+ All Categories
Home > Documents > Crux v18n04 Apr

Crux v18n04 Apr

Date post: 06-Jul-2018
Category:
Upload: rei-estrella
View: 232 times
Download: 0 times
Share this document with a friend

of 37

Transcript
  • 8/17/2019 Crux v18n04 Apr

    1/37

    CruxPublished by the Canadian Mathematical Society.

    http://crux.math.ca/

    The Back Files 

    The CMS is pleased to ofer ree access to its back le o all

    issues o Crux as a service or the greater mathematicalcommunit in Canada and beond.

    !ournal title histor:

    ➢ The rst "# issues$ rom %ol. &$ 'o. & (March &)*+, to

    %ol. -$ 'o.# (ebruar &)*, 0ere published under the

    name EUREKA.

    ➢ 1ssues rom %ol. -$ 'o. " (March &)*, to %ol. ##$ 'o.

    (2ecember &))3, 0ere published under the nameCru Mathematicorum.

    ➢ 1ssues rom %ol #".$ 'o. & (ebruar &))*, to %ol. "*$

    'o. (2ecember #4&&, 0ere published under the

    name Cru Mathematicorum !ith Mathematical

    Mayhem.

    ➢ 1ssues since %ol. "$ 'o. & (!anuar #4, are

    published under the name Cru Mathematicorum.

    M     a    t    

     h     e    m   

     a    t     i     c   

     o    r    u   

     m   

    http://crux.math.ca/http://crux.math.ca/

  • 8/17/2019 Crux v18n04 Apr

    2/37

  • 8/17/2019 Crux v18n04 Apr

    3/37

  • 8/17/2019 Crux v18n04 Apr

    4/37

    97

    T H E O L Y M P I A D C O R N E R

    No, 134

    R . E . W O O D R O W

    All communications about this column should be sent to Professor R.E. Woodrow ,

    Department of Mathematics and Statistics, The U niversity of Calgary, Calgary, Alberta,

    Canada, T2N IN4.

    The first problems we present are from the American Invitational Mathematics

    Exa m ination (A.I.M .E.) wr itten April 2, 1992. Th e tim e allowed was three hours. Th e

    problems are copyrighted by the Committee on the American Mathematics Competi t ions

    of the Mathematical Association of America and may not be reproduced without per

    mission. The num erical solutions only will be published next mo nth. Full solutions,

    and additional copies of the prob lem s, may be obta ined for a nom inal fee from Professor

    Walter E. Mientka, C.A.M.C. Executive Director, 917 Oldfather Hall, University of

    Nebraska, Lincoln, NE, U.S.A., 68588-0322.

    19 92 A M E R I C A N I N V I T A T I O N A L M A T H E M A T I C S E X A M I N A T I O N

    1 , Find the sum of all positive rationa l num bers tha t are less tha n 10 and tha t

    have denominator 30 when written in lowest terms.

    2*  A positive integer is called "ascen ding" if, in its decim al rep res enta tion, the re

    are at least two digits and each digit is less than any digit to its right. How many ascending

    positive integers are there?

    3*  A tennis player com putes her "win ratio " by dividing the num ber of ma tches

    she has won by the tota l num ber of ma tches she has played. At the sta rt of a weekend,

    her win ratio is exactly .500. During the weekend she plays four matches, winning three

    and losing one. At the end of the weekend her win ratio is greater than .503. What is the

    largest number of matches that she could have won before the weekend began?

    4*  In Pascal 's triangle, each entry is the sum of the two entries above it . The first

    few rows of the triangle are shown below.

    Row

    Row 1

    Row 2

    Row 3

    Row 4

    Row 5

    Row 6

    1

    1 5 10 10 5 1

    1 6 15 20 15 6 1

    In which row of Pascal's triangle do three consecutive entries occur that are in the ratio

    3 : 4 : 5 ?

    r V Y \ Printed on recycled paper

    y - i A / Impnme sur papier recycle

  • 8/17/2019 Crux v18n04 Apr

    5/37

    98

    5 .  Let

      S

      be the set of all rational numbers r, 0 <

      r <

      1, that have a repeating

    decimal expansion of the form

    O.ahcabcabc... = O.a&c,

    where the digits a, 6, c are not necessarily distinct. To write the elements of

      S

      as fractions

    in lowest terms, how many different numerators are required?

    6 . For how many pairs of consecutive integers in { 100 0,1 001 ,10 02,. . . ,

     2000}

      is no

    carrying required when the two integers are added?

    7. Faces  ABC  and  BCD  of tetrahedron  ABCD  me et at an angle of 30°. The area

    of face

      ABC

      is 120, th e area of face

      BCD

      is 80, and

      BC

      = 10. Find the volume of the

    tetrahedron.

    8 . For any sequence of real num bers

      A

      = ( a i , a

    2

    ,a3,.. .)> define

      A A

      to be the

    sequence (a

    2

      — a i , a s  — a

    2

    ,a4 —  a

    3

    , . . . ) , whose nth te rm is a

    n+

    i  —  a

    n

    . Suppo se that all of

    the terms of the sequence A   (AA)  are 1, and th at a i

    9

      = a

    92

      = 0. Find  a\.

    9. Trapezoid

      ABCD

      has sides

      AB

      = 92,

      BC

      = 50,

      CD

      =

      19,

     ^n d

      AD

      = 70, with

    AB  parallel to  CD.  A circle with center  P  on  AB  is drawn tangen t to  BC  and  AD.  Given

    tha t

      AP

      = ra/n, where

      m

      and

      n

      are relatively prime positive integers, find

      m

      +

      n.

    1 0 .  Consider the region

      A

      in the complex plane that consists of all points

      z

      such

    tha t bo th z /40 an d 40 /z have real and imagina ry parts between 0 and 1 inclusive. W hat is

    the integer that is nearest the area of A? (If

      z

      =

      x

      +

      iy

      with

      x

      and

      y

      real, then ~z

      = x

     —

     iy

    is the conjugate of z.)

    1 1 .  Lines

     £\

      and f

    2

      both pass through the origin and make first-quadrant angles of

    ~ and ~ radian s, respectively, with the positive x-axis. For any line £, the transform ation

    R(£)

      produces another line as follows:

      £

      is reflected in

      £i,

      and the resulting line is then

    reflected in

      l

    2

    .

      Let

      R^(£)

      =

      R(£),

      and for integer

      n >

      2 define

      R^(£) =

      i ? ^

    7 1

    "

    1

    ^ ) ) .

    Given tha t

      £

     is th e line

     y

      = | | x, find th e smallest positive integer m for which

      R(

    m

    \£) = L

    1 2 .  In a gam e of  Chomp, two players alternately take

      a

    bites" from a  5-by-7  grid

    of unit sq uares. To take a bite, the player chooses one of the rem aining squares, th en

    removes ("eats") all squares found in the quadrant defined by the left edge (extended up

    ward) an d th e lower edge (extended rightward) of the chosen square. For exam ple, the

    bite determined by the shaded square in the diagram would remove the shaded square and

    the four squares marked by x . (Th e squares with two or mo re dotted edges have been

    removed from the original board in previous

    moves.) The object of the game is to make one's

    opponent take the last bite. The diagram shows

    one of the many subsets of the set of 35 unit

    squares that can occur during games of Chomp.

    How many different subsets are there in all?

    Include the full board and the empty board in your

    count.

    V  J  I '

    i ih

  • 8/17/2019 Crux v18n04 Apr

    6/37

    99

    1 3 .  Triangle  ABC  has  AB  = 9 and  BC  : C A =  40 : 41. W hat is the largest area

    that this triangle can have?

    1 4 .  In triangle  ABC, A

    1

    , B',  and  C  are on sides B~C,

     ~AC,

      and

      ~AB,

     respectively.

    Given that  AA', BB',  and  CC  are concurrent at the point  0,  and that

    AO BO CO

    + +

    find the value of

    OA'  OB' OC

    AO BO CO

    OA'  ' OB' ' OC

    7 = 92,

    1 5 •  Define a positive integer

      n

      to be a "factorial tail" if there is some positive

    integer

      m

      such tha t the base-ten representation of m ends with exactly

      n

      zeros. How

    many positive Integers less than 1992 are   no t  factorial tails?

    *

    The Olympiad problems we give this month are those of the

      21st Austrian Math

    ematical Olympiad, 1990,  Many thanks to Walther Janous, Ursulinengymnasium, Inns-

    bruck

    9

      Austria, for translating the problems. He points out that the distinction between

    ^natural

    5

      and 'intege r' numbe r in 2nd Round # 1 and F inal Round # 4 w as the cause of

    confusion and quite a few erroneous 'solutions

    5

    ,

    2 1s t A U S T R I A N M A T H E M A T I C A L O L Y M P I A D

    2nd Round (May 3

    9

      1990): 4 hours

    1 •  Prove: There exists no natural number n such that the total number of integer

    factors of

      n

      equals 1990 and the sum of the inverses 1/6 of all natural number factors

      b

     of

    n

      equals 2,

    2 ,

      Solve (in R ) the equation

      ^2x

      -

      7 + ^3x

      - 3 =

      ^T^~8 + tyix

      - 2.

    3*

      Let

      ABC

      be a triangle with

      E

      and

      D

      the feet of the altitudes to sides

      h

     and a,

    respectively. Let

      M

      be the point on

      AD

      such that

      AD

      =

      DM.

    (a) Show there exists no acute-angled triangle

      ABC

      such tha t (7, D ,

      E, M

      lie on

    a circle.

    (b) Determine all triangles

      ABC

      such that

      CDEM

      do He on a circle.

    4 .  For natura l numbers &,n > 2, determine the sum

    S(k,n)

      =

    [2

    n + 1

      + l"

    2*-

    1

      + 1

    +

    [3

    n + i

      + r

    I  

    n

    ~

     

    +  

    + ...+

    k*-

    1

      +

    1

    where  [x]  denotes the greatest integer

  • 8/17/2019 Crux v18n04 Apr

    7/37

    100

    Final Round

    1st Day — May 30, 1990: 4.5 hours

    1 .  Determine the num ber of al l natur al numbers

      n

      such that 1 <

      n < N

      = 1990

    1990

    with n

    2

      —

      1 and

      N

      relatively prime.

    2 .  Show that for all na tura l num bers

      n > 2

    fH-

    ...

      tfn  + ' ( - ) =

    ( i

    - ^ : r

    9 )

    ^

    for all

      x ^ 0,

     —3.  Furthermore, for each fixed natural number

      n

      determine all integers

      x

    such that

      f(x)

      is an intege r.

    5 .  De term ine all rationa l numb ers r such th at all solutions of rx

    2

    +(r+l)x+(r—1) =

    0 are integers.

    6 . Th e convex pentagon  ABODE  has a circumcircle. Th e perpen dicular distances

    of

      A

      from the lines through

      B

      and C,

      C

      and D, and

      D

      and

      E

      are a,

      h

      and c, respectively.

    Determine (as a function of a,  b and  c)  the perpendicular distance of  A  from the diagonal

    BE.

    We next move to solutions of problems posed in the 1991 volume of

      Crux.

    2 .

      [1991:

      1]

      1980 Celebration of Chinese New Year Contest.

    Let

      n

      be a positive integer. Is the gre atest integer less than (3 + \ /7 )

    n

      odd or even?

    Solution by Seung-Jin Bang, Seoul, Republic of Korea.

    If (3 +  \ / 7 )

    2 n

      =  a

    n

      + b

    n

    y/1 (a

    n

      and  b

    n

      are integers), from the binomial formula

    (3 - V7 )

    2 n

      = a

    n

    -

      b

    n

    yjl.  It follows th at (3 + v ^ )

    2 n

     + (3 -  V7)

    2n

      = 2a

    n

      and (3 +  v ^ )

    2

    ^

    1

      +

    (3 - v /7 )

    2 n + 1

      = 2(3o

    n

      + 76„). Since 0 < 3 -

      y/7 <

      1, we have

    [(3 + v^)

    2

    "] = 2

  • 8/17/2019 Crux v18n04 Apr

    8/37

    101

    4 . [1991:  1]

      1980 Celebration of Chinese New Year Contest

    Denote by

      a

    n

      the Integer closest to

      y/n.

      Determine

    1 1 1

     +

     —

     +

     »_

    1

    (0) - 2 ) ^ ( 0 ) = 2

     •

     4

    2

    " + 4P:_

    X

    (0)

  • 8/17/2019 Crux v18n04 Apr

    9/37

    102

    and

      P (0)

      =  2. Solving the recurrence relation,  we have

    The coefficient of

     x

    2

      in case the expansion results from

      n

     applications is thus

      =^

      4

    n

     + § 4

    2 n

    .

    2 ,  [1991:  2]

      1981 Celebration of Chinese New Year Contest.

    Prove that 1980

    19811982

      + 1982

    198ll98

    ° is divisible by

      1981

    1981

    .

    Solution by Seung-Jin Bang, Seoul, Republic of Korea.

    Let

      a

      = 1981 = 7

     •

      283. From the binomial formula

    («-i)

    a

    "

    +1

    +(«+ir

    1

     = E «

    r

    {(

    a

    7) ( -

    1

    )

    r

    + '

    f l

    + a

    a

    L

    r J ' \ r

    for  some integer  L.  It  is  well  known that  if p  is a prime and  p

    3

      divides  r\ ,  then

    5 <

    +

    + •••<

    . p - 1

    Since 7 and 283 are primes and [r/6] < r

      —

      1, [r/282] < r

      —

      1, (r > 1), we have

    r °

    +

      J

     a

    f

      =

      a

    a

    M

      a nd r "

      J

     a

    r

      =

      a

    a

    N

    for some integers

      M

      an d iV for r > 1. It follows th a t

      (a —

      l )

    a a + 1

      + (a +

      I )

    0

    "

    - 1

      is divisible

    b y a

    a

    .

    3 .  [1991:

      2]  1981 Celebration of Chinese New Year Contest.

    Let

      f(x) = x" + x

    98

      + x

    97

      +  h x

    2

      + x

      + 1. Determine the remainder when

      f(x

    10 0

    )

    is divided by

      f(x).

    Solution by Seung-Jin Bang, Seoul, Republic of Korea.

    Note that

    / ( * ) =

    c

    10 0

      - 1

    x-1

      '

    If

      xo

      is a (complex) zero of

      f(z)

      then

      XQ

      is a simple zero of

      f(z)

      because

    100xl

    9

    (x

    o

      - 1) -

      (x l

    00

      - 1) _ 100

    f *o)

      =

    # 0 .

    (XQ  — I )

    2

      # o ( # 0 - 1 )

    Let   x\

    9

      X 2

    ?

    . . . ,  99  be all the distinct zeroes of /(#), and let

    r(x)  = a

    9 8

    x

    9 8

      +  a

    97

    x

    97

      H  h ai# + a

    0

    be the remainder when

      f(x

    10 0

    )

      is divide d by

      f(x).

      From / (# J

    0 0

    ) = 100 =

      r(x{)

      for

    t =

      1,2,...,

     99

      we

      have the following system of equations for ao,.. . ,

     a^g:

    a

    0

     + aixi+  ••• + a

    9 8

    x

    9 8

      = 100

    a

    Q

     + aix

    2

    +  - • •  + a

    9 8

    ;r

    9 8

      = 100

    o>o

      + ai#99+

    +^ 98^99 = 100 .

  • 8/17/2019 Crux v18n04 Apr

    10/37

    103

    Note that the determinant of the coefficient matrix is

    A =

    1  xi ... xf*

    1  X

    2

      • • •  % 2

    8

    1

      Xg g

      . . • X

    9 9

    3

  • 8/17/2019 Crux v18n04 Apr

    11/37

    104

    1 .  Let ax , . . . , a

    n

    ,  6 1 , . . . , b

    n

    ,  c j , . . . ,  c

    n

      be positive real numbers. Show that

    (t  a

    k

    b

    k

    cX  

  • 8/17/2019 Crux v18n04 Apr

    12/37

    105

    where £?= i

      q

    {

     = 1,

     q

    {

     >

     0, unless either

      (an, a,-

    2

    ,...,

     a,-

    n

    ) ( i = 1 , . . . , m) are all proport ional ,

    o r ( a , i , . . . , a

    f

    -

    n

    ) =  ( 0 , . . . ,  0) for some

      i

      = 1 , . . . , ro . (Let ^ =

      q

    2

      = g

    3

      = 1/3,

      a

    k

    \

      = a| ,

    &&2 =  bl, a

    k3

      = c |). See Hardy, Littlewood, & Polya,  Inequalities,  2nd Edition (1952),

    pp .

      21-24.]

    2« Elach point of the pla ne ( R

    2

    ) is coloured by one of the two colours   A  and  B.

    Show that there exists an equilateral triangle with monochromatic vertices.

    Solutions by Seung-Jin Bang, Seoul, Republic of Korea; Margherita Barile, student,

    Genova, Italy; and John Morvay, Sp ringfield, Missouri. We give Barile's solution.

    Let the two colours be black and white and let   ABC  be an equilateral triangle. We

    may assume, without loss of generality, that the vertices

      A

      and

      B

      are black. Suppose

      C

      is

    white and consider the figure where

      ADGEFC

      is a regular hexagon (with

      B

      the centre) .

    Now proceed as follows:

    TJ

      ADB

      is equilateral,

      A, B

      are

    black; so suppose

      D

      is white.

    •  CDB  is equilateral; C ,  D  are

    white; so suppose  E  is black.

    F

      BEF

      is equ ilater al; J3,

      E

      are

    black; so suppose

      F

      is white.

      CFH

      is equ ilatera l; (7,

      F

      are

    white; so suppose  H  is black.

    E

      BHI

      is equilateral; J3,

      H

      are

    black; so suppose

      I

      is white.

    G

    Now 7JDF is equilateral and 7, 7}, F are white, completing the

     proof.

    3*

      Determine all natura l numbe rs

      N

      (in decimal representation) satisfying the

    following properties:

    (1)

      N

      = (aa66)io, where (aaft)io and (a66)i

    0

      are primes.

    (2)  N  = P i • P2 *  P35 where P& (1 < fc < 3) is a prime consisting of   k  (decimal) digits.

    Solutions by Seung-Jin Bang, Seoul, Republic of Korea; Margherita Barile, student,

    Genova, Italy; and Stewart Metchette, Culver City, C alifornia. We give Bang's solution.

    Since

      (aab)io

      = 110a +

      b

     is a prim e, we obta in 6 = 1,3,7 or 9. F rom (1) we have

    N   = l l (100a +  b) .  In a table of primes we obtain the pairs  ((aab)

    10 j

      (aab)io)  satisfying (1)

    as follows:

    (223,233), (227,277), (331,311), (443,433),

    (449,499), (557,577), (773,733), (881,811),

    (887,877), (991,911), (997,977).

  • 8/17/2019 Crux v18n04 Apr

    13/37

    106

    Corresponding to 100a +

      h

     are

    203 = 7 x 29, 207 = 9 x 23 , 301 = 7 x 43 , 403 = 13 x 31 ,

    409 = prim e , 507 = 3 x 13

    2

    , 703 = 19 x 37, 801 = 3

    2

      x 89,

    807 = 3 x 269, 901 = 17 x 53, 907 = pri m e

    Answer:

      N

      = (8877)i

    0

      = 3 x 11 x 269.

    5» Let A be a vertex of a cube u; circumscribed about a sphere

      &

      of radius 1. We

    consider lines

      g

      through

      A

      containing at least one point of

      K.

      Let

      P

      be the point of

     g

      fl K

    having minimal distance from

      A.

      Furthermore ,

      g

      fl u?  is

      AQ ,

      Determine the maximum

    value of

      AP

      •

      AQ

      and characterize the lines

     g

      yielding the maximum

    e

    Solution by Seung-Jin Bang, Seoul, Republic of Korea.

    Let the vertices of the given cube

     u>

      be (0 ,0 ,0) , (2 ,0 ,0) , (0 ,2 ,0) , (0 ,0 ,2) , (2 ,2 ,0) ,

    (2,0,2), (0,2,2), (2,2,2) and let the equation of the given sphere

      K

     be

    ( * - l )

    2

      + ( y - l )

    2

      + ( 2 - l )

    2

      = L

    We may assume that

      A

      = (0,0,0), and the equation of the l ine

     g

      is

     t(a

    }

     6,

     c) where

      t

      is real

    and

      a

    2

      + b

    2

     + c

    2

      = 1, a,6,c > 0. From

      (ta

      - I )

    2

      +

      (tb-

      I )

    2

      + ( t c - I)

    2

      = 1 we have

    p = (

    a

      +

      6

     +

      c

    _

      y/{a +

     b

     + c)

    2

      - 2 ) ( a , 6 , c ) .

    Let

      d

      = max(a ,

     6,

     c ).  Since gC\u>

      ~ AQ,

      we obtain

      td

      = 2 and

    2

    Q =

      „ / „ * x ( g > M .

    max(a ,

     6,

     c)

    Note that

    AP-AQ = 2

    a + b + c-^J(a + b + c)

    2

    -2

    max(a ,

     6,

     c)

    4

    max(a , 6, c)(a +  b + c + y (a +  6 + c)

    2

     —  2 )

    We may assume that a = max(a, 6,

     c ).

      Then

    A ( 6 ,c ) = A P . A Q = /

    a(a + b+c+ yj(a + b + c)

    2

      -  2 )

    and  b

    2

      + c

    2

      = 1 —  a

    2

    . Note that /

    t t

      is strictly decreasing as a function of  b + c and

    \ / l

      —

     a

    2

      <

      6

     + c holds for 6 = 0 or c = 0. So we ma y tak e 6 = 0 and

      c

      =

      y/ \  —  a

    2

    .

      From

    a

      = max(a ,

     6,

     c) we then have

      a > y/l  —

      a

    2

    , so a > l/\/2 . It follows that

  • 8/17/2019 Crux v18n04 Apr

    14/37

    107

    The last inequality holds because

    ^ / ,  n o\  y l  —  a

    2

     —  a

    -

    (a +

     VT^)=

      V i

    _

    o 2

     

  • 8/17/2019 Crux v18n04 Apr

    15/37

    108

    Let

      C = J2{p

      € N : c„ is a prime or the square of  a prime  for  every

      n < p}.

      If

      C

      is finite,

    then

      C =  A +

     1 and

      A

      is finite. We prove that

      C

      is finite.

    For

     n -

      1 (5)  yields Pf

    1

      =  26

    x

      + 1. Suppose  next tha t

      A  > n

    0

      =

      2b

    x

     +

      2. By (5),

    0

    "o  =  2ft + 46a + 3  =  66

    x

     + 3 =  3 P ?

    1

    .

    This implies that 3|P„

    0

    , i.e. P

    n o

      = 3, since P

    no

      is a prime.

      Since

      P?

    1

      >

      1,

      it

      follows

      tha t

    a

    0

      = 2, so  tha t  6Pi + 3 = 3

    2

      = 9, implying 6

    :

      = 1. Thus by (3) 6

    2

      = 2 and  a

    2

      = b\ =  4, so

    that, by (6)

    C l

      =  4  -  1  =

    c

    2

      = 5

    c

    3

      = 7

    c

    4

      = 9 =  3

    2

    c

    5

      = l l

    Ce= 13

    3 prime

    prime

    prime

    square of a prime

    prime

    prime

    Since c

    +

     2 = 15, which is neither a prim e nor the sq uare of a prim e, (7 = 6 and therefore

    A

      = 7. In fact

      a\

      = 1, a

    2

      = 4, a

    3

      = a

    2

      + c

    2

      = 4 + 5 = 9, a

    4

      = a

    3

      + c

    3

      = 9 + 7 = 16,

    a

    5

      = a

    4

     + c

    4

     =  16 + 9  = 25, a

    6

      = a

    5

     + c

    5

     = 25 + 11  = 36 and

      a

    7

      = a

    6

     + c

    6

     =

     36 + 13  = 49. We

    now prove th at this is the sequence of max ima l length   A  by showing that the corresponding

    sequence  {c

    n

      : n >  1} is of maximal length  C.  If  C >  3 then one of the numbers

    cu   c

    2

      = C i + 2 , c

    3

      = c i + 4

    is divisible by 3, and so is equal to 3 or 9. By (5), since

      b\ >

     0, we have

      c\ >

      3. Therefore,

    in the first case

      c\

      = 3, which yields the above example. Otherwise

      c

    n

      = 9 for a certain

    n

      €  {1 ,2 ,3} .  But then c

    n

    +

    3

      =

      c

    n

      + 3

     •

     2 = 15 , so tha t C = n + 2 < 5 < 6 . Th i s completes

    the

      proof.

    * * *

    That's all the space we have this issue. We'll continue with solutions for the Team

    Competit ion of the 12th Austrian-Polish Mathematics Competit ion next issue. The alert

    reader will note we did not give a solution to number 4. Meanwhile send me your national

    and regional Olympiads, as well as your nice solutions.

  • 8/17/2019 Crux v18n04 Apr

    16/37

    109

    P R O B L E M S

    Problem proposals and solutions should be sent to B. Sands, Department of

    Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada T2N IN4.

    Proposals  should,  whenever possible, be accompanied by a solution, references, and other

    insights which are likely to be of

     help

      to the editor. An asterisk (*) after a number indicates

    a problem submitted without a solution.

    Original problems are particularly sought. But other interesting problems m ay also

    be acceptable provided they are not too w ell known and references are given as to their

    proven ance. Ordina rily, if the originator of a problem can be

      located,

      it should not be

    submitted by somebody else without permission.

    To facilitate their consideration, yo ur solutions, typewr itten o r neatly handw ritten

    on

      signed,

      separate sheets, should preferably be mailed to the editor before

     N o v e m b e r 1 ,

    1992

    ?

      although solutions received after that d ate will also be considere d until the time when

    a solution is published.

    1 7 3 1 * .

      Proposed by Vaclav Konecny, Ferris State University, Big Rapids,

    Michigan.

    Let

      P

      be a point within or on an isosceles right triangle and let ci,c

    2

    , c

    3

      be the

    lengths of the three concurrent cevians through  P.  Prove or disprove tha t ci ,c

    2

    , c

    3

      form

    the sides of a nonobtuse triangle. [This problem was inspired by Mu rray K lam kin's problem

    1631,

      solution this issue.]

    1732.

      Proposed by Walther Janous, Ursulinengymnasium, Innsbruck, Austria.

    Let

      pal(n)

      be the nth pal indromic number ( i .e.

      pal (I)

      == 1, . . . ,

      pal(9)

      = 9,

    pal(10)

      = 11,

      pal(ll)

      = 22, etc .). Determ ine the set of all exponen ts

      a

      such that

    00 ^

    5

      &»'(»)]

    converges.

    1733.

      Proposed by Toshio Seimiya, Kawasaki, Japan.

    ABC

      is a triangle with circumcen ter

      O

      and such that

      IA

      > 90° and

      AB < AC.

    Let

      M

      and

      N

      be the midpoints of

      BC

      and

      AOj

      and let

      D

      be the intersection of

      MN

      with

    side

      AC.

      Suppose that

      AD

      =

      (AB +

     AC)/2.  Find

      LA.

    1734.  Proposed by Murray S. Klamkin, University of Alberta.

    Determine the m inimum value of

    y/^T^)

    2

      +

      (ay)

    2

      + (azf

      +

      y/(l

      -

      by Y

      +

      (bzf

      +

      (bxf +

     yftT-

      czf + (cxY + (cyY

    for all real values of a,

     6,

     c,

     x,

      t/,

      z.

    1735.  Proposed by P. Penning, Delft, The Netherlands.

    In a conic (ellipse or hyperbola) with centre 0 , chords AB have the property that

    all triangles  OAB  have the same area. Find the locus of the midp oint of  AB.

  • 8/17/2019 Crux v18n04 Apr

    17/37

  • 8/17/2019 Crux v18n04 Apr

    18/37

    I l l

    Solution by Walther Janous, U rsulinengymnasium, Innsbruck, Austria.

    This is a particular case of a famous problem from probability theory, sometimes

    called the "collector's problem" (see, e.g., pp. 174-175 of W. Feller,   Introduction to Prob

    ability Theory and its Applications,

      Vol. I, Joh n Wiley, New York-London , 1950), with the

    result for an n-sided die:

    Expe cted num ber of throws =  n  ( — H  h  -\  h i ) ;

    \n n —

      1 2 /

    i.e., for  n  = 6, the expected number of throws is 14.7.

    Also solved by MAR GHE RITA BARILE , student, Universitd degli Studi di Genova,

    Italy; HANS ENGELH AUPT, Fmnz-Ludwig-Gymnasium, Bamberg, Germany; RICHARD

    I. HESS, Rancho Palos Verdes, California; FRIEN D H. KIERST EAD JR., Cuyahoga

    Falls, Ohio; MU RRAY S. KLAM KIN, University of Alberta; MA RGIN E. KUC ZMA ,

    Warszawa,

      Poland;

      TOM LEINSTER, New College,

      Oxford;

      CHRIS WILDHAGE N,

    Rotterdam, The Netherlands (two solutions); and the proposer.

    Klamkin also referred to Feller's book, but p.  211  of the  1961  edition. He also

    mentions the paper

      a

    The double dixie cup problem" by D.J. Newm an and L. Shepp, in

    the

      American Math. Monthly 67 (1960),

      pp .

      58-61,

      which considers the problem if each

    number is to be obtained m times. For a more recent reference, see

      u

    Majorization and the

    birthday inequality" by M.L. Clevenson and W . W atkins, in  Mathematics Magazine 64

    (1991),  pp .

      183-188,

      especially p.

      187.

    5fc  $ sfe * >fc

    1 6 2 8 * .  [1991:  79]

      Proposed by Remy van de Ven, student, University of Sydney,

    Sydney, Australia.

    Prove that

    where  k  is a positive integer.

    Solution by G.P. Henderson, Campbe llcroft, Ontario.

    It is not necessary that  k  be an integer. The relation is true provided  k  is not zero

    or a negative integer.

    The coefficient of

      r

    n

      on the left side is

    (1)

    i = 0

      s=0

    n - 1

    = £

    =Q

    n - 1  n-t—l

    = E E C - ^ u n

      n

    _

    s

      j(k + ty

    r^zweri::-

    1

    )

    (k + ty

  • 8/17/2019 Crux v18n04 Apr

    19/37

    112

    We have

    f

    k\ (k  +  n  -  s  - l \  k{k + n  -  s  - l)(fc + n -  s  - 2 ) . . . (k  -  s  + 1)

    n

     —  5

    s (ra

     —

      s )

    (fc

     —

     s)(n

      —

      s) (k + n

     —

      3)5

    fc + n - a - l ) . . . ( f c - 3 + l )

    s (n  — 5)

    "( . )( n K - l ) ( » J'

    Therefore in (1), the inner sum is

    s = l

    [

    (

    -

    v

    ("7>)(*+»

    B

    —')-

    (

    -ir*(;:l)(*+;-)

    = ( - I ) " " ' "

    1

    n -  1 \ /

     A;

     +

     

    n

      J

    and

    n - 1 \  (k + t\  1

    fc + n - T

    n

    L j j is a polynomial of degree n —  1 in

      k

      and its constant term is (—I)

    71

    ""

    1

    /™. Hence

    where P is a polynomial of degree n — 2 if

      n >

      2 and is zero if

      n =

      1. Then

    ( _ 1 ) H " 1 1

    , n - l

    P(k + t) +

    n k + t

    (-l)

    n

    ~

    l

      1

    A

    n

    ~

    1

    P(k)  + ^-^-  A

    n

    -

    X

    T

    [Here

    A / ( * ) = / ( * + 1)

      - / ( * ) ,

      A

    m

    / ( » ) = ACA—V C*)), m =  2 , 3 , . . . ,

    are the

      forward differences.

    Ed.]

      The first part of this is zero because

      P

      is either zero or

    a polynomial of degree n

      —

      2. The second part is

    1

    which is the coefficient of

      r

    n

      on the right side.

    The proposer found the identity (used without proof) in an old paper "The negative

    binom ial distribution", by R.A. Fisher, in

     The Annals of Eugenics 11 (1941),

      pp.

      182-187.

  • 8/17/2019 Crux v18n04 Apr

    20/37

    113

    1 6 2 9 .

      [1991:  79]

      Proposed by Rossen Ivanov, student, St. Klirnent O hridsky

    University, Sofia, Bulgaria.

    In a tetrahedron

      x

      and v,

      y

      and u,

      z

      and

      t

      are pairs of opposite edges, and the

    distances between the midpoints of each pair are respectively  l^rn.n.  The tetrahedron has

    surface area 5, circumradius

      R,

      an d inradius r. Prove that , for any real num ber

      A

     with

    0 < A < 1,

    x

    2X

    v

    2X

    l

    2

      + y

    2X

    u

    2X

    rn

    2

      +  z

    2X

    t

    2X

    n

    2

      > (^)  ( 2 S )

    1 + A

    ( / 2 r ) \

    Solution by the proposer.

    We use the inequality of Neuberg-Pedoe:

    J2 a

    2

    (-a

    a

      + b

    f2

     + c

    n

    )>16FF

    ,

    J

    where a, 6, c and a', &',

     d

      are the sides of triangles with areas

      F

      and

      F\

      respectively, and

    the sums here and below are cyclic (e.g., see p. 355 of [1]). If g

    1?

      5*2?  5s and

      S

    4

      are the

    areas of the faces of the tetrahedron determined by edges   v,y,z; x,u,z; x,y,t;  and v,t/ , t

    respectively, then we have four inequalities:

    £  a

    2

    ( - z

    2

      +  u

    2

      +  z

    2

    ) >  16 $ ,^ ,

    £ a

    2

    ( - *

    2

      + y

    2

      + f

    2

    ) > 1 6 S

    3 J

    F ,

    5 3  a

    2

    ( - u

    2

      +

      u

    2

     +  *

    2

    ) >  1 65

    4

    F.

    If we sum up these four inequalities, we get

    2 £

      a

    2

    {-x

    2

      -v

    2

      + y

    2

      + u

    2

      + z

    2

      + t

    2

    ) > 16SF.

    But the bimedian connecting  th e  midpoints of  edges with lengths

      x

      and

      v

      has length /, so

    4 / 2

      =

      _

    x

    2 _

      v

    2

      + y

    2

      +  u

    2

      + z

    2

      +

      ^

      e t c <

    (e.g., see the remark after 1.3 on p. 547 of [1]).   Therefore

    8 X >

    2

    /

    2

    > 1 6 S F .

    Now   we will use  Oppenheim's result: if a, 6,

     c

      are the sides of a triangle with area

      F,

      and

    if 0  1 6 £

      h@\

      F

    \

  • 8/17/2019 Crux v18n04 Apr

    21/37

    114

    Furthermore, according to Crelle's theorem (item 1.6, p. 549 and (4), p. 555 of [1]), we can

    let

    a

      =

      xv, h

     =

      yu ,

      c =

      zt, F

      =

      2SRr,

    from which the proposed inequality follows.

    Reference:

    [1] D.S. Mitrinovic, J.E. Pe caric, and V. Volenec,

      Recent Advances in Geometric Inequal

    ities,  Kluwer Academic Publishers, Dordrecht, 1989.

    1 6 3 0 .

      [1991:  79]

      Proposed by Isao Ashiba, Tokyo, Japan.

    Maximize

    over all permutations a

    1?

     a

    2

    , . . . ,

     a

    2n

      o f the s e t {1 ,2 , . . . ,

      2n}.

    I.

      Solution by Pavlos Maragoudakis, student, University of Athens, Greece.

    Since

    1 / 2n

      n

      \

    a ia

    2

      +

      a

    3

    a

    4

     + h

     a

    2n

    ^

    x

    a

    2n

      = r ( 5 3

      a

    t

    ?

     "" ] L (

    a2

    *

     ~~

      a

    2»-i )

    2

      I

    -I / 2n n \

    =

     2

      E

    j 2

    - E K -

    f l

    « - i )

    2

    L

    the above sum is maximized when

      Y^l-\

      {p>2%

     —

     02t- i )

    2

      i

    s

      minimized. But

    n

    2 (

    a

    2i - a

    2

    , - i )

    2

      > n,

    with equality when  \a

    2

    %   —  a

    2

    *-x| = 1? * = 1,2, . . . , n , for example when a

    t

    - =

      i

      for all

      i.

    Therefore we obtain the maximization of ax2n-ia>2n

    is maximized over all permutations of  S  by pairing the largest two numbers, then the

    remaining largest two numbers, and so on down to the smallest two numbers. For consider

    any four elements

    a, a + A

    x

    , a + Ax + A

    2

    ,

      a +

      Ax + A

    2

      + A

    3

    of 5, where Ax, A

    2

    , A3 > 0, and let

    M

     =

      (a +

     Ax + A

    2

     + A

    3

    ) a + Ax + A

    2

    ) +

      a(a

     + Ax),

    Li =  a + Ax + A

    2

     + A

    3

    ) a + A

    x

    ) +

      a(a

     + A

    x

     +

      A

    2

      ,

    L

    2

      = (a +

     Ax + A

    2

     + A

    3

    )a +  a + Ax + A

    2

    ) a +

      A

    x

      .

  • 8/17/2019 Crux v18n04 Apr

    22/37

    115

    Then

    M-Li =  A

    2

    (Ai + A

    2

      + A

    3

    ) > 0 and  M  -  L

    2

      = (A

    a

      + A

    2

    ) (A

    2

      + A

    3

    ) > 0,

    so

      M

      is the best to pick. A permutation claiming to be maximizing in a way other than

    above could be improved by finding the largest a

    t

    - deviating from the rule and switching

    the permutation to obey the rule. [So if a,- were not paired off with its mate   a,j according

    to th e above rule , suppose a,- were paired with a& and   dj  with  ai

    }

      where a

    f

    - >  aj > a^ai\

    then  aiQk  +

      a$a\

      is increased by switching to  a{Uj  +

      ctkat.

     —

    Ed.]

    Also solved by H.L.

      ABBOTT,

      University of Alberta; MAR GHE RITA BARILE,

    student, Universitd degli Studi di Geno va, Italy; ILIYA

      BLUSKOV,

      Technical

    University, Gabrovo, Bulgaria; HANS ENG ELHAU PT, Franz-Ludwig-Gymnasium,

    Bamberg, Germany; C. FESTRA ETS-HAM OIR, Brussels, Belgium; PETER HURT HIG,

    Columbia College, Burnaby, B.C.; W ALTHE R J ANOU S, Ursulinengymnasium, Innsbruck,

    Austria; FRIEND H. KIERSTE AD JR., Cuyahoga Falls, Ohio; HURR AYS. KLAM KIN,

    University of Alberta; MAR GIN E. KUC ZMA, Warszawa,

      Poland;

      TOM LEINSTER,

    New College,

      Oxford;

     AND Y LIU, University of Alberta; JEAN-M ARIE MO NIER, Lyon,

    France; P. PEN NING, Delft, The Netherlands; DAVID G. POO LE, Trent University,

    Peterborough, Ontario; EDW ARD T.H. WAN G, Wilfrid Laurier University, Waterloo,

    Ontario; CHR IS WILDH AGEN , Rotterdam, The Netherlands; and the proposer.

    The solutions of Janous, Leinster, and the proposer wer e similar to Solution

      I.

    Several solvers obtained the more general result in Solution

      II .

      Several more noted that the

    minimum of

      ai

  • 8/17/2019 Crux v18n04 Apr

    23/37

  • 8/17/2019 Crux v18n04 Apr

    24/37

    117

    Hence (4) is a necessary condition for (1) to hold.

    We will show that it is also sufficient so that

      A

      = A

    0

     is actually the threshold value

    for the problem in question. Write for convenience  p  = A

    0

    /2 and denote the right side of

    (3) with

      A

      = A

    0

     by

      F(x,y).

      So we claim

    F(x, y)  :=  f(xY + f(yf  -  f(xyY  > 0 for x, y  > 1. (5)

    This is a continuous function, with boundary values

      F(x

    J

    l)

      = F ( l , y ) =

      f(l)

    p

      = (3 /4)

    p

    ;

    its limit behavior at infinity can be estimated from (2):

    3 \

    p

    liminf  F(x,y)>(-)

    Since  F  vanishes at  {XQ,X

    0

    ),  we see tha t  F{x,y)  mu st atta in its minim um value at some

    point  (x^y)  with 1 1 . Then  2t  + 2 = (» + l)

    2

    /*> so

    « > 1

      X

      1 * *

      2t + 1

    * / ' ( * ) =

    (z +

      l )

    2

      2t + 2 2 t +

     

    '

    ar ( a j - l ) / * \

    3

    / 1 \ _ 1 V ^ ^ T

    OHH

    x + i )

    3

      \{x + iyj \ xj 2 (t + iy

    and hence by (6)

    _ (a

      i r

    1

    ^ - )

    1 7

    '

      _.

      h(t)

    9{x)

      -  — » { t  +  iy+*—   -

      m

    Now

    sign

      h\t)

      = sign [2(p - 1)(* +

      l)(t

    2

      - 1) - (p + 1)(2* + 1)(<

    2

     - 1) +

  • 8/17/2019 Crux v18n04 Apr

    25/37

    118

    left of

     J,

      such that

      g

      increases in / and decreases in

     J.

      Consequently, (7) forces

      x = y

      6 J,

    x

    2

      € J, and

      g(x)

      =

      g(x

    2

    ).

      The last equation can have at most one solution  in  ( l , o o ) ,

    in view of the mon otonicity relations just established. So it will be enough  to check  that

    x =

      XQ

      is

     a solution.

    For  x

    0

      we have  f(xl)/f(x

    0

    )  =  9/8 and (9/8)

    p

      =  2.  Hence  by (6)  (and by  f'(x) =

    (x - l)(x  + I)"

    3

    )

    9(4)

      _. . /7(*3)Y"

    1

      (*o + 1 )

    4

      _ ,„ , . / * . 16 .  (3 +

     Vz)

    4

      = 1?

    ^)-

    X0

    {JM)  R T I F -

    ( 2 +

    ^

    3 )

    y(*o)

      \f(xo)J  (x l  +  lf

      v

      '  9 (8 + 4 V3 )

    3

    as needed.

    All this taken into account, we infer that

      F(x,y)

      is minimized at

      (X

    Q I

    X Q ) .  SO

      its

    m inim um value is 0 and (5) is settl ed. Therefore (1) holds for A = A

    0

    , hence for every

    positive A < Ao. Th e lengths of th e thr ee cevian s, raised to pow er A, satisfy t he triang le

    inequality for every  P  if and only if  A < Ao, wh ere  AQ is the con stant defined in (4).

    Also solved by VACLAV  KONE&NY,  Ferris State University, B ig Rapids,

    Michigan; and P. PEN NING , Delft, The Netherlands.

    As both Kuczm a and Penning observe, the points giving solutions to problems  1621

    an d  1631  coincide Is there a simple proof that this nice "coincidence" had to be?

    Penning also calculates that the minimum value of  A  satisfying the problem is

    A =  - l n 4 / l n ( 4 / 3 ) « - 4 . 8 2 .

    Konecny's work on this problem led him to propose problem  1731,  this issue.

    1 6 3 2 .  [1991:

      113]

      Proposed by Stanley Rabinow itz, Westford, Massachusetts.

    Find all

      x

      and

      y

      which are rational multiples of

      n

      (with 0 <

      x < y <

      7r/2) such

    tha t tan x + t an y  = 2.

    Solution by Diane and Roy Dowling, University of Manitoba, Winnipeg.

    The only solut ion  is x  =

      T T / 1 2 ,

      y  =

      TT/3 .

    A resul t  of Go rd an [1] says th at  fo r u ,

     v

      a n d

     w

      ra t iona l mul t ip l es  of ?r with  0 <

      u <

    v  < w <

      7r, t h e

      equat ion

    cos u +  cos v + cos w + 1 = 0

    has only

      t h e t w o

     solut ions

    2n  2T T  4TT

      _ 7r

      2T T  2n

    u

      = — ,

      v

      = — ,

      w

      = — and

      u

      =

      —

      ,

      v

      = -— ,

      w

      = — .

    5 ' 3 ' 5 2

    5

      3 ' 3

    It follows that, when

      0

      and    are rational multiples of

      TT

      between 0 and 7r,

      the equation

    cos 0 + 2 cos   + 1 = 0  has  only  one  solution:  0 =  7r/2  a n d   = 2w/3.

    Note that if tan x  + tan y  = 2 then

    sin(y +  x)  =  2 cos y cos x  =

      cos(j/

     + x) + cos(y —  #),

  • 8/17/2019 Crux v18n04 Apr

    26/37

    119

    so

    2 - 2sin(2y +

      2x) =

     2[sin(y +

      x) - cos{y + x)}

    2

      =

      2cos

    2

    (y -

      x)

      = 1 + cos(2j/ - 2a;),

    so

    cos(ir -

      2y + 2x) + 2

     cos

      (

    y

      -2y-2x\ +1 = - cos(2y - 2x) -  2

     sin(2y +

      2x )

      + 1

    = 0. (1)

    Suppose now that

      x

      and y satisfy the conditions of the problem; then 0 <

      y

     —

      x <

      7r/2,  SO

    0

  • 8/17/2019 Crux v18n04 Apr

    27/37

    120

    Solution by Dag Jonsson, Uppsala, Sweden (slightly altered by the editor).

    Let

      LA

      = 2a ,

      LB

      = 2/2,

      LG

      = 27,

    and let the bisectors intersect at

      O.

      We will

    show that

    sin

    2

     x + sin

    2

     y

      1.

    Case 1. 30° < a < 45 °. Th en th e

    circumcircle of

      AEOD

      intersects the exten

    sion of the bisector  AO  at a point  F  beyond

    A, since  x = LEDO  =  LEFO  and similarly

    y

     =

      LDFO

      so th at

    Z F =  x + y  =  0 +  7 = 90° -  a (90° - a ) / 2 . Now for given s, 0

  • 8/17/2019 Crux v18n04 Apr

    28/37

    121

    Case

      2. 45° <

      a <

      90°.  Then 0 <

      x

      +

      y

      < 45°, giving (since the function sin

    2

     x

      is

    increasing and convex on 0 <

      x <

      90°)

    sin

    2

     x + si n

    2

     y

  • 8/17/2019 Crux v18n04 Apr

    29/37

    122

    towards the centre. Each tray is inscribed in a circular sector with central angle  2ir/n.  Let

    $

      = 7r/n. Then from the diagrams it is obvious that

    Subtraction yields

    Then

    n  > r

    2

      4=>

      cot

    2

      0>3

  • 8/17/2019 Crux v18n04 Apr

    30/37

    123

    Solution by the proposer .

    Consider the direct similarity

      S

    x

      so

    th a t  Si(BiCi)  =  B

    2

    C

    2

    .  Its centre  O

    x

      is

    the intersection (other than

      E)

      of the circles

    EB

    X

    B

    2

      and

      EC

    X

    C

    2

    ,

      where

     E

      =

      B

    1

    C

    1

    nB

    2

    C

    2

    .

    [Because in the figure

      LEC\0\ = LEC

    2

    0\

    and

      LEB

    x

    O

    x

      = LO

    x

    B

    2

    C

    2

    .— Ed.)

      Analo-

    gously 5*2 denotes the similarity ^ ( J ^ C ^ ) =

    B3C3

      of centre 0

    2

    « Since

      A1B1C1

      is simi-

    lar to ^2^(72, we wil l have

      A2

      = *5i(yli)

    and analogously

      A3

     =

      S2(A

    2

    ).

      Conv ersely, if

    Si(Ai)  =  A

    2

      and

      5

    2

     A

    2

    )

      =  A

    3j

      A1B1C1  is

    similar to  A2B2C2  &nd i4

    2

    52C

    2

      is similar to

    A3B3C3.

      Therefore the problem reduces to

    constructing an equilateral triangle

      A1A2A3

    such that

      Si(Ai)

      =

      A

    2

      an d ^ ( A O = A3.

    It holds that

      O1A1A2

      is similar to

      O1B1B2

      (and to any O1X1X2, where

      X

    2

      =

    5 i ( X i ) )

    ?

      and O2A2A3 is similar to  O2B2B3.  Let A ^^ A g be any equilateral tr iangle.

    Construct

      0{

      and

      0

    f

    2

      such that

      0'

    l

    A

    l

    A

    2

      is similar to

      OiBiB

    2

    ,

      and

      0'

    2

    A

    2

    A

    z

     to

      O2B2B3.

    Then triangles O1O2A1 and O1O2A2 are similar to

      0\0

    2

    N

    X

      an d O J O ^ ^ r esp ec tive ly .

    Knowing 0i and 02? we can construct Ai and  A

    2

    >

    Also solved by TOSHIO SE IMIYA, Kawasaki, Japan.

    * *

    1 6 3 6 * .

      [1991:

      114] Proposed by Walther Janous, Ursulinengymnasium, Innsbruck,

    Austria.

    Determine the set of all real exponents   r  such that

    d

    r

    (x,y)

      =

    {x +

      y

    y

    satisfies the triangle inequality

    d

    r

    (x, y) + d

    r

    (y

    1

      z) > d

    r

    (xj z)

      for all

      x,

     y,

     z >

     0

    (and thus induces a metric on ft

    4

    "—see

      Crux

      1449, esp. [1990: 224]).

    Solution by Murray S, Klamkin, University of Alberta.

    We will show that the only valid exponents are r £ [0,1] and r =   — 1 .

    Assume that  x > y > z  and consider all three permuted versions of the triangle

    inequality. If

     r

     = — 1, then rf

    r

    (x

    ?

      t/)

    5

     d

    r

    (j /

    5

      z), d

    r

    (x, z)

      become

     x

    2

     —  j

    2

    5

      y

    2

     — z

    2

     ^

      x

    2

      -

      z

    2

      which

    obviously satisfy the condition since the first two sum to the third.

    Suppose next that 0 <   r

    (x + z)

    r

      (x + y)

    =

      d

    r

    (x,y).

  • 8/17/2019 Crux v18n04 Apr

    31/37

  • 8/17/2019 Crux v18n04 Apr

    32/37

    125

    References:

    [1] M.S. Klamk in and A. Meir, Ptole m y's inequality, chorda m etric, multiplicative me tric,

    Pacific J. Math.

      10 (1982) 389-392.

    [2] Doris J. Schattschneider, A multiplicative metric,  Mathematics Magazine  49 (1976)

    203-205.

    Also solved by MARGIN B. KUCZM A, Warszawa,

      Poland.

    A further solution, due to H. HAM ETNE R, appears in the article

      u

    Eine Metrik auf

    R

    +

    ^

    ;

      Wissenschaftliche Nachrichten 85  (Jdnner  1991J 31-32.  The problem had appeared

    in the same journal (Vol

      83,

      April

      1990

    ;

      pp .

      29-30,)

      in an earlier article (of the same

    title) by the proposer.

    The proposer would like to know whether the function

    d

    '

    r{x,y)

    =

    IRTw

      '

      *>y*

    R

    -w>

    satisfies the triangle inequality for any   r € [0,1] U { —1}.  A similar problem, with x and y

    in

      R

    2

      —

      { (0 ,0)}

    ;

      appeared in Hametner's article.

    1 6 3 7 .

      [1991:

      114]

      Proposed by George Tsintsifas, Thessaloniki, Greece.

    Prove that

    ^ sin

     B +

     sin

     C

      12

    where the sum is cyclic over the angles

      A,B^C

      (measu red in radians) of a nonob tuse

    triangle.

    Comm ent by the Editor.

    A solution to this problem, by Ian Goldberg, has already been published as part of

    his solution to  Crux  1611 [1992: 62]. Other solvers of the present problem are listed below.

    Two other readers suggest that the bound in this problem could be improved to   9\/3/7r,

    with equality holding when

      ABC

      is equ ilater al (one of the m also guesses th at th e result

    should be true for all triangles). However, the editor feels that the only proof received of

    this (probably true) claim is incomplete, and so prefers to wait and see whether a better

    proof will be forthcoming.

    Also solved by gEFK BT ARSLA NAG IC, Trebinje, Yugoslavia; WAL THER

    JANO US, Ursulinengymnasium, Innsbruck, Austria; MAR GIN E. KUC ZMA , Warszawa,

    Poland;

     PAV LOS MA RAG OUD AKIS, student, University of Athens, Greece; VED ULA N.

    MURTY,

      Penn State University at Harrisburg; BOB PRIELIP P, University of Wisconsin-

    Oshkosh; and the proposer.

    * *

      *

      * *

  • 8/17/2019 Crux v18n04 Apr

    33/37

    126

    1 6 3 8 .

      [1991:  114]

      Proposed by Juan C. Candeal, Universidad de Zaragoza, and

    Esteban Indurain, Universidad Publica de Navarra, Pamplona, Spain.

    Fin d all continuo us functions / : (0, oo) —> (0,o o) satisfying th e following two

    conditions:

    (i) / is not one-to-one;

    (ii) if

      f(x)

      =

      f(y)

      then

      f(tx)

      =

      f(ty)

      for every * > 0.

    I.

      Solution by Robert B. Israel, University of British Columbia.

    All such functions are constant.

    Consider any two points  u^ v  with 0

  • 8/17/2019 Crux v18n04 Apr

    34/37

  • 8/17/2019 Crux v18n04 Apr

    35/37

    128

    we get

    AB

    2

      + BC

    2

      + CD

    2

      + DA

    2

      =

      2(BM

    2

      + AM

    2

    )  +

      2(DM

    2

      +  AM

    2

    )

    =

      2(BM

    2

      + DM

    2

    ) +

      4AM

    2

    =  4(BN

    2

      + M N

    2

    ) +

      4AM

    2

    =  AC

    2

      + BD

    2

      +

     4MN

    2

    .

      (1)

    Therefore we have

    AB

    2

      + BC

    2

      + CD

    2

      + DA

    2

      > AC

    2

      +  BD

    2

    .  (2)

    In a general quadrilateral, it is well known that

    AB

      •

      CD  +  AD

      •

      BC > AC

      •

      £ D (3)

    (e.g., p. 63 of R.A. Johnson,

      Advanced Euclidean Geometry).

      From (2) and (3) we obtain

    (A B

      +

      CD)

    2

      + (AD

      +

      BC)

    2

      - (AC + B D)

    2

    =

      (A B

    2

      + BC

    2

      + CD

    2

      +

      DA

    2

      - A C

    2

      -

      BD

    2

    )

    + 2(AB -CD + AD-BC-AC- BD) >

     0.

    Hence we have the required inequality. As shown in the

     proof,

      the condit ion that  ABCD

    be cyclic is unnecessary.

    Also solved by SEFKET ARSLANA GIC, Trebinje, Yugoslavia; SEUNG-JIN BANG,

    Seoul, Republic of Korea; ILIYA   BLUSKOV,  Technical University, G abrovo, Bulgaria;

    JORD IDOU , Barcelona, Spain; IAN GOL DBE RG, student, University of Toronto Schools;

    JEFF  HIGHAM,  student, University of Toronto; WA LTHE R JAN OUS, Ursulinen-

    gymnasium, Innsbruck, Austria; MU RRA Y S, KLA MK IN, University of Alberta; M ARG IN

    E. KUCZM A, Warszawa,

     Poland;

     KEE-WA ILAU, Hong Kong; ANDY LIU, University of

    Alberta; R.S. OD ONK OR, International Secondary School, Agege, Nigeria; P. PEN NING ,

    Delft, The Netherlands; D.J. SMEE NK , Zaltbommel, The Netherlands; and the proposer.

    Several readers observe that equality holds if and only if ABC D is a rectangle, as

    can be seen from the above proof

    Janous and Klamkin also observe that the result holds for arbitrary qua drilaterals.

    Janous points out that  (1)  was known to Euler (e.g., see p.  547",  remark following item  1.3,

    of Mitrinovic et al,  Recent Advances in Geometric Inequalities^).  Klamkin remarks that

    the inequality of the problem is a special case of the following: if

     a, a

    1

    ; 6,

     b

    f

    ; and

     c,

     d are the

    lengths of the three pairs of opposite edges of an arbitrary tetrahedron, then a + a',   b + b

    f

    ,

    c +  c

    f

      are the sides of an acute triangle. See  [1979: 130-131]  or pp.  69-70  of Klamkin's

    USA Mathematical Olympiads 1972-1986,  MAA,  1988.

  • 8/17/2019 Crux v18n04 Apr

    36/37

    * • • •

      BOUND VOLUMES

     * • * *

    J • • •

      VOLUMES RELIES

     • • • |

    THE FOLLOWING BOUND VOLUMES OF/ CHACUN DES VOLUM ES SUIVANTS DE

    CRUX MA THEM A

     T CORUM

    ARE A VAILABLE AT 10.00 PER

     VOLUME

    EST DISPONIBLE A 10

    1 & 2 (Combined / ensemble), 3, 7, 8 and 9

    PLEASE SEND CHEQUES MADE PAYABLE TO

    VEUILLEZ ACHEMINER VOS CHEQUES LIBELLES AU NOM DE

    CANADIAN MA THEM

    TIC L

      SOCIETY

     /  SOCIETE MA

     THEM

    T QUE

     DU CANADA

    577 King Edward

    Ottawa, Ontario

    C anada K1N 6N5

    Vo lum es: x 10 .00 =

    Shipping and handling charges:

    C anadian addresse s: 1.0 0 per book ; US and foreign addresses: 1.2 5 per book

    (Canadian residents, please add GST / Residents canadiens, veuillez ajouter la TPS)

    I I N a m e /

      N o m :

    A d d r e s s / A d

    resse:

    C i ty , P rov ince / V i l l e ,

    P os ta l Code ,

    MAILING

     ADDRESS /  DRESSE

     POSTALE  I

    P rov ince :

    C o u n t r y / C o d e p o s t a l , p a y s : |

  • 8/17/2019 Crux v18n04 Apr

    37/37

    PUBLI CA Tl O N S

    The Canadian Mathematical Society

    577 King Edward, Ottawa, Ontario K1N 6N5

    is pleased to annou nce the availability of the following publications:

    1001 Problems in High School Mathematics

    (C ollected and edited by E J . Barbeau, M.S.

    Klamkin and W.O.J. Moser.)

    Book 1

    Book II

    Book III

    Book IV

    1 Book V

    Problems 1-100 and Solutions 1-50, 58 pages

    Problems 51-200 and Solut ions 51-150, 85 pages

    Problems 151-300 and Solut ions 151-350, 95 pages

    Problems 251-400 and Solut ions 251-350, 115 pages

    Problems 3 51 -50 0 and Solutions 3 51 -45 0, 86 pages

    ( 7 .50,

    ( 7 .50,

    ( 7 .50,

    OUT OF PRINT

    CMS Members: 6 .00)

    OUT OF PRINT

    CMS Members: 6 .00)

    CMS Members : 6 .0 0 )J

    The Canadian Mathematical Olympiads

    ( 1 9 6 9 - 1 9 7 8 ) a n d ( 1 9 7 9 - 1 9 8 5 )

    Prob lems se t in the f i r s t ten O lymp iads (19 69 -19 78 ) tog e the r w i th sugge s ted

    so lu t ion . Ed i ted by E .J . Barbeau and W .O .J . Mose r . 89 page s .

    ( 7 . 5 0 , C M S M em ber s : 6 . 00 )

    P r ob lem s s e t in t he O l y m p i ads ( 197 9 - 1 985 ) t oge t he r w i t h s ugges t ed s o l u t i on .

    Ed i ted by C M . Reis and S .Z . D i to r . 84 pag es .

    ( 7 . 5 0 , C M S M e m b e r s : 6 . 0 0 )

    Please add sh ipp ing and handl ing charges

    C anad ian addre sses : .50 per boo k le t ; US and fo re ign addresses : .75 per book le t

    (Canadian res idents , p lease add GST)

    Pr ices are in Canadian dol lars .


Recommended