50 percent of the mass required for criti­cality under the worst credible conditions in that vessel.

4.5.2 Control by Concentration Limits - Solutions

The concentration of fissile material dissolved or dispersed in another medium is to be limited such that neutron absorp­tion in the diluent prevents criticality.

UNCLASSIFIED

Page 24: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

I.C-9 ARH-600

The permitted concentration of fissile materials in solution shall not be greater than 50 percent of the minimum critical concentration in that vessel; if the vessel is behind a massive shield, the permitted concentration may be 75 percent of the minimum critical concen­tration. In neither case shall the keff at the allowable concentration exceed the applicable value listed in 3.5. In addition, there shall be specified for the vessel a mass limit such that the keff of the system shall not exceed the applicable value listed in 3.5 under the worst conditions attainable by the inad­vertent concentration of the fissile material, as by precipitation, evapora­tion, etc.

Control by Concentration Limits - Arrays

The dispersal in space of discrete accumulations of fissile materials is controlled with respect to geometry and distance such that the nuclear reactivity of any single subcritical unit is not significantly increased by the mutual exchange of neutrons (interaction) with adjacent units. For a planar or three-dimensional array, the permitted array shall either have a keff no greater than the applicable value listed in 3.5 for the worst foreseeable conditions or shall be limited in number of units to one-half that calculated to be a critical reflected array. Double batching of a single unit in the array must not exceed the designated keff.

Control by Soluble Poisons

Neutron absorbing materials are to be in solution with the fissile materials in sufficient concentration to prevent criti­cality under all foreseeable process conditions. If reliance is placed on the presence of a soluble nonprocess neutron

UNCLASSIFIED

Page 25: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED I.C-10 ARH-600

absorber to avoid criticality, the minimum poison concentration shall be specified such that the keff of the system shall not exceed the applicable value listed in 3.5 for the worst fore­seeable conditions. The term "worst foreseeable conditions" must include consideration of mechanisms that might change the poison (absorber) concen­tration, as well as potential changes in fissile atom concentrations.

Soluble poisons shall not be used as the primary means of precluding criticality unless the system is behind a massive shield. Soluble poisons may be used in unshielded systems as a secondary con­trol to be operative in the event that the primary control mechanism is voided.

5. FIRE FIGHTING

In areas containing fissile materials, the requirements of ARHCO Operating Instruction, 1.6.6.3, "Criticality Prevention in Fire Fighting," shall be considered in all criticality prevention requirements. For example, when specific fire fighting systems (such as automatic sprinkler systems or fire fog) are allowed, the system shall be limited by design such that the addition of the fire fighting media will not permit criticality via increased moderation, reflection, dilution, etc.

UNCLASSIFIED

Page 26: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED

D. AUDITS

One of the auditing f o f the cedures wi criteria, function s a design normal opera

most important aspects of safety is the unction which determines the compliance

designs and administrative pro-th established criticality prevention Experience has shown that the auditing

jiould be started near the beginning of ect and be carried on during subsequent tion as a routine event.

equipment

pro3

1. Design

A crit piece necess to es for design be rev each i in the the c review as cri the of review up of safety

iaasis,

I.D-1 ARH-600

Review

t(abl; future

icality review of the scope design of each of equipment and of the overall facility is ary at the very beginning of a new project

ish the safety parameters and guidelines detailed design. Using the scope

review as a guide, the detailed design should iewed as often as necessary to assure that Individual piece of equipment is subcritical worst foreseeable process condition. At

etion of the design phase, a hazards (including all elements of safety, as well

ticality) should be conducted. The depth of depends on the complexity of the piece

equjLpment or new facility. A final hazards in depth should be made just prior to the start-

a new facility and may form the basis for a analysis report.

oinpl(

review

2. Criticality Prevention Specification

Coincidental with the final hazards review (or slightly before) the criticality prevention specifications are prepared by the responsible department using the technical criteria as a

The acceptance of these specifications by the plant operations manager implies that adequate administrative procedures can be formulated and enforced and that these procedures are auditable. These specifications may be modified at any time,

UNCLASSIFIED

Page 27: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED I.D-2 ARH-600

but the modification requires the same signatory approval as the original specification.

Subsequent day-to-day audits by the operational personnel, quarterly audits by Operational Support Engineering and Research and Development personnel, and annual audits by external criticality specialists form a sound basis for criticality control. The reports of these audit groups give a measurement of the adequacy of criticality prevention throughout Atlantic Richfield Hanford Company (ARHCO).

Facilities Change Notice

The operation of any plant requires modification and/or equipment replacements on a day-to-day basis. Hazards control in major projects is handled via scope reviews, criticality prevention specifications, etc., as defined above. A small equipment modifi­cation or a series of small modifications, however, could result in a loss of control and could end in a criticality incident. To assure adequate and continuous control of criticality, a facilities change notice is employed to describe any planned physical changes to plant or equipment. The notice once initiated by a responsible person is submitted to the Operations Support Engineering group for review for potential chemical or criti­cality hazards. When appropriate, nuclear safety experts are requested to review the change. All changes involving equipment handling fissile materials must be reviewed prior to making the physical change.

If the facility change is considered to affect criticality safety adversely, a hazards review is made.

UNCLASSIFIED

Page 28: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED

E. TRAINING AND EMERGENCY

1. Training and Alarm Systems

Atlant :tion

At sec train ef fee respon consis famili equi and Divis of fis visors Train

m g

lar; pitient,

erne

m g procedure are and progre

I.E-1 ARH-600

ic Richfield Hanford Company (ARHCO), each manager is responsible for providing programs for his employees as required to

tjively discharge his criticality safety sibilities. The overall training program ts of a series of general lectures and

ization with the type and use of plant nuclear physics, criticality prevention,

rgency procedures. Chemical Processing i|on employees concerned with the manipulation sile materials are trained by their super-

Two chapters of the Chemical Operator Manual, ARH-35, are concerned with emergency s and nuclear safety. All chemical operators ired to complete a formal training program

ists are maintained to show individual requ checkl;

ss

Each plant manager is responsible for the maintenance of a criticality alarm system and building personnel evacuation procedures. The safety of building visiters is specifically included in the procedures. Part of the employee training program includes the testing of these evacuation alarms and procedures at sufficient intervals to be sure that all building personnel are trained to respond satisfactorily to the criiticality alarm.

UNCLASSIFIED

Page 29: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED

CRITICALITY PREVENTION IN FIRE FIGHTING

The first most ef be taken the burninjg general in an and exting^ facilitate

three minutes of a fire's existence is the ifect

to

purpo approved

In areas is limited criticali consequence the envi of a nucl therefore to be nece structures

cpntaining fissile materials, the use of water as outlined below to keep the risk of nuclear

Lt|y at an acceptably low level. However, the s of releasing alpha-radioactive materials to

rotnment would probably exceed the consequences ear criticality. The senior fire officer is authorized to use whatever methods he judges ssary to preserve the integrity of building

Chemical are categ agents posting Company use by o

or that

1. Defini

to packaging fi_ been d critic

A

I.F-1 ARH-600

ive time to fight it. Prompt action should apply an extinguishing agent or to isolate material. Since water is the most efficient se agent for fighting fires, its early use manner is encouraged. Automatic detection

ishing systems are generally recommended to early and effective control of fires.

processing facilities (or areas within facilities) ized and posted to denote the fire fighting can be used safely. The classification and

s used by Atlantic Richfield Hanford (AJRHCO) are consistent with those currently in

Hanford contractors.

methods

ther

tions

The risk that a criticality could be caused by adding water to chemical processing facilities varies from zero to high, depending on the quantity, form and

of the fissile materials present. For fire ghting purposes, chemical processing facilities have

ivided into four categories, depending upon the ality risks involved, as follows:

Category Probability of Criticality if Water is Added

Zero. The addition of water to the facility cannot cause criticality because the quantities of fissile materials present are too small.

UNCLASSIFIED

Page 30: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED I.F-2 ARH-600

B Minimal. The likelihood of criticality resulting from fighting a fire with water is very small. While fissile materials are normally present in quantities exceeding a minimum critical mass, the fissile materials are in a form, in packaging, or so stored that criticality is practically impossible.

C Finite. Under some foreseeable conditions, the addition of water could cause criticality. This category embraces two types of areas:

1. Those process areas in which fissile materials are normally present in quantities exceeding a minimum critical mass; the fissile materials are normally held in such a manner that the addition of water would not cause criticality.

2. The personnel working areas immediately surrounding Category D facilities.

D High. Fissile materials are normally present in a configuration that could be made critical by the addition of water, or the configuration is very likely to be changed by fire such that the addition of water could cause criticality.

2. Designation of Areas

Each Criticality Prevention Specification has a Fire Fighting Section in which the fire fighting categories assigned to the facilities covered will be specified along with any special fire fighting restrictions or precautions. The assigned categories are subject to change with changing process or equipment. All plant areas not specifically mentioned in Criticality Prevention Specifications are in Category A.

To provide immediate fire fighting guidance, all areas (except Category A) are posted with an appropriate noncombustible sign denoting the fire fighting category for that area. The signs should be mounted 1/8 inch from the surface to which they are attached and positioned in the center of and immediately above the entrance to each categorized area. Usually this will

UNCLASSIFIED

Page 31: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED

be on height will opposi in "Scotch

be

black

CATEGORY A:

CATEGORY B:

I.F-3 ARH-600

the face of the door frame. Where the of the door exceeds seven feet, the sign posted at a height of six feet on the frame

te the door hinges. Each sign will be lettered in the shapes and colors indicated below.

Lite" reflective colors are recommended.

CATEGORY C;

CATEGORY D:

Fire Fighting Precautions

ajiproved rategcry The c in ani CO2, provi the f| water unlesEi management Howevgr the senioit of dis

No posting.

Diamond shape with a fluorescent green background showing the letter "B". Areas excluded from posting require­ments are B Plant process cells, underground waste tanks, vaults, and cribs.

An equilateral triangle with a fluorescent red background showing the letter "C" is used to denote rooms or areas. A square sign with the notation "C HOODS" on a fluorescent orange background is used to denote glove boxes or other enclosures within a room.

A round sign with a fluorescent blue background showing the letter "D" is used to denote rooms or areas. A rectangular sign with the notation "D HOODS" on a fluorescent yellow background is used to denote glove boxes, refrigerators or other enclosures within a room.

methods of fire fighting in each are listed below. There are no restrictions

of the categories for the use of dry chemicals, Efreon-1301, high expansion foam, and inert gases ing the methods do not displace or rearrange ssile materials. Restrictions on the use of as defined below and in Table F.l are observed authorization from the attendant building

is obtained at the time of emergency, every effort is made to prevent a breach of

bijiilding confinement. When in the opinion of the fire officer, there is imminent danger of loss

he is allowed to fight the fire at his after considering all circumstances.

control. cretion

UNCLASSIFIED

Page 32: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED I.F-4 ARH-600

Category A Areas

No special criticality precautions are taken in fighting fires in Category A areas. Automatic fire fighting systems of any approved type may be installed, and water may be used in any quantity or form.

Category B Areas

No special criticality precautions are taken by fire fighters in Category B areas. Automatic fire fighting systems of any approved type may be installed. While water may be used in any quantity or form, the use of high expansion foam or water fog is preferred over a stream of water to minimize the probability of relocating fissile materials into a critical array. Operating personnel are to be alert to the possibility that fissile materials could be pushed together as a result of the fire or fire fighting efforts (e.g., collapsing structures, gushing water, etc.) there­by significantly increasing the risk of criticality.

Category C Areas

Plans for the use of water to fight fires in Category C areas are incorporated into the Criticality Prevention Specifications applicable to the facility involved and may include dry chemicals, water fog, high expansion foam or automatic sprinkler systems. Automatic fire fighting systems which use limited amounts of water may be recommended. Fire fighters should not direct a solid stream of water at process equipment or floor areas in the vicinity without prior clearance from the attendant building management or in his absence, the senior fire officer.

Fire fighters should be alerted to the possibility that fissile materials in the hoods may have been or may be rearranged from their normal position into a more reactive configuration. If possible, an assessment of the additional risk of criticality should be made, preferably by operational personnel before the fire fighting methods other than those permitted above are used.

Situations which potentially present a hazard include the following:

a. The widespread accumulation of process solution or solids on the floor or in a sump to a depth of two inches or greater;

UNCLASSIFIED

Page 33: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED I.F-5 ARH-600

b. An accumulation of resin or other process solids in a mound more than four inches high;

c. Burning plutonium metal; or

d. Metallic plutonium if it has been deformed or displaced from its normal position.

Category D Areas

Directions for the use of water to fight fires in Category D areas is incorporated into the Criticality Prevention Specifications applicable to the area. Automatic fire fighting systems which use water are not permitted, and the inadvertent drainage of water into these areas is precluded by design. The use of water fog will be acceptable under conditions listed in the Criticality Prevention Specifications. Fire fighters should not use water in any other forms without prior clearance from the attendant building management or, in their absence, the senior fire officer. If the confinement barriers enclosing a Category D area are destroyed during a fire, a prudent decision must be made, after considering the immediate facts, as to what means of fire fighting will be required to minimize injury to personnel, uncontrolled contamination spread and damage to facilities,

4. Responsibilities

The processing, storing or transporting of fissile materials within chemical processing facilities is controlled by Criticality Prevention Specifications. All chemical processing areas containing fissile material are categorized for fire fighting and the category listed in the Criticality Prevention Specification.

In addition, the following specific responsibilities are assigned to each Operations Division Department Manager with respect to those areas under his functional control:

a. Implementing the fire fighting restrictions covered in this Operating Instruction.

b. Posting the facilities under his jurisdiction and keeping the posting current.

UNCLASSIFIED

Page 34: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED I.F-6 ARH-600

c. Providing procedures and training for fire fighting.

d. Keeping the Fire Protection Section informed as to the categories currently assigned to the various work areas.

UNCLASSIFIED

Page 35: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

TABLE F.l

RECOMMENDED FIRE-FIGHTING CONTROLS DEFINED BY CATEGORIES

Category

Nuclear Considerations

Fissile material present, relative to minimiim critical mass

Normal basis for avoiding criticality

Less than

Limited total mass

More than

Dilution, or limited mass per ft^

More than

Specified geo­metry and/or limited mass per ft'

More than

Specified geo­metry and/or limited mass per ft^, plus absence of H2O

Installed Fire-Fighting Systems

Solid stream of water Permitted Water fog Permitted High-expansion foam Permitted

Discouraged Permitted Permitted

Excluded Permitted Permitted

Excluded Selective Permitted

(1)

a o > en w H ^^ H M D

Deluge Type

Sprinkler or Water Fog

Automatic operation Manual operation

High-Expansion Foam

Automatic operation Manual operation

Recommended Controls on

Permitted

Permitted Permitted

Permitted Permitted

Activities of

Advice needed from opera- None tions on use of water

Use of Aqueous Fire-Fighting Agents

Discouraged

Permitted Permitted

Permitted Permitted

Firemen

May be volunteered

Excluded

Permitted Permitted

Permitted Permitted

Selective •'•

Excluded

Excluded ,, , Selective

Permitted Permitted

Recommended

\—\

<i

permitted in Criticality Prevention Specifications, I o o

Page 36: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED I.G-1 ARH-600

G. PACKAGING OF FISSILE MATERIALS AND ON-SITE TRANSPORTATION

Atlantic Richfield Hanford Company (ARHCO) complies with all applicable Department of Transportation and Atomic Energy Commission (AEC) Regulations for packaging radio­active materials for off-site transportation. Inter­national shipments will also comply with all applicable IAEA Regulations. Responsibility and accountability for the package and its contents transfers to the AEC at the Company's dock. For on-site shipments the package and method of transportation must also comply with AEC Regulations. Only approved off-site and on-site shipping and storage containers are used. See Sections II.F.3, 4, 5, and 6 for approved containers and allowed array sizes.

1. Fissile materials are those nuclides capable of sustain­ing a nuclear chain reaction. However, for criticality safety it is not necessary to consider as fissile those fissile nuclides which, under any conceivable conditions, could not possibly be accumulated in sufficient amount, or in the proper form, to exceed a safe mass. Nuclides currently considered fissile are: ^^^U, ^^^U, ^^^Np, ^''Pu, ^^^Pu, ' ''Pu, ^'^^Pu, 2'* Am, " Am, - Am, ^ ' Cm, " Cm, ' '*Cf, and ^^^Cf. Natural and depleted uranium are not considered fissile materials. See DOT Regulations for other exemptions.

2. Fissile radioactive material packages are classified according to the controls needed to provide nuclear criticality safety during transportation as follows:

a. Fissile Class I packages may be transported in unlimited numbers, in any arrangement, and require no nuclear criticality safety array con­trols during transportation. A transport index is not assigned to Fissile Class I packages for purposes of nuclear criticality safety control. However, the external radiation levels may require assignment of a transport index.

b. Fissile Class II packages may be transported together in any arrangement, but in numbers which do not exceed an aggregate transport index of 50. For purposes of nuclear criticality prevention, the transport index of an individual package shall not be less than 0.1 nor more than 10 and shall be the higher of the two values required by either external radiation levels or criticality prevention. Such shipment requires no nuclear criticality safety control by the shipper or carrier during transportation.

UNCLASSIFIED

Page 37: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED I.G-2 ARH-600

c. Fissile Class III shipments contain packages which do not qualify as Fissile Class I or II packages. Nuclear criticality prevention and radiation control during transportation are provided by special arrangement between the shipper and the carrier.

3. Miminum Critical Mass (MCM) is the smallest amount of fissile material of a specific type, physical form, and enrichment which is capable of sustaining a nuclear chain reaction under optimum conditions.

4. Criticality Safety and criticality prevention are used synonymously; the terms refer to the limits established to prevent nuclear chain reactions in a nonreactor environment.

5. Off-site Shipment is the movement of material from ARHCO facilities to any receiver other than the on-site Hanford contractors listed below:

Atlantic Richfield Hanford Company

Battelle Memorial Institute - Pacific Northwest Laboratory

Douglas United Nuclear

Hanford Environmental Health Foundation

J. A. Jones Construction Company

WADCO

6. International Shipment is the movement of material outside the continental boundaries of the United States.

7. Packager is the manager of the section which prepares or directs the preparation of a package for off-site shipment and transfers the package to AEC-RL for transport.

8. Shipper is the manager of the section which prepares or directs the preparation of a package and delivers it to an on-site Hanford contractor. Off-site shipments are made by the Richland Operations Office of the Atomic Energy Commission.

9. Transport Index means the number placed on a package to designate the degree of control to be exercised by the carrier during transport. The transport index for a package of radioactive material shall be determined by: (1) the highest radiation dose rate, in millirem per hour at three feet from any accessible

UNCLASSIFIED

Page 38: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED I.G-3 ARH-600

external surface of the package; or (2) for Fissile Class II Packages only, the number calcu­lated by dividing the number "50" by the number of similar packages which may be transported together.

10. Packaging, Posting, and Transporting Procedures are prepared for the first shipment of a series of shipments, or for a one-of-a-kind type shipment. Ensuing packaging routinely follows this established procedure until it is modified. The manager of the responsible section must determine, with the aid of supporting engineering groups, that the package posting and transportation meets all the applicable Federal Regulations as well as ARHCO Criticality Prevention Specifications.

UNCLASSIFIED

Page 39: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED II-1 ARH-600

II. ENGINEERING DATA

A. USEFUL TABLES AND CONSTANTS

B. BUCKLING AND OTHER NUCLEAR PARAMETERS

C. PLUTONIUM PHYSICAL PROPERTIES

D. URANIUM PHYSICAL PROPERTIES

E. REFLECTOR SAVINGS AND EXTRAPOLATION DISTANCES

F. MISCELLANEOUS

Revised IO/5/7O UNCLASSIFIED

Page 40: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED I I . A . 1 - 1 ARH-600

FUNDAMENTAL CONSTANTS

Name

Avogadro's Number (Physical Scale) NQ

Base of Natural Logarithms e

Curie c

Gravitational Acceleration g

Mass Unit, Atomic amu

Planck's Constant h

Pi TT

Stefan-Boltzmann Constant k

Universal Gas Constant R

Velocity of Light c

Wave-Length Associated ^ Q with 1 ev

First Zero of liie Zero Order J Q Bessel Function of the First Kind

Value

6.021+9 X 10^^ molecules/gm mole ( p h y s i c a l s c a l e )

2.TI83 . . .

3.T X 10^^ d i s / s e c

980.7 cm/sec^

1.65979 X 10-^* gras = 1.0000 amu

6.625 X 10"'^''' e rg - sec

3.li+l6 . . .

5.67 X 10"® erg/cm•-deg*-sec

1.380 X 10"^® e rg /degree

0.08206 l l ter -a tm/gm-mole/°K

2.998 X 10^" or 3 X 10^° cm/sec

12397.67 Angstroms

2.il-0i+82 . . .

USEFUL VARIATIONS ON FUNDAMENTAL CONSTANTS

TT^ = X' -Jo^ =

e""- -.

^ --

-. 9.8696

31.006

= 5.7831

= 7.3890

= 20.085

UNCLASSIFIED

Page 41: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UlICLASSIFIED I I , A . 2 - 1 ARII-oOO

LETTGTH

Length

1 meter

1 yard

1 foot

1 inch

1 cen t imete r

1 ini l imeter

m

1

0 .9 ly^

0.30i».8

.025^

.01

.001

yd ._

1.0936

1

0.3333

.0278

.0109

.00109

f t .

3.28

3

1

.0833

.0323

.00328

i n .

39.37

36

12

1

0.3937

.03937

cm

100

91.Uii-

30.1+8

2.5I+

1

0 .1

mm

1000

911+.1)-

3014.. 8

25.1+

10

1

AREA

Area

square foot

square inches

square cen t imete rs

Volume

culoic foot

ga l lons

l i t e r s

cubic inches

cubic cen t imete rs

i-iass

kilograms

pounds

r^rams

ft^ m"- cm'-

1

.00691+

.001076

f t 3

1

0.1337

.0353

.00058

.0000353

1 ^

1

o.ii-536

.001

VOLUI/E

g a l .

7.1+81

1

O.26I+2

.OOl'.33

.0002 oil-

MASS

l b .

2.201+

1

.0022

111+

1

0.155

1

28.32

3.7853

1

.0161+

.001

s 1000

^53.59

1

in3

1,728.

2 3 1 .

61.025

1

.061

929.03

6.1+516

1

cm3

28,317.

3785.1+

1000

16.387

1

UNCLASSIFIED

Page 42: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

Density

pounds per

pounds pel

gi-ams p e r

grams pe r

Energy

1 Kw h r

1 Btu

1 f t l b

1 c a l

1 Mev

Itess Energ

1 l'.te.ss Uni

1 Mev

1 Erg

1 Ca lo r i e

UNCLASSIFIED

• cubic foo t

• g a l l o n

l i t e r

cubic c e n t i m e t e r

Kw h r

1

2 . 9 3 X 10-^

3.77 X 107

1.16 X 10"^

1+.1+5 X 10-20

y I^lass Unit

t (mu) 1

1.07 X

670

2 . 8 1 X

l b s / f t 3

1

7.1+81

.05805

62.1+3

Btu

3^12

1

1.29 X

3.97 X

1.52 X

I I . A . 2 - ;

DENSITY

l b s / g a l

0.1337

1

.00776

8.31+52

ENERGY

2

5

f t :

.66 X

7 7 8 . 1

10-3 1

10-3 3

10-16 1

MASS ENERGY

931

10-3 1

6.

10^° 2 .

Mev

,21+ X 10^

.62 X 10^3

.088

.18 X

1.1+9

1.60

1

g / 1

16.02

119.83

1

1000

lb

10^

10-13

Erg

X 10"^

X 10-6

1+.186 X lo'i'

g/cm3

.01602

0.11983

.001

1

c a l

8 .60 X lo5

252

O.32I+

1

3 .83 X 1 0 - 1 ^

C a l o r i e

3.56 X I Q - l l

3.82 X 10" !^

2 .39 X 10-8

1

ARH-600

Mev

2.21+ X

6 .58 X

8.1+6 X

2 . 6 1 X

1

10I9

10I5

1 0 ^

10^3

POWER

Power

1 Hp

1 Kw

1 B tu /h r

1 c a l / s e c

1 Mev/sec

Hp

1

1.31+1

3.93 X 10-^

5 .61 X 10-3

2 .15 X 10-1'=

Kw

0.7^+57

1

2 .93 X 10-^

I+.18 X 10-3

1.60 X 10-16

B tu /h r

251+1+

3^12

1

II+.29

5.^7 X 10' -13

c a l / s e c

1 7 8 . 1

239

0.070

1

3 .83 X 10' -11+

Mev/sec

1+.65 X 10I5

6.21+ X I 0 I 5

1.82 X 1 0 ^

2 . 6 1 X I 0 I 3

1

Revised: IO/5/7O UNCLASSIFIED

Page 43: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIT'IED II .A.2-3 ARH-600

INCHES V. CENTIMETERS

Inches

1

2

3

1+

5

O

7

8

9

10

11

12

13

11+

15

16

17

18

19

20

cm

2 . 5 ^

5.08

7.62

10.16

12.70

15.21+

17.78

20.32

22.86

25.^0

27 .9^

30.1+8

33.02

35.56

38.10

1+0.61+

1+3.18

i+5.72

1+8.26

50.80

Inches

21

22

23

21+

25

26

27

28

29

30

31

32

33

3k

35

36

37

38

39

1+0

cm

53.3^^

55.88

58.1+2

60.96

63.50

66.01+

68.58

71.12

73.66

76.20

78 .7^

81.28

83.82

86.36

88.90

91.1+1+

93.98

96.52

99.06

101.60

UNCLASSIFIED

Page 44: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

IMCLASSIFIED II.A.2-ij- iVBH-oOO

FRACTIONS TO DECIMALS To 4*h Decimal

1/2 O.S 1/3 0.3333+ 1/4 0.25 1/5 0.2 1/6 0.1667-1/8 0.125

1/64 1/32 3/64 1/16 S/64 3/32 7/64

1/8 9/64 5/32 11/64 3/16 13/64 7/32 15/64

1/4 17/64 9/32 19/64 5/16 21/64

.015625

.03125

.046875

.0625

.078125

.09375

.109375

.125

.140625

.15625

.171875

.1875

.203125

.21875

.234375

.25

.265625

.28125

.296875

.3125

.328125

1/9 0.1111 + 1/10 0.1 1/11 0.09091-1/12 P.08333+ 1/13 0.07692+ 1/14 0.07143-

— Exact Values -

11/32 .34375 23/64 .359375

3/8 25/64 13/32 27/64 7/16 29/64 15/32 31/64

1/2 33/64 17/32 35/64 9/16 37/64 19/32 39/64

.375

.390625

.40625 421875 .4375 .453125 .46875 .484375

.50

.515625

.53125

.546875

.5625

.578125

.59375

.609375

1/15 1/16 1/17 1/18 1/19

0.06667-0.0625 0.05882+ 0.05556-0.05263+

1/20 0.05

5/8 .625 41/64 .640625

21/32 43/64 11/16 45/64 23/32 47/64

3/4 49/64 25/32 51/64 13/16 53/64 27/32 55/64

7/8 57/64 29/32 59/64 15/16 61/64 31/32 ' 3/64

65625 671875 6875 .703125 ,71875 ,734375

.75

.765625

.78125 796875 8125 .828125 ,84375 ,859375

.875

.890625 ,90625 ,921875 .9375 953125 ,96875 .984375

Ul'ICLASSIFIED

Page 45: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCL' SSIFIED II.A.2-5 ABI-I-600

UWITS

Factor by Which Unit is Multiplied

12 10'

io9

10"

io3

102

10

10 -1

10-2

10-3

10-°

10-5

10-12

10-15

10 -13

Prefix

tera

giga

mega

kilo

hecto

deka

deci

centi

milli

micro

nano

pico

femto

atto

Symbol

T

G

M

k

h

da

d

c

m

n

P

f

a

UNCLASSIFIED

Page 46: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED I I . A . 2 - 6 ARH-6 00

DimNSIONS of Seam/ess and Welded STEEL PIPE ASA-B36.10 ond B36.19

NOMINAL

SIZE

NOMINAL WALL THICKNESS FOR

SCHED, SCHED. SCHED. SCHEO. STAND- SCHED. SCHED. 5* 10* 20 30 AROt 40 60

SCHED. SCHED. SCHED. SCHED. SCHED SO 100 120 140 160 STRONG

0.405 0.540

0.049 0.065

0.068 0.088

0.068 0.088

0.095 0.119

0.095 0.119

0.675 0.840

0.065 0.083

0.091 0.109

0.091 0.109

0.J26 0.J47

0.126 0.147 0.187 0.294

1 1.050 1.315

0.065 0.065

0.083 0.109

0.113 0.133

0.113 0.133

0.J54 0.J79

0.154 0.179

0.218 0.250

0.308 0.358

P 4 1.660 1.900

0.065 0.065

0.J09 O.J 09

0.140 0.145

0.140 0.145

0.J9J 0.200

0.191 0.200

0.250 0.382 0.281 0.400

2.375 2.875

0.065 0.083

O.J 09 O.J 20

0.J54 0.203

0.154 0.203

0.2 J 8 0.276

0.218 0.276

0.343 0.375

0.436 0.552

3 5%

3.5 4.0

0.083 0.083

0.120 0.120

0.216 0.226

0.216 0.226

0.300 0.318

0.300 0.318

0.438 0.600

4.5 5.563

0.083 O.J 09

O.J 20 O.J 34

0.237 0.258

0.237 0.258

0.337 0.375

0.337 0.375

0.438 0.531 0.674 0.500 0.625 0.750

6.625 8.625

O.J 09 O.J 09

O.J 34 O.J 48 0.250 0.277

0.280 0.322

0.280 0.322 0.406

0.432 0.500

0.432 0.500 0.593

0.562 0.718 0.864 0.718 0.812 0.906 0.875

26 O.D. 30 O.D.

26.0 30.0 0.312 0.500 0.625

0.375 0.375

0.500 0.500

10 12

14 CD. 16 O.D.

18 O.D. 20 O.D.

22 O.D. 24 O.D.

10.75 12.75

14.0 16.0

18.0 20.0

22.0 24.0

0.J34 0.J65

O.J 65 O.J 80

0.250 0.250

0.250 0.250

0.250 0.250

0.250 0.250

0.312 0.312

0.312 0.375

0.375

0.307 0.330

0.375 0.375

0.438 0.500

0.562

0.365 0.375

0.375 0.375

0.375 0.375

0.375 0.375

0.365 0.406

0.438 0.500

0.562 0.593

0.687

0.500 0.562

0.593 0.656

0.750 0.812

0.968

0.500 0.500

0.500 0.500

0.500 0.500

0.500 0.500

0.593 0.687

0.750 0.843

0.937 1.031

1.218

0.718 0.843

0.937 1.031

1.156 1.281

1.531

0.843 1.000

1.093 1.218

1.375 1.500

1.812

1.000 1.125

1.250 1.438

1.562 1.750

2.062

1.125 1.312

1.406 1.593

1.781 1.968

2.343

34 O.D. 36 O.D.

34.0 36.0

0.375 0.375

0.500 0.500

42 O.D. 42.0 0.375 0.500

All dimensionB are given in inches. The decimal thicknewes listed ior the lespective pipe sise* repre­

sent their nominal or average wall dimensions. The actual thicknesses may be as much as 12.5% under the nominal thickness because oi mill tolerance. Thicknesses shown in light iace for Schedule 60 and heavier pipe are not cturently supplied by the mills, unless a certain minimmn tonnage is ordered.

•ThlclBiwses shows ia Italics are lor Schedules SS and IDS, which •re available in ataialeae steel only.

tThieknesses shown in italics are available also in stainless steel, under the designatiea Sdiedule 40B.

SThiekhesses shown in ilalles are available also in stainless steel, under the deeigsatiaa Schedule SOS.

UNCLASSIFIED

Page 47: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED II.A.2-7 ARH-600

VOLUME PER UNIT LENGTH OF CYLINDRICAL CONTAINERS

DioiTieter

(inches)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

12.5

13.0

13.5

14.0

14.5

15.0

15.5

16.0

16.5

17.0

17.5

18.0

18.5

19.0

19.5

Liters

(per in)

0.0129

0.0290

0.0515

0.0804

0.1158

0.1577

0.2059

0.2606

0.3218

0.3893

0.4633

0.5438

0.6306

0.7239

0.8237

0.9299

1.0425

1.1615

1.287

1.419

1.557

1.702

1.853

2.011

2.175

2.346

2.523

2.706

2.896

3.092

3.295

3.504

3.720

3.942

4.170

4.405

4.647 4.894

Liters

(per ft)

0.154

0.347

0.618

0.965

1.390

1.892

2.471

3.127

3.861

4.672

5.560

6.525

7.568

8.687

9.884

11.158

12.510

13.938

15.44

17.03

18.69

20.42

22.24

24.13

26.10

28.15

30.27

32.47

34.75

37.11

39.54

42.05

44.64

47.30

50.04

52.86

55.76

58.73

US Gc

(per in)

0.0033

0.0076

0.0135

0.0212

0.0305

0.0416

0.0543

0.0688

0.0849

0.1028

0.1223

0.1436

0.1665

0.1912

0.2175

0.2456

0.2753

0.3068

0.3399

0.3748

0.4113

0.4496

0.4895

0.5312

0.5745

0.6196

0.6663

0.7148

0.7649

0.8168

0.8703

0.9256

0.9825

1.0412

1.1015

1.1636

1.2273

1.2928

illons

(per ft)

0.040

0.091

0.163

0.254

0.367

0.499

0.652

0.826

1.019

1.234

1.468

1.723

1.999

2.294

2.611

2.947

3.304

3.682

4.079

4.498

4.936

5.395

5.875

6.374

6.895

7.435

7.996

8.578

9.179

9.802

10.444

11.107

11.791

12.494

13.219

13.963

14.728

15.514

Diameter

(incfies)

20.0

20.5

21.0

21.5

22.0

22.5

23.0

23.5

24.0

24.5

25.0

25.5

26.0

26.5

27.0

27.5

28.0

28.5

29.0

29.5

30.0

(30 gol d

18.4

(55 gol di

22.5

Liters

(per in)

5.149

5.409

5.676

5.950

6.230.

6.516

6.809

7.108

7.414

7.726

8.045

8.370

8.701 9.039

9.384

9.734

10.092

10.455

10.825

11.202

11.585

rum)

4.356

rum)

6.516

Liters

(per ft)

61.78

64.91

68.12

71.40

74.76

78.20

81.71

85.30

88.97

92.72

96.54

100.44

104.42

108.47

112.61

116.81

121.10

125.47

129.91

134.42

139.02

52.27

78.20

US Gallons

(per in)

1.3599

1.4288

1.4993

1.5716

1.6455

1.7212

1.7985

1.8776

1.9583

2.0408

2.1249

2.2108

2.2983

2.3876

2.4785

2.5712

2.6655

2.7616

2.8593

2.9588

3:0599

1.151

1.7212

(per ft)

16.319

17.146

17.992

18.859

19.747

20.654

21.583

22.531

23.500

24.490

25.499

26.530

27.580

28.651

29.743

30.854

31.987

33.139

34.312

35.506

36.719

13.81

20.654

(Taken from Y-1272, Y-12 P lan t Nuclear Safety Handbook.)

UNCLASSIFIED

Page 48: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIPIED II.A.3-1 ARH-600

ADDITIONAL CONVERSION FACTORS

Multiply

atmospheres

atmospheres

bams

cm Hg

tt

ri

chemical scale

curie

ti

It

T!

It

dynes

aynes

electron volt (ev)

1! II

II II

radians

temperature deg C + 273

ten^jerature deg C

temp deg F + k'yS

temp deg F-32

watts

II

by.

li|-.70

76.0

1 0 ^ ^

0,193k-

1.316 X 10"^

0M63

1.000272

2.22 X 10-^

3.7 X lolO

103

10^

10-3

1.02 X 10"3

2.248 X 10"^

10-^

1.6 X 10-12

1.6 X 10-19

57.3

1.0

1.8

1.0

0.5555

io7

0.7376

To Obtain

Ibs/sq in

cm Hg

cm

Ibs/sg. in

atm

ft of water

physical scale

dis integrations/min

dis/sec

millicuries

microcuries

kilocuries

gms

lbs

Mev

ergs

joules

degrees

abs deg Kelvin

temp deg F -32

abs deg Bankine

temp deg C.

ergs/sec

ft-lb/sec

10/5/70 UNCLASSTFIED

Page 49: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED I I . A. 3-2 ARH-600

DENSITY OF MIXED METAIS

P. P. 1 + ( ^ -

1 ^'k +

-\ I _ , ,1,, X I - 1 •-

-^

X)S a

3

where

h-'t = d e n s i t y of mixture

P = d e n s i t y of meta l # 1

P = d e n s i t y of meta l #2

\j^ = Wt. f r a c t i o n of meta l =//l

aj = Atomic Wt. meta l # 1

a = Atonic Wt. meta l jjQ.

100

( a / o ) 1 = •• I ag aa

fioo _A [w/oi -J

100 (w/o) 1 = 1 + £2. r 100 _ i ]

a i a / o i

R e v i s e d : 1 0 / 5 / 7 0 UNCLASSIFIED

Page 50: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED II.A.4-1 ARH-600

AREAS OF COMMON PLANE FIGURIS

circle — 77?^ = l/^ TT^ = -785 d' = 78.5/ of enclosing sgmre

sphere kJJ^ = 12.57 r^ = TT^

triangle I/2 bh

ellipse 78.54^ of enclosing rectangle

hexagon 0.866 (distance between flats)

octagon 0.822 (distance between flats)^

anniilus — O.7854 (O.I^ - I.E^)

VOLUME OF C0MI40N SOLID SHAPES

sphere 4/3// r^ = 4.189 r3 = 1/6// d = 52.36/ of enclosing cube

cylinder // r h or 78.54/ of enclosing box

cone -ir — r h or h (area of base) 3 3

UNCLASSIFIED

Page 51: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UKCLASSIFrED II.A.1+-2 ABH-oOO

2000

1500 r

1000

500

100

50

10

o -

L_'—_

[

' '

— -

1 _l ,

I 1

u L. i-H

1 "S

r 1 ,g

[

h -

. . . . _ ..

f ' 1 . _ . / /

/

/ / " ' f / /

/ / 1

1 / T / /

1 1 i,

• - 1 —

:

- - ^ -_

1

1 I *

'7 1

1 1 1 1

,

1 '

_ -

— -

/ J

/ /

j J §

/

!

' ' '

-

' 1

'

t

1

. 1

' 1 ' 1 • • 1

' i , ,

J /

/

/

r

' •

—• A

' 11

" ! i 1 1

t j

' I ' M I '

' ' ' M

, 1 1 i i J

t ! r 1 I ^

' M l ' 1 , 1

1} H: J j 1

T ^

414 ^

i 1 . t

' 1 1 1 I 1 1 1 i 1

1 i 1 ' ' I ' l l ' 1 1 1 I I

' 1 ' ' 1 1 t ] 1 '

r 1' ' \ 1

• ! i 1 M ! \ J {/ /

A ~ / / < \ •

/ '

, 1

'

. - i - L -

' ' '

r . . j

' ' i I ' I ' 1 ' ' 1 i f 1 ' ' * t 1 , ' ' M l 1 j { : I t I 1 i 1 • 'iM 1'

! i l [ i! 1 ' t [ 1 1 1

1 I...1 1 11,[

' ' j 1 M ' 1 t • , 1 • ; • •

' , 1 , ' ' ' ' ! M i ! 1 1 -J ! 1

[ 1 ! M ' ' ' i • •

1 ' t ' ' • ;

i U ' ' 11 I 1 \ } i 11 i 1:1 M ' 1M ! M i H M; 1} H f r ! 'r U ! ' t ' 1 1 1 iM l ! M U M 1 l i l . M l t | l * M 1 1 M

RELATIONSHIP BETWEE SPHERE VOLUME AND R

t ( 1 ' 1 1 1 ' i ! U 1 ' i ; n t ' I i - 1 M ' , ' ' 1 ' 1 M i i i 1 1 ! 1 • 1 1 i t 1 t 1 • V

t I 1 , 1 1 I 1 \j^ \

1 1 ' i l l Lrfi1 i 1 ' ' 1 ]Jrw\ M t i ' ' P 'j'H'^ r 1' t ' i ^ itiJ ti^i J^, ] , i l l ' ' '

r ] j , 1

1

, f 1 , j

t

1 ! 1

1 1 1 < 1 1 1 [ <

, . 1 1 1 1 ' I 1 ' ' ' 1 ' , t . , ' I ! I '.

I 1 1 ' 1 1 , ! , ,

1 ' 1' ' 1' ' 1 1 f 1 1 1 , 1

' Mf UN,, ' • \ • t j 1 ' ' i 1 ' t 1 1

1 , M 1 1 t 1 • 1 1 ' 1 h ' i

1 , 1 1 1 , I 1 1 1 . , ' : ' , ' 1 111 ; ! ! 1 1 ' 11 1 1 ' 11

' 1 ' ' I I I ' ' ' 1 11, 1 11! i 1111111

1 1 11 i 1 t I * ' 1 ! f 1 r t * ' 1

' M U J I I I I th i t ! j ' 1 ^ t + ' i 1 r f t

[[\ RADIUS, cm I j j - j t 11 ,T 1 r i , 1 n 1 H i }

j I 1 1 1 1 1 1 1 1 1 .

1 1 , , 1 •

1 1 1 ' 1 1 ' ' 1 i ' '•

1 I - . . j . 1 1 1 1 , ,

t 1 , 1 t '

!.*. hv • I t -1 1 } • 1

N i ' UW uirus I I I ' J^] 1

1 i j.di^i 1 f 1 1 1 1 1 i - ^ H i i ! 4 1 I 1 1 1 1 j I T T I 1 11 i i l 1 1 ! 1

' ! - 1 ' ' ' f i ! 1 1 1 t 1 1 ' 1

j 11 1 H , , ! 1 1 , 1

H ' , 1 ,' h ' '

k i 'i II • I ' t

1 . 1 1

1 1 • i f ! '

1 1 1 1 1 ^ i

' I f '

I , i T I , I i f I . 1 i 1 "* L i I 1 ' 1

I t M 1 ^. M u I I 1 1 1 1 1 1

1 1 • 1 1 1

1

M i l 11 1 t 1

• ! 1 ' ' ' r •'

! ' I 1 '

111,11 1 ' 111 [ 1 '' 1 * n' ^ 1

11 r M ' 1! r

1 ' 1 i 1 1 ! 1 f 1 ! i • ' i • , ! 1 ' i M . i , 1

' ' t • j ' ' 1 1 1 1 , 1 • t 1 1 1 , 1 [

! ' 1 1 i i I I , , t ! M l 1 M- 1 '

' t t , , 1 t f t I I

" • tl h l l i l i j t ' M i f f '

l i 1 t i l f i t f f f , \}

\ ' ' 1

1 1

— 1

— 1 ' - --

t

M l 1 1

K ^

'' 1 1 1 1 M 1 ' 1 '

j , '

i , . t

• 1 '

^ '

' '

\

^

1 1 1

) 1 (

L.

'

T , t

'M

, . , 1 } I , t r

' 1

h - 4- •

" —-

— !

1 ' 1 1 H

1 1 ; j

' 1 1

1 1

t j

., 1 I

1

1

3

t ]

i 1

1

1

1 1

i j

10 1^ 20 25 30 35 ^0 k';, 50 55 bO 65 TO

UNCLASSIFIED

Page 52: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED II.A.5-1 ARH-600

USEFUL RELATIONSHIPS

Liters in an Annular Tank = (2r^+^^r) rh ^^^^^ ^ ^ .^^^^ radius, cm 318.3 °

^r = annulus thickness, cm

h = height, cm

Lattice Spacing - Hexagonal Lattices

simple rod, L.S. = 1.9046 rVw/U+1, (W/US.10268)

clad rod, L.S. = 1. 9046 "Wr^ (W/U)+r^ (W/U 2 .10268r^/r^)

:lad tube, L.S. = 1.9046 (^2^-^^^) (y^/T3) +{r^l-r^^) , i^^^^.lOl^^v^^^ + r^

where W/U = water-to-uranium volume ratio \ r

2\

2u ~ lu r = uranium radius u

r = cladding radius c ^

subscripts 1 and 2 denote inner and outer radius, respectively

W/U - Hexagonal Lattices

simple rod, W/U =

clad rod, w/U =

1.1027 (L.S.)^/d^]-l, (L.S.Sd)

1.1027 (L.S.) /d, l-d /d, (L.S.Sd^)

clad tube, W/U = [l. 1027 (L.S.) -(d2^-d^^)]/(d2^-dj^^), ^^'^'='^2c^

where d = diameter

Equivalent relationships - hexagon and circle of equal area

radius of circle = .52504 x (lattice spacing)

Neutron Velocity - Energy Relationships

V = 13.8 X 10 "V E cm per sec

where E = energy in electron volts

Revised - 7/10/69 UNCLASSIFIED

Page 53: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED II.A.5-2 ARH-600

SIMPLE ROD LATTICE SPACINGS IN HEXAGONAL ARRAYS

VJ/U V o l . R a t i o

. 6

.7

0

o

l . f

1.1

1.2

1.3

1.5

1.7

2 . 0

2 . 5

3 . 0

3.5

4 . 0

0 . 2

. 2 4 0 3

. 2 4 8 3

. 2 5 5 5

. 2 6 2 5

. 2 6 3 4

. 2 7 6 0

. 2 8 2 5

.2885

. 3 0 1 1

. 3 1 3 0

. 3 2 9 9

. 3 5 6 3

. 3 2 0 9

. 4 0 4 0

.«259

0 . 3

. 3 6 1 4

. 3 7 2 5

.3833

.593;''

. 4 : 4 0

. 4 1 4 0

. 4 2 3 8

. 4 3 3 3

. 1 5 1 7

. 4 6 9 4

. 4 9 4 8

. 5 3 4 5

. 5 7 1 *

. 6 0 6 0

,6388

ROD DIAMETERS,

0 . 4 0 . 5 0 . 6

. 4 8 1 8

. 4 9 6 7

. 5 1 1 1

. 5 2 5 1

.53B7

. 5 5 2 0

. 5 6 5 0

.5777

. 6 0 2 3

. 6 2 5 5

.6598

. 7 1 2 6

. 7 6 1 8

. 8 0 8 1

. 8 5 1 8

. 6 0 2 3

. 6 2 0 8

. 6 3 3 8

. 6 5 ^ 3

. 6 7 3 4

. 6 9 0 0

. 7 0 6 2

. 7 2 2 1

.75?9

. 7 8 2 4

. 8 2 4 7

. 8 9 0 8

.9523

1 . 0 1 0 1

1.0647

. 7 2 2 7

. 7 * 5 0

. 7 6 6 6

. 7 8 7 6

. 8 0 8 1

. 8 2 8 0

.3475

.8665

. 9 0 3 4

.93S9

.9S97

1.O690

1 .1428

1 .2121

1 .2776

INCHES

0 . 7

. 8 4 3 2

. 8 6 9 2

. 8 9 4 4

. 9 1 8 9

. 5 1 2 7

, 9 6 6 0

.9887

1.0110

1 .0540

1 .0954

1 ,1546

1 . 2 4 7 1

1 .3332

1 ,4141

1 ,4906

0 . 8

.9637

.9933

1 .0221

1 .0501

1 .0774

1 .1040

1 .1300

1.155*

1 .2046

1 .2518

1 .3196

1 .4253

1.5237

1 .6161

1.7035

0 . 9

1 .0841

1 .1175

1 .1499

i . n u

1 .2121

1 .2420

1 .2712

1 .2398

1 .3552

1 .4083

1 .4845

I . 6 O 3 4

1 . 7 1 4 1

1 .8181

I . 9 I 6 5

1 . 0

1 .204e

i . 2 4 i e

1 ,2770

1.312?

1 .3468

1 .3800

1 .4125

1 .4442

1.5057

1 .5648

1 .6494

I . 7 8 I 6

1 .9046

2 . 0 2 0 1

2 . 1 2 9 4

UNCLASSIFIED

Page 54: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UTJCLASSIFIED ARl'-oOO

PAGE I I . B . 1 - 1

b y

Gerhard Dessauer Direcxor of Savannah River Laboratorj's Physics Section

Reprinted from Nuclear News, September, 196i , with permission of tne American Nuclear Society

INTRODUCTION

The frequent use of the term "buckling" baffles some of our friends in the engineering, metallurgical, and chemical branches of our technology, ]ust as we reactor physicists are often perplexed by metallo-graphic slides or by process stream termmology

The barrier against the understanding of buckling is partly semantic and partly mathematical. The first difficulty arises from our careless use of the same word for two fundamentally different concepts: geo­metric buckling and material buckling. The second arises from the fact that a concise and elegant treat­ment of the subject involves the use of differential equations. At the risk of being somewhat long-winded, I am taking an "operational" approach to make the two kinds of buckling plausible without higher mathematics

The reader is presumed to know that the neutrons we are concerned with are set free as a result of nu­clear fission inside a reactor, but perish after an erratic journey by being caught m a nucleus, fissionable or not, inside or outcide the reactor.

1. The Multiplication Constant

When a neutron chain reaction continues at a con­stant rate it is because enough of the neutrons bom in a given number of unrelated fissions* survive compet­ing hazards to give rise to the same number of new fissions. This survival is threatened by two kinds of accidents that may terminate the useful life of a neu­tron prematurely. One is leakage from the reactor, the other is non-productive absorption within the reactor.

The ratio of fissions in two successive related gen­erations is called k, the multiplication constant. If k IS less than one, the offspring are less numerous than the progenitors and the fission rate declines with time. If k IS greater than one, fissions become more fre­quent in time and the reactor power increases. Whether a given type of lattice proposed by an engineer will support a chain reaction within an enclosure of his choice (i.e., whether or not k can be >: 1) is a crucial question that must be answered by the physicist before the engineer gets involved in detailed design.

2. Leakage from the Reactor, Geometric Buckling

The answer depends, in part, on the amount of leak­age of neutrons from the reactor. If the lattice were infinite, there would be no leakage. Thus, it is conve­nient to write fe as a product of two terms, the multi­plication constant of an infinite lattice of the proposed composition, k^, and the fraction of the neutron off­spring that does not leak from the finite lattice. The latter term depends on properties of the lattice and also on the size and shape of the reactor. These de­pendencies can, in fact, again be split into two separate factors, one of which relates to the lattice only and the other to the geometric shape only. The first has to do with the average distance traveled by a neutron m the lattice from its place of birth to its place of death. Only neutrons that are bom near the surface can es­cape from the reactor. Conversely, neutrons that are born at a distance inside the surface of the reactor that IS substantially greater than the average traveling, or "migration" distance withm the lattice will not get to the surface and, hence, will not leak out. Actually, the first factor in the leakage term turns out to be the average square of the distance traveled by the neutrons during their life within the lattice, and is called the migration area, M^. The greater M', the greater is the depth from which neutrons can leak and therefore the greater is the total leakage from the reactor.

*For example, in all fissions occurring withm a given time interval that is short compared to the lifetime of a neutron in the reactor.

UNCLASSIFIED

Page 55: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED

The second facto rente ring into the non-leakage term is related to the size and shape of the reactor, only. It is possible to combine all pertinent information on size and shape in a single expression. This turns out to vary inversely as the second power of the characteris­tic dimensions of the reactor. It is called the geomet­ric buckling, Bg'. Formulae for the geometric buckling of the simplest shapes are as follows:

Shape

Parallelepiped

Cylinder

Sphere

Bg'

A^^h^T^) TiVfe' + 2.405V»''

^/R'

Definition of Symbols

a, b, c = edges

h = height; r = radius

R = radius

In principle, a B^ ^ can be determined for any size or shape. It is a purely geometric procedure. The geometric buckling may be expressed in units of cm" ' . In practice, this unit is too large, and smaller units are used. Some people use m" (= 10"*cm"'), others use 10"*cm"', ihe microbuck.

It can be shown that the product of the two factors, Af' and Bf', represents the number of neutrons that leak from the reactor for each neutron that dies within the reactor. Hence, the fraction of all lost neutrons that are lost through leakage is

ITWB^ and the fraction of neutrons that do not leak is

1

TTWWp '

ARH-600

PAGE I I . 6 . 1 - 2

The multiplication constant can now be written in the form

Once the lattice and reactor size and shape are chosen, the crucial question, whether or not k can be a 1, is thus reduced to the determination of M' and ^00, both of which are properties of the (infinite) lattice. M ' can be calculated or measured, more or less directly. However, the evaluation of k^, involves a number of separate steps. These steps will be discussed in the following section. After reading that section, the reader may wish that the determination of A/' and of all the quantities entering * „ be simplified and replaced by a single concept and measurement. This wish will be fulfilled when we get to the section on Material Buck­ling.

3. Survival Inside the Reactor

Not all of the neutrons that escape lealcage from the reactor contribute to the chain reaction by causing fission. Many are captured in the non-fissionable nuclei that make up the structural material, the mod­erator and other substances present. Even when a neutron is captured in a fissionable nucleus, there is a fair chance that this nucleus will not undergo fission. In that case, a neutron is withdrawn from the chain reaction by the fuel itself.

The average number of neutrons created in a fission event is designated by v, {= 2.43 for U" ' ) . To arrive at a value of k„ for a proposed lattice, this number v must be multiplied by the probability that a neutron will escape capture by a non-fissionable nucleus and by the probability that a fissionable nucleus, having captured the neutron, will undergo fission. The latter probability is usually written as

1 1 + a

where a is the probability ratio, capture to fission, in the fissionable nucleus.

Thus, *«, = vx (capture escape probability) x j — — .

Since both v and a are nuclear properties of the fuel and not directly properties of the lattice, they are often represented by a common symbol, the neutron repro­duction factor:

In lattices that contain no U ' " or other resonance absorbers, and in which the fuel is fully enriched ura­nium, there is, in general, no appreciable capture until

UNCLASSIFIED

Page 56: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

U;M CLASSIFIED

the neutrons have been slowed down from their initial kinetic energy of some MeV to the " thermal" kinetic energies of the lattice nuclei, the average of which is about 0.025 eV. In this case, the capture-escape prob­ability is therefore simply the fraction of thermal neutrons that become available to the fuelor the "ther­mal utilization" f. For each thermal neutron, (1-/) neutron is absorbed by nuclei other than the fuel, and / is absorbed by the fuel. Thus, in fully enriched lat­tices, *oo = vf-

The reactor physicist looks up rj in a book supplied by the "pu re" nuclear physicist and calculates or measures / , by considering the concentrations and the appetites for neutrons (cross sections) of the various nuclei in the proposed lattice.

If the lattice contains appreciable amounts of U ' " , the story of neutron survival becomes complicated by two effects. A fast virgin neutron can produce a fission in the "non-fissionable" U" ' .^ This results in a divi­dend of extra neutrons. The calculation of this dividend is complex and depends on the proximity of the nucleus that undergoes fission to the U ' " target and to the moderator. To avoid writing a complicated formula, this "fast fission effect" is usually accounted for by a factor t introduced into the expression for kx-^

Even more involved is the other complication intro­duced by U " ' . This nucleus captures appreciable numbers of neutrons having a kinetic energy interme­diate between that possessed by a neutron in the fleeting moment of its virginity and that shared by the neutron with the surrounding matter during its " thermal" life. If the neutrons have a reasonable chance of interacting with U ' " before they are fully slowed down through collisions with the moderator, there is a substantial chance of their capture in the "resonances" of U " ' . This chance is designated by ( l - p ) ; and p is called "resonance escape probability".

A total description of the neutron life cycle in an infinite lattice containing U'^' can now be given as follows: A fission produces f neutrons, these are increased by the factor e via fast fissions in U " ' , reduced before thermalization by the factor p through resonance capture in U"", reduced after thermalization by the factor / through competing thermal capture in non-fissionable nuclei, and reduced by competing ther­mal capture in the fuel by the factor 1/(1 + a).

tTo cause fission in IJ a neutron must have kinetic ener­gies above 1 MeV. The term "fissionable" is commonly applied only to nuclides that can be made to undergo fission with thermal neutrons.

t(€-l) is the dividend rate accruing from fast fission.

Thus,

or.

ARH-oOO

PAGE I I . B . 1 - 3

b - ifr hf — -

*°° '"f^ 1+a

*=o =iltpf- (2)

This is the famous "four-factor" formula for *«,. The thermal capture in the non-fissionable V"' is some­times included in v rather than in / . Thus, the rj used for natural uranium metal is usually not that of U ' " but a synthetic quantity that involves, besides the ratio of capture to fission in u'^ ' the ratio of capture in 99.3% U*' to fission in 0.7% U'^'.

By inserting (2) into (1) we obtain

1 +M'f ig (3)

To answer our crucial question, the reactor physi­cist must evaluate, calculate or measure the geometric buckling, the migration area M', the neutron repro­duction factor 77, the fast fission factor e, the ther­mal utilization / , and the resonance escape probability p. Actually, things are even more involved than de­scribed here. For example, the distribution in energy of the neutrons, the neutron spectrum, affects the nuclear parameters that enter into 77.

r^ / V""'. ^ w' -^ 0 VERSUS 0

It appears that each new lattice requires a consider­able number of calculations and/or measurements. However, if there existed a single quantity that com­bined M ' , 7), t , p and / , in such a way that the crucial question could be answered quickly and directly, only a single measurement might be needed. Fortun­ately, there is such a quantity. It is the "material buckling".

4. Material Buckling

Let us consider the case in which a reactor is pre­cisely critical. In that case, the pile dimensions (Bg^) are such that the particular combination of Bg' and of the lattice parameters 77, e, p, f, and M', that is shown in equation (3) malces ^ = 1. In that case, and only then

1 + M ' B / Vtpf.

We may generalize this relation by introducing a new concept, the "material buckling" Bm ' such that the equation

l^M'B^ Vtpf

holds, no matter what k is. Thus, B„, shorthand for

is merely

UNCLASSIFIED

Page 57: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UIXLASSIFIED

M' "

S„ ' happens to be equal to Bg' when * = 1, but, in general, it need not be.

By introducing this shorthand into equation (3) we may now write the generally valid equation

T+WBP'

Our crucial question whether * is greater or equal to 1 can now be replaced by the equivalent question whether B„' is greater or equal to Bg'. If Bm' is greater than Bg', k is greater than 1; if B„' = Bg', k=X, if B„' is less than Bg', k is less than 1.

This problem may be compared with the problem of fitting a lady customer If the dress (geometric buck­ling) fits the lady (material buckling) the situation is critical for the husband's pocketbook. If the lady is too small for the dress, the matter is inconsequential. If she IS too big, the experiment may result in an acci­dent.

5. The Measurement of Material Buckling

We have seen that Bm ', the material buckling, is a certain combination of properties of the infinite lattice, while Bg', the geometric buckling, is a property of the surface enclosing the finite lattice The concept of the material buckling is attractive because it reduces the criticality question to a simple comparison of Bm ' and Bg', quantities that are different in concept but are similar m their physical dimensions (length " ') and can be expressed in the same units.

Material buckling is directly measurable, thereby obviating separate determinations of M' and of the factors entering ^oo. Of course, a more detailed knowledge of reactor performance requires a variety of information beyond the question of initial criticality. Problems of reactor stability, reactivity lifetime, and productivity depend on other combinations of the lattice parameters discussed above, and on still other param­eters. The reactor physicist measures, or calculates, many things besides buckling.

Buckling measurements are made according to two principal methods, m critical or in exponential facili­ties.

ARH—00

PAGE I I . B . l - ' l

In the "cr i t ica l" experiments, k is very precisely made equal to unity, by equating the unknown material buckling and the geometric buclding In critical ex­periments with liquid moderator it is possible to achieve this equality by varying the geometric buckling through adjustment of the liquid level. In situations where the geometric buclding is fixed, the equality is achieved by modifications of the material buclding of the unknown lattice. This can be done by changing, by known amounts, some or several of the reactor param­eters that enter into Bm ' (see equation 4). For exam­ple, / (and M') may be adjusted by the addition to the reactor, or removal from the reactor, of poisons that compete for neutrons with the fuel, e.g., by means of control rods In more sophisticated experiments, a sample of the unknown lattice is inserted into a host lattice of known material buckling, and the reactor is adjusted to criticality The material buckling of the unknown can then be found by solving a set of equations.

In the "exponential" experiments, it is possible to determine material buclding in a subcritical sample of the lattice and therefore without recourse to geometric buckling Since this sample cannot maintain a chain reaction, neutrons must be fed into the lattice. The most common arrangement is a cylindrical sample supplied by neutron sources arranged across the bot­tom surface. (However, Fermi 's original exponentials were parallelepipeds.) In such an arrangement, one measures the distribution of neutrons throughout the lattice. The rates at which the neutron population de­creases as one proceeds away from the source, and as one approaches the surfaces of the lattice, determine a unique value of B„ '. In the conventional vertical tank, it IS usually sufficient to measure the radial neutron distribution at one or two levels and the vertical neu­tron distribution at one or two radii. A plot of neutron density along a vertical axis may be fitted by exponen­tial functions, hence the term "exponential" facility.

Once the material buckling is known, the critical size of the lattice can be derived for any desired shape. This IS particularly helpful in problems of nuclear safety in connection witli the storage and handling of many fuel pieces. For example, cylindrical fuel slugs could be arranged in many different ways: like bamboo sticks, like soldiers on the drilling ground, or in pyra­mids like the cans in some grocery stores. From a single material-bucklmg measurement in an exponen­tial, the critical sizes of any of these configurations can be evaluated, whereas the corresponding critical measurements would require assemblies m each of these configurations.

6. Semantics of Buclding

My dictionary defines the noun "buckle" as " a dis­tortion, as a bulge, bend, kink, or twist m a beam. . .", all of which sounds akin to the problem of fitting the lady customer.

Actually, buclding is related to an eigenvalue prob­lem. The second-order differential equation that maps out the shape of a string or of a membrane in an oper­ating musical instrument involves the local inertia (mass density) and tension of the string or membrane. Solutions are subject to the condition that the ends of the string or the edge of the membrane are in a fixed

UNCLASSIFIED

Page 58: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED I I .B.1-5 AEH-600

position. A similar differential equation aescribes lue neutron density distribution in an operating reactor and involves local lattice properties in a combination called "buckling", as exemplified by our equation (4) defining B„^. The solutions are subject to the condition that the flux must approach zero along the boundary of the reactor. This is true only if the average buckling assumes certain values (the eigenvalues) which involve the information entering into our Bg^.

If the buckling is zero somewhere in an operating reactor, the flux distribution is "flat" in this region, that is, the flux changes with constant slope, for ex­ample with zero slope. Where the buckling is positive, the flux shape displays curvature and may have a peak, where the buckling is negative there may be a flux depression. So here is some analogy with the "distor­tions or bulges" in the vibrating string or membrane.

To some of our colleagues, the word buckling is repulsive. They prefer to talk about "the Laplacian", which is not a fortunate choice as it confuses the con­cepts of differential operator and of eigenvalue.

It was Professor J. A. Wheeler who introduced the term "buckling" into reactor physics. In geometro-dynamics, a branch of physics, in which Wheeler is a leading pioneer, the material world is reduced to geometry.

mCLASSIFIED

Page 59: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED I I . B . 1 - 6 ARH-600

USEFUL RELATIONSHIPS BETWEEN Kgff, B^^ and Bg^

The reactivity of a fissile system can be described by

k |. = 22 where "^Qff = effective multiplication constant

1 + ^ P B ^ koQ = multiplication constant for an

infinite amount of the fissile material

E^ = geometrical buckling of the system

yF = migration area of the neutrons (about 25 to 30 cm for H/fissile atom >20)

at critical kg-ff = 1.0 and B^^ = B^, where

Bj^ = material buckling of the fissile material, or

1 = ^00

1 + rfBm^

S u b s t i t u t i n g , we have:

kgf f = 1 + ^B^

1 + I/pBg^

and we can determine the reactivity of a given system with a known geometry and material, or

B^ = keff(l + I^Bg2)-l

where the geometry and the limiting k^ff is known and the material buckling is desired, or

1 + f Bm^ .1

^eff where the limiting kg . and the material is known and the limiting geometry is desired.

These equations may be used for rough determinations of the desired parameters for simple geometrical shapes with no interaction.

UNCLASSIFIED

Page 60: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED II.B.1-7 ARH-600

Safety Factors

As stated in the ARHCO Technical Criteria for the Prevention of Criticality, page I.C-3-5.> safety factors must be included in all limits and the three degrees of safety factor specified are based upon the confidence in calcinations and the risks involved. A common method of applying safety factors is the use of fractional critical dimensions, volumes or masses. The advantage of using fractional critical dimensions is the ease of application using readily available critical dimension data. While these values are satisfactory in most cases, large systems thus specified may have an effective multiplication constant (kg^f) very close to one, the critical condition. In these cases effective protection will not be attained. On the other hand, the fraction of critical dimension method may be overly restrictive for smaller systems.

A safety factor based on the kgff of a system provides a more consis­tent overall protection. However, this method of applying the safety factor must be used with caution when dealing with small critical systems where small changes in critical dimensions may result in large changes in kgff. Unless the keff safety factor is less than that normally required for larger systems, the resulting minute dimensional safety factor may be beyond the control of equipment fabricators.

The criticality prevention specialist must consider the limitations on the use of either method in applying safety factors to critical limits. Both kgff limits and dimension limits are specified in the ARHCO cri­teria, page I.C-6.4.2.

In the following figures the kg^f of fractional critical slabs, cylin­ders, masses and volumes are indicated for both reflected and bare systems using plutonium-water solution densities. These figures are used only to Illustrate the variation one can find. Other fissile sys­tems could be more restrictive.

The first part of the calculations for the figure was done with the HFN diffusion theory code at .01, .02, .03, .07, .15, .3, .6, and 1.0 grams of Plutonium per cubic centimeter. Although this code is knowQ to be accurate for thermal systems it becomes non-conservative at high concen­trations. Therefore, the DTFk transport theory code was used to obtain k-effective values for the faster systems over a range (including stiffi-clent overlap to permit a smooth curve to be drawn) of .07, .15^ '6, 1, 2, 5, J, 10, 15 and I9.6 grams of plutonium per cubic centimeter. The indicated critical reflected slab thickness for plutonium metal may be somewhat large as a result of poor flux matching between core and reflector. However, for our pxirposes the indicated change in k-effective should be satisfactory.

UNCLASSIFIED

Page 61: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

M I : ' I i , I i • ' ! ! ' , '1 1 1 1 j r i : 1 1 1 l i i i i : 1

h K 1 1 1M 1 1 1 1 1 J 1 r h 1111M1 1

'< Mil 11 1 ii hi' M M ' 1

1 1 M 11!!111 i 1 i 111 11 1 I ' 1 111 11

'

1 1 1 1 1 ! ' 1

1 ' i 1 1 ! 1 1 1 1 1 j 1 1 1 . I ! 11 H1 1 i

M M i ' M i M M M 1 1 1 i 1 ! 1 i l 11111 i 1 i! 1! il

i i M l 1 11' ! MJ

II j j i

95 1 11 1 IMI r l l

1 ^ 1 " M 1 1 1 1 1 1111 M It H

\M I j fm

or 1 1 j M I 11

1! h 1 1 TlJJ ' 1 1 ' 1

1 i 1M 1 1 1 1 1 1 M M 1 1 1 1 1 1 1 1 1 111 1 j 1 '

1 I 1 11

fii;! 1 1 1 11 1 1 1 1 1 II 1 l l l l l l 1 P

1 1 1 1 1 { 1 { 1 1 , . 1 1 1 1 1 1 M M 1 1 ' 1 1 M 1 1 '

M i l ''Mp'f' l i l 1 1

i 1 M ' ' ' i 1' M' 1 { . 1 ! 1 ! 1 . J , 1 ! ' I l l !i ' :i 'ii i i 1 1 1 { i 1 1 1 1 ' 1111 1

I h 1

J ^ 4 ^ ^ ' 1 i T ^ n i r 1 1 1 1 1 M ' I 1 111 1 1 L I I I 1

M P II 1

< u 4^u-' N 1^ m^" " M ! 1 !' il M

1 11-4111-1" J i 1 rnnTr^T"*" M l ' '1 M '

i 1 1 1 1 1 1111' 1 ! 1 1 h 111 I I 1 1 1 1 11 1 11 u jilT

Li 44TTn n 1 ' 1

Tn+ fU.J u Jm 1 1 1 1 1 M 11 1 1 i 111 L'111!

J Lii' i l i AnTTl ' 1

' 1 1 LJ--rTTT r 11 f 11 i 11 1 r 11 " t i r r T •

1 11 1

1 1 1 1 1 1 i. 1 1 1 II 1 1 1 ' 1 h \Tn-yti M l

' m'W-H i J 11 Ffl n r

1 1 1 1 M 1 { ' 111 1 1 1 1 1 1 1 1 1 1 1 11 i 111111 11' 11

^

:

111 IH ^-^ ^

li -U-«* u^ H- --

1 , I I I "il

I

1 r

-r- .

, : • •

!ll 1

^ V-

- r 1,1 ,1 ,1 H,

X T T T 1 111I'lliT"! 1 1 1 M M 11111111 r 1

• 1 f 1 1 1 i, j'l 1 1 1 '1' 1 'I il 1 1 ' 1 1 1 i I I I ' ' ' 1 11 ' 111 1 1 1 1 1 1 1

1 ' 1

1 Ml

"• 1 1 ' ,

^ ^ 4

T i T - n t *

I ' M M 1 i 1 ' 1 11 11'

111 i'!'i:"i;::r!i'ii::i i i i i i 111111; I I I I M I 4 liim H # H

^Wi M t^ieirMW

. I'll " 1 1 1 '

1 ' 1 1' 1 1IM ' III 1' 11 1 1 1 11 1111 1

* mm \ m ^iUll l l IIII ll-Wt^RM '|| ' 1 ii ' ' mJ^ .iii'lllliliili'illTlllillllilllllilllliilll i i i i i i i 1 'h i l l J -HTT

1 11 1 1 1 I 11111111 11 i l i l i 1 ! ! i 1 1 1 1 1 l l l l l l l ' l l l l l !

iiH'iri'i in lli^l 1 . : 1 1 1 1 1 1 1 1 1 1 ' h 11 l l l i r i 1 III 1

1 LJJ. : 1 1 i i i i i i i i

1 J T I 1 Lll 1 95! 0 1 Lkrlll-l+l-tmi, ,,,,,

l l l M l l ! II

•T LknT ' L r r l 1111 l l l l l l l l l l l l i l l l l l l l l l . l l i l

r, iiiiiiiiiiiiiiiiii'iiiiniiiiiBiri i i i i 11111 u- -i 11 MJ-I-i i i i i i i i i i i i i i i r „ . « ' I IMI I I I I I I I J |i <i 1 r lyrn i-Hl ll.i'llllJilllillillllllTllllllllllT'lil 1 [ I ^ J - T n i i l i U f i i i l ^

f^ ^Y

'

J . H H u I' iMii, r' iiirii'iii'-Hr I {1 1 "Ti r i i

41II M M lii [ill iiMffi i 1 11' U n 1' ' 1 ' i i f r I N Iv 1 n 1 1 \i\\ Mi Ml""

1 Ih II 111 m illiil ill 1 1 1 1 AA 1 1 M II ir\\ i 1 in • MWM r ^ L-fT 1 m M

1! !'Wiilii]*fl*fii"li'lll|i|lll'ili l > 1 1 1 1 111M''" 1 ' " 1. - W ' hi • Iff LK ' >

1 1 n r M Ml M Ml L K I f 1/ , 1 1 ,1 iLHji 1 M r ij'' i k ^ 1 1 i ! i 1 ! 1 n \jf

' 'Li I**' TmA I 1 M l L^TT K I'll '"H' nta 1 rC \ 1 i I 1 LTI

nLn ' W 1H 1 1 11 DM i V, \ \ \ \ \ \ \ \ / ] L f l 1

h p i i_i r L n ! /trf 1 u 1 |i i x l r

! 1 itttl 1 1 1 1 i/!r 1 1 1 M 1111 M 1II 1 111 1 j n K '

'' IT nni Jjr i 1 I ' ' ' ' IT trill M llHyw 1 11 1 1 I j 1 M 1 IJ 1 M 111 m^ m\m mmmwM'i' /

HlllillllllllllllllllllllUILr 1 1 1 1111 l l l / l l l l mi l l llillU r 1 1 1 1 1 1 1 1 1 1 / I I 1! i

10 1 L1 TI 1 1 /

1 1 H

1 /

1 1 11 1 1 1 1 1 f 1 1 1 1 1 1 1 1 1 1 1 tHu i f 1 1 Ipf 1 r

1 lllil 1 i ' 1 ' 1 1 1 • 1 ' 1 1 1 In 1 1 y' 1

1 iiHI 1 1T 1 1 1 ! ! 11111111 ' r' Ml 1 F M' 1 1 1 11 1 1

. ] '' 1 1 ' H f i l l 1 1 M / 1 1 1 1 1 { 111

Hill Miinnii mil CRITICAL CYLIHDEE

=; 7

ii'iiiri 1 1 1 11111II

i n ?

M L , LI M , W * 1 W ri LU+nlMlmtn

r i ' ,

'::ri;:r'Ti!ii;!ii!i IIIIIIII nil Til 1 • ' 1 i 1 IM 1'

' , i 1

i^fEnf t 1 3 1 III 11 r n jj ,

tt tt* T 1 [ il'

i c a l Diameter

1 M 4 MTL t

Mii'riii!.;MiiiiniiiiMiTiii L Y '

I l nl F^ 'T""'4 MMil ' i w f liiiiii

A \Jr\ MTTT ' ' Lr l i< 1 i H 1 1 1 W 1111111111111 1 II

M^ G IWl T TfT VW 1 r n i Hi • I r t IT

/ I 1 1 1, [ 1111111111 111 I I 1 1 1 kl 1' II ' M l 1 ! •

'1 1 M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ll| i III! 1 / 1 Ml i

i

k . . OF FRACTIONAL CRITICAL CYLINDER lAHETER vs . CRITICAL CYLINDER DIAMETER

PLUTONIUM-H2O - 3 Vt% 2lt0

• GAMTEC I I - HFN Calculat ion

0 GAMTEC I I - DTFlt Calculat ion

F u l l H2O Ref lec t ion

Unref lected 1 1 M 1 1 1 1 1 1 ! 1 1 1 11 1 1 l l l l l l l l i l 1 1

i l l

1 1 1 1 1 1 1 1 1 1 1 1 1 It 11 II 11 1 1 1 1' ' ' 1 1 0 ^0 50 70 nil 100

Page 62: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

^ I j ^ l

' i l l

J mi

h"*"t=^htH""4

1 1 rH't

Vi I 1 1 { 1 1 { : j<?'±L±Lr

1 I 1 1

, • ' t t l M i l

'MIM'i ' i 1 1 i 1 11 i ! i i l l Mill 1 M 11 1 r i l l 1 1 iN ' 1111111 1 1 1 ' 1 1

M ! 1 1 1 1

M ' 1 1 1 1 11111 I I 1 1 1 1 I 1 ' 1

' 1 M 1 1 '

' M ^ ^ I I ' . ; 1 1 1 ;

1 ! 1 1 1 I I 1 1 1

MM ' M M '

j 4j. +J4.p

mJitr

1 1 1 1 1 1 ' 1 ' -L. ...- I. .] 1 L. 1

j 1 IjJ^Ff^

"""^ht' n i ' 1 1 1 1 1 1 1 1 1 1

^^y^^rW

1 I M 4-1 LUr4"rT M i l

"I 1 [ j I 1 1

^ L L , ^ ^ ^

j M l

1 1 1 1 1 1 1 1 I j 1 1 1 I I I I I I I I 111 1

' 1! 111 M 11

1

1 1 1 1 1 1 1 1 M 1 ' [ L L

M 1 1 1 1111M 1 1 1 I 11 1 1 1 i 1

i l L l i" 1 ' TTT ,

! ' ' • ' I '

-U-Lf 1.1 J L

i 111' 11 :' i M M ' I I ' "!' • i M1 1 1 ' ! 11 I l i ' i H 1' 1 1 1 ' '

-«-

1

• t -

1

- •

^ r ^

L Ml!

I'M' '

1 -n r II ,|| |i '

Mi' 1 1 1 ' . . i t r 1T\TJ * f .LLk j L f S

i+i t^tinrrre „riLdl OI (c r i t i ca l uiameter J m

1 I I I ' 1 1 ' ' " ' : ' 1

TT ^ l . i h l Jii m^wppM4!

™ ffl

jiiTLrr

1 i M 1 ' 111 1 i l l

: 1 i 1 1 1 . 1

LI: 1 i i 1 1

1 1 1 1 i. 1 1 1 1 1 1 iiriiiiiii 1 1 ' IJ 1 1 I I

111 1 1 U-f 1 I.W 1 fflUOM' U-t rnn Hi iMilW

^Mii4«l \ ! M' M p c?fTFTt^ M^'^iiirr \J ji|LjJt-fr+^ i''lli'l 1 li f 'M'' 1 1 '' i j 1 r n i i | l ' i T r j i t | M ^ '•fW'H'^MII'rH*'

M l li-rH-ri i . i 'Li i r\ 'll II 1 1 1

^K£-t fct3bp: i l iifei: • FF tiMi bmffiBnr M » » 11! 11 i i l i i i m 111 1 11 1 11! till 11 i!

i| 1 M • 1 ' ' ' ' ' ' IT y ' '' Ml i JLIWM''' '1 1 11!

MHUJ H|1 III 1 a 1 TT n T l i ' l M i ' I'T'T ^

11 j 111 {1j 11 r111 1 1 1 i1 I I

i r t t tu -[[ ttl am at ! ' ttra±|tmn:tmtt ttr i r B Lrrrn iriiiimmlttTT . T H i

iT 1

1 1 1 ! 1 ' 1 M 1

rn~H~~MH—br

MirrtplT ]<' L-ril 1 ]^ r\\ 1

^ 1

1/ 1 I I j 1 1 .p 1 I I 11

1 ' 1 1 m\ mm 1 k "r-Nl 1 1 Ir ' 1 /' 1 U if mtn'T 1 ' I ' \\\\\i '\ 1 1 1 1 / I

niM:M t[a"ui!":; l '> j L ctt zl

TT'ii n 11 i i 1! i 111 1 i 1 1' 1 II t i l i 1 1111111M i 111 Ml ' '

1 i J M i l i • J<rni 1 I .•'11 1 - ' THI K I 1 1 1111 I I I 11 i 'm . Mill 1 1 f 1 M 1 11

H m •• I 1

1 l l l t " r ' l i r ' i lll|||| Il 1 ' 1 1 1 1 1 1 11 i 1

I M I ' l i r 11 1 1 1 1 1 i I li:iMllll!IMIIIlll,l!i:ill'::illlll!ll!l!"lll'illllllll!!!lM ' 1 1 1 1 1 ' • 1 1 1 1 1 ' ' ' • ' ' ' ' ' ' ' ' ' ' ' • ' " ' " "'"tllll

Ul±n k . ^ ^ OF FRACTIONAL CRITICAL CYLINDER M l l i i l T „ , . . . S i . i , . . . . „ „ „ ™ , „ . , „ , . , . ™ ™ m M ' l l UlAMliTl iK V S . i;iLfli>IUl!; rKUM U K i T i U A l i U l A M t T l i H I I ! 1 DT ITmrvMTTTIl,( U n H "i T.T+'i' O l . A lllli

[LLMJ ' ' 1 1 F u l l H

n i l TTTTi jO R e f l e c t i o n

i l l l l l I I m * o - P 1 o n t f i r i 1

\nfM\\-i'^'-7^* \m\m-^'^ AriVri

1 MMl k 1 1 ' ' in / f 1

LHT M ' n i l •'

MM M*! H I 11

Lf N ; LM 1 1 ' Lr

1 f ^ r lA'l H yf ' .

Ln 1 K / M M

I t J llltu 3*1 u t t ij^i/ i t t L i u t t t t t r y i t t c i r t t t t - 0 - I L TppL iLErrrrr

i M k" 1 1 L' I I M\-/-\- \-\-\-\- II

'f f 1 f 1 KI

I I I 1 /11 1 1 ' 1 1 1 11 M 1 1 1 1 1 11111

1 ll/M 1 1 1 1 1 1 1 1 I I 1 1 i I 1 1 IM

LM M

D I F F E R E N C E BETWEEN nRTTTnAT. ANTl FRAnTTONAT. nRTTTHAT, HYT.TNDER DTAMETER. 1 1 1 M 1 1 i i n i i i i n i i i I n i l 1 1 1 . r T 1 1 I 1 I 1 < 1 1 1 1 < t 1 1 1

m

1 1 11 11 ^ 1 g g 1 U l

M iT nIII11 1 1 1 1 II ll

1 ti- ' 1 M T F ' i J t t T T i l l i S 'BM'MIE m ![•'• t I'M J - N i--4t-^-t !-• I M

I I I I I H I I I I i l l l l i l R^i IliliilHllliiliillHillUJIIliB iTIIZ-M-lllllllli+n ' • iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii.iiiiiii i i y i i i • Li-^rii i i i- ' 1 • ii' • i

l l l l l l 1II1 iijiiii|i 1 i 1 i ^1111 I I I 11 ' 111' 1 '1 1 1 l ll 111 1 llNlili l i l l ' 1 ' y1 1lliliililliil 1 1 4 '

CULCL.l_T_r|MH j j . .

1

1 1 1 ' '

1 i n . i 1 111 I I I 11 itlllJJJJJ. .j

.3 10

Page 63: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

1.00

o > CO CO

c a o

CO CO

I

o

> 1 C7N O O

Page 64: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

G a o

g

1.00

.98

.96

.91.

.92

.90

— — -

_ —

1

-M-1

_ —

cr"^+' 1 1

p i «

_ L _ J . . . .

M:._. __T":

. V( * J

0) -M

~

-

-

^

l l , _ .

- -

- 1 ;

'

..

_ _

1

,

V -i

_ -

_ -

Ktt °F FRACTIONAL CRITICAL SLAB - THICOESS VS. CHANGE FROM CRITICAL THICl

PLUTONIUM-H2O - 3 Vt% 2U0

Fu l l H2O Reflect ion

] Unreflected i M i i n i i i i i n i M i i i i i i i i i i i i i i i r i i i i r i i n r i i i i n i 1 1

. •" **.»

. - • ' '

' •* — a

CNESS ""

t_i__i 1 I l l l l l l l l l l l l l lllllllllllllllllllilllllllMI 1 1 1 11 1 1 1 1 n i l l l l l l l l II « . > . i • i 1 • 1

L _ . . . . . !

1" ~ *" "* li ,.' • , , . • TT

^ \

^-M::M! .:, ,, ,

::;;:;::: :::

::::::::; :

. . _-| J

; • ' '

• - -

" f

• -- + 4 —

, ....

j 1---"S " :::;

. . . . (

. .. •

-- i]

T' •U''

mS .. .

. .,.. .

1

< .. >

'

. . , 1 ,

, '

1 ' •

1

'

'

i""ttnt

•-

t

-t+ffflW :

g

-

/

- 7

r

/

i i i i i i i i i i i i i I I f

-1

r\ j ' 11

.-fr-""" M

/

— -

/ L h / '

/ '

z TT^ ' M-' L .li-,UI.

:;-""i 2X / / • - - - ^

' z^ :_

-/ Z

J

I

t I

J 'Z

t

J 1 I l_

liliilllll iliilliilliilil iliiiliilliii 1 lililllliliiiilliill iilillillliliilliii % of C r i t i c a l Thickness j

1

Y ::'••!• 90? t

'... __ fti m i l l 18555]

f - ' ;•'• • - - ]

i 1

, -.1 -i r

,

i i i mil l l DlKKEHiiJSCK BKl-WEEH CRITICAL THlCKllEbB AMU FKACTIOWAL UHITICAL THiClUllit>b, i n . r n r lllllllllllllllllliini i inii i i i iri i i UL^ L- U 1 1 I I 1 I I I I I I t t M I I I I T t IIII T I M i imi i i i uu. 1—J 1 1 1 1 1 1 1 1 1 1 I M I l l l l l l l M l l l l l l l l l l l

j 1

.01 .02 .03 .05 .07 .3 .5 10

Page 65: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

G o f > CO CO HI >lq M M O

. 0 0

. 9 5

. 9 0

. 8 5

8 0

.YS

. 7 0

- \ 1 'M 1 1 ' ' I I

1 I ' l l ' i l l '

1 t 1 1 1 1 ' 1

1 1 M M n —

1 1 I I 1 M 1 1 M i l ,

1 1 MM 1

1 M

1 MfF^"i 1 l i l i 1 1

-

-

' —

1 M l

v< 1 11 1 11 V( M 1 1 1 1 0)

——1—\~\'\ 1 1 M

! 11:11111

~ ^ k , , 0 7^4 eff

" r | FLU 1

- M r •

— IT o

T l l l l l i

-r-\ JET •"•

:::i"" ,L" i:

IJJ U X

j - j -- Q

HI i . . .

1 -

....

j1 I

'IT • f

l l M i H 1

lin ; 1

1 T

L 1 1

Ml 1 'T1

iMi 1" ^

It 1 i i i i i i i i n i i i r

1 I m

iiiLUwniiH [ J

-i ' XX

1

t:

1

; 1

U III D

I II

F FRACTIONAL CRITICAL MASS v s . CRITICAL MASS

TONIUM-H2O - 3 Wt? 2lt0

GAMTEC I I - HFN C a l c u l a t i o n

GAMTEC I I - DTFli C a l c u l a t i o n

F u l l H2O R e f l e c t i o n

Unre f l ec ted

-

d

T|

/

i / 1

L ^

llllllllllllllllllllllllllllllllllllllllllllllllll

LLW J.-4"ni I I I I

" 1 n 1 1 1 l-Tl 1 1

TryTTII J k'>r1'l n ~ t - t ? S-J- IJ

LK IT >f1 M1' 1

LT

4rttttf H M I T M

\ H 1 t>-L M 1 1

ni-lL

l l l l l l -

r c ,.11111.I . .1.

WfPlf IIMF

M I M H I I l i l l l l n l M l i l l i 1 1 1 M fl

I N \m 1 l i l i l l l l i l i i i i l l i i l l 11

- 4' • M \X" + ll t JJ 1'' li . I J - M . .._ .

JJ J .'0 ll •

\\--u\ k J ^ . j i . . . !l . . - . ,

3 J / r i \ t Jj \ ^ T

1 ."' T]

I I I L

19.6ff/ccS

3j—:..|| =:::|

i:... \ t

jJ • -• •'' 1' I

j-M-

fM' ]j ./ lfl

' ,/ • i-

:-...

: • ' •

\-.i J I

w 1 w

1 1 , 1 N - -

.- j - - s

^ • "•

R I T I C A L M A S S , k i i i i i i i i i i i i i i i i lllli 1 1

MM'iHP i:i^ hlrl ifelu

- M^¥i I i ' Ttliluti

1

.':Ai : M : n iT|]i t \ 1 1 1 1

J _r t t I ' 1 m

:';;: M . . ^ „* j ^ j ^ ^ '-'X-'-11 •• • 'iffl : ; ! . . " ..

. . 1 J 1

:::::; := : :M ,-'

,*- ]

" • : ' r

s;;:!::: :: M - ; . , j ! . V . . ' ..!,.... , \ '•• •• Vm

1 T 1 iffS ' H J

U 5 Pu LLLUU [

-

-

-

MTI4U

-MMlMi+ 1 1 1 1 Ih

^ ; 5M Tiif^fM M I 1 T

TtTrii>i Tllffl iA^'illl

h ^ M f ^ / r LP i : |

J-

^U-\-\+T\i 3 ] l l l l i MmTnT

-r n 1 11 i 111 > 114

-Ll 1 N ftp+ii n

1 II 1 - M J I - I

t i p ...t M,-4pM-f M 1 1 t 4 M'" '

|j |f-M M L J A

j-M -1). ..M1tfflj ...j i" "• -t"'"*4T •-\\--~ 5% of C r i t i c a l N

ni^+i+jt""'" J T ttr 1 JB III |i| _ 1 JJ. .

jj;.<j-L:'+^f.LJ:_i

. . .:[:.. 1 +

•jf—Tit •-Lr4- ^ ^

•-+r • + 4 tP

:::: i:::]:

S0% of C r i t i c a l Mass 11 1,^ : ' . , ? 1l|_l JJ_ . . ( ^ IM-f J J ^ H i ]--(!- . - ] j I

Ji _..J. 1 T . . I

••11 to I J " '•- IE 4 J '' r 1 J _ . . U _ . . L n-D4fH Ul

'i^^Mii

1 [t

" [ •' 1

• .. . . Q

n I 1 y

c a o

t l

I

PC I cr\ o o

0.1 0.2 0.3 0.5 0.7 10 20 30 50 70 100

Page 66: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

G a o > CO CO

1 .00

.95

.90

.85

.8C

.75

.70

"

-

1 1 iJ 1 MM

^ i n

1 T""! 1

-

-

-1

-

_

-

1 [_j j

4 J J 4

1 1 TT

± m -M tJ' •Tj"TJ-r

1 1 ' j I

Ttl 1T 1 1111

-f l iTT-

1 1 M i l

Ip j jM

'MM

oj M - •^ ' 1 i -" , 1 , . i * ' ~ -

-

-

-

-j _

M M M l 1

I I I

M M 11 1

im t—JIRJ

inf 11 T J J t 1 ll

i i i i 1 F :l iT

TT

M

11' 4I

t iT

I'lm f hi

Ml 1 1 1 11 ' MM 1 1 14t

k . „ OF FRACTIONAL CRITICAL VOLUME J ^ vs . CRITICAL SPHERE VOLUME ]\

PLUTONIUM-H^O - 3 Vt% SiiO J

F u l l H2O R e f l e c t i o n J

Unre f l ec ted ^\ 1]

i II IlliilJ 11 i li'lllllilll 1 1 ill T H 1 1 1 1 1 J I 'M ' M l '

1 II IIMMI ! lllllllllllll I ' i i 'Ti M i l l I ' l l 1

] - .H--JII] r - i r T i.-.-iM

, . L l m l .

M i 1 ILl llJ

IliliiillllllilliillllUiiliii'lii ill W \

1L HiiiHlT 1 IBI l iS #^lit h HiitnT 1 l' '4 . i i iLUJi l

^ii ( • .1 ' i| I I I L U,, , 1' .1 11 il' 1 l i i : '

.! T I

'4 14

11 M l

oi l l| 1 ! i i i 1 II

' ll 11

U i " 1

' wv 1

riMt it ™M

1 ' ' 1 "

fflllllll m !ll 1 ' l i ' 1 ' I ' l ' |i i

n [ijiT r j | u[ 1 JT J it • • U-- M J Uju L. i\l\

J - - H [ffi u rat n i H"lf

iiiiiiiiiii'iiiiiiiiiiiiiiiiiiiiiiiMrT' ' 4 H' i i 1 IT

T TT 1 l i I I l J D

V

DinTi'i 1

; " 1 1 M LJJ'

ff «i r rn T T I i 11 i II1' 1' II 1 ' M l

.1 ,111J 1

flT irT"r-LJ,J iiiiiiiiiiiiiiiiiiiiiiiiiiiTiiii'.iiiii 1 i i i r

1 1 1 ' ' nil '1 1 J I I 1 1 M i ' 1 M

1 1 1

1 1 1 1 • ' M l

1 1 i 11 III lllllllllllilllllll'll I I I I I I I I llllllllllllllllllllii t lllilllllllliilllllll l l l l i

IIMIIIIIIIIIIIIIIII 1 1 1 11 Hi 1M llilM 1 11 IM M 1

1 ^ 1 iir M u 1

1 '

' ' i M l :i! II ll i II i i i 1

J- ^ l i j i a — T r t t i ' l

M t"M"ira . •T-JT " 1 |lLa...,i|

- Mii

^ MM

J::;:1II;|J

i-^^i

T T JTJ

"J U 11 'lit

T41-4T Mrtr

'NHT Tiir' i ' i ' '

.illli-.

wB\ M.m

\ \

i #

m M444 # [ 44 4I ik T : li !.

jjl-iti

MlM'ji jlBtit MM S 1 fl fl

1 Mn , |T|

JfflllMt

4w

iiiiiiii^ "mill WT

LiTJ JiT^FT

tj ttit rMit

ii

111111444 11 t'trrMMtT" i illiil 1 M ' 1

M III I I I

S ITTT^!'

mm ' li • 1

i|l||l|l'||l||li| M i l l

Mi?i M h

i 1

H i l l ' 11 l l 11 l l j l | i | !

M l 11 j I

Mlraill; i l i l l 1 Lu 1. ll

!J..I tr 'Erai l iMi W-4 Mm

Swk •II il

JJ I hft^l' rTTTn'

M l 1 1 rJI'l M i l l ':

•'i ^M'^H^^iMM-

^M^m 1 IT'li

EM n f la; t l i t

\' IT-IT J M r

1 ' " r T T r ; r r r rH M^HIrr Lli i* WW! 1 1 1 1 1

14 1 1 1 1

III 'III ll ill 1 i 1 1 1 11 m,Li

1 1 ' I I 1 1 1 Sll- IlKJ

ra iW ' 1 1«4-HT1

rn \ii\' 1 LLHt ujiimr i ,

H'-' M' i li 111H 1

1 1 III 1

{ 1 1 1

TTT T T I ] l]W] I- nUEI . ' T J '1 I'lMiil Fi iM 1

1 1 1 I'l ' 1 M M l ' I i r !

ITT I ff 11 ffi: I E JJ I 4- tt iJElL-it, Tili 1 1 i l l l l i 1 ' i i ii hJ--+[--T|;|-J j ft"""" tip It 1 li 1 1 1 ii' ill lll'l liiT liili

ill '"'

ll III iiii

n

\\\ T?% o f C r i t i c a l Volume U Mi UJU 4M44

TT 11 1 tt 1 1

jM 1 Ir M l 'IL

jMj-i i t j t j * 4 1 • 1 M

u J ] I 5 i ' ' 5 Uti W'M V I llfk* ijjl IJifflT fr 1 IPi '

I 1 T 1 Jj' _[_ Tl M M l -4

Mi J IM' -1 i-Mili 'L' 11

+ .1 uE _ ttflM^ ! -MMMM I I fliM|i

::::::i:::i: Hi'U. \\ NI" I^

1 J M jlllj ' ' M ' ' '

•"'["' I lik 1 '1 , - • • ' 1 T j 4 j t r i l"T[

,, •• Ti t Tr 1 [ It 1 i iJ.HTIIIIIIIillillililiilili!i

.i-r J»tTriliiilllilMiililiJH(-1 I I I I

L^WWn ll i" Ji^WfT'i LLU4W™ ll .. 1 .JJniyimiliila

J-j-t" • 1 I ll III

w ffflft li M • • ' l l ; 1 .11 1

fl!;i---^M..|l|Llli-t - ' - " lT ; t fi*E±tiMt * J i.i't m ! irElp.-M4' 'M

^RffPRl ^"rt"T"-TttM4iir

\ Ml i'll' ^''A

,1 ii4i IMitfl' j...LiiiMnpni

i 1 m m iiiJMUu 1 u ! i I I I iiiiiiii|iy'i nil 1 1 iPi

MirtffiJ \i -\ ' nbra N Ji 1 ^ ri

Uilffl I'illllll lll'lll ll^il' 1 iMli 11 llldl wrlil' ' 1

L •• 4 -MB •* . . . , , : . E l . n 1 S ' , - | . . , ! , ' 1 1 I 1'

i t 11 ' E it " M T I t ; ••> ::: : : I M • : 4 1 - - 1 4 - T l iiSul

~ \' tl"M't " ' " I T Mil •* I I ] T I ! M ' K [ 1"

T ,• ,, 1 T ^L 5 '"i.'- I, M M _ L ^ T* uilT 1 1

11 1 1 1 Uc' u 1

UKITICAL BPHliHK VOLUME, l i t e r s l l l l l l l l l U I I I lililllltlllllillllillitllllllllllliillllllllli

_

^ N

U' t f l j 'iT

r 4 .. -M'J. Tl i r

T Ll J-i-iliM . . t ^ i t * ^

_ , T i J . E J ,;:.. I l l , i l l

-.••' til ! ' r -r t It M _.'.i4jttMirr T.fT.EUm ItT 1 t i t r r t i n t

iJl.111:

TT l 1

-MMll'M T M -MM

i t I 4 rari t TIMI

"Tfl + ItMr irfi

Iiiffl lIMMi'i 411 IIII i j ' 11 ' lllli '11

ft-- • ! M r. Ijjll 1 iJ ni] i r ' 1 ll

Ml i l l t

M Ml tt.till ftlT-Wttf f F^J+nirnl

1 M M 1

F i j ' '

t^ilM iin I ¥'-

1 1] 1

i|ri 1 i Lixi • i i i L i i L liij t i l l TJ ESP

!t-it|tt.M|iM

[T IT [ l i l M l . . . i-.L . u i

J

iMTMlTtllt! [[[

1 JiJi [|i4|(.ii^ 14

:I'll! 14 Mill qns n-p n^-i+.-i^nT v^ i „m»U lJJ : ' ' ~

- I I I . — — , — - nillilTTiiliM

J- t-l ' '

~l l l : T "M 11

::":;:::::iLra . TMiEjt

I'l 'IIII

1 llllll 1. '"

,T--l--Pii |p . 1 ' 1 1 ||!i 1

|t 1 M [H j ] M l l 1 lljl ijl 1 1 1 !|jl ,|i ' ; 1 1 li i 1 1 1 1 jIL ll 1 '1. .

Ml tiMM " MPiili xMt U JMULLI T i ilii Tl !l . 1 1 I'i ll ll IM!

11 ]" I ] ] ' i]| f|

L D 4 I i [ u lul ii [ ] J ilu 111 [I ^ Il IHI \ i l l ' 'T'ifll MM ""Tl

" ftf nr"4 i ln l l l l l l l l i l iiiiiii iiii'i

I I I IT raw MW! Lii 11 1 i'iy

1 " ^ t — ' " ' " t t nn' t cLi " t it' 1 tin it ^"" MT' tM t i l i i

1 ll : ![

...... .1 :.. . I ' I t 1 '

— I " " " " 4" • « 1 1 ;:;;::::4:. ...::„ . ... . I

10 50 100 500 1000

Page 67: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

w M

04

03

02

U l

~

I

-\

n

I

-

1 1 M r

T pp

1 I I I , '

CM

" 1

(M

" P

-

-

-1

1 1 '

1

±^±

^ i 1 J ~ T

^ e ___::± q - - - +

1 1 1

1 1

5 Z] JM " i l A \

ad_.} : ±

— 1 ' 1 1 1 I ' l r- r r n i i — —TT I'l "1 —1 r—r

COMPARISON OF MATERIAL

BUCKLINGS FOR THREE

F I S S I L E ISOTOPES

lOM GAMTEC - HFN 18GP CALCULA

I 1 I n . I I 1 1 1 I 1 1 I 1 1 ! t 1 I I I I I I I I I

i l l 1 i 1 ' 1 i ' 11

I I J J^

_ -

1 i 1111 1 '

1 1 y \jr

+iT'nv^ LL ILUiL Lc i in i

zli'm t 1 1 MTrrpr / W \ f \\\\\

"MrtMB!

"""rmfc :::t:Dtt

J f

.

1 ~ \

H ~ I I I " " 1 1 •

M y \ \ ^~ IX C J \

/-"t 1 /^^A

/ :_ , ; t / ^ j ^ T ^ / J J J _L

1 / -LLTI i - u ^ • -4J.

t ia ft : ' : I tLTMi 4

^ - , t f - i--\ I ""1

T- *^ • -^l . J _L

y^ —1 ^ : : : : : : : : i

' 1 . 1 M l i 1 1 I I 1 1 1 1 1 1 ' ' 1 1

' IM T ' ' 1 1 IT

1 M' 1 I ' M

'1 rri i" 1" T-"i'i"|'i "I'jr

f+f h|{m

11 ' ' 1

Liiiiil!! TTnx ic : T|']iT!v

ll 1 T 4

1 M J T 1 ' T 1 ' '

1 I P 1 . 1 1 1

M ll 1 li M 1 ' i 1

'

' II '

' il II! I'l! Ill ll 'II 1 I'll I 1 1 1 1 1 1 ' 1 1

— _

J 1 I^^^^^^^^^J u ^ r ] : [1 ll jljij III Kfn

'111! ' i 'HI 1 1 1 III M1 ta| • 1

11; 1 W\.\ \

1 11 liin i 11 1 M i l 1 ' ' i

M 1 ' ' Ll' 1 irM.jM mL^ j n l .j'. ffi M|-M4- j-H j " " t " | ' r I i l l

1 t it 1! 1111 i ' ' 1 It! II iff I ' i *' ' 1 \

M 1 ' L «'' ' 1 t l iE t i J i i j f i i i iMM 1: Ml i

Llm" ! ' j: ' j 1 J1 n 1 1 1 1 ll

: : > ; p" ::: ii 1 / ' ' mill It 1

LLttttnMT.'J: •; , 1 ( ' i tntm. ' . . i

(LH tttt t« tt j '

rttttttttii "1 f U i lLm \m\ t rtfttl pM :.. 13 M , . 1 i i tQ miE...i i t . 1 1

: ' m 1 r ' 1 1 /<i 1 '

• ' 1

1 1 i 1 11.1111. II r r i u r T K

^

u p ' ^ T T T 1

M >1 • -

P / ' T i t / " 4 fL +L / T

i ^ ' ' j r;''--"'i ?* 4

ITRATION,

1 M' ' 1 1

1 ^ i i i I i V T+Mtrtlq 1 1 - 1 , 1 i 1

^MMiJ ' ' I I I 111'' 1M 111 i n

M-i fflM i ' nTM "n 1

14 J r

1 11 J. J i i .

L**nTn » rT 1 J _

-••"IB = "MMH : i m j i j 239, T 1

a/1 t t

^' - + M L " * 1

2 3 5,

tuJ : T " ^ 1 i

'

^ • - • • • • B ^ L

^u(100) N i t

3__:::; : : ; : :

1 11111 ' 11M IMIi 1 1 MM II

-+: 1 1 -tir+i ij±lm4'" I' T ift W

iiSjHit '=fl| hilli i 'rittttin T"' """M 'MittM • t ffl l l l l l l l l l l l l l 11 i l l III I'l II iiii

M' 11 ^ ' ' U ( 1 0 0 ) N H • MJ I [1

,,,, ., ,,, t I" ^ nj]

TrMiiTtHT' " M M '1 11

lit 1 nil ' r+ t ' 1 l\-\ MM, 1 J (93 .2 )NH M||- • m t l l l

Till II'' '11 M rr~rTj4j.T , 11 'MM 111^

_N i.:.Ti.... M. M. in i f f l

m

\ 1 i

El

1 l l I l l

i i ( j

SI Hi

ra re mj j , IH ^ l l ] i I IJ [TTTTll 111 : II

1 ' 1 1

_[M L j M. 11 .... i II 1 1 ' 1 ' 1 1

1 1 1

n n i 1i 1 i 1 11

I 11

1 1! lljljJJ \ 1 1 1 ill

1 11 IIJIJi 1 1

c z o

w

H

H

w

D

I H

I O O

10 20 30 50 70 100 200 300 500 700 1000

Page 68: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED II.B.1-15 ARH-600

lOOi

70

50

30

10

7

5

.5

.3

. - - - - X . _

= ^ ^ ^ P u ( 1 0 0 ) - H 2 0 '-'•^'

_ ^ ^ r i r = ;-:::f:::::= = Efc:±::::::::.f

:t" '1 : J X I _.::::::::::::;:.:::;:..: ::i , BMipMil

^-^^-pji^^^lllllll]]! ! I [f|||/[|||y|

I L

. ^ I 4:—|l-4's-4-— i . - i — l . - s ^ -t- +-- • H--- -t--

; M ._ iiji:!!: ::;::;iE J . g , 1. . . tt. • = ! \ • D -' r 1 1 — ; *^ .;:::j:±:::]i:::::::::i::::!:_ >fflf#f™ • < : - - # - . . . i - t - .—

r) I I " H " ' " t '""t • B i - J - - - - S - - - i — : H r- 4 i : - : : : : : : : : : :1 - - 4 ^ : : : : : : : : : : . —

CR

, ._^ " <ij r . '" """""

. |_j . _ - „ , . j

. ^ _ t _ __Xlt-- -. TTT •x*

. r\, . _

,

1 - - L - i i i _

- ' - i - T ^ - ' - l -^^ "-++-

r ' * ^ ^ tt ^"^ ~"

^ \A ]//\ H 1 . / . J A] . J 2 Z^4

..i...L i.t........ COMPARISON OF F U L L WATER : A f ^ i

T\\r\\\/\r\\ ITTI ^^J^'-LIECTEU C R I T I C A L VOLUME AND MASS \ Lfl i l Vl TTTI FROM G A M T E C - HFN - DTF CALCULATIONS I I \Jt f f\ f\ 1 I t - -J-

3 t AND R N W T . - C ; A —71 RQ PT" TT

[gMJiiiiitlmfflllin^^ ;:i;!$-=:;;;i5:5.3i"^!i;;;::^;•;- "^::i:;::s:l-i;:?-:=:i k""' " """ ; P u ( 9 5 ) - H 2 0 " """ "" " " ^ . V / ^ ^

s,-^ - - - + --- r •

• , I ' ^ __ 5 s « . . !:_-. ~: " t ^ ^ ^ n ^Qfi^ —H„ n - - - •

? " • • . . . , , , . _ \ u v ^ u ; — r i 2 U • •1 " ' ' " ' • • • « . r II

gf f i f f l IflMllllllllllllllli l iU^^J^ Wti#fWM^^^K E i ^ i ^ E E r : : : : : ; ; : ; : - : ^ : : : : : - : i : : : : E E r z i ' r E E E ^^\::-->:v \-- llly^^^^-\\] E^^^^EE

. ' ^ __ - . . . - V M ^ •* •

M4ffl 4j T ^ I I ffl i t t ? — " ± z : : : : : : : : : : : r i ; : ! Ilni;;:: E-EEE^j; E-TE EEEEi i"!; ij \ z"z\l\l\\\\\\-zzzl[l\

\ i J E ' ' 11 i f M i f f i \ i i 1 L L

tWti

mU

^ " : - : - - ^ ^ E - - " - " : : | : : - " - [ " - - ' ^ - ^ i : = ^ = " - - " \ - \ \ \ \ - " • • : : : - ; : ; : : ^--iziz\

= r :: :__ = z " : " :::: " : : _ Jffl ___^^ ^ . ^ ^^^ ^ ,,,^ =z=:: : : _ __ —jM —jl

, --4- 1 --

1 1 , , . -, ' S P H E R I C A L C R I T I C A L M A S S , k g " """

.1 .3 5 .7 1 5 7 10 30 50

UNCLASSIFIED

Page 69: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED II.B.2-1 ARH-oGO

II.B.2 Geometric Buckling Formulas

Shape

Infinite Slab:

Bg

7r« (a + 2X73

a = width of finite side 51 = extrapolation distance

Parallelepiped:

Infinite Cylinder

" r • ^ M 1 1 1 Tt [ (a + 2X)8 ^ (b + 2-)0^ " (c + 2X)2j a,b,

. 3

c edges

(r + X)8 r = cylinder radiios

F in i te Cylinder; TFTTTs (h + 2x)s

2 r 3 / >f

Infinite Hemicylinder (3.832' (r +\ )3

r = cylinder radius h = cylinder height

r = hemicylinder radius

Sphere:

Hemisphere: (r + X )s

r - sphere radius

r = hemisphere radius

1 X depends upon the fissile material, the geometry and the

systems surroundings.

2 For a sector of a cylinder, see Page II.B.2-3.

3 Critical cylinders and hemicylinders are related by:

The = 1.5935rcyi + 0.5935 A

n Critical spheres and hemicylinders are related by:

^s = (rhc + >>hc) ( y + 2^^^g) ^ ^^

1.2198(hhc + 2\^^) + {T^^ + A he)

Revised IO/5/7O UNCLASSIFIED

Page 70: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFISD II.B.2-2 ASH-oOO

Shape

Elliptic C3''linder-'

to

The bucliling equation for a right elliptic cylinder is of the form:

B,.= = B/ + B / = (TT/L)^ + Be (m,M)

where L is the cylinder height, m is tlie semi-minor a::is and M is the semi-major axis (extrapolated dimensions).

The solution of elliptical bucl0.ing, Bg^, takes the form:

Bg^ = K(c2)/mS where c = J^m and K(c^) is a function which varies vrith c

Values of K(c^) can be determined from the accompanying table. Interpolation between points can be determined by the approximate formiola:

K(c=') = K(c/)(c//cS)(c-c^«)/c/-c^r

+ K(c,S)(e^Vc")[l - (c«-c,^)/(c/-c^3)]

Mcll

IJHHK) l . ( ) l 7 t l . ( ) r ) 2

J, oral l .* i7 l t 1 dv'..)

1 i l i iC.

1 1271 1 . 1 ItLI 1 ir,.-,7 1 ih:)!

1 2()i.'> 1 2211

o . 7h:i2 O.dHHI

r>.:.S',(8 5.'i'.is:t fi.'llOO r, :;2i'.i ;• 21S1 :.. i ( ; i2

.•LllAMi ,', 01 (i2 i.'.ur,'.)

•1 H M U

•1 SlC.l

2t:i7 2(i:ii 2Ki2

:{():u) :i228 ;vi27 :ir.2i :iS22

i 11)21 1.-1217

l . ^ l l l ^ l . I f . I2 1 .-1808

where

K(c' ')

•i.7r>i'.i 4 ti'.ilU '1. (i:i!t8

•1. r.8(;o • l . M I l •i.48r>i •)..i:?78 '1 .•{!t2.-, •l.'tlUO 'i.:i()7.3 4.2(171; •1.22! (2 l.l')2r>

c , < C < C g

-c

..'iOO.'J

. 5 IDS

. . v m

. r,r)8:{

1 .5775 l..V,M>8

.cm? (i;ii5

.t),i:ii

.u722

. 0<)07

. 70',)5

.7277

K(c^)

4 . 1 5 7 0 4.12:1!) 4.()!1I5

4 . 0 0 0 a 4.o:!o;{ •1.0018 a. 0711

3.!) 175 3.1)220 3.S!)73 3 . 8 7 3 7 3 . 8 5 0 7 3 . 8 2 S I

1.7400 1.7013 1.8004

1.8538

1.8074

l.!MOC

1.0831

2.0241

2.0017

3.1M)81

3.8181

5.0802

0 003

K(c^)

3.8074

3.7800

3.7.5S4

3.0!) 10

3.0528

3.0152

3.6801

3.5518

3 2021

3.10.'.0

2.015!)

2.8112

2.7(181

2.4074

P. F. Cast and A. Bournia, Nucleonics, April, 1956.

mrciASSIFIED

Page 71: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UXICL'VSSIFIED I I . B . 2 - A-^- or

UNCLASSIFIED

Page 72: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED ll.-B.2-k ARK-oOO

ANNULAR INFINITE CYLINDER

Void Core

An annular cylinder whose inner radius, ro, and extrapolated annulus thick.ness, t, is kjiown and which has a void in the center will have a geometrical buckling that is a function of ro^ t and the outer extrapolation distance,^. The graph on page II.B.2-5 shows the relation. If A r = t +X., the value of Ar/rQ will give a value for "V/Bp. rQ. Dividing this by rg and squaring will give the geometrical buckling of the' system. Conversely, if the desired buckling is kno-vm, the inside radius or the annulus thickness can be found.

Isolating Core

Calculations have been made for the relationship between BP, VQ andAr for the annular cylinder which has its core filled with material which effectively eliminates interaction of the annulus across tlie core. However, since small cores are seldori isolating and since for large cores the annul os may be treated as a slab, the relationship will not be reproduced here.

UNCLASSIFIED

Page 73: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

m M • ^

M

t)

w

I

I o o

Page 74: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED II.B.2-6 ARH-600

BUCKLING OF N-SIDED POLYGONS*

The radial (or horizontal) geometrical buckling of regular polygons, where R is the radius of the inscribed circular cylinder of height H within the polygon and {ff /H ) is the axial (or vertical) geometrical buckling, is as follows (all dimensions are extrapolated dimensions):

No. Sides B ^ - ff^/E^

3 4.3865/R^

4 4.9348/R^ (=2//^/D^ or square,

see p. II.B.2-1)

5 5.2080/R^

6 5.3665/R^

7 5.4672/R^

8 5.5352/R^

9 5.5834/R^

10 5.6188/R^

11 5.6456/R^

12 5.6831/R^

13 5.6826/R^

14 5.6958/R^

15 5.7056/R^

* Raymond L. Murray, et al. Nuclear Science and Engineering, October, 1968.

Revised - 7/10/69 UNCLASSIFIED

Page 75: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED II.B.2-7 ARH-DOO

BUCKLING OF N-SIDED POLYGONS (CONTINUED)

No. Sides B ^ -jf 1^^

I D

17

18

19

20

«»<»

5.715VR^

5.7228/R^

5.7291/R^

5.73WR

5.7390/R^

5.7831/R^ (= J Q ^ / R ^ or c y l i n d e r ,

UNCLASSIFIED

Page 76: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED I I . B . 3 - 1 ARH-600

1.0

CYLINDER GEOMETRICAL BUCKLING v s . EXTRAPOLATED DIMENSIONS

R' = R+A. H' = H + 2 ^

•fir Et^'

.001 EXTRAPOLATED CYLINDER RADTUS, R', cm

-t-T-r-L-

10 20 30 ko 50 60 70

.00051 fj

.0003

.0001 lUO

UNCLASSIFIED

Page 77: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED II.B.3-2 ARH-600

1.0

0.1

.05

.03

.01

.005

.003

,001

\ \ \ \

i \ : ' : i l : : • : '

: : i •

I ; : :

• '.'.'.

• 1 i ; ;

: L

J; h3 M •

L tt ffj

L S

s 0 :'

-- . ^

1 (• -J \ . 4 -4 - - 1 \

: : : .

M ^ •

- - - - - -

' • 1 '

' • ' : > •

! : ; :

; : i

i - i

! i -' i i 4 - i i

i-H -1-^

X \

d"L"

n--\ i ' ' i \ : : 1

i \ i

; N ! j \

• ' I ^

: 1 i

i : ) i

• 1 i !

-\V '.••••

: ; ; i

'. - : \ • ' . : • \ •: \

i • ; i • • : i

i i i ; i i ! i : T

; • i-i ! '; ;

1 • ; ' I ' I

i i i i

-\.\'\:.]

• ; f i

l A l l i N

ri ' ! \ i i i i > s i ! i i i i M

• i i i j -

- •

1 1

;4 4 -

• \ ' i

i • 1 • ! 1 1 1

t : : T

• ! r ;

i !-! i

' M 1

: ; : : : :

i ' i 1

- • \

; i r 1

• - • • • I +

- 1 -

..j j ,_

-"-

r.z

i ; ; ]..

1 ; i '

i i i .

I l l -: ! i i

Mil Vi 1

l iH i 1 i r t -1 \-\-\-

: ; "; I i ;

i i i ;

' ; i I

i 1-1 1

; r ; ; .

• j i i i

: ! : 1

i i

• •- I

. j J j

'•i

- f I ^ i -.—

" i i

! 1 1-. -

! i

1 i t ; 1 i

1 1 1 M

i j i j i ; i i

S . ; i '

^PIH Ll ; i

1 i i: i i i 1-

t" i " ' f

•-i i 1 i

!.f%-

I i 1 : M M i i 1 i i ! : 1 -M I i t 1 : ^ M ' i 1 : i - 1 : ' 1

S L A B AND SPHERE GEOMETRICAL BUCKLING v s . EXTRAPOLATED DIMENSIONS

Sphere, Bg = TT , R' = R +A

Slab, B / = TT^ , T' = T + 2A

: 1 : : ! i

1 ; i ! i i

i •1-

i ' i ^

1 H i i i 1

1 1 . :4 1 1 j •- Hr ' : 1 1 ! ! ! t M i f 1 1

t-

Ni

-i---

t--!

i • • . • ] " "

hJ %!-->-^

1- 1?" --- j ! i

: : : t 1 1 : .

-:.:t! i ' : -i' - 1 1 I . :

• • 1

: 1

frV^ ! - • . ! • . .

1 " -"

1 p

•^-.r_ _- j , -.}

^ 1 ' - H<

• f '

• : 1

i i • i

- - 1 -i : i

_ :.j. ;

— LLl .

1

i

i

.-

t -

•ji-! • ' ; ; 1

-; ' • i i i '

• ^ v L ! I

: • • ; "

j 1 i • i -l ! i i t • i t •

•; ^S^

! 1 , !

i

- -

T 1 ^ •

I . t ]

L : > ,

•- i.'. i

S i - L L t

^ t ^S^ -.-L;-i--.l

- U ; 4 i

mi. ' • ' ' ' • ' • •

: EXTRAPOLATED DIMENSIONS, R' o r T ' , c m • • 1 ' 1 1 • 1 1 1 1

'• I I \

-i I

i ! i t " 1 1

1- i i j ; : ;

1 i-i;:! • , : :

• • . ' • ' •

• : .--*- i

: i : i

I : 1 • ": i

-Li-l ; Tf-p?-

• i "• -i

•-iii.

"1-1 -

i ' ' ' ; 1

; : ; i ! : :

! 1

i - -: r

i • • i-U ! •..;.-

: . : . -

• ! • ! 1

" ' i i i .

-j i M -•* I 1 i

t 1 '

; : r

• ) ] 1

: : 1 i '. 1

. 1 | :

: • ; 1

; ' ! !

f • • • . ' • ] ' .

• . • •

^-"-^^

: : • : - :

• \']"\ ^

10 20 30 ko 50 60

.003

.001

.0001 70

—--—-- T - - - - - -

^ ^ ^ ^

Ii a 0 •

- " . , n •

:

i : : :

- :

±.i \ \

I ; ; ;

-----: : i •

• • t -. ;- i- -

: i !

: 1 i

i i i ;

! t-r •

1 • ; ;

r • -i (

• •

• • M

: : I :

i : ; - i : I ;.

IT ! ! 1 i

' t 1 1.

-~

-1

1

j i

j i t t

i - 1 1 !-(• i ] _ H-fT

— T '• ! — i —

i t : !

• 1 * (

I t :

! 1 ; i

i i i :

" I

f 4 1

-:-;

1

:-

^—-i-.f-

! ! ' :

: : i I

Ji-^i • I I I

" : j i t

: : 1 :

-jrT

"" -_-;t--

i

i t

-•• 1 1

-

::1 EXTRAPOL/ I I I !

i i i :

I t

t -

T i

i i

'

-I-

K --

i i i i j • • ! 1 j i i 1 1 • •;

.-! - 1 -: 1

:i[

\TED B B 1 _ j 1

—!—1—1— -

; i

! ! i 1 i '

' ! • Z -

„ ,

• -1— -

.i - _

lEMSIO M i l

-i-r-K-

! ! 1 !

'Mi ; ; i 1 : : ! 1

• i !

1 ..-

-ITT

• i -;

-; • '

- -- - -V

L • : - : : -

N S , R i 1 I I

: • ! i

- i ; > •

i I • i

_U 1 i M i i _

-fT

i 1

I

i

! i

; i i :

L

-::f

' 0

1 i 1

i -t i t 1 1 1

V

- i - H - ^ I 1 i 1

i i i i 1 i 1 i i r : : l i t '

t!-;:-t. .t-L -;; H

1

- -

t ; ;

__ t

_[

"1 -"'-J •- L-: -

[-- '•

94-

- -

-i

1—r—: i— • ; • j

1 i • ^ 1 ; : :

1 ; i 1

; ;".-p-+-"-

. ! r ' : ~i-

--i---4'-T+'

1 ' i

! ' i ! i r

l . m • i

: i : >;j7

. 1 .:-"r -:_X_- .

\r\ 4-. -M

r T ' , cm J 4 i 1 1 1 1 _ j 1 1

1 . i :

-i i- i ^

-. :\±:-. \ • :

: : -T

i ' ;

: i ! :

i ; ; i

• i i i- !

' l - f - ' i •' 1-1 \--l-

- -J , .. ( -1 \ ',••

' h - l -•[-"••4-H

:L|L[E 1 1 1

... -

_

. : : r

; : • j-

^ i ; i

; • ' '

. : ! • i ^ f ' i

I ! 1.-; . • - - •

• i ; i i

— 1 I . .

1 : , .

^ 90 100 110 120 130

UNCLASSIFIED

Page 78: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

J>

k

^

2

1

0

K

\

N

-

K' ^T-O ^ < X -1-5 ± 4: 0 ^ - ^ -

y 1 ^ 0 h-^

iq P-A < ; " • •

• ^

S T 5 r t

\ $

k

\ ^ V

I.

u ^. i t \ " - T - 5M n_ j i 5 L 5

! ^

u^^ -4-^^ -|-• \

^ 4T--";

-=>>, i—-•^is^

*• ^

' i

-n_4_ 1:41. -i-j-l±ir[t: ..[.il 1 l u l

1 i i ' '

._._i_i_Ln-t.^ .1 i i i i

! 1 1 ! i ! ; 1 1 1

-

• i • _L_I

i 1 1 1 ! i i i

. .

i 1

^f s_. X. . ^ \

s 1 \

^

^

-ii-i - | : - - i s , !S> .

^

^ T _|__| j

4-. 4-u a t Jr t' ' 'If 44-4 ± " ""TI ' 44 4 Xi 1

-f- -^^ J Ul 1 1

1

1 i j

r '" IT 1 1

!

V 4 F " " ^s, - X - t : : ^N 1: s "N I T "

_!^s>±::4. X^ tT" '^s

"K It^. ^5. : : : : +

• ^ ^ ^ . . - ^ M .

1

m - - i i 11 !'•• X"" 4" t t j i 14 " "" X ^'|4"44"'4t|ljlf4'tl]

i l l 1 ' 1 ! i ! ji 1 1

X 4a I4 hjii ,

i 1 i n i i i i i i i i i i i i i i

X444 ! From i; 1 1 i :

~~^~^' I i M" 1 "' I '

X i i i IL • ,

1 1 i

" i+ t^ ' ^^"^" '^'^^' 1 . 4 1 ^ ,

rmTimi

niw iffi tfil

i 1 jj Jlj t, '!, 1 t 1 1, }tt x+

t |4 iifiiil

T ' Ii

'" Ii'

l i j i

_ i i M : ; ; ' 1

U -LL '

1

l i i i l i i i l ! i 1 1 1 1 1 1

i r i i " ^ 4lt44l" 11 14 1

I I I

1-I4X- 4-ALLCTJANCE FACTORS FOR CYLINDERS -

u c l e a r S a f e t y Guide, TID-7016 :

!!; ! |-X i E I

• 1

1 tt ' 1 ; I II T T • i L T • ' I i i ; 1! 1 i i

4 - " - 4 + + — i----ttr- - 4 4 1

t "4T t i i t iU; l T 4 ---4+t..-f4 . ' 1

•! J I t""T t " ^ ' " t ; • 1' i 1 i 1 '

' ' ' !

-3-4 X I ^ i l l 1

1 1 ,4 t l y

j

_i_ i _. X

'

^ I l t t 14 .j;i^.:±-lt^ " ' ' " , •

••• ' > ! 1

'^^***-S!;^^ "^^"^^ 1 T 1 J " L u!

i :

i 1 [

t""i it'"TiiitT •; 1 ! M! ^ Ulx X._ I ^ ± 4 1 | U R]

J ,ii t ii i^

It r j itf : jTi: ' ki

1 Tu fi 4? j4 w V 1 i i]. I4 '" FT 1;

" ' ' ' J 111 JI

H L iii if

1 u • ^ T 1 ; • ::

T; tt ,

^ u ' ' " J i

' J I '' IL i ''" Hi ]• i tt 1

' 1 i 1

1 [ 4 i 1 i

j • | 4 i4 1

|44tii|ii iS44H.

.HH i i i t

4l -4rLl* i -I ti+T n 4 4

1 1 ;t t4 4 I j 1 II.. !i|

T 4 - I 4 : 4

\b [,•

1

! i •

i '"

! : LL 4*

u I ,

1 '

! i i

M t Ii

In :'

4 "1 ii R il

ill u! —J 4 i] , t

III

i -ff

[4 41

k

i4 1 1''

1 1

4: + -

1 1

[_ _ L ^ X - ^ -

1

^-^-r'"

rl,-l^|'l-4- ' i, tl i 1 i

! ' 1 ' 1

ui- 4 4 j ' " " ' ' ' • • 1 ' ' 1 '

I TmTaTTP/nxAivmTWR RATIO i i i i i i i i i i i iii ' ' ' i i i ' ;riiii- ' i ' I'ilH _ : 1 • i ! • 1

r r ^ T1

1

^ 1 , 1

1 1 1

1 4 "4t"""

! ; 1

1

r

1

V ^

1 ^-f'' ---Y ^ , "T ^ -+•-+•'! ITT

i 1 1 i 1 • ' ' -•4--M-r-Mi-

1 - i ! i M i l !

^ ^ ' 'U T iTJ i l

, .^""ili ^

^ ^ ««» _ u

~

1

" 1

h -[I —1 -.. I--4-,

_ 4 4 ^ 4 " _ _i-i:X...

j / 1

''' * j * ^ ^ * "^^

j ^ * ^ - . - • ' T '

u H ^ - - ' \k<L^ L ^ 1 1

I i "

\ 1

4 -H 4 T 4 4 1

t -^4- 1 LJ

4 """""' " i'T'V

Z-'ZIIWTTl"7"'''M 1 l!

---4'--4-^t^T^Tlt4t4 l"iT Ti:'"i'i4li " + " T t t T T 1 rtt

4444.: 14..44 I .g T " ^ 1"

t 1 t||-!' " t fl ^ r t l

:::::::;::::::::::::::::::::}4in 11

_ i 1 i i - i t i j i .

1 i r

' i 1

1 1 i ' 1 I ''

i

4 h . /L, ±" 4444E" <^J.%. '"I'ti ; o^4rf • i -.& j | 4 4

t +^0-, Enrt 4 '+^^4H414 ± X^ifinvylx^

+^v#4,5M.# > 2i [ X-' ^uI' 4d^-veSi4 " 4yj. , l4'^° <M:tT^ r IJ' 4 w^^ ^ i 4 t l i t i i m. tuilli j ' I 1 ' i'l ijl iLi fLi

<•' i ,' 1 1- |4!TI' • j - ^ - k ' l j - i i i Wi ' „-\e*

X ,. . ± 1 jffi. _-^^i — i ' + . i i . e •% ^ ^ ^^:II., ,:: L 4 A> ,uv" . ' ,,-• 1+ T ^ ^ i X ^ : '^ 11 4 I I •' 1 •'• Ii.'

1 n S;' !i •! 1 I 'ii

^'ilf-|I{il^tt::;4:•

-- T"MU^ . ^ i ' 3 ! ' ^ '

i ' i ' - ' - r ly m:-ili:4{^^ i i i h ; • 1

i i 1 I i ; ; • | ! i

1 1 ' 1 • i ' 1' i I I I ! , ,• 1 i 1 1 ' • ' ^ • , • ! • •

1 : ' ' 1 ' 1

i T '^ 4 ' 4 , ^ ' 1 4

H[!ll31i:] 4 4 ffi

4 4 4 4 1

J, 4 Hj 4'

jtX'Z • i ''1 lil! ''

n ! 1! ' I'

mriioii] 4 4 1 il 141

: 1144 1 i III'

Hi 1+U Ui iv . 4 lis: 4 UU 4. L-

tllfj"'!! tH^'t 4 (4 t^

ciiiiiii;!' utdit ' iiji •'

Ji fi/ •

it 4I'''' fi • 4 • li' ; < .•• ••

ti.'^'Z i. i :4 ' - r-If5t--;! , 1 4 i . j . 1 .

4442* •:2? iE*^C ^ ?i"x:4 > l

t^ !-,. -i .-

" ^ ' 1 ' ^

" i4 - -

'ii III 'ii

illl 111

lll

j? w IIL II

r

/

!(«' Ih

J, , l ' l

J :

' '

_ „ _

.5 10

Page 79: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED II.C.1-1 AEH-600

PHYSICAL PROPERTIES OF Pu METAL AKD ALLOYS (1)

Plutonium Metal

Density I9.6 g/cirP - so l id

16.62 g/cm - l iqu id metal 66400

Melting Point 640°C

19.81 g/cn? theoretical^^^

l iqu id Pu g/cn? = (17.66-1.52 x 10-«oc)

Pu-Al Alloys

See I I . A . 3 - 2

Pu-U-Mo Alloys

Al loy Composition atom io

20 Pu - 72U - 8 Mo

20 Pu - 7OU - 10 Mo

20 Pu - 68u - 12 Mo

15 Pu - 7OU - 15 Mo

20 Pu - 6OU - 20 Mo

Densi ty as Cast g/cnP

17.6i^

17.26

17.12

17.5^^

17 .11

(1) Plutonium Handbook, Vol. 1, 0. J. Wick, I967.

(2) Under special conditions I9.8 g/cnP can be obtained.

Revised IO/5/70 UNCLASSIFIED

Page 80: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

t3

Page 81: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED II.C.2-1 ARH-600

PHYSICAL CONSTANTS OF PLUTOmUI^ COMPOUNDS (1)

Compound

PuC

^s PuC2

PuClj

PUF3

P^),

PuF: 0

PuHg

PUII3

Pu(OH)i^

Pa(C20l,)2

Pu2(C20lJ3

Pu Peroxide

PUO2 (oxalate)

Pu02 (nitrate)

PU2O3

PuN

Pu(W03)i^-5%0

Pu02(N03)2

Pu02(N03)2

PuP

PuPOi.

PuSi

Pu3Si^

PuS

Pu(S01|)2

Melting Point

I65J+OC

oxidizes

oxidizes

oxidizes

decomposes

decomposes

decomposes

2050

2250

760

1425

1037

51

© 150

© 150

© 70

© 160

© 260

2390

2390

2085

2584(3)

© 220

unstable in air

decomposes ©1^00

decomposes

1576

l646

2350

© 650

Crystalline Color

green

violet

pale brown

red-brown

grey metallic

black

green

yellow-green

green

yellow-green to brown

yellow-green to brown

brown to black

brown

pinli-brown

blue

gold-brown

pink

Density Theoretical Bulk

13.6 12.7

5.7

9.32

7.0

10.4

9.61

--

3.71

11.46

11.46

10.2

14.22

2.90

9.87

7.55

10.15

8.96

10.6

'2\

1.38

0 h(2) O.b

0.7

1.48

Tap

0.7

0.92

1.58

(1) Plutoniim Handbook Volume I. 0. J. Wick, editor.

(2) Reactor Handbook Volume II. S. M. Stoller, editor.

(3) I nitrogen atmosphere, volatile above l600°C in vacuum.

UNCLASSIFIED

Page 82: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED II.C.2-2 ARH-600

BULIC AI'TD 7AP DENSITIES OF PLUTONIUM OXIDE PREPARED

Starting Material

Pu Nitrate II

II

It

II

Pu Peroxide II

II

II

II

Pu(lV) Oxalate II

II

II

II

Pu Hydroxide II

It

II

It

Pu Metal

IN SEVERAL

Decomposition Temperature

240°C 400 600 800 1000

240° C 4oo 600 300 1000

240Oc 4oo 600 300 1000

240Oc * 400 * 600 * 800 1000

Unknown

DIFFERENT VJAYS

Bulli Density

1.7 1.9 1.7 2.9 —

3.5 3.3 3.9 4.5 4.9

1.0 1.1 1.2 1.4 1.7

2.9 3.7 3.5 3.2 3.8-

4.8

g/cc Tap

Density g/cc

2.1 2.4 1.8 3.6 —

4.1 4.3 4.4 4.8 5.8

1.4 1.5 1.5 1.7 2.3

3.2 4.2 4.0 3.7 4.2

5.3

-""Average of two or more measurements.

RFP-503.

Other data are single measurements.

UNCLASSIFIED

Page 83: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED II.C3-1 ARH-oOO

RELATIONSHIP OF COMPO^IENTS IN HOMOGENEOUS PLUTONIUM MIXTURES

Plutonium Metal - Water Systems

P (g/cc) = 26.527 ^ 1.555 + H/I U

Plutonium Nitrate, Pu(NO )

n 4. (4) ^solution = 1.0 -f 0.031 Mj^Q + 0.00146 Pu g/l, t % ^

for HNO, <9M Pu <2.1M

Pso lu t ion = 1.0 + 0.031 MjTjjo + O.OOI34 Pu g / l , t % 3

for HNO3 >9M Pu >2.1M

P^ ^ g/l = 1000 - [ .362 Pu g/l + 33.1 M^Q Excess] ^ ^

(1) H. C. Paxton, "Critical Dimensions of Systems Containing ®^U, ssoPu and S33U, " TID-7023, June, I968.

(2) W. R. Stratton, "Criticality Data and Factors Affecting Criti­cality," LA-3612, 1967.

(3) C. R. Richey, Nuclear Science and Engineering, Vol. 31, No. 1, 1968.

(4) S. M. stoller. Reactor Handbook, Vol. II, Interscience Pub., 1961.

Revised: 10-25-68 UNCLASSIFIED

Page 84: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED I I . C . i j - 1 ARH-D(J0

130

UNCLASSIFIED

Page 85: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

TOI CLASSIFIED I I . C . 4 - 2 ARH-oOC

- - ;:T' n • PtTlki-ri:,*4;1titlf Ih-fttrr PW # B W' « ^ m

mmmmi :1--1:TMT 'T!rTlPi!!r'j4.

EHtS3HEEa , , , -^ tg fe t

^gHJEiifej

lOOhgtiMMg

m mmrmw:

:iKH:rai .r,-4tKS

i t i i j t t t tCttt t

4HJ^^m0i^-!: i Mj iMfeijyai

w iTn^^ Hrrnrt ti iffi mtTtpi+ilffiB:

Hi

ms

PLUTONIUM CONCENTRATION IN PRESSURIZED WATER REACTORS

300°C, Westcott Index O.30, F. G. m

m Dawson, et a l . Nucleonics, Vol. 23, ffiji i No. 8, August, 1505^ ffifei

U(2)0,

U(3)0^ 2.35^ PuO -UOp(NAT)

I im

Munmni- iMUMMM

Mi r;l,-;=;Lirvtuiip ''"iiile isa ^ «

4rti"$SftiitMffi5 mm BPS

70

oOf.

?

ko\

20E

loE

10 EXPOSURE, MWD/ton x IC?

UNCLASSIFIED

Page 86: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED II.D.1-1

PHYSICAL PROPERTIES OF URANIUM METAL AND ALLOYS

Uranium Metal

Density, I8.9

Melting Point, II3CPC

C. R. Tipton, et al. Reactor Handbook, Vol. I, I96O.

(y 19.04 g/cm3 theoretical^

f 18.0

Boiling Point, 39OCPC

Page 87: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED I I . D . 1 - 2 ARH-oOO

UNCLASSIFIED

Page 88: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED I I . D . 1 - 3 ARH-600

UNCLASSIFIED

Page 89: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED I I . D . 2 - 1 ARH-oOO

PHYSICAL PROPERTIES OF URAlTIUI.l COMPOUNDS "'"

Compound

UCl 4

UCl

UF^

UF^

U^3

uo.

U3OB

UO3

UO^ * 2 H (

^%M^%^^. UO.CKOg),

UO^O^

uo^so^ • 3

2 UO^SO^ •

UO^F^

D

0

H,

T

' H^O

0

H.0

V7eight Percent Uranium

0.758

0.676

0.882

0.81^9

0.833

0.70I1-

0.60U

0.1|-7^

0.650

0.557

0.555

C r y s t a l l i n e

Green

Pale Yellow

Brown-Black

Olive Green-

Yellow-Red

Pale Yellow

Yellow

Yellow-Green

Yellow

White

Color

•Black

I

T h e o r e t i c a l Densi ty

1 .87

3-59

6.7

5.06

10.92

10.96

8.39

8.3i^

2.807

3.28

6.37

(1) J . VJ. Wachter, "Y-12 P lan t Nuclear Safe ty Ifendhook," Y-1272, 1963.

TOICLASSIFIED

Page 90: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED I I . D . 2 - 2 ARH-oOO

UNCLASSIFIED

Page 91: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED I I . D . 2 - 3 ARH-oOO

3.: Ll-:' J L:^4ii|i|'4444|^ ;uu t taui4i i l4;J i ; iur i'r|i',i-iii-,4' inui ^Lumii" I'mii

,v{ DENSITY OF AQUEOUS URANYL NITRATE SOLUTIONS

-^ *-——. Density Given at Freezing h+c Point of Solutions

100

UNCLASSIFIED

Page 92: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED II,D,2-i| AKH-uGO

.100; . 1 ^3 'J .7

^ I'' "W \ li'i^'l 'i"'lt I n T T T T 7 10

I • ' • — • I • 10

.OTO -

" CONVERSION FROM MOLES/LITER TO WEIGHT PERCENT jlj!; f , H

FOR AQUEOUS URANYL NITRATE, UN, AND

URANYL NITRATE HEXAHYDRATE, UNH

1 r

R. S. Mulliken and J. A. Lane, "Project Handbook," Chapter 2, CL-697, 19k3.

10 30 50 70

""TiTTTl _ J_

100

UNCLASSIFIED

Page 93: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED II.D.3-1 ARH-600

H/U RELATIONSHIPS OF URANIUM

2 3 5 U Metal - Water Systems

p _ 26.082 2 3 5 — — — — — ••' " -" — • —

(138.0/Wt% ^^^UJ + H/^^^U

2 3 5 U Metal - Graphite Systems

p _ 37.176

(196.7/Wt% ^^^U) + C/^^^U

2 3 3 U Metal - Water Systems

p _ 25.860 2 3 3 —

(137.7/Wt% 2^^U) + H/^^^U

General Equation, U Metal - Water Systems

p _ 26.415 u [l + (238.0/A^ - l)f^ ]H/U + 1.39!

where A = atomic weight of ^^^U (233.0) or

2 3 5 U (235.0)

f = wt. fraction of ^^^U or ^^^U in Uranium X

p (metal) =18.9 u

Mol. wt. H2O = 18.02

Revised - 7/10/69 UNCLASSIFIED

Page 94: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED II.D.i+-l ARF-'- Or

DENSITY FORMULAS

Uranyl Mitrate, UN, Natural Uranium

(1) ^ a t 25^C H SOL g/cD© = 1.0012 + 0.3177 1 % + 0.03096 Mj jQ + 0.051 Mj ajjo

3 3

(2) -J at- t '^C = 1.0125^35^^ + 0.000li^5t - O.OOOJtQSs" _ O.OO36

r^ SOL /"^ I where "t = ' C

Uranium Hexaf luor ide , UF 1— p,

P UF. s/cm3 = 3.668 - 1.553 X 1 0 - ^ A t + 7.356 X 10-^ A t ^ - 1-576 x lO""" A t ^

P = g/cm3

A t = "C - 64.052 0 (triple point)

good over range 65 to C^C

P UF g/cra = 2.081i-3 - 0.00311+ 0.3710(230.2 - t )

t = C

good over range 90 to 230^ c

0.30ij-5

(1) H. W. Fox and W. A. Zisman, J. Coll. Science, 1950.

(2) F. H. Getman, Outlines of Physical Chem., John Wiley & Sons, I'^kG.

UNCLASSIFIED

Page 95: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED II.E-1 ARH-60O

II.E. REFLECTOR SAVINGS AND EXTRAPOLATION DISTANCES

The reflector savings is the amount by which a reflector red-aces the critical size of a system from the bare critical size. It can also be defined as the difference between the reflected extra-polation distance and the unreflected extrapolation distance. 'VJhereas, the absolute value of the extrapolation distance is somewhat difficult to obtain experimentally, the reflector savings can be obtained more easily.

The folloaring data is mainly derived from experiment; calculated values are sho\m by broken lines or otherwise specified.

UMCLASSIFIED

Page 96: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED I I . E - 2 ARH-uOO

R e v i s e d 1 0 / 5 / 7 0 UNCLASSIFIED

Page 97: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

CO

H H

I

o o

Page 98: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

CO H

M W

I

I o o

Page 99: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

:tiiij4:;tpitMK4tit^i4i-riimiiMiiU4Mtlti4JM;^

mi

REFLECTOR SAVINGS POLYETHYLENE REFLECTOR

URANIUM SYSTEMS

X U(93.2) Slab, LA-DC-7139 o U(l.i+2)F_j-Paraffin, LA-3612

• Same, Except 20 mil Cd Interface

D U(37.67) Metal Cube, TID-7028

• Same, Except 20 mil Cd Interface

0 U(93.5), TID-7028

0 S33U Metal Sphere, DTF Calc.

o en m

H

k.J

2.0

1.0

I

I

o o

Page 100: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED lI .E-D ARH-oOO

UNCLASSIFIED

Page 101: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

m iaflii

:a^l|li | l!,iJijll | l l |( |-)UIIJ114ll • ! U.;

S REFLECTOR SAVINGS - LEAD REFLECTOR

D U(93.2) S lab , LA-DC-7139

I A Pu Polystyrene, H / P U = 3 5 . 6 , B N W L - 1 9 3

0 U ( 9 3 . 5 ) , TID-7028

Page 102: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

c n > en en H

M M O

G O

CD

• i ]

t?d

I OD

o o

Page 103: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED I I . E - 9 ARH-60O

15

10

5 -

UNCLASSIFIED

Page 104: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED II.E-10 ARH-600

15

10

1 1 REFLECTOR SAVINGS - U(2)NH CORE U(2) Rods in Water GAMTEC II - HFN Calc. BNWL-1258

Reflector Thickness, cm _i 1

10 20 30 40 50

15

J.U

5

1 , 1

REFLECTOR SAVINGS - U ( 3 ) N H CORE U(3) Rods i n Water GAMTEC I I - HFN C a l c . BNWL-1258

E 0

c

Refle

ctor

Sa\

\

^

/Z^

^

p^^

- ^

Reflector Thickness,

^

^

cm

1000 g Uii /

8 0 0 g U / i ^

600gUi£

400 g U/i

?fyinll /?

Water

10 20 30 40 50

UNCLASSIFIED

Page 105: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED I I . E - 1 1 ARH-600

REFLECTOR - SAVINGS - U(^) ra 1000 g U/i / / CORE U(4) Rods i n ;^ater / / 800 g GAMTEC I I - HFN Ca lc . BNWL-I258 / /

u

en C

0

a:

/ / •

^

- ' - ' '

y''^-^ ^^ ^y^

Reflector Thickness,

y .

cm

" " /

/ ^600gU/ i

400 g U/i

200g U/i

Water

I I • ' I

10 20 30 40 50

0 10 20 30 40 50

UNCLASSIFIED

Page 106: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development
Page 107: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

':XJ

Ui

(1) COl.i lCKLY USED l«iATERIALo'' '

fete rial Fon.iula

Aluminun. Al

Beryllia BeO

Beryllium Be

Bismuth Bi

Boral^3) Bi,C-Al (without Al clad, 65 t'/» Al,

Boral (with Al clad, l/4" sheet)

Borax Na2Bi(.0Y • IOH2O

Boric Acid H3BO2

Density g/cm-J

2.6y5

3.02

1.847

y.78

2.53 35 Wt' B4C)

2.67

1.73

1.435

M,P.(2) ^C

660

2550

1285

2('l

75

184

Element

Be 0

B C Al

B C Al

Na B 0 H

H B 0

Composition //eight p

36.03 63.97

27.4 7.6 65.0

15.7 4.3 80.0

12.06 11.34 71.32 5-29

4.89 17.48 77.63

Atomic '/£)

50.0 50.0

45.4 11.4 43.2

30.3 7.6 61.9

4.65 9.30 39.54 46.51

42.86 14.28 42.86

Atomic Density Atoms/ (barn-cm)

.06027

.07287

.07287

.12348

.02820

.04036

.01008

.03837

.02334

.00575

.04765

.00547

.01093

.04646

.05466

.04195

.01398

.04195

Boron

(1)

2.48 2000 .13821

(2)

C. R. Tipton, et al. Reactor Handbook, Vol. I, I96O. Most material was obtained from this reference. References for other material will be listed.

Melting Point. For plastics this column will designate the recommended maximum continuous seirvice temperature.

^->' Neu-^ron absorption in Boral based on homogeneous boron distribution will be in error, of Boral depends upon B4C particle size (see Nucleonics, Vol. 16, pp 91-94, 1958).

Effectiveness

Page 108: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

to

< CO 0)

o

o

CO en

o

Density M.P. toterial Fonaula g/cm3 ' C

? Boron Carb ide BLC 2 . 5 4 2450 VI

Boron Stainless Steel 7-87 (1 Wt o Boron in 304 L)

Boron Steel (l Wt'/i) 7.87 1540

Borated Polyethylene (10 Vti B as Bi^C)l.OO

Bricks (common silica) 1.8 168O-1700

Bricks (fire clay) 2.1 168O-1740

Cadmium Cd 8.65 321

Cadmium Nitrate Cd(N03)2'4H20 2.46 59.5

Carbon C 1.7l(l) 37OO

^ ' Average density of reactor grade - Hanford

Element

B C

B Fe Cr Ni

B Fe C

B C H

Al Ca Fe 0 Si

Al Ca Fe 0 Mg Si Ti

Cd H N 0

Composition Weight /J

78.26 21.74

1.0 68.0 19.0 12.0

1.0 98.8 0.2

10.0 77.4 12.6

0.5 1.4 0.7 52.5 44.9

21.2 0.7 1.4

49.7 .6

25.2 1.2

36.44 2.61 9.08 51.87

Atomic

80.0 20.0

i .9 64.8 19.4 10.9

4.9 94.2

0.9

4.7 32.5 62.8

0.4 0.7 0.3 66.3 32.3

16.1 0.4 0.5

63.6 .5

18.4 0.5

4.76 38.10 9.52

47.62

Atomic Density Atoms/ (barn-cm)

.11078

.02770

.00439

.05773

.01733

.00969

.00439

.08388

.00079

.00558

.03885

.07505

.00021

.00039

.00014

.03556

.01733

.00567

.00013

.00018

.02245

.00018

.00650

.00018

.04637

.00480

.03844

.00961

.04805

S 0

^ CD to

t i

1-

^

•r 10

.08578

ON o o

Page 109: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

CO

See Reactor Handbook for other shielding concretes.

(2) From Y-KC-IO6

Composition //eight y>

7.81 2.19

44.44 6.22 49.34

3-4 4.4 1.4 1.0 53-2 33-7 2-9

20.11 80.89

43-46 4.42 34.47 17.65

1.5 0.1 53-^ 27.9 16.1 1.0

Atomic "-p

20.0 80.0

28.57 47.62 23.81

2.1 1-9 0.4 16.9 56.2 20.4 2.1

66.67 33.33

31.6 38.6 18.8 11.0

2.7 1.3 63.3 18.8 13.3 0.6

Atomic Density Atoms/ (barn-cm)

.00627

.02507

.03233 -05431 .02694

.08331

.00175

.00152

.00035 •01375 .04608 .01663 .00175

.06651 •03325

.00403

.00489

.00240

.00140

.03015

.00011

.00005

.00262

.00109

.00055

.00003

sa 0

CO CO

M M

1 00

ON O O

Page 110: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

< H-to

pi

o I vn I

O

Material Formula

Glass, plate (silica)

Density K.P. g/cm3 "C

2.4 1425

Glass, Pyrex 2.23 820

Graphite

Iron

Kernite

(see Carbon)

(see Steel)

Na2B407'43:20 1-95

Kaowool (2.65) 1260(1) To 0.192 bulk

0

CO CO

Kynar

Lead

Lithium

Lucite

^ ' Recommended

CF2CH2

Pb

Li

C5H8O2

Maximum Temperature

1.76

11.34

0.534

1.2

! Usage

340

327

186

185

Element

Ca 0 Si Na

Al B 0 Si Na

Composition Weight 5B

10.7 46.0 33-7 9-6

1.0 3-7 53-5 37.7 4.1

Atomic %

5.6 60.4 25.2 8.8

0-7 6.5 63.8 25.6 3.4

Atomic Density Atoms/ (barn-cm)

.00387

.04156

.01733

.00607

.00053

.00459

.04492

.01802

.00238

0

CO CO

H

Na B 0 H

Al Fe 0 Si Ti

C H F

16.83 15.82 64.40 2.95

23-9 •9

49.9 24.3 1.0

37.51 3.15 59.3^

8.0 16.0 44.0 32-0

18.0 -3

63.6 17.6 .5

33.33 33.33 33-33

.00860

.01720

.04729

.03439

.00102

.00002

.00361

.00100

.00002

.03312

.03312

.03312

.03298

.04636

c H 0

59-99 8.05 31.96

33.33 53.34 13.33

.03611

.05777

.01444

I

p-

Page 111: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

to

fi

O

Material

Magnesium

I^iagnesiiim Oxide

Masonite

Molybdenum

Nickel

Neoprene

FoniiUla

i-'G

MgU

C6H10O5

Mo

Nl

(C4H5Cl)n

Density g/cmJ

1.74

3.22

1-3

10.22

8.90

1-23

u.e. oc 650

2800

26??

1455

Nylon (see Polyamides)

Oil, hydraulic C4QH330i^Cl5P 1.28

Lard Oil C-L0H18O 0.915

Paraffin C25H52 0.90 48

is o CO

Phenolformaldehyde(C5H50)ji I.27 121 (Bakelite, Durez, Resinox - composition depends upon filler used) With no Filler

Element

Mg 0

C H 0

Coi.,position rfiight ii

60.30 39-70

44.44 6.22

49-34

Atomic j

50.00 50.00

28.57 47.62 23.81

Atomic Density Atoms/ (barn/cm)

•04313

.04814

.04814

.02898

.04831

.02415

0

Vi

y 0

.06418

.09133

c H CI

c H 0 CI P

C H 0

C H

C H 0

54.27 5-69

40.04

58.49 4.05 7.79

25.<50 3-77

77.87 11.76 10.37

85.14 14.86

79-98 4.80

15.22

40.0 50.0 10.0

47.62 39-29

4.76 7-14 1.19

34.48 62.07

3.45

32.47 67.53

53.85 38.46 7.69

.03343

.04185

.00837

.03755

.03098

.00376

.00563

.00094

.03574

.06433 -00357

.03844 -07995

.05094

.03640

.00728

•xl

ON

o O

Page 112: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED I I .F.1-6 ARH-600

h3'*4

-p

•H

O J f - C - r - - O J O O L A L A OOVOVO H O I H H - d - H O N H C -- d - t — 0 0 L A O 0 0 OOVO V O C O t — ON OOLALA COVO OJ VOVDVDVO CJNCjN ONON 0 0 0 r-Hf—LA OOVO VO CM i-l LA OOVO 0 0 O O I ^ - d - - ^ iHQJCVJ 0 0 ^ I-l VO rH O d j Q LA o o o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CO 0 VO VO LA ONOJ OJ

rH r^ LA LA 00 LA

CO 0 CX3 ^ ^ CO 00 H

00 ON CM-d-VO rH r-(

-d- 0 ! - -ON-d-

1 1 1

J - V O CO LA rH

00 t~-00 VO

OOVO oovo

00 f -VD 00

LA-d-CO H

0 0

• • 0 0 LA LA

v o ^ OJ f -

. . CM C— ON

0 0 0

0 0 0 (M-d--d-

I^CO LA 00 LA 0

l A O J CM rH 00

00 Q t— 00 0 VO

. . . 00 0 VO 00 LA H

: ? ^ ^ • CO J - V O

00 LA

OOOJ LA

0OC7NC~-

0 0 0

• • • ^ ^ C O

H ON

^ •

• ^

O C3 H

oj -P O -P

(U bO

' - ^ cfl H U

-— (U

o w a o o w o o w u w o w t o o w o &4oa i i , s oJ a

O t C H O r H r H r H t - - r ~ - V O

! •

1

u a

H >?

^ '^ M •> a

H 0

$-ii a-s -H 0

C5 ft S • 0

X 0 (U

rH -P p^ a ca <u

d 4) a tH

CH ?H - - H « a 13

W 2 >5 (u u a

1^51 0 — ' a,

CM ON

d

^ OJ

w 0 v „ ^

0 a V H

^ •p 0)

^ 0

Oi

VO 0

rH

^ ^ 0 • — •

0 a Q)

^ -p to

rH 0

CM

-d-00

A

^ -J-

CO -d-

« CM 0

.^

<U -d •H

0 (0

^ 0

PH

,a - d - ON VO ( M O VO ,c! f— ON VO LA LA CS O

-d- CJ\ -H -H C\l , f l

I* rH

cu -^ C M V O ^ L A 00 J - O rH O N O O O V O ON C O V O •a

to . 0) to

-P -O CI (1) u

g a tt! H

V - - - 0)

o c a - r - i ' - ^ R . j - i H ^ a u 9) H - p - p o j ' ^ t o o o o ca a j t n H ft-HinW-d-op 00 M & ^ 4 )

w o ^ - - . - C M « to -P

O C5 a O t j ' - ^ -P - - ' Q Xi « tM

(U -P <U O

iJ _ " SP s _ 73 '~» >— a (u a •H to (U rH o ^ to H u <0 -H o <6 <u -P -P

H H (U to ^1 o ^ bO -p 9) <a

- O CO f 3 X ! , a i a to C H C u a ' d (1) O M -p (U ? H - - H r H ( U - H iH ( U t a ^ i - H O t a

t j - - ^ t u a ' d > 5 h ' H i*» t o t o o , a a to • n a - P o ^ S r - i a s - ' c u p q ^ ^ 3 r H O ~ 0 I O ^ ( > 5 p - P 0 -H iH iH H ^ H

H p u a O ) to to > X a ' D ' i . r H C4 < o fH S . .—. . o - - ^ o - — o o o o

Cli Oi Oi PL, PH PL(

Revised IO-5-7O UNCLASSIFIED

Page 113: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

to

ft 9 vn 1

-J

o

ilaterial

Teflon

Thorium

Thorium Dioxide

Titanium

Titanium Dioxide

Formula

^2^1,

Th

ThOg

Ti

Ti02

Density g/cm3

2.20

11.72

10.03

4.51

4.2

K.P.

oc

204

1750

3000

1670

l64o

o

Tributyl Phosphate (Ci^HoO)^?© 0.973 -80

Vermiculite^-'-^ 0.134

Water H2O 1.00 0

Wood, Hard 0.64

Zirconium Zr 6.51 I852

^ (1) CO ' From Y-KC-IO9

y y

Atomic Density Element

C F

Th 0

Ti 0

C H 0 P

Al Fe H K Mg 0 Si

H 0

•Weight i

24.02 75-98

87-88 12.12

59.95 40.05

54.12 10.22 24.03 11.63

7.8

6.3 1.0 5.8

12.7 48.1 18.3

11.19 88.81

Atomdc 'Jo

33-33 66.67

33-33 66.67

33-33 66.67

27.27 61.37 9.09 2.27

5.1 2.0 17.2 2.6 9.1 52.6 11.4

66.67 33.33

Atoms/ (barn-cm)

.02651

.05301

.03043

.02289

.04577

-05673

.03167

.06334

.02650

.05962

.00883

.00221

.00023

.00009

.00081

.00012

.00042

.00242

.00052

.06689

.03344

.04251

Page 114: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

w (I tn

ro Density k.P. !_, Material Formula g/cm--* "C o Y Zlrcaloy-2 Zr-2 6.55 - - ] o

^ ^

M

Element

Zr Sn Or Nl Fe K

ComDosiiion Weight S

98.26 1.45 0.10 0.05 0.13 0.01

Atomic "p

98.35 0.12 0.18 0.08 0.21 0.06

Atomic Density Atoms/ (barn-cm)

.04251

.00048

.00008

.00003

.00009

.00003

M M

tl

M M

^

03

I ON O

o

Page 115: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED II.F.2-1 ARH-600

PUBEX PLANT VESSEL SCHEDULE URANIUM-PLUTONIUM PPOCESSING

Vessel

TK-A3,B3,C3 TK-A3,B3,C3-'t TK-Dl TK-D2 TK-D3,CU

TK-D5 TK-El G-E2 TK-E3 TK-E3-2 G-El* TK-E5 TK-E6 TK-F3 T-F5 E-F6

TK-FT TK-F8 TK-FIO E-Fll

TK-F12 TK-F13 TK-FlU TK-FI5 TK-F16 TK-F17 TK-FI8 TK-F26 TK-Gl T-G2 TK-G2 TK-G5 TK-G6 TK-G7 TK-G8 TK-Hl T-H2 T-H3 E-Hl

TK-Jl TK-J2 TK-J3 TK-J5 T-J6 T-J7 E-J8

T-Jl( TK-J21 T-J22 T-J23 TK-Kl T-K2 T-K3 E-Kl*

TK-K5 TK-K6 T-Ll T-L2 TK-L3 T-Ll* T-L5 T-L6 E-L7-1 TK-L8

Function

Dissolver NH3 Scrub Waste Dissolver Kinse Coating Waste ''etal Solution Metal Solution Centrifuge Product Coating Waste Centrifuge Centrifuge Feed NH3 Scrub Waste Coating Waste Centrifuge Centrifuge Waste HAF Makeup AAA Acid Absorber IWW Concentrator

IWF Waste Rework 3WF Decanter Concentrator (Utility)

E-Fll Feed Rework Storage Utility IWW Denitration IWW Denitration Tube Bundle Flush Utility Waste IWW Receiver lOF 10 Column IDS 100 lOD Decanter Turbomixer lOW HAF HA Column HS Column 3WB Concentrator

3WB IBSU IBXF 2AF IBX Column IC Column ICU Concentrator

IBS Colimm 2NF 2N Column 2P Column 2DF 2D Column 2E Column 2EU Concentrator

2UC Receiver UNH Product 2A Column 2B Column 3AF 3A Column 3B Column Product Stripper Product Concentrator Product Receiver

Nominal Volimie Gallons

5,000 2,100 5,000 5,000 7,700 5,000 1,700 180

5,000

215 180

5,000 5,000 5,000 300

2,200

3,800 5,000 5,000 2,500

5,000 5,000

ItOO 5,000 5,000 1,200 5,000 3,600 5,000 2,000 1,900

15,000 1*50

15,000 5,000 5,000 1,850 1,770 2,700

5,000 1,31*0 5,000 370

1,600 1,770 3,700

130 320 150 100

5,000 1,370 1,770 3,700

5,000 5,000 130 90 120 1*0 30 10 10 10

Size

9'3" OD X l*'ll" ID X 16' It'O" X 8'6" X 10' lO'O" X 9'3" lO'O" X 9'3" 10'6" X 12'8" X 9'2" lO'O" X 9'3" 7'0" X 6'9" 1*8" 10'0" X 9'3" 3-2" X 1*'6" 1*8" lO'O" X Q'3" 10'0" X 9'3" lO'O" X 9'3" 10' OD X 9'3" - 3-1/2' CD x 17-1/2 Two 1*'5" barrels x 12' and One 2'6" barrel x 12' 6'9" X 10'6" x 9'2" lO'O" X 9'3" lO'O" X 9*3" Two 1*'5" barrels x 1?' and One 2'6" barrel x 12' 10'0" X 9'3" lO'O" X 9'3" 1*'0" X 5'0" lO'O" X 9'3" lO'O" X 9'3" 1*'2" X 12'0" 10'0" X 9'3" 6'9" X 10'6" X Q'2" lO'O" X 9'3" 3l»" Dia. X 32' 7'0" X 6'9" 10'6" X 16' X ll*' 1*' X 5' 10'6" X 16' X ll*' lO'O" X 9'3" lO'O" X 9'3" 26" Dia. X 1*0' 3I*" Dia. X 26' Two 1*'5" barrels x 12' and One 2'6" barrel x 12' lO'O" X 9'3" k'2" X ll*'0" lO'O" X 9'3" 8'6" OD X 8'0" ID X 8'11" 32" Dia. X 33' 3lt" Dia. X 26' Two 1*'7" barrels x 10' and One 2'6" barrel x ll*' 8" X lit' Dia. 1*'5" OD X 3'11" ID X ll*'8" 7" Dia. X 38' 7" Dia. X 2I*' lO'O" X 9'3" 21*" Dia. X 16' - 32" Dia. x 16' 3l»" Dia. X 26' Two It'7" barrels x ll*' and One 2'6" barrel x lit' lO'O" x 9'3" lO'O" X 9'3" 7" Dia. X 1*0' 7" Dia. X 30' 3lt" OD X 30" ID X 12' 3-1/2" ID X 3I*' 3-1/2" ID X 22' Two barrels 1*" x 8', 3" Tower Two barrels 1*" x 8', 3" Tower Two barrels 1*" x 8'

Revised 10-5-70 UNCLASSIFIED

Page 116: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED

Vessel

TK-I9 TK-LIO TK-Lll TK-U3 TK-Ml TK-M2 TK-Nl T-N2

T-N3

E-N6 TK-N7 TK-N20 TK-Rl T-R2 TK-P2 TK-K5 TK-R6 TK-R7 TK-R8 TK-Ul TK-U2 TK-U5 T-U6 SA SB SC SD SE

SEA SFB SG SH SJ SJ-? SK SLB SLD FLF SLF SLK, old SLL^ SLA SN SNA

Function

Pu Product Sampler Pu Product Sampler Pu Pecycle Pu Loadout

XAF Receiver XA Column Downcomer XC Columj;! Fesin Reservoir ACP Concentrator XPC Receiver N Cell Vent Drain Tank 20F 20 Column 20S Utility Utility Decanter 200 20W Recovered Acid Recovered Acid Fractionator Feed Fractionator A Cell Sump B Cell Sump C Cell Sump D Cell Suwp r Cell Sump

F Cell Sump F Cell Sump G Cell Sump T-H2 Sump J Cell Sump J Cell Package Sump K Cell Sump TK-L13 Sump TK-Lll Sump TK-L9 rump TK-LIO Sump TK-K6, T-Ll Sump T-I2, Package Sump N Cell Sump TK-Nl Sump

II .F.2-2

Nominal Volume Gallons

21 ll* 25 2.1.

1*,100 1,800

61* 10 1* 8 7 8.7 10 1*

5,000 2,000 1,900 0,000

1*30 9,000 5,000

ll*,000 ll*,000 9,000 1,750

1*5 1*5 1*5 1*5 30

1*5 1*5 1*5

2,600 60

2,700 60 0

1" = 1*.5 0 0 10

1" i l6o 1.9" = 6o 3" = 56

ARH-

Size

Three barrels 5" Dia. x 38" 6" Dia. x 10' Three k" Dia. barrels x 12' 6" X 21" 7'0" X ll*'0" 5'0" X ll*'0" 2-5/8" X 8' X 5' 5" Dia. X 10' 3" Dia. X 10' 5" Dip. X 8' 1*" Dia. X 10' Two barrels 1*.2" Dia. x 7'P" Two barrels 1*.3" Dia. x 5'3" 1»" Dia. x 6' 10' x 9'3" 31*" Dia. X 32' 8' X 7'9" 10' X ll*' 1*' X 5'10" 10' X ll*' 10' X 9'3" 10'6" X 16' X ll*' 10'6" X 16' X ll*' 10' X ll*' 8' X 32' 2lt" X 21*" X 18" 2l»" X 2l*" X 18" 2l(" X 21*" X 18" 21*" X 2l»" X 18" 2l*" X 2l|" X 18" (Filled with 1" Boron Raschig Rings) 21'" X 2lt" X 18" 21*" X 21*" X 18" ?1*" X 21*" X 18" Q'O" X 6'9" X l*'ll" 30" X 21*" X 18" o'q" X 8'2" X 5' 30" X 21*" X 18" 2'2" X 2' X 2" 8'2" X 18" X 1" (Slope 1" in 8') 1" o' 16" X lO' (Slope 2-1/1*" in 19') 16" X 19' (Slope 2-1/1*" in 1°') 1-1/2" X 8" X 26', Then canyon floor 32' X ll*' Canyon floor (Slope 7/P" in 1*' X 13' X 1.9" 3' X 10' X 3" overflow

600

'flow

7')

Revised 10-5-70 UNCLASSIFIED

Page 117: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED II.F.: 3-1 ARH

CONTAINERS USED FOR FISSILE MATERIAL AT HANFORD

Beaker, Stainless 1 liter

Beaker, Stainless 2 liter

Bottle, glass, k liter

Bottle, (plastic jug), 1 g

Bottle, polyethylene, 3 1

H-2-329T3

Bottle, polyethylene, 10 ] shipping H-2-25917, H-2-261I+2, H-2-26289

Box, Cardboard

Box, Cardboard (crucible)

Box, cardboard (waste)

Box, wood (F7 lids)

Can, tuna, 307 x 200.25 No. 1/2

Can, salmon, pineapple, 401 x 211, No. 1 flat

Can, tomato, 401 x 4ll, No. 2 1/2

Can, special, untinned, slag ?c crucible

Can, lab sample, friction

Diameter

in.

h I.D.

5 1/3 I, 6 1/2 0.

;al 6 O.D.

4.6 I.D.

U.37 I.]

.D.

.D.

D.

Wall Height Thickness in. in.

5 5/3

D

9 10 1/2

IT 3/U

51

Width Length Height in. in. in.

12

13

18 1/2

12 1/2

Diametei in.

3 1/2

4

k

k

lid, 3 1/2

10

13

18

15

«

1/2 15

13

1/2 24 1/2

1/2 18

Height in.

2 1/4

2 5/8

i+ 1/2

5 1/2

3 1/2

0.13

0.1

0.1

0.1

-600

Volume

in^

70.63

123.8

276.1

286.8

213.6

712.4

Volume f t ^

1.1

1.3

ii.6

2.0

Liters

31

36.7

130

57

Volume -^ —» in3

18

35

56

69

33.7

cm^

295

573

918

1130

552

cm-

1,159

2,023

4,500

4,700

3, 500

11,685

I7'' lard or grease can

UNCLASSIFIED

Page 118: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

WTCLASSIFIED II.F,

iameter

in.

12

12

11

12

15 1/2

5.761

.3'

I.

-2

,D.

Height in.

15 1/2

14 1/2

13

13 1/2

19

23

ARH-oOO

Volume Ft3

1.01

0.95

0.71

0.38

1.61

0.36

Liters

29

27

20

25 46 10,22

Can, lard, grey

Can, lard, tinned

Can, paint

Can, paint

Oin, trash

Can, PR,6" Sch 30,3"neck,.43" wall,rounded bottom,1/2" lead ?.: cadmium shield. H-2-52967

Can, PR, Carrier, 1/ 4-"C.S. plate 22 O.D. 32 7.04 199.3 n-2-52984

Can, SN,6" Sch 80 pipe, 3"neck 5.76I I.D. 23 O.36 10.22 .43"wall,round bottom, no shielding. H-2-53129

can, SN, Carrier,55 gal drum 23.5 35 8.73 208 with spacers and legs H-2-58130

Can, RC,l/3"S.S. matl., I8 3/^ O.D. ih l/3 2.0 56.8 round bottom on I8" radius, H-2-30719, H-2-3990

Can, RC, Carrier, I/8 C.S. 23 1/16 O.D. 21 - .97 1 0.7 walls. H-2-30720, H-2-3939

Can, sample, l/'4-"S.S. walls 5 l/2 I.D. 1.3 spherical shape with cylin­drical neck. H-2-453, n-2-455

Can, Sample, Carrier. H-2-389, PM-31967

Carton, :;aJ.. ice cream

Carton, qt. ice cream

Carton, pt. ice cream

Drum, 30 gal. standard

Drum, 50 gal. standard

Pan, powder, H-2-23045

6 3/^ I.D. 6 1/2

3 3/8 I.D. 6 1/2

3 1/^

19 1/2 O.D. 28 1/2

23 1/2 O.D. 35

5 i/i ^ 3/^

0.135

^.925

3.73 ^

^ 8

0.95

O.W

114

208

1.68:

UNCLASSIFIED

Page 119: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED II.F.4-1 ARH-600

SHIPPING CONTAINERS

"A", Aluminiim Birdcage, 20 x 20 X 20, 1/4" thick frame, H-2-23845, H-4-39179(container)

LLD-1, KKD-1, M-101, M-102, Birdcage. 16 x 16 x 25 frame with 18 Ga galv. st. cover, 6 3/4" O.D., 1/4" wall x 14" high outer container. 5" Sch. 40 inner container. H-2-26260-64, H-2-26181, DOT Permit 496 0

United Kingdom Container For KKD-1 Birdcage^ 3 Compartment

C. steel, Cd plated. H-2-33282 & 3

Pu(N0 3)it L-10 Class II Shipping Container. Two 55 gal. drums welded together, tubing frame work to center bird. 5" Sch. 80 pipe bird. Filled with vermiculite. H-2-26140,1,2.

Pu(N0 3)'t L-3 Class II Shipping Container. 55 Gal. drum, tubing

frame work to center bird, 5" Sch. 80 pipe bird to hold 3L plastic bottle, voids filled with vermiculite. H-2-33695

Dia,In. Height,In. Inner

9 1/2 I.D. 13 15/16 Outer

16 1/2 I.D. 18 5/8

Inner 4.563 I.D. 12

Outer 6.25 I.D. 14

Volume Gal.

4.28

17.25

0.85

1.56

Liter

16.2

65.3

3.22

7.04

Each Inner Compartment 2.875 I.D. 3.0

Outer 4 Inch Hex. 10 Stock

4.813

23.5

Inner 52

Outer 66

1/4

3/4

4.813

23.5

Inner 17.75

Outer 35

.085 .32

4.12 15.6

125.3 474

1.4 5.29

55 208

Pu-Al Rod, Birdcage, 5" pipe in a 16 X 16 X 65 In. frame cage 4.0

16x16

Inner 62

Outer 65

3.37

72.04

12.8

272.7

Revised: 10/5/70 UNCLASSIFIED

Page 120: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

UNCLASSIFIED II.F.5-1 ARH-600

STORAGE CONTAINERS

2 3 3 U Nitrate, 3L Storage 5" O.D. S.S. tubing in a Std. 30 gal. drum filled with con­crete, on legs. H-2-32920

Pu Nitrate, lOL Storage 5" Sch. 10 pipe in two 50 gal, drums outer containers, no insulation, on legs. H-2-25915,6,7 & 8.

Dia,In. Height,In,

Inner 4.87 I.D. 20

Outer 19.5 4.5

Inner 5.295 I.D. 56

Outer 23.5 66.75

Volume Gal.

1.61

5.82

5.34

125.3

Liter

6.1

22.0

20.2

474

Revised: 10/5/70 UNCLASSIFIED

Page 121: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

SHIPPING AND STORAGE CONTAINER ARRAYS

Container

LLD-1,KKD-1, 16x16x25 Birdcage, DOT SP4960

L-3(4) (3 Liter Dow 55 Gal. Drum Birdcages), DOT SP5330

L-3(7) ORNL foam glass, DOT SP5795

L-10, DOT SP5061

Approved DOT Cont.

Matl.

235u 235u Pu Pu

235u Pu(N03)i^

Pu02(5) 233U(6)

Pu(NO:>)l^ 235U(^) 233u(6)

235uNH(io)

Pu(N03)4 Any(lO) Pu(H03)4

As allowed

Cone. or

Moder.

Ketal(l) Any Metal(l) Metal(3)

Any 250g/l 3.77g/cc 375g/l

Any Any Any

350g/l{8) 250g/l(9)

i250g/l Dry

<450g/l

As allowed

Quantity

7.0Kg 20.0Kg 7.0Kg{2) '+.5Kg

5.0Kg 3.3 1 5.0Kg 3.0 1

2.35Kg 2.35Kg 1.58Kg 2.06Kg

10.5 1 10.5 1

10.5 1 '^.5Kg 4.5Kg

As allowed

No. in Store

50 50 50 100

200 200 200 124

200 200 200

200 200

200

200

loori®

ONSITE

Array Trans*

50 50 50 50

50 50 50 50

50 50 50 50

50 50

50

50

5OTI®

Transport Other Class II

Restrictions

1-3 None 1.3 1-3

1 tier O.k 0.3 0.1+

"

0.1 0.1 0.1 0.2

1.5 1.5

1.5 0.5

OFFSITE

Index* Class III

or No.

1.0 1.0 1.0 1.0

200 200 200

68 68

68 200

" (not permitted)

SCfTI lOOTI

Other Restrictions

(l)Can be Pu-U alloys

(2)Using "British Nut" (3)Can be oxides

(i+)<6M HNO,, 30 day limit on bottle

(5)2U0pu^ 5.0 wt^ or Mixed Pu-U oxides

(6)Aqueous solution

(7)For other oxide Mass limits see DOT special permit appendix

(8)-ci.O wtfo 233u and Pu {9)<. 20 wt5t 233u and 1.0

vti, Pu

(lO)Pu-U compoTonds or mixes.

To receive, transport and store onsite

G n

CO

ON

o

5 g * ASE-lk^, 86.2 Transportation by Motor Truck.

g f Set for Criticality Safety, Radiation Dose Rates may dictate a higher number.

@ TI is Transport Index or Transport Units.

o o

Page 122: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

Container

LLD-1,KKD-1, M-101, M-102, Type A & B Birdcages

10-L Storage, PR and SN

3-L Storage (Concrete filled)

1 cubic foot (lard cans)

Waste Cartons

Waste Cartons

Waste Cartons

55 Gal. Drum or any Cont.

Matl.

235u

Pu Pu Pu Pu

Pu 235u

233U Pu

Pu

Pu

Pu

Pu

Pu

SHIPPING

Cone. or

Moder.

H/Pu < 2 H/PU < 2 H/PU < 20

450g/l 450g/l

'+50g/l ^50g/l

H/PU < 20

& STORAGE AKh/i

Quantity

(as allowed (as allowed 7.0Xg(l) 4.5Kg 2.5Kg

4.5Kg 4.5Kg

l.i Kg l. Kg

i*-00g

400 to 250g

?50 to lOOg

<100g

<15g

lY UNaiTE ONLY

No. in Store

Array Trans*

in DOT special permits) in DOT special permits)

50 50 100 50 100 50

200 200

No limit No limit

2 wide(2) h high

Single row 1 high(4)

Single row 2 high(5)

No limit

No limit

50 50

No limit No limit

2 high(3)

Same(4)

1 tier(6)

3 tiers(6)

No limit

Other Restrictions

(l)Using British Nut

1 tier 1 tier

1 tier 1 tier

(2)3 ft between rows (3)ln Z Plant Truck

(4)3 ft between rows single tier

(5)or no limit on one tier array

(6)to dimensions of truck

CO CQ M

M

ON I

ro

o

en CQ

w * A R H - 1 4 5 , 86.2 Transportation by Motor Truck o

CT\ O O

Page 123: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

Atlantic Richfield Hanford Company

Date:

To: Distribution

From: R. D. Carter

Subject: MDEX TO ARii-600

The following inaex may be placed in ARn-600 vherever the holder finds convenient. It may be used in one piece or it may be divided between the three voliones. It mdght be advisable to check this index against your page numbers to make sure of proper collation and repro­duction.

RDC:pb

8 4 - 8 0 0 0 - 0 3 0 ( 1 0 - 8 S ) AEC BL RICHLAND WASH

Page 124: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

i

THIS LISTING IS THE PAGE BY PAGE SUMMARY OF ARH-GCO» CRITICALITY HANDBOOK. WHICH HAS LOOSE LEAF PAGINATION AND MAY BE ADDED TO OR SUBTRACTED FROM AT THE AUTHORS DISCRETION

LATEST UPDATING IS SEPT 1. 1971

ARH-6C0f VOL. I

PAGE NUMBER PAGE TITLE OR CONTENT DESCRIPTION

1 2 3

5 6 7 8

COVER SHEET TITLE PAGE GENERAL CONTENTS* PREFACE PREFACE DISTRIBUTION DISTRIBUTION DISTRIBUTION DISTRIBUTION

VOLI

cs 08 10 ID IC 10 10 10 IC

I. ADMINISTRATION

I-l I.A-1 I.B-1 I.B-2 I.a-3

INDEX TO ADMINSTRATION INTRODUCTION POLICY POLICY POLICY

IC IQ IC 10 IC

Page 125: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

PAGE NUMBER PAGE TITLE OR CONTENT DESCRIPTION

I.C-1 CRITICALITY CONTROL CRITERIA I.C-2 CRITICALITY CONTROL CRITERIA I.C-3 CRITICALITY CONTROL CRITERIA I.C-«» CRITICALITY CONTROL CRITERIA I.C-5 CRITICALITY CONTROL CRITERIA I.C-6 CRITICALITY CONTROL CRITERIA I.C-7 CRITICALITY CONTROL CRITERIA I.C-8 CRITICALITY CONTROL CRITERIA I,C-9 CRITICALITY CONTROL CRITERIA I.C-IC CRITICALITY CONTROL CRITERIA I.D-1 AUDITS I.D-2 AUDITS I.E-1 TRAINING AND EMERGENCY I.F-1 CRIT PREVENTION IN FIRE FIGHTING I.F-2 CRIT PREVENTION IN FIRE FIGHTING I.F-3 CRIT PREVENTION IN FIRE FIGHTING I.F-M CRIT PREVENTION IN FIRE FIGHTING I.F-5 CRIT PREVENTION IN FIRE FIGHTING I.F-e CRIT PREVENTION IN FIRE FIGHTING I.F-7 CRIT PREVENTION IN FIRE FIGHTING I.G-1 TRANSPORTATION AND STORAGE I.G-2 TRANSPORTATION AND STORAGE I.G-3 TRANSPORTATION AND STORAGE

II, ENGINEERING DATA

II-l ENGINEERING DATA INDEX II.A.1-1 rUNDEMENTAL CONSTANTS II.A.2-1 CONVERSION FACTORS II.A.2-2 CONVERSION FACTORS II.A.P-3 CONVERSION FACTORS II.A.2-'« CONVERSION FACTORS II.A.2-5 CONVERSION FACTORS II.».2-fi PIPE DIMENSIONS II.A.2-7 CYL VOL PER UNIT LENGTH II.A.3-1 CONVERSION FACTORS II.A.3-2 DENSITY OF MIXED »1ETALS

DATF

IC-IC-1 0 -10-1 0 -10-IC-10-IC-IC-IC-10-10-IC-10-IC-IC-10-10-10-10-IC-10-

•cs-- 0 5 -•C5-- 0 5 -• 0 5 -- 0 5 -- 0 5 --CS-- 0 5 --D5-- 0 5 -- 0 5 -- 0 5 --C5-- 0 ^ --C5--C5-- 0 5 -- 0 5 -- 0 5 -- 0 5 --C5-- 0 5 -

•70 -70 •70 - 7 0 •70 - 7 0 •70 -7C •70 -7C •70 - 7 0 •70 -IC -70 -7D -70 -7C -7C -IZ •70 -7D -7C

i r -0 8 -0 3 -I C -0 8 -

cs-OB-0 7 -0 7 -1 0 -1 0 -

•0 5--C9-- 0 9 -- 0 5 -• 0 9 -- 0 9 -• C ^ -• 1 0 -• I C -- 0 5 -• 0 5 -

•70 -G8 •r.8 - 7 0 •S3 -ES •f?3 -P3 • f i9 -7G •7C

Page 126: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

r PAGE NUMBER

II.A.«<-1 II,A.«{-2 II.A.5-1 11.A.5-2 II.B.1-1 II.3.1-2 II.B.1-3 II.S.l-'J II.3.1-5 II.3.1-6 U.S.1-7 II.3.1-8 II.B.1-9 II.3.1-10 11.3.1-11 II.3.1-12 II.8.1-13 II.3.1-1H II.B.1-15 II.3.2-1 II.B.2-2 II.3.2-3 U.S.2-14 II.3.2-5 II.8.2-G II.3.2-7 11,3.3-1 II.3.3-2 II.B.**-! II.C.1-1 II.C.1-2 II.C.2-1 II.C.2-2 II.C.3-1 II.C.«<-1 II.C.tt-2 II.0.1-1 II.D. 1-2 II.0.1-3

PAGE TITLE OR CONTENT DESCRIPTION

AREA AND VOL OF VARIOUS GEOMETRIES RELATION BETWEEN SPHERE VOL AMD RADIUS USEFUL RELATIONSHIPS SIMPLE ROD LATTICE SPACING INI HEX ARRAYS BUCKLING EXPLANATION BUCKLING EXPLANATION BUCKLING EXPLANATION BUCKLING EXPLANATION BUCKLING EXPLANATION USEFUL RELATIONSHIPS. KEFF. 9UCK. SAFETY FACTORS KEFF OF FRACT CRIT CYL DIA PU(97)-H20 KEFF OF FRACT CRIT CYL DIA VS. CHANGE KEFF OF FRACT CRIT SLAB THICK VS. CRIT THICK KEFF OF FRACT CRIT SLAB THICK VS. CHANGE KEFF OF FRACT CRIT MASS VS. CRIT MASS KEFF OF FRACT CRIT VOL VS. CRIT VOL MATERIAL SUCKLINGS U233. U235. PU239 CRIT VOL AND MASS FOR U233. U235. PU239 GEOMETRIC BUCKLING FORMULAS GEOMETRIC BUCKLING FORMULAS 3E0HETRIC BUCKLING FORMULAS GEOMETRIC BUCKLING FORMULAS 3E0METRIC BUCKLING FORMULAS BUCKLING OF N-SIDED POLYGONS 3E0HETRIC BUCKLING FORMULAS CYLINDER GEOM BUCK VS EXTRAP DIMENS SLAB AND SPHERE GEOM BUCK VS EXTRAP DIMENS SHAPE FACTORS PHYSICAL PROPERTIES - PU METAL AND ALLOYS DENSITIES OF PU-AL PHYSICAL CONSTANTS OF PU COMPOUNDS BULK AND TAP DENSITIES OF PU02 PU CONC AND H/PU RELATIONSHIPS PU CONCENTRATION IN 8WR.S PU CCNCENTRATION IN PWR.S PHYSICAL PROPERTIES - U METAL AND ALLOYS DENSITY OF U(93)-?R DENSITY OF Ut93)-MB

DATF

On-og-63 08-09-68 07-10-S3 C7-10-G9 08-09-f5a D8-C9-G8 03-09-53 C8-C9-E8 0 8-C9-Sa 10-05-70 lC-C'^-70 1C-D5-7C 10-05-70 1C-C5-7C 10-05-70 1C-C5-7C 10-05-70 ir-r<^-70 10-05-70 10-05-70 0 3-09-68 C8-C9-G8 0 8-09-58 08-C9-e.8 07-in-?;9 lG-25-f8 c??-C9-sa C8-D«-F,? C8-C=(-53 10-05-70 C8-C9-K8 D8-C9-F8 03-09-S3 ID-2' •-£3 C3-C9-S3 08-09-68 08-09-?;3 08-09-68 08-09-63

Page 127: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

PAGE NUMBER PAGE TITLE OR CONTENT DESCRIPTION DATE

I.D.2-1 I.D.2-2 I.D.2-3 I.D.2-M 1.0.3-1 I.D.tJ-l I.E-1 I.E-2 I.E-3 I.E-iJ I.E-5 I.E-6 I.F-7 I.E-8 I.E-9 I.E-10 I.E-11 I.F.1-1 I.F.1-2 I.F.1-3 I.F.1-<1 I.F.1-5 I.F.l-S I.F.1-7 I.F.1-3 I.F.2-1 I.F.2-2 I.F.3-1 I.F.3-2 I.F.H-1 I.F.5-1 I.F.6-1 I.F.6-2

PHYSICAL PROPERTIES OF U COMPOUNDS DENSITIES OF UNH-NITRIC ACID DENSITIES OF UN AND UNH CONVERSION MOLES/LITER TO W/0 H/U RELATIONSHIPS OF URANIUM DENSITY FORMULAS REFLECTOR SAVINGS - EXPLANATION REFLECTOR SAVINGS-H20 REFLECTOR REFLECTOR SAVINGS - CONCRETE REFLECTOR SAVINGS - POLYETHYLENE-PU REFLECTOR SAVINGS - POLYETHYLENE-U REFLECTOR SAVINGS - BERYLLIUM REFLECTOR SAVINGS - LEAD EXTRAP DIST VS. REFL THICK PU(97»NIT REFL SAV FOR UNH REFL - U-H20 LATTICE REFL SAV FOR UNH REFL - U-H20 LATTICE REFL SAV FOR UNH REFL - U-H20 LATTICE COMMON MATERIALS COMMON MATERIALS COMMON MATERIALS COMMON MATERIALS COMMON MATERIALS COMMON MATERIALS COMMON MATERIALS COMMON MATERIALS PUREX VESSEL SIZES PUREX VESSEL SIZES CONTAINERS USED FOR FISSILE MATERIAL CONTAINERS USED FOR FISSILE MATERIAL SHIPPING CONTAINERS STORAGE CONTAINERS SHIPPING AND STORAGE CONTAINER ARRAYS ONSITE SHIPPING AND STORAGE ARRAYS

SLAB CORE CORE CORE

AT HANF AT HANF

08-09-53 08-09-68 08-09-63 08-09-68 07-10-69 08-09-68 08-09-63 lD-05-70 08-09-68 08-09-68 08-09-63 08-09-68 08-09-68 10-05-70 10-05-70 10-05-70 10-05-70 10-05-70 10-05-70 10-05-70 10-05-70 10-05-70 10-05-70 10-05-70 10-05-70 10-05-70 10-05-70 Os-C'-fB 03-09-68 1C-C5-70 10-05-70 10-05-70 10-05-70

Page 128: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

ARH-SOO. VOL. II

PAGE NUMBER PAGE TITLE OR CONTENT DESCRIPTION DATF

1 2 3

COVER SHEET TITLE PAGE GENERAL CONTENTS. PREFACE

VOLII

06-05-69 06-05-69 10-05-70 06-05-69

III. HOMOGENEOUS DATA

III-l INDEX TO HOMOGENEOUS SYSTEMS. VOL II 10-05-70

I I I , A » HOMOGENEOUS PLUTONIUM

I I I , I I I , I I I , I I I , I I I , I I I , I I I , I I I . I I I . I I I . I l l , I I I , I I I , I I I , I I I , I I I I I I , I I I . I l l , I I I ,

A - 1 A - 2 A . l -A. 1 -A . 2 -A . 2 -A . 3 -A, 3-A . 3 ( A. 3( A . 3 { A . 3 t A . 3 ( A. 3{ A . 3 ( A. 3t A . 3 ( A . 3 ( A . 3 ( A. 3(

1 2 1 2 1 7

8 0 > - l 8 5 ) - l 9 0 ) - l 9 5 ) - l 9 5 > - 2 9 5 ) - 3 9 7 ) - l 9 7 1 - 2 9 7 » - 3 1 0 C ) - 1 1 0 D ) - 2 1 0 C ) - 3

INDEX TO BASIC PLU CORRELATI CORRELATI H/PU VS P H/PU CRIT CRIT CRIT CRIT CRIT CRIT CRIT CRIT CRIT CRIT CRIT CRIT CRIT CRIT

VS P SPHE SPHE SPH SPH SPH SPH SPH SPH SPH SPH SPH SPH SPH SPH

HOMOG DATA TONIUM CRI ONS BETWEE ON BETWEEN U G/L EQUA U G/L GRAP RE DIA PU­RE DIA PU-DIA PUNIT

PUNIT PUNIT PUNIT PUNIT PU-H20 PUNIT PUNIT PU-H20 PUNIT PUNIT PU-H20

DIA DIA DIA DIA DIA DIA DIA DIA DIA DIA DIA

- PU TICAL N THE CALC

TIONS H H20 0 H20 D 20W/0 15W/0 lOW/0 5W/0 5W/0 5/0 3W/0 3W/0 W5/0 OW/O OW/0 05/0

SYSTEMS PARAMETERS

ORY AND EXPERIMENT AND EXPER

20W/0 210 -20W/0 210 210 BARE. 210 BARE. 210 BARE.

210 BARE.^ MOM RE BARE. BARE. NOM RE BARE. BARE. NOM RE BARE.

210 210 210 210 210 210 210 210

FULL REFL BARE NOM. REFL NOM. REFL NOM. REFL

FULL REFL FL NOM. FULL RE FULL REFL FL NOM. FULL RE FULL REFL FL NOM. FULL RE

0 7-10-6 9 D7-1C-69 08-09-68 07-10-69 01-30-69 03-09-63 10-05-70 10-05-70 07-10-69 07-10-69 C7-1C-6 9 08-09-68 08-09-68 09-09-68 08-09-68 08-09-58 1C-05-7C 08-09-63 08-09-68 08-09-53

Page 129: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

PAGE NU^3ER PAGE TITLE OR CONTENT DESCRIPTION DATE

III.A.1-1 III.A.1-2 III.A .1(80)-; III.A.1(85)-III,A .1(90)-: III.A.1(95) III.A,1(95) III.A.1(95)-3 III.A .1(97)-1 III.A.1(97)-2 III.A.1(97)-3 III. A.K 10C)-1 III.A .1(100-2 III. A,1(10G)-3 III.A.5-1 III. A. 5-2 III.A.5(80)-l III.A.5(85)-l III.A ,5(90)-l III. A.5(95)-l III.A ,5(95)-2 III. A.5(9S)-3 III.A .5(971-1 III. A,5(97)-2 III.A .5(971-3 III.A.5(971-1 III.A.5(1DD)-1 III.A.5(100)-2 III.A .5(100-3 III. A. 6-1 III.A ,6-2 III.A.6(80)-l III,A .5(85)-l III. A.6(90)-l III,A .6(95)-l III. A.6( 95)-2 III.A .S(95)-3 III.A.6(97)-l III.A .£(97)-2 III.6.6(97)-3

CRIT CYL DIA PU-H20 CRIT CYL DIA PU-H20 CRIT CYL DIA PUNIT CRIT CYL DIA PUNIT CRIT CYL DIA PUNIT CRIT CYL DIA PUNIT CRIT CYL DIA PUNIT CRIT CYL DIA PUH20 CRIT CYL DIA PUNIT CRIT CYL DIA PUNIT CRIT CYL DIA PUH20 CRIT CYL DIA PUNIT CRIT CYL DIA PUNIT CRIT CYL DIA PUH20 CRIT SLAB THICK PU-CRIT SLAB THICK PU-CRIT SLAB TH PUNIT CRIT SLAB TH PUNIT CRIT SLAB TH PUNIT CRIT SLAB TH PUNIT CRIT SLAB TH PUNIT CRIT SLAB TH PUH20 CRIT SLAB TH PUNIT CRIT SLAB TH PUNIT CRIT SLAB TH PUH20 CRIT SLAB TH PUNIT CRIT SLAB TH PUNIT CRIT SLAB TH PUNIT CRIT SLAB TH PUH20 SPHERE CRIT MASS PU SPHERE CRIT MASS PU

MASS PUNIT MASS PUNIT MASS PUNIT ASS PUNIT ASS PUNIT ASS PUH20 ASS PUNIT ASS PUNIT ASS PUH20

D-2CW/0 210 FULL REFL 0-20W/0 210 BARE 2DW/0 210 BARE. NOM. FULL 15W/0 210 BARE. NOM. FULL lOW/O 210 BARE. NOM. FULL

5W/0 210 BARE. FULL REFL NOM REFL BARE. NOM. FULL RE BARE. FULL REFL NOM REFL BARE. NOM. FULL RE BARE. FULL REFL NOM REFL BARE. NOM. FULL RE

210 FULL REFL 210 BARE

210 210 210 210 210 210 210 210

5W/0 SW/O 3W/0 3W/0 3W/C OW/O DW/0 QW/0 H20 0-2CW/0 H20 C-20W/0 2DW/0 210 BARE. NOM. PULL

15W/0 210 BARE. NOM. REFL lCW/0 210 BARE. NOM. REFL 5W/0 210 BARE. FULL REFL

210 NOM REFL 210 BARE. NOM. FULL RE 21D BARE. FULL REFL 210 NOM REFL 210 BARE. NOM. FULL RE 210 VARIOUS REFL COMB 210 BARE. FULL RE« L 210 NOM RFFL 210 BARF. NOM. FULL RE

CRIT SPH CRIT SPH CRIT SPH CRITCAL M CRITCAL CRITCAL CRITCAL CRITCAL CRITCAL

5W/0 5W/0 3W/0 3W/0 3W/0 3W/0 OW/O OW/O OW/O -H23 -H23 20W/0 15W/0

D-2aw/0 210 0-2CW/0 210

210 BARE. 210 BARE.

lOW/0 210 BARE.

FULL 3ARE NOM. NOM. NOM.

REFL

FULL FULL FULL

RE

5W/0 210 BARE. FULL REFL 5W/0 210 NOM REFL 5W/0 210 BARE. NOM. FULL 3W/0 210 BARE. FULL REFL 3W/0 *:10 NOM REFL 3W/0 210 BARE, NOM. FULL RE

10-0=^-70 1C-C5-70 07-10-69 07-1P-69 07-10-63 09-09-53 07-1C-F9 08-09-68 08-09-68 08-09-68 09-03-68 08-09-63 08-09-68 08-09-68 10-05-70 1C-05-7C 0 7-10-6 9 07-10-69 07-10-69 08-09-68 08-09-68 08-09-68 1D-CE-7C 03-09-68 08-09-68 1C-C5-7C 08-09-68 08-09-63 08-09-68 10-05-70 10-C5-7C 07-10-69 07-1C-63 07-10-69 08-09-68 03-09-63 08-09-68 08-09-68 08-D°.-r8 03-09-63

Page 130: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

AGE NUMBER PASE TITLE OR CONTENT DESCRIPTION DAT

I.A.6(100-1 CRITCAL MASS PUNIT DW/0 210 BARE. FULL REFL 09-09 I,A.6(100-2 CRITCAL MASS PUNIT OW/O 210 NOM REFL C8-C9 I.A.6(100-3 CRITCAL MASS PUH20 DW/0 210 BARE. NOM. FULL RE 08-09 I.A.7(80)-1 CRIT CYL CON PUNIT 20W/0 210 BARE. NOM. FULL 07-10 I.A,7(85)-1 CRIT CYL CON PUNIT 15W/0 210 BARE. NOM. REFL 07-10 I,A.7(9D)-1 CRIT CYL CON PUNIT lDW/0 210 BARE. NOM. REFL 07-10 I.A,7{35)-1 CRIT CYL CON PUNIT 5W/0 210 3ARE. FULL REFL 08-09 l.A,7(95)-2 CRIT CYL CON PUNIT 5W/0 210 NOM REFL 08-09 I.A.7(95)-3 CRIT CYL CON PUH20 5W/0 210 BARE. NOM. FULL RE 08-09 I.ft.7(97)-1 CRIT CYL CON PUNIT 3W/0 210 3ARE. FULL REFL 08-09 I.A.7(97)-2 CRIT CYL CON PUNIT 3W/0 210 NOM REFL 08-09 I,A,7{97)-3 CRIT CYL CON PUH20 3W/0 210 BARE. NOM. FULL RE 09-03 I.A.7(100-1 CRIT CYL CON PUNIT OW/O 210 BARE. FULL REFL 08-09 I.A,7(10O-r CRIT CYL CON PUNIT OW/O 210 NOM REFL 08-09 I.A.7(100-3 CRIT CYL CON PUH20 OW/O 210 BARE, NOM. FULL RE 08-09 I.A.8(80)-1 CRIT SLB CON PUNIT 20W/0 210 BARE. NOM. FULL 07-10 I,A.8(35)-1 CRIT SLB CON PUNIT 15W/0 210 BARE. NOM. FULL 07-10 I.A.8(90)-1 CRIT SLB CON PUNIT lOW/0 210 BARE. NOM. FULL 07-lC I.A.3(95)-1 CRIT SLB CON PUNIT 5W/0 210 BARE. FULL REFL 08-09 I.A,8(95)-2 CRIT SLB CON PUNIT 5W/0 210 NOM REFL 08-09 I.A.8(95)-3 CRIT SLB CON PUH20 5W/0 210 BARE. NOM. FULL RE 08-09 I.A.8(97)-1 CRIT SLB CON PUNIT 3W/0 210 3ARE. FULL REFL 08-09 I.A.8(97)-2 CRIT SLB CON PUNIT 3W/0 21D NOM REFL 08-09 I.A.8(97)-3 CRIT SLB CON PUH20 3W/0 210 BARE. NOM, FULL RE 08-09 I.A,8(100-1 CRIT SLR CON PUNIT DW/O 210 BARE. FULL REFL 08-09 I.A.8(100-2 CRIT SLB CON PUNIT OW/O 210 NOM REFL 08-09 I.A.8(100-3 CRIT SLB CON PUH20 OW/O 210 BARE. NOM. FULL RE 08-09 I.A.9(80)-1 CRIT SPH VOL PUNIT 20W/0 210 BARE. NOM. REFL 07-10 I.A.9(85)-1 CRIT SPH VOL PUNIT 15W/0 210 BARE. NOM. REFL 07-10 l.A.9(90)-l CRIT SPH VOL PUNIT lOW/0 210 BARE. NOM, REFL 07-10 I.A.9(95)-1 CRIT SPH VOL PUNIT 5W/0 210 BARE. FULL REFL 08-09 I,A.9(35)-2 CRIT SPH VOL PUNIT 5W/0 210 NOM REFL 08-09 I.A.g(95)-3 CRIT SPH VOL PUH20 5W/0 210 BARE. NOM, FULL RE 08-09 I.A,9(97)-1 CRIT SPH VOL PUNIT 3W/0 210 BARE. FULL REFL 08-09 I.A,9(97)-2 CRIT SPH VOL PUNIT 3W/0 210 NOM REFL 08-09 I,A.9(97)-3 CRIT SPH VOL PUH20 3W/0 21D BARE, NOM. FULL RE 08-C9 I.A.9(97)-1 CRIT SPH VOL VS. CRIT SPH MASS PU(3)-H20 1C-C5

Page 131: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

PAGE NUMBER PASE TITLE OR CONTENT DESCRIPTION DATE

III.A .9(1D0>-1 CRIT SPH VOL PUNIT OW/0 2'»0 BAREt FULL REEL 08-09-68 III.A.9(10n)-2 CRIT SPH VOL PUNIT OW/0 210 NOM REFL 08-D9-S8 III.A .9(lD0)-3 CRIT SPH VOL PUH20 OW/0 210 3ARE» NOMt FULL RE 08-C°-68 III.A. 10{80)-1 BUCK* EXTRAP PUNIT 20W/0 210 D7-1C-69 III.A .lD(8r)-2 K-INFINITY PUNIT 2GW/0 210 07-1D-G9 III.A. 1C{35)-1 BUCKf EXTRAP PUNIT 15W/0 210 07-10-69 III.A ,lD(85)-2 K-INFINITY PUNIT 15W/0 210 C7-ID-69 III.A.10(90-1 BUCKt EXTRAP PUNIT lCW/0 210 07-10-59 III.A.10(9G)-2 KINFINITY PUNIT lCW/0 21C D7-1C-69 III. A. 10(95)-1 BUCKt EXTRAP PUNIT 5W/0 21C 08-09-63 III.A .10(95)-2 K-INFINITY PUNIT 5W/0 21C 08-09-68 III.A.10(95)-3 BUCKt EXTRAP PUH20 5W/0 210 08-C9-63 III.A .10t95)-1 K-INFINITY PUH20 5W/0 210 08-09-68 III.A.10(97)-1 BUCKt EXTRAP PUNIT 3H/0 210 C8-C9-S3 III.A.lD{97>-2 K-INFINITY PUNIT 3W/0 210 08-09-68 III.A.lC(97)-3 BUCKt EXTRAP PUH20 3W/0 210 09-09-68 III.A .10(97)-1 K-INFINITY PUH20 3W/0 210 08-C9-68 III.A.1011C0)-1 BUCKt EXTRAP PUNIT DW/0 210 08-09-63 III.A .10(lDD)-2 K-INFINITY PUNIT OW/0 210 08-C9-68 III.A.10(lCC)-3 BUCK* EXTRAP PUH20 OW/0 210 08-09-68 III.A .1D(1CDJ-1 K-INFINITY PUH20 OW/0 210 08-09-68

ITI.B. HOMOGENEOUS U-235

III.3-1 III.e-2 III.3-3 III.B. 1-1 III.3 .1-2 III.B. 2-1 TII.3 .2-2 III.B. 2-3 III.3.3{3)-l III.B.3{93)-l III.3.1(3>-1 III.B.1(93)-1 III.5 .5(3)-l III.B.5(93>-l

INDEX TO HOMOG BASIC U-235 CRI BASIC U-235 CRI CORRELATIONS BE CORRELATIONS BE H/U VS G/L GRAP H/U VS G/L GRAP H/U*l VS U G/L CRIT SPH RAO

SPH RAO CYL DIA CYL DIA SLAB TH

CRIT CRIT CRIT CRIT CRIT SLAB TH

DATA -T PARA T PARA TWEEN TWEEN H H GRAPH (3)03-C93)NI C3)03-(93)NI C3>03-I93)NI

URANIUM 235 SYSTEMS METERS METERS THEORY AND THEORY AMD

EXPERIMENT EXPERIMENT

H20 BARE NOM FULL REFL T BARE NOM FULL REFL H20 BARE NOM FULL REFL T BARE NOM FULL REFL H20 BARE I DM FULL REFL T BARE NOM FULL REFL

07-10-69 07-10-69 07-10-69 lC-25-63 08-09-68 10-25-63 10-25-68 08-09-63 08-09-68 08-09-63 08-09-68 08-09-63 07-10-69 C8-C9-68

Page 132: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

PA6E NUMBER PAGE TITLE OR CONTENT DESCRIPTION DATE

III.B, III.B. III.3 , III.B, 111.3. III.B. III.3. III.B. III.B. III.B. III.3 . III.B. III.B . III.B. III.9 . III.B. III.3. III.B. III.B. III.B. III.B. III.B. III.3. III.B. III.B. III.B. III.B .

6(3)-l 6(93)-l 7(3>-l 7<93)-l 8(3)-l 8{93)-l 9(3)-l 9(931-1 IDd.ZS) - ! 10(1.51-1 1C{2)-1 10(2.5)-l 1C(3)-1 lC(3)-2 1D(1)-1 10(5)-1 1D(6)-1 10(93)-1 11(l.?5)-l 11 ( 1 . 5 ) - 1 11 (2)-l 11(2.5)-l 11(3)-! 11(11-1 11 (5)-l 11(6)-1 11(931-1

SPH SPH CYL CYL SLB SLB SPH SPH

CRIT CRIT CRIT CRIT CRIT CRIT CRIT CRIT BUCKLING BUCKLING BUCKLING BUCKLING SUCKLING BUCKLING 3UCKLING BUCKLING BUCKLING SUCKLING KINFt MIG KINFt MIG KINFt MI

KINFt MIG KINF» KINFt KINF, KINFt KINFt

MASS MASS CONC CONC CONC CONC VOL VOL

MIG MIG MIG MIG MIG

U( U( U( U( U( U( U( U( U( U( U( U( U( U( U( U{ U( U(

AREA U( AREA U( GAREA U AREA U( AREA AREA AREA AREA AREA

U( U< U( U( U(

3103-93)NI 3103-93)NI 3)03-93)NI 3)03-93)NI 1.251 1.5)0 2)03 2.5)0 3)03 3)03 1)03 5)03 6)03 95)NI 1,25) 1.5)0 (2)03 2.5)0 3)03 1)03 5)03 6)03 93)NI

H20 T H20 T H20 T H20 T

BARE BARE BARE BARE BARE BARE BARE BARE

03-H20 AN 3-H20

H20 3-H20

H20 H20 H20 H20 H20

AND AMD AND

AND AND AND AMD

NOM NOM NOM NOM NOM NOM .MOM NOM 0 MIT NIT NIT NIT

NIT MIT NIT MIT

FULL FULL FULL FULL FULL FULL FULL FULL

03-H20 AM 3-H20 AND

H20 AM 3-H20

H20 H20 H20 H20

T

AND AND AND AMD AND

D MIT NIT

D NIT NIT NIT NIT MIT NIT

REFL REFL REFL REFL REFL REFL REFL REFL

G8-C9-68 08-09-68 07-10-69 08-09-68 C7-10-G9 08-09-68 08-09-68 03-09-68 10-25-68 08-09-68 10-25-68 C8-09-68 08-09-68 03-09-58 08-09-68 08-09-68 D8-C9-68 0 8-09-6 8 10-2=^-68 08-09-68 06-05-69 08-09-63 08-09-68 08-09-63 08-09-68 03-09-63 08-09-68

Page 133: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

ARH-600. VOL, III

PAGE NUMBER PAGE TITLE OR CONTENT DESCRIPTION DATE

COVER SHEET VOL. Ill 1D-C5-7C 1 TITLE PAGEtVOL. Ill 10-05-70 2 3ENERAL CONTENTSt VOLIII 10-05-70 3 PREFACEt VOL. Ill 10-05-7C

III. HOMOGENEOUS DATAt COMTD,

III-l INDEX TO HOMOG, SYSTEMS PARTS C AND D 10-05-70

III,C. HOMOGENEOUS U-233

C-1 INDEX TO U-233 HOMOGENEOUS SYSTEMS 07-1C-69 C-2 BASIC U-233 CRIT PARAMETERS 07-10-69 C.1-1 CORRELATIONS BETWEEN CALCULATION AND EXPERIMNT 10-05-70 C.2-1 H/U VS UG/L RELATIONSHIPS 07-1C-69 C.2-2 H/U VS UG/L GRAPH 07-10-69 C.3(100-1 CRIT SPH DIA 233U ( 100 INITR BAREt FULL REFL 07-10-69 C.3(100-2 CRIT SPH DIA 233UC 100) NIIR NOM REFL 07-10-69 C.3(100)-3 CRIT SPH DIA 233U-H20 0 W/0 238 07-10-69 C.1(10O-l CRIT CYL DIA 2 33U( 1 00) NITR BAREt FULL REFL 10-05-70 C.4(100-2 CRIT CYL DIA 233U ( 100 JNITR NOM REFL 07-10-69 C.1(100-3 CRIT CYL DIA 233U-H20 0 W/0 238 07-10-69 C.5(100)-l CRIT SLAB TH 233U(ICO»NITR BAREt FULL REFL 07-10-69 C.5(100-2 CRIT SLAB TH 2 33U( 100) NiTR NOM REFL 07-10-69 C.5(100-3 CRIT SLAB TH 233U-H20 0 W/0 238 10-05-70 C.6(100)-l CRIT SPH MASS 33U NIT OW/0 238 BAREt FULL REFL 07-10-69 C.6(100-2 CRIT SPH MASS 33U NIT OW/0 238 NOM REFL 07-10-69 C.6(100-3 CRIT MASS 233U-H20 0 W/0 238 07-10-69 C.7(100-1 CRIT CYL CON 233U NIT OW/0 238 BAREt FULL REFL 07-10-69 C.7(100)-2 CRIT CYL CON 233U NIT OW/0 238 NOM REFL 07-10-69 0.7(100-3 CRIT CYL CON 233U-H20 D W/O 238 07-10-63 C.8(100-1 CRIT SLB CON U NIT 0 W/0 238 BAREt FULL REFL 07-10-69 C.8(100-2 CRIT SLB CON U NIT 0 W/0 238 MOM REFL 07-10-69 C,3(100-3 CRIT SLB CON 233U-H20 0 W/0 238 07-10-63

o I

Page 134: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

PAGE NUMBER PAGE TITLE OR CONTENT DESCRIPTION DATE

III.C.9(100-1 III,C,9(100-2 III.C,9(100)-3 III,C.10(100)-1 III.C. lD(100)-2 III.C.10(1001-3 III.C.10(100)-1

III.D-1

CRIT SPH VOL CRIT SPH VOL CRIT SPH VOL BUCKt EXTRAP K-INFINITY BUCKt EXTRAP K-INFINITY

U NIT 0 W/0 238 U NIT Q W/0 238 NOM 233U-H20 0 W/0 238 233U NIT 0 W/0 238 233U NIT 0 W/0 238 233U-H20 0 W/0 238 233U-H20 0 W/0 238

BAREt FULL REFL

REFL

III.D, HOMOGENEOUS MIXED

INDEX TO MIXED HOMOGENEOUS SYSTEMS

IV, HETEROGENEOUS SYSTEMS

07-10-69 07-10-69 07-10-69 07-10-69 07-10-69 07-10-69 07-10-69

07-10-59

IV-1 IV.1-1

IV. A-1 IV.A.1-1 IV.A.1-2 IV.A.1-3

IV.3-1 IV.8.3-1 IV.3.3-2 IV.B.1-1 IV.3.1-2 IV.8.1-3 IV.3.1-1 TV.B.5-1 IV.3.E-2 IV.B.7-1 IV. 3.7-?

INDEX TO HETEROGENEOUS SYSTE'IS COMMENTS ON DATA

IV,A, PLUTONIUM SYSTEMS

INDEX TO PU HETEROGENEOUS 1.82 W/O PU-AL RODS IN WATER 2,00 W/0 PU-AL RODS IN WATER 5.00 W/0 PU-AL RODS IN WATER

SYSTEMS

08-C9-68 07-1C-69

07-10-59 10-05-70 10-05-70 10-05-70

IV.B. U-235 SYSTEHS

INDEX TO U-235 HETEROGENEOUS SYSTEMS 07-10-69 CRIT CYL DIA - MINIMUM - U RODS 07-10-63 CRIT CYL DIA - MINIMUM - U02 RODS C7-1D-69 CRIT SLAB THICKNESS-MINIMUM-U RODS 07-10-69 CRIT SLAB THICKNESS-MINIMUM-U02 RODS 07-10-69 CRIT SLAB CONCENTRN-MINIMUM-U HODS 07-10-59 CRIT SLAB C0NCENTRN-MINIMUH-U02 RODS 07-10-69 URANIUM METAL RODS SPH MIN CRIT MASS VS ENRICH 10-25-63 U02 RODS SPH MIN CRIT MASS VS ENRICHMENT 07-1C-69 URANIUM METAL RODS MAX BUCKLING VS ENRICHMENT 10-25-68 ENRICHED U02 RODS MAX BUCKLING VS ENRICHMENT 10-25-68

Page 135: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

PAGE NUMBER PAGE TITLE OR CONTENT DESCRIPTION DATE

IV,C-1

IV,D-1

IV,C. U-233 SYSTEMS

INDEX TO U-233 HETEROGENEOUS SYSTEMS

IV,D. MIXED SYSTEMS

INDEX TO MIXED HETEROGENEOUS SYSTEMS

07-10-69

07-10-69

V. INTERACTION

V-l

V. A-1

V.B V.B V.P V.B V.3 V.B v.e V.B V.B V.B V.E V.B V.B V.B V.B V.B V.P V.B

.1-1

.1-2

.1-3

.1-1

.1-5

.1-6

.1-7

.1-3

.1-9

.i-i:

.2-1

.2-2

.2-3

.2-1

.2-5

.2-6

.2-7

.2-3

INDEX TO INTERACTION

V.A, INTRODUCTION

INTRODUCTION

V.B. CORRELATIONS

CORREL CORREL CORREL CORREL CORREL CORREL CORREL CORREL CORREL CORREL CORREL CORREL CORREL CORREL CORREL CORREL CORREL CORREL

ATION ATION ATION ATION ATION ATION ATION ATION ATION ATION ATION ATION ATION ATION ATION ATION ATION ATION

AND AND AND AND AND AND AND AND AND AND AND AND AND AND AND AND AND AND

EXAMPLES-EXAMPLES-EXAMPLES-EXAMPLES-EXAMPLES-EXAMPLES-EXAMPLES-EXAMPLES-EXAMPLES-EXAMPLES-EXAMPLES-EXAMPLES-EXAMPLES-EXAMPLES-EXAMPLES-EXAMPLES-EXAMPLES-EXAMPLES-

PIPIN PIPIN PIPIN PIPIN PIPIN PIPIN PIPIM PIPIN PIPIN PIPIN SOLID SOLID SOLID SOLID SOLID SOLID SOLID SOLID

INTER INTER INTER INTER

G INTER 6 INTER

INTER INTER INTER INTER

ANGLE ANGLE ANGLE ANGLE ANGLE ANGLE ANGLE ANGLE

ACTIONS ACTIONS ACTIONS ACTIONS ACTIONS ACTIONS ACTIONS ACTIONS ACTIONS ACTIONS METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD

07-10-69

10-05-70

10-05-70 10-05-70 10-05-70 10-05-70 10-05-70 10-05-70 10-05-70 10-05-70 10-05-70 10-05-73 10-05-70 11-01-63 11-01-68 11-01-68 11-01-68 11-01-68 ll-Cl-68 11-01-63

Page 136: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

PAGE NUMBER PAGE TITLE OR CONTENT DESCRIPTION DATE

V,B,3-1 V,B.3-2 V.B.3-3 V.B.3-1 V.B.3-5 V.B.3-6 V.B.1-1 V . B , 1 - 2 V.B.1-3 V.B.1-1 V.B,1-5 V,3,1-5

CORREL CORREL CORREL CORREL CORREL CORREL CORREL CORREL CORREL CORREL CORREL CORREL

ATION ATION ATION ATION ATION ATION ATION ATION ATION ATION ATION ATION

AND AND AND AND AND AND AND AND AND AND AND AND

EXAMPLES-EXAMPLES-EXAMPLES-EXAMPLES-EXAMPLES-EXAMPLES-EXAMPLES EXAMPLES EXAMPLES EXAMPLES EXAMPLES EXAMPLES

DENSITY OEMSITY DENSITY OEMSITY DENSITY DEMSITY • OTHER

A A A A

ME OTHER ME OTHER ME OTHER ME REFERENC REFERENC

NALOGUE NALOGUE NALOGUE NALOGUE NALOGUE NALOGUE THOOS THODS THOOS THOOS ES ES

11-01-68 11-01-68 10-C5-7C 11-01-68 11-01-63 10-05-70 03-15-63 08-15-69 08-15-69 08-15-69 10-05-70 10-05-70

V,C.1-1 V. C.2-1 V.C.3-1 V.C.1-1

V.C. SUMMARY

SUMMARY PIPING INTERSECTIONS SUMMARY SOLID ANGLE METHOD SUMMARY DENSITY ANALOGUE METHOD SUMMARY MONTE CARLO CALCULATIONS

V.O. USEFUL CURVES

10-05-70 11-01-68 11-01-68 10-05-70 U)

I

v.n.1-1 V.D.l-2 V.O. 1-3 V.C.1-4 V.0,1-5 V.D.1-6 V.O. 1-7 V.D.1-6 V.C. 2-1 V.J.2-2 V.O.2-3

FRACTIONAL SOLID FRACTIONAL SOLID FRACTIONAL SOLID ARRAY REFLECTION

ANGLES SPHERES ANGLES SLABS ANGLES CYLINDERS AND MODERATION FACTORS

COMPARISON OF DENSITY ANALOGUE WITH EXPERIMENT REFLt MOD EFFECT PU METAL SPH ARRAYS PU METAL SPH ARRAYS - CONCRETE REFL

ARRAYS H20 REFL MATERIAL SPACING IN H20 MATERIAL SPACING IN H20 MATERIAL SPACING IN H20

U235 MET CYL SAFE FISSILE SAFE FISSILE SAFE FISSILE

11-01-68 11-01-68 11-01-68 11-01-68 11-01-63 10-C5-7D 10-05-70 1C-05-7D 10-05-70 1C-C5-7D 10-05-70

Page 137: CRITICALITY HANDBOOK Volume I - NCSP · CRITICALITY HANDBOOK Volume I June 30, 1968 R. D. Carter G. R. Kiel K. R. Ridgway Advance Process Development Section Research and Development

PAGE NUMBER PAGE TITLE OR CONTENT DESCRIPTION DATf

VI. POISONS

VI- 1 VI.1-1 VI.1-? VI.1-3 VI.2-1 VI.2-2

VI.a.l(90-l VI. A.1 (90-2 VI.A.K 100)-1 VI.A.1 (100-2 VI.A,l(100)-3 VI.A,1 (lOO-l VI.A.2(irO)-l

INDEX TO POISONED SYSTEMS COMMENTS ON COMMENTS ON COMMENTS ON CORRELATION CORRELATION

POISONED SYSTEMS POISONED SYSTEMS POISONED SYSTEMS WITH EXP-HOMOG SOL WITH EXP-HOMOG SOL

VI .E.2-1 VI.E.2-2

VI.A. HOMOGENEOUS SOLUTIONS-SOLUBLE POISONS

PU(9D)-H20 - BORON REQU. FOR KIMFrl.O PU(90)-H20 - CADMIUM REQU. FOR KINF-l.O PU SOLUTIONS - BORON REQU, FOR KINFrl,0 PU SOLUTIONS - BOPON REGU. FOR VARIOUS KINF PU SOLUTIONS - CADMIUM REQU, FOR KINFrl.O PU SOLUTIONS - CADMIUM REQU, FOR VARIOUS KINF 235U SOLUTIONS - BORON REQU. FOR KINF=1,0

V L B , HOMOGENEOUS SOLUTIONS-FIXED POISONS

VI.C. HETEROGENEOUS SYSTEMS-SOLUBLE MODERATOR POISONS

VI.D, REFLECTOR INTERFACES

VI.E, ISOLATORS

EFFECTIVE ISOL THICK OF SOME COMMON MAILS EFFECTIVE ISOL THICK OF SOME COMMON MAILS

07-10-69 07-10-69 07-10-59 07-10-69 07-10-69 07-10-69

07-10-69 07-10-69 07-10-69 07-10-69 07-10-69 07-10-69 C7-1G-69

07-10-69 07-10-69


Recommended