+ All Categories
Home > Documents > Cryogenic Techniques: Generation and Measurement of Low … · 2013. 7. 18. · (H. Kammerlingh...

Cryogenic Techniques: Generation and Measurement of Low … · 2013. 7. 18. · (H. Kammerlingh...

Date post: 24-Jan-2021
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
144
Chapter IV Cryogenic Techniques: Generation and Measurement of Low Temperatures
Transcript
  • Chapter IV

    Cryogenic Techniques: Generation and Measurement of

    Low Temperatures

  • Chapt. IV - 2

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    Chapter IV: Cryogenic Techniques

    Contents: IV.1 Generation of Low Temperatures IV.1.1 Introduction IV.1.2 Expansion Machine IV.1.3 Regenerative Machine IV.1.4 Joule-Thomson Cooling IV.1.5 Summary IV.1.6 Evaporation Cooling IV.1.7 Dilution Cooling IV.1.8 Pomeranchuk Cooling IV.1.9 Adiabatic Demagnetization

    IV.2 Thermometry IV.2.1 Introduction IV.2.2 Primary Thermometers IV.2.3 Secondary Thermometers

  • Chapt. IV - 3

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    Literature: 1. Tieftemperaturphysik

    Enss, Hunklinger Springer (2000)

    2. Matter and Methods at Low Temperatures F. Pobell Springer, 2nd edition (1996)

    3. Experimental Low-Temperature Physics Anthony Kent American Institute of Physics (1993)

    4. Cryogenic Systems Randall F. Barron Oxford University Press, Oxford (1985)

    Chapter IV: Cryogenic Techniques

  • Chapt. IV - 4

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.1 Introduction

    background temperature in universe

    (2.73 K)

    lowest temperature accessible in solids

    (few µK)

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    100

    101

    102

    103

    104

    105

    106

    107

    108

    109

    tem

    per

    atu

    re (

    K)

    center of hottest stars

    center of the sun, nuclear energies

    electronic energies, chemical bonding

    surface of sun, highest boiling temperatures

    organic life

    liquid air

    liquid 4He universe

    superfluid 3He

    lowest temperatures of condensed matter

    elec

    tro

    nic

    m

    ag

    net

    ism

    nu

    clea

    r-

    ma

    gn

    etis

    m

    sup

    erco

    nd

    uct

    ivit

    y

  • Chapt. IV - 5

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    • experimental setup according to Tauno Knuuttila (2000)

    • lowest temperature: about 100 pK

    by demagnetization of Rhodium nuclei („temperature of nuclear spins“)

    PhD Thesis,

    Helsinki University of Technology (Espoo, Finland)

    • problem: spin temperature cannot be transferred to lattice of solid

    low temperature record for nuclear spin system:

    IV.1 Generation of Low Temperatures IV.1.1 Introduction

  • Chapt. IV - 6

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    Generation of low temperatures by using cryo-liquids:

    19th century: liquefaction of various gases by pressure except for “permanent gases” (O2, H2, He)

    1877: liquefaction of O2 by thermal expansion (L. Cailletet, C.R. Acad. Sci. Paris 85, 1213 (1877); R. Pictet, C.R. Acad. Sci. Paris 85, 1214 (1877)) 1884: liquefaction of H2 (precooling with liquid O2) (K. Olszewski, Ann. Phys. u. Chem. 31, 58 (1887)) 1898: significant amounts of lH2 for physical experiments (J. Dewar, Proc. R. Inst. Gt. Br. 15, 815 (1898)) 1908: liquefaction of last “permanent gas” He by Kamerlingh Onnes (H. Kammerlingh Onnes, Leiden Commun. 105, Proc. Roy. Acad. Sci. Amsterdam 11, 168 (1908)) 1922: Kammerlingh Onnes reaches T < 1K (H. Kammerlingh Onnes, Leiden Commun. 159, Trans. Faraday Soc. 18 (1922)) 1926: adiabatic demagnetization of electron spins in paramagnetic salts by Debye and independently (P. Debye, Ann. Phys. 81, 1154 (1926) 1927: by Giauque (W.F. Giauque, J. Am. Chem. Soc. 49, 1864 (1927) since 1950th: 3He available 3He cryostat 3He-4He dilution refrigerator

    Heike Kammerlingh Onnes

    (1853 – 1926)

    Nobelpreis für Physik: 1913

    Sir James Dewar, (1842-1923)

    Peter J. Debye 1884 - 1966

    IV.1 Generation of Low Temperatures IV.1.1 Introduction

  • Chapt. IV - 7

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    Carl Paul Gottfried von Linde * 11. Juni 1842 in Berndorf, Oberfranken

    † 16. November 1934 in Munich

    Low Temperature Technology in Germany

    1868 offer of chair at the Polytechnische Schule München (now TUM)

    1873 development of cooling machine allowing the temperature stabilization in beer brewing

    21. 6. 1879 foundation of „Gesellschaft für Linde’s Eismaschinen AG“ together with two beer brewers and three other co-founders

    1892 - 1910 re-establishment of professorship

    12.5.1903 patent application: „Lindesches Gegenstrom- verfahren“ liquefaction of oxygen (-182°C = 90 K)

    1861 study at Polytechnikum Zurich, teachers: Rudolf Clausius, Gustav Zeuner und Franz Reuleaux

  • Chapt. IV - 9

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    Year

    low

    te

    mp

    era

    ture

    s

    ult

    ra-l

    ow

    te

    mp

    era

    ture

    s

    paramagnetic refrigeration

    nuclear demagnetization

    IV.1 Generation of Low Temperatures IV.1.1 Introduction

  • Chapt. IV - 10

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    temperature range

    refrigeration technique available since

    typical

    Tmin

    record

    Tmin

    Kelvin universe 4He evaporation 3He evaporation

    1908

    1950

    1.3 K

    0.3 K

    2.73 K

    0.7 K

    0.25 K

    Millikelvin 3He-4He dilution

    Pomeranchuk cooling

    electron spin demagnetization

    1965

    1965

    1934

    10 mK

    3 mK

    3 mK

    2 mK

    2 mK

    1 mK

    Microkelvin nuclear spin demagnetization 1956 50 µK 100 pK

    IV.1 Generation of Low Temperatures IV.1.1 Introduction

  • Chapt. IV - 11

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    cooling techniques:

    • expansion of an ideal gas

    • expansion machine

    • regenerative machine

    work against outside world

    • expansion of a real gas

    • Joule Thomson cooler

    work against internal interactions

    • evaporation of a real gas:

    work against internal interactions

    • dilution cooling (3He/4He)

    work against internal interactions

    • adiabatic demagnetization (electronic/nuclear moments)

    work against magnetic ordering

    IV.1 Generation of Low Temperatures IV.1.1 Introduction

  • Chapt. IV - 12

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    Liquefaction of gases three useful methods:

    1. direct liquefaction by isothermal compression

    2. letting the gas perform work against external forces at the expense of

    its internal energy

    cooling and eventual liquefaction

    3. making the gas perform work against its own internal forces by Joule-

    Kelvin or Joule-Thomson expansion

    cooling and eventual liquefaction

    IV.1 Generation of Low Temperatures IV.1.1 Introduction

  • Chapt. IV - 13

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    direct liquefaction of gases by isothermal compression starting temperature must be smaller than critical temperature Tc

    ammonia (NH3) 406

    O2 154.5

    N2 126

    H2 33.2 4He 5.2 3He 3.32

    critical temperatures Tc in K of selected liquid cryogens

    melting curve

    sublimation curve

    critical point

    triple point

    solid

    liquid

    gas

    T

    p

    Tc

    boiling curve pc

    IV.1 Generation of Low Temperatures IV.1.1 Introduction

  • Chapt. IV - 14

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    @ 1 bar

    Cryogenic Liquids

    Ttr , ptr

    solid liquid

    gas

    T

    p

    Tc

    1 at Tc , pc

    Tm , pm Tb , pb

    IV.1 Generation of Low Temperatures IV.1.1 Introduction

  • Chapt. IV - 15

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    cryogen boiling point [K]

    liquefaction latent heat [kJ/I]

    inversion temp. [K]

    oxygen 90.2 1877: Cailletet and Pictet 240 762

    nitrogen 77.3 1883: Wroblewski and Olszewski

    160 625

    hydrogen 20.4 1898: Dewar 30 203

    4Helium 4.2 1908: Onnes 2.6 43.2

    3Helium 3.2 0.5 -

    • liquid oxygen and hydrogen have potential hazards

    • liquid nitrogen and 4He are the most widely used cryogens

    • liquid 3He is very expensive

    IV.1 Generation of Low Temperatures IV.1.1 Introduction

    direct liquefaction of gases by expansion (Joule-Thomson-Effect) starting temperature must be smaller than inversion temperature

  • Chapt. IV - 16

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    gas molecules are reflected at the moving piston-surface:

    incoming: laboratory system: 𝑣𝑀 piston system: 𝑣𝑀 − 𝑣𝐾 outgoing: piston system: − 𝑣𝑀 − 𝑣𝐾

    laboratory system: − 𝑣𝑀 − 𝑣𝐾 + 𝑣𝐾 = 2𝑣𝐾 − 𝑣𝑀 = 𝑣𝑀′

    i.e.: 𝑣𝑀′ = 𝑣𝑀 − 2𝑣𝐾 molecule is slower, i.e. colder

    liquefaction of gases by performance of external work

    average momentum transfer per time to piston = force, force · distance = work

    external work at the expense of internal energy cooling

    IV.1 Generation of Low Temperatures IV.1.1 Introduction

  • Chapt. IV - 17

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    • efficiency: • Carnot process: technologically difficult to realize better: gas circulation, compressor and expansion machine are spatially separated

    • Carnot process: - counterclockwise: heat pump (conversion of mechanical work into heat) - clockwise: heat engine (conversion of heat into mechanical work)

    • pV diagram: expansion cooling: adiabats (𝑝𝑉𝜅 = 𝑐𝑜𝑛𝑠𝑡, 𝑑𝑄 = 0

    𝜅 =𝑐𝑝

    𝐶𝑉> 1)

    heat exchange: isotherms (𝑝𝑉 = 𝑐𝑜𝑛𝑠𝑡, 𝑑𝑇 = 0)

    work per cycle:

    𝑊 = ∮ 𝑝𝑑𝑉 = 𝐚𝐫𝐞𝐚

    warmT

    T

    Q

    W

    thermodynamic definition of temperature

    IV.1 Generation of Low Temperatures IV.1.1 Introduction

    V

    p

    Q12

    Q34

    dQ = 0 (adiabatic)

    T1 = const (isothermic)

    T2 = const dQ = 0

    W23

    W41

    1

    2

    4

    3

  • Chapt. IV - 18

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.2 Expansion Machine

    • medium: He gas

    Brayton method

    e.g. liquefaction of air:

    - condensation on cold head

    - distillation in separation columns

    N2 (77.4 K) cooling

    Ar (87.3 K) inert gas

    O2 (90.2 K) welding

    • temperature reduction:

    𝜅 = 𝐶𝑝/𝐶𝑉 (= 5/3 for He)

    expansion from 100 bar to 1 bar

    results in T2 = 50 K

    T2 = 8 K can be reached in a 2 stage cycle

    (should not cause

    significant resistance

    for flowing gas e.g.

    concentric tubes)

    • efficiency:

  • Chapt. IV - 19

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    • heat pumps: heating and refrigerating machines

    - heat pump: heat is generated by mechanical work

    - efficiency:

    W

    Q TT h

    11

    work performed

    at heat generated

    - ideal efficiency for reversible Carnot process:

    11

    21

    1

    TT

    Th

    C

    C (increases with decreasing temperature difference T1 – T2)

    - refrigerating machine: removing heat (generating cold) by mechanical work

    01work performed

    at heat removed

    21

    22

    TT

    Th

    TTk CC

    V

    p Q12

    Q34

    dQ = 0

    T1 = const

    T2 = const dQ = 0

    W23

    W41 1

    2

    4

    3

    IV.1 Generation of Low Temperatures IV.1.1 Introduction

    (decreases with increasing temperature difference T1 – T2)

  • Chapt. IV - 20

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    Wikimedia Commons

    IV.1 Generation of Low Temperatures IV.1.1 Introduction

    Schematic diagram of a heat pump's vapor-compression refrigeration cycle: 1) condenser, 2) expansion valve, 3) evaporator, 4) compressor.

    e.g. air conditioning e.g. heating of swimming pool

  • Chapt. IV - 21

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    realizations of expansion machines:

    • piston-cylinder machine

    similar to automobile engine

    crankshaft, camshaft, valve

    brake on turbine axis

    controls rotational speed,

    annihilates performed work,

    use of gas bearings

    IV.1 Generation of Low Temperatures IV.1.2 Expansion Machine

    • cooling turbine commercially relevant

    higher efficiency for larger throughput

    principle:

  • Chapt. IV - 22

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    turbine cooler

    (Sulzer machine)

    turbine wheel

    and nozzle ring

    IV.1 Generation of Low Temperatures IV.1.2 Expansion Machine

    (Source: Linde Cryogenics Ltd.)

  • Chapt. IV - 23

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    conclusions:

    • expansion machines are technologically simple

    • multi-stage arrangements for lower temperatures

    almost down to 4.2 K

    • but:

    efficiency only acceptable for cooling turbines

    • no direct liquefaction of gas (mechanical problems)

    liquefaction by Joule-Thomson stage

    • for small-scale facilities:

    regenerative machines better suited

    IV.1 Generation of Low Temperatures IV.1.2 Expansion Machine

  • Chapt. IV - 24

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.3 Regenerative Machines

    • regenerator replaces heat exchanger

    column with staple of fine

    metal meshes (Cu, Pb)

    low flow resistance

    high heat capacity

    low longitudinal heat conductivity

    cold gained in step 2 →3 has to be stored and provided in step 4 → 1

    • alternating gas flow:

    cold gas upward

    cooling of meshes

    warm gas downward

    cooling of gas

    • used in Stirling process

    V

    p Q12

    Q34

    V = const

    T1 = const

    T2 = const V = const

    Q23

    Q41 1

    2

    4

    3

    Stirling process (heat engine):

  • Chapt. IV - 25

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    • Stirling machine: (heat engine)

    - periodic expansion and compression of gas along two isotherms and two isochors

    - 1 2: isothermal expansion, Q12 is added - 2 3: isochoric cooling, Q23 is removed - 3 4: isothermal compression, Q34 is removed - 4 1: isochoric warming, Q41 is added

    - for isochoric steps there is no mechanical work 𝑸𝟐𝟑 = −𝑸𝟒𝟏 = 𝑪𝑽𝚫𝑻

    - goal: intermediate storage of Q23 in regenerator to be able to add it again in step 4 1 use of two pistons with phase shift V

    p Q12

    Q34

    V = const

    T1 = const

    T2 = const V = const

    Q23

    Q41 1

    2

    4

    3

    IV.1 Generation of Low Temperatures IV.1.3 Regenerative Machines

    3 – 4 4 – 1 1 – 2 2 – 3

    T2

    T1

  • Chapt. IV - 26

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    • (beta) Stirling machine:

    IV.1 Generation of Low Temperatures IV.1.3 Regenerative Machines

    Power piston (dark grey) has

    compressed the gas, the displacer piston (light grey) has moved so that most of the gas is

    adjacent to the hot heat exchanger

    The heated gas increases in

    pressure and pushes the power

    piston to the farthest limit of the

    power stroke.

    The displacer piston now moves,

    shunting the gas to the cold end of the

    cylinder.

    The cooled gas is now compressed by

    the flywheel momentum. This takes less energy, since when it is

    cooled its pressure dropped.

    http://en.wikipedia.org/wiki/File:Beta_Stirling_frame_12.pnghttp://en.wikipedia.org/wiki/File:Beta_Stirling_frame_16.pnghttp://en.wikipedia.org/wiki/File:Beta_Stirling_frame_4.pnghttp://en.wikipedia.org/wiki/File:Beta_Stirling_frame_8.pnghttp://en.wikipedia.org/wiki/File:Stirling_Animation.gifhttp://upload.wikimedia.org/wikipedia/commons/c/c7/Beta_Stirling_frame_12.pnghttp://upload.wikimedia.org/wikipedia/commons/f/f1/Beta_Stirling_frame_16.pnghttp://upload.wikimedia.org/wikipedia/commons/1/1b/Beta_Stirling_frame_8.pnghttp://upload.wikimedia.org/wikipedia/commons/4/4e/Stirling_Animation.gif

  • Chapt. IV - 27

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    • (alpha) Stirling machine:

    IV.1 Generation of Low Temperatures IV.1.3 Regenerative Machines

    http://upload.wikimedia.org/wikipedia/commons/0/06/Alpha_Stirling_frame_16.pnghttp://upload.wikimedia.org/wikipedia/commons/e/ea/Alpha_Stirling_frame_4.png

  • Chapt. IV - 30

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    conclusions (Stirling machine):

    •advantages:

    high efficiency

    well-suited for small systems, especially small coolers

    cryocooler

    not realizable with turbines

    •disadvantages:

    mechanically complicated

    piston (compressor) at low temperature

    •more simple:

    Gifford-McMahon machine

    but: lower efficiency

    IV.1 Generation of Low Temperatures IV.1.3 Regenerative Machines

  • Chapt. IV - 31

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    Gifford-McMahon machine: uses compressor with switching valve instead of piston

    1. warm compression: 2 1 2. isochoric cooling: 1 4 3. expansion in cylinder: 4 3 4. isochoric regeneration: 3 2 5. warm compression: 2 1

    IV.1 Generation of Low Temperatures IV.1.3 Regenerative Machines

    pressure wave from valve

    hot

    cold

    regenerator

    switching valve

    cycle:

    V

    p Q12

    Q34

    V = const

    T1 = const

    T2 = const V = const

    Q23

    Q41 1

    2

    4

    3

  • Chapt. IV - 32

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    Gifford-McMahon cycle:

    IV.1 Generation of Low Temperatures IV.1.3 Regenerative Machines

  • Chapt. IV - 33

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3) • the pulse tube refrigerator (PTR) or pulse tube cryocooler is based on operation

    principle of Stirling cooler • PTR is made without moving parts in the low temperature part (in contrast with

    other cryocoolers, e.g. Stirling cryocooler and Gifford-McMahon cooler) • compact design possible suitable for a wide variety of applications • minimum temperature about 2.5 K (with 4He) and 1.3 K (with 3He)

    Pulse – Tube – Refrigerator

    IV.1 Generation of Low Temperatures IV.1.3 Regenerative Machines

    applications: • industrial applications such as semiconductor fabrication (e.g. cryopumps) • cooling of infrared sensors • cooling of astronomical detectors (e.g. Atacama Cosmology Telescope or the QUBIC

    experiment (an interferometer for cosmology studies) • precoolers of dilution refrigerators

    Kurt Uhlig (WMI), “Dry” dilution refrigerator with pulse-tube precooling, Cryogenics 44, (2004), pp. 53–57

    • suggested to be used to liquefy oxygen on Mars

  • Chapt. IV - 34

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.3 Regenerative Machines

    Pulse – Tube – Refrigerator Stirling Cooler

    regenerator regenerator

    2-1

    1-4

    4-3

    displacer piston

    work piston

    second (displacer) piston is replaced by pulse tube (gas piston)

    3-2

    motion of gas volume element equivalent to motion of „displacer piston“

    90° phase shift between motion of „displacer piston“ and „work piston“ realized by buffer volume

    90° phase shift required for finite heat transport

    buffer volume

    acoustic impedance

    coldest spot between regenerator and pulse tube

    regenerator

    regenerator

    regenerator

    regenerator

    regenerator

    regenerator

    Q34

    Q12

    work piston

  • Chapt. IV - 36

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    Qc

    QH

    Qc

    QH

    Qc: removed heat, QH: generated heat

    Pulse – Tube – Refrigerator Stirling Cooler

    IV.1 Generation of Low Temperatures IV.1.3 Regenerative Machines

    almost sinusoidal motion, phase difference of 90°

  • Chapt. IV - 38

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    principle

    Pulse – Tube – Refrigerator (realizations)

    commercially available

    pulse tube refrigerator

    with GM drive

    0.5 W @ 4.2 K Tmin = 2.3 K (2-stage)

    www.cryomech.com

    IV.1 Generation of Low Temperatures IV.1.3 Regenerative Machines

  • Chapt. IV - 39

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    pulse tube refrigerator for studies of liquefying oxygen on

    Mars (580 mm total length)

    IV.1 Generation of Low Temperatures IV.1.3 Regenerative Machines

  • Chapt. IV - 40

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    conclusion (pulse tube refrigerator):

    •presently very active development

    •no moving parts at low temperatures

    long endurance

    mobile base stations and satellite applications

    (e.g. for superconductive microwave filters)

    •almost no vibrations

    •efficiency lower than for displacer

    •only one simpler method:

    Joule-Thomson cooling

    IV.1 Generation of Low Temperatures IV.1.3 Regenerative Machines

  • Chapt. IV - 41

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.4 Joule-Thomson Cooling

    William Thomson (Lord Kelvin) Born: 26 June 1824, Belfast, Northern Ireland Died: 17 December 1907, Netherhall, Largs Ayrshire, Scotland

  • Chapt. IV - 43

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    principle:

    • gas performs work against its

    own internal attractive forces

    • working medium/gas (V1) flows

    through impedance and

    expands to V2

    1122

    0

    0

    1122

    2

    1

    VpVpdVpdVpV

    V

    WQU

    12 UU

    111222 VpUVpU

    IV.1 Generation of Low Temperatures IV.1.4 Joule-Thomson Cooling

    1st law of thermodynamics:

    = 0 (adiabatic)

    this means: process with constant enthapy: .constpVUH

    - for ideal gas: p1V1 = p2V2 and hence U1 = U2 resp. T1 = T2 no cooling !!

  • Chapt. IV - 44

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    weak long-range attraction: tends to keep molecules closer together, same effect as additional compression of the gas. a is a measure of the long-range attraction strong short-range repulsion: molecules are rigid: p as soon as the molecules “touch” each other. b (≈ 4𝜋𝜎3/3): “excluded volume” per particle Van der Waals equation:

    IV.1 Generation of Low Temperatures IV.1.4 Joule-Thomson Cooling

    Epot(r)

    short-distance repulsion

    long-distance attraction

    -3

    -2

    -1

    0

    1

    2

    3

    4

    1.5 2.0 2.5 3.0 3.5 4.0

    distance

    Energ

    y

    r

    real gas: transformation of gas into liquid on decreasing T and (or) increasing p due to work against attractive interaction between the molecules

    2V

    appeff

    bVVeff expansion (decrease of pressure): low pressure: attraction costs work cooling of gas high pressure: repulsion provides work heating of gas RTbV

    V

    ap m

    m

    2

  • Chapt. IV - 45

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.4 Joule-Thomson Cooling

    interaction potential: Epot

    r

    repulsive attractive

    p

    repulsive attractive

    U (p,T)

    T = const.

    minimum

    with

  • Chapt. IV - 46

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.4 Joule-Thomson Cooling

    0

    p

    p

    HT

    T

    HH

    Tp

    • more detailed analysis of Joule-Thomson process (isenthalpic expansion):

    pp

    HTCC

    T

    H

    T

    pp

    p

    JT

    HTpp

    T

    p

    H

    C

    1

    Vp

    ST

    p

    HpVSTH

    TT

    pTT

    V

    p

    S

    V

    T

    VT

    Cp

    H

    Cp

    T

    ppTpH

    JT

    11

    Joule-Thomson coefficient

    with

    with

    𝜇𝐽𝑇 > 0: cooling on expansion

    𝜇𝐽𝑇 < 0: heating on expansion

  • Chapt. IV - 47

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    ideal gas: 0

    JT

    p T

    V

    p

    R

    T

    VRTpV

    IV.1 Generation of Low Temperatures IV.1.4 Joule-Thomson Cooling

    0 .2

    5

    2

    3),(

    T

    JTBBBp

    HµconstTNkTNkTNkpVUpTH

    equipartition theorem for monoatomic gas

    ideal gas law

    areas of H = const.

    lines of intersection with H = const.

    @ T = const

  • Chapt. IV - 48

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.4 Joule-Thomson Cooling

    real gas: RTbVV

    ap m

    m

    2

    at low densities: we use approximation and obtain bVV

    ap ,

    2

    pT

    RTpbV

    apV ...,

    2

    2,

    V

    ap

    R

    T

    VR

    T

    V

    V

    a

    T

    Vp

    ppp

    b

    RT

    a

    Cp

    T

    PH

    JT 21

    μJT > 0 for T < 2a/bR cooling on expansion

    μJT < 0 for T > 2a/bR heating on expansion inversion temperature:

    bR

    aTinv

    2

    .),(2

    5),( constTpUTNkpVUpTH B

    V

    T

    VT

    Cp

    H

    Cp

    T

    ppTpH

    JT

    11

    insert into

  • Chapt. IV - 49

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.4 Joule-Thomson Cooling

    areas of H = const.

    lines of intersection with H = const.

    inversion curve

  • Chapt. IV - 50

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.4 Joule-Thomson Cooling

    Joule-Thomson coefficient (without approx.):

    22

    121

    )1)(2(

    VbVRTaC

    bVbRTa

    p

    JT

    large volume (p >> a/V2, V >> b) :

    b

    RT

    a

    CPJT 2

    1

    inversion curve: points where µJT = 0

    vdW gas: (2a/RT)(1-b/V)2 = b

    inversion temperature Tinv: 2

    12

    V

    b

    bR

    aTinv

    equation of state gives Tinv(p,T)

    maximum inversion temperature: bR

    aTinv

    2

    maximum inversion

    temperature

  • Chapt. IV - 51

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.4 Joule-Thomson Cooling

    experimental data for N2:

    H

    JTp

    T

    slope of isenthalps

    repulsion

    attraction

  • Chapt. IV - 52

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    gas maximum inversion temperature [K]

    Helium-3 (23)

    Helium-4 45

    Hydrogen 205

    Neon 250

    Nitrogen 621

    Air 603

    Carbon monoxide 652

    Argon 794

    Oxygen 761

    Methane 939

    Carbon dioxide 1500

    Ammonia 1994

    IV.1 Generation of Low Temperatures IV.1.4 Joule-Thomson Cooling

    vdW gas can be liquefied only for T < Tinv !!!

  • Chapt. IV - 53

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.4 Joule-Thomson Cooling

    closed cycle cooling:

    • gas is cooled by JT-expansion until liquid drops out the impedance

    Carl von Linde (1842 – 1934)

    “Linde-process”

    (Source: PTB Braunschweig)

    • patent application by Carl von Linde on May 12, 1903 (liquefaction of oxygen)

  • Chapt. IV - 54

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.4 Joule-Thomson Cooling

    Lindesche Gasverflüssigungsanlage (1895)

  • Chapt. IV - 55

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    Professor Dr. Carl Paul Gottfried von Linde (* 11. Juni 1842 in Berndorf, Oberfranken; † 16. November 1934 in München) war ein deutscher Ingenieur, Erfinder und Gründer eines heute internationalen Konzerns, der Linde AG. Linde begann 1861 ein Studium am Polytechnikum Zürich, wo Rudolf Clausius, Gustav Zeuner und Franz Reuleaux seine Lehrer waren. 1864 beendete er sein Studium. Reuleaux vermittelte ihm eine Lehrstelle in der Baumwollfabrik Kottern in Berlin, die er im selben Jahr antrat. Es war aber nur kurze Zeit, bevor er nach München zog, um als Konstrukteur bei der Lokomotivenfabrik Krauss zu arbeiten. 1866 heiratete er Helen Grimm: aus der 53-jährigen Ehe folgten sechs Kinder. 1868 folgte er einem Ruf der Polytechnischen Schule München, wo er zunächst - mit erst 26 Jahren - außerordentlicher Professor, 1872 dann ordentlicher Professor für Maschinenbau wurde. Am Polytechnikum richtete Linde ein Maschinenlabor ein, an dem unter anderem Rudolf Diesel ausgebildet wurde. 1871 veröffentlichte Linde einen Aufsatz über verbesserte Kältetechnikverfahren. Viele Brauereien interessierten sich dafür, und bald versorgte Linde sie mit den neuen Maschinen, an denen er ständig arbeitete. Linde schuf wesentliche Grundlagen der modernen Kältetechnik. 1871 konzipierte er eine mit Methylether arbeitende Kältemaschine, die er in der Maschinenfabrik Augsburg (heute MAN AG) herstellen ließ. Die zweite, 1876 folgende Generation von Kühlmaschinen arbeitete mit Ammoniak. Das Prinzip der Abkühlung von Gas, das vorher mechanische Arbeit geleistet hatte, war beiden gemeinsam. Ein Preisausschreiben für eine Kühlanlage zum Auskristallisieren von Paraffin war 1873 für den Hochschullehrer der Anreiz zum Bau einer Kühlmaschine, die beim Bierbrauen die Gärung bei konstanter Temperatur zuließ. Brauereien in ganz Europa (so Dreher in Triest, die Mainzer Actien-Bierbrauerei, Spaten in München, Heineken in den Niederlanden, Carlsberg in Dänemark) interessierten sich prompt für die neue Kältetechnik. Am 21. Juni 1879 gab der Erfinder sein Lehramt auf und rief mit zwei Brauern und drei anderen Gründern die "Gesellschaft für Linde’s Eismaschinen AG" ins Leben (heute Linde AG). Nach relativ kurzer Zeit war das Unternehmen in Europa führend auf kältetechnischem Gebiet, auch begünstigt durch einen milden Winter 1883/1884. Es kam deshalb zu einer Knappheit bei Natureis, das zum Kühlen des Gerstensaftes in Bierkellern eingesetzt wurde. Bisherige Vorbehalte der Brauer gegen das Kunsteis schmolzen dahin, Kühlmaschinen waren plötzlich gefragt und Linde lieferte umgehend. Kühlhäuser für Lebensmittel und mehrere Eiswerke ließ Linde nach und nach sogar selbst bauen. Doch auch auf Eislaufbahnen, in Molkereien und bei der Verflüssigung von Chlor und Kohlensäure war sein Verfahren gefragt. Die Firma florierte, 1890 zog sich Linde aus dem operativen Geschäft in den Aufsichtsrat seiner Aktiengesellschaft zurück. In den Jahren 1892 bis 1910 nahm er seine Professur wieder auf. Auf der Grundlage der Arbeiten von James Prescott Joule, Sir William Thomson (Lord Kelvin of Largs) und der Einführung des Gegenstromverfahrens konnte Linde 1895 erstmals größere Mengen Luft verflüssigen (Linde-Verfahren). Damit schuf er die Möglichkeiten für physikalische Tieftemperaturuntersuchungen und zur Trennung der Luftbestandteile durch fraktionierte Destillation. 1901 folgte die Errichtung einer Anlage zur Gewinnung von Sauerstoff und (ab 1903) Stickstoff. Linde war Mitglied wissenschaftlicher und Ingenieurvereinigungen, unter anderem gehörte er dem Kuratorium der Physikalisch-Technischen Reichsanstalt und der Bayerischen Akademie der Wissenschaften an. Er wurde vom bayerischen König Ludwig II in den nicht erblichen Adelsstand erhoben. Linde war 1916 der erste Preisträger des Siemens-Rings. Ab 1910 zog sich Linde als Direktor seiner inzwischen ungeheuer erfolgreichen Aktiengesellschaft zurück und reichte sie an seinen Söhne Friedrich und Richard weiter. Die Weltwirtschaftskrise von 1929 versetzte der Linde AG einen starken Schlag; das Unternehmen erholte sich aber, und die Gewinne fingen schon wieder an zu steigen, bevor Linde 1934 im Alter von 92 Jahren starb.

    IV.1 Generation of Low Temperatures IV.1.4 Joule-Thomson Cooling

    http://de.wikipedia.org/wiki/11._Junihttp://de.wikipedia.org/wiki/1842http://de.wikipedia.org/wiki/Berndorfhttp://de.wikipedia.org/wiki/Oberfrankenhttp://de.wikipedia.org/wiki/16._Novemberhttp://de.wikipedia.org/wiki/1934http://de.wikipedia.org/wiki/M%C3%BCnchenhttp://de.wikipedia.org/wiki/Linde_AGhttp://de.wikipedia.org/wiki/Eidgen%C3%B6ssische_Technische_Hochschule_Z%C3%BCrichhttp://de.wikipedia.org/wiki/Eidgen%C3%B6ssische_Technische_Hochschule_Z%C3%BCrichhttp://de.wikipedia.org/wiki/Eidgen%C3%B6ssische_Technische_Hochschule_Z%C3%BCrichhttp://de.wikipedia.org/wiki/Rudolf_Julius_Emanuel_Clausiushttp://de.wikipedia.org/wiki/Rudolf_Julius_Emanuel_Clausiushttp://de.wikipedia.org/wiki/Gustav_Anton_Zeunerhttp://de.wikipedia.org/wiki/Gustav_Anton_Zeunerhttp://de.wikipedia.org/wiki/Franz_Reuleauxhttp://de.wikipedia.org/wiki/Franz_Reuleauxhttp://de.wikipedia.org/w/index.php?title=Kottern&action=edithttp://de.wikipedia.org/wiki/Berlinhttp://de.wikipedia.org/wiki/M%C3%BCnchenhttp://de.wikipedia.org/wiki/Krausshttp://de.wikipedia.org/w/index.php?title=Polytechnische_Schule_M%C3%BCnchen&action=edithttp://de.wikipedia.org/wiki/Maschinenbauhttp://de.wikipedia.org/wiki/Rudolf_Dieselhttp://de.wikipedia.org/wiki/K%C3%A4ltemaschinehttp://de.wikipedia.org/wiki/K%C3%A4ltetechnikhttp://de.wikipedia.org/wiki/MAN_AGhttp://de.wikipedia.org/wiki/K%C3%BChlschrankhttp://de.wikipedia.org/wiki/Ammoniakhttp://de.wikipedia.org/wiki/Gashttp://de.wikipedia.org/wiki/Arbeit_(Physik)http://de.wikipedia.org/wiki/Paraffinhttp://de.wikipedia.org/wiki/1873http://de.wikipedia.org/wiki/G%C3%A4runghttp://de.wikipedia.org/wiki/Mainzer_Aktien_Bierbrauerei_AGhttp://de.wikipedia.org/wiki/Mainzer_Aktien_Bierbrauerei_AGhttp://de.wikipedia.org/wiki/Mainzer_Aktien_Bierbrauerei_AGhttp://de.wikipedia.org/wiki/Mainzer_Aktien_Bierbrauerei_AGhttp://de.wikipedia.org/wiki/Heinekenhttp://de.wikipedia.org/wiki/Carlsberghttp://de.wikipedia.org/wiki/21._Junihttp://de.wikipedia.org/wiki/1879http://de.wikipedia.org/wiki/Linde_AGhttp://de.wikipedia.org/wiki/K%C3%A4ltetechnikhttp://de.wikipedia.org/wiki/Chlorhttp://de.wikipedia.org/wiki/Kohlens%C3%A4urehttp://de.wikipedia.org/wiki/1890http://de.wikipedia.org/wiki/Operatives_Gesch%C3%A4fthttp://de.wikipedia.org/wiki/Aufsichtsrathttp://de.wikipedia.org/wiki/1892http://de.wikipedia.org/wiki/1910http://de.wikipedia.org/wiki/James_Prescott_Joulehttp://de.wikipedia.org/wiki/William_Thomson,_1._Baron_Kelvinhttp://de.wikipedia.org/w/index.php?title=Gegenstromverfahren&action=edithttp://de.wikipedia.org/wiki/Linde-Verfahrenhttp://de.wikipedia.org/wiki/Linde-Verfahrenhttp://de.wikipedia.org/wiki/Linde-Verfahrenhttp://de.wikipedia.org/wiki/Tieftemperaturphysikhttp://de.wikipedia.org/wiki/Fraktionierte_Destillationhttp://de.wikipedia.org/wiki/Sauerstoffhttp://de.wikipedia.org/wiki/Stickstoffhttp://de.wikipedia.org/wiki/Physikalisch-Technische_Bundesanstalthttp://de.wikipedia.org/wiki/Physikalisch-Technische_Bundesanstalthttp://de.wikipedia.org/wiki/Physikalisch-Technische_Bundesanstalthttp://de.wikipedia.org/wiki/Bayerische_Akademie_der_Wissenschaftenhttp://de.wikipedia.org/wiki/Bayernhttp://de.wikipedia.org/wiki/Ludwig_II._(Bayern)http://de.wikipedia.org/wiki/Adelhttp://de.wikipedia.org/wiki/1916http://de.wikipedia.org/wiki/Werner-von-Siemens-Ringhttp://de.wikipedia.org/wiki/Werner-von-Siemens-Ringhttp://de.wikipedia.org/wiki/Werner-von-Siemens-Ringhttp://de.wikipedia.org/wiki/1910http://de.wikipedia.org/wiki/Weltwirtschaftskrisehttp://de.wikipedia.org/wiki/1929http://de.wikipedia.org/wiki/1934

  • Chapt. IV - 56

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.4 Joule-Thomson Cooling

    schematics of a Helium liquefier

  • Chapt. IV - 57

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.5 Summary

  • Chapt. IV - 58

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.5 Summary

  • Chapt. IV - 59

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    specification for cryocooler: • 1 Watt of cooling @ 80 K, rejecting heat at 300 K • 10 year life • 230 K to 340 K survival temperature • survival of launch vibration (non-operating) • low exported vibration • high efficiency • no maintenance possible oil-free

    Northrop Grumman's HEC cryocooler

    IV.1 Generation of Low Temperatures IV.1.5 Summary

    Stirling cycle miniature cryocooler: - lightweight cooler, ideal for cooling of sensors and other electronics when low power consumption is important - mean time before failure of 24,000 hours - cooling capacity of 1 W @ 80 K - power consumption of only 55 W.

    Sumitomo Heavy Industries

  • Chapt. IV - 60

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.6 Evaporation Cooling

  • Chapt. IV - 61

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.6 Evaporation Cooling

    • everyday experience: sweating, wind direction, cooling of coffee, …

    moisten finger, evaporation cooling

    • microscopically:

    • evaporation: work required to overcome binding forces

    only the fastest molecules will do it

    high-energy particles are lost

    liquid cools down

  • Chapt. IV - 62

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.6 Evaporation Cooling

    • limit of evaporation cooling: kBT becomes too small compared to Hvap

    (heat of evaporation)

    • Hvap should be small to reach large cooling power at low temperatures

    • numbers: about 1 K can be reached with 4He, about 0.3 K with 3He

    • boiling point can be calculated by using the Clausius-Clapeyron equation, if heat of vaporization and the vapor pressure of the liquid at a certain temperature is known

  • Chapt. IV - 63

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.6 Evaporation Cooling

    Clausius-Clapeyron equation:

    Hvap: molar latent heat [J/mole]

    • approximate expression using pV = RT (ideal gas):

    • integration yields (assuming that Hvap is constant over the considered T range):

    ≈ 90 J/mole

    for 4He

    • normal boiling temperature: pressure above liquid

    boiling temperature at p0

    (boiling point corresponds to the temperature at which the vapor pressure of the liquid equals the surrounding environmental pressure)

  • Chapt. IV - 64

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.6 Evaporation Cooling

  • Chapt. IV - 65

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.6 Evaporation Cooling

    www.mallister.com/graphics/vapor3.jpg

  • Chapt. IV - 67

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    liquid 4He (c.f. chapter II)

    • boson

    • liquid down to 0 K (@ 1 atm)

    • superfluid 4Helium at 2.17 K

    – Bose condensation: macroscopic number of atoms in ground state

    – very low viscosity

    – very high heat conduction

    – strange thermomechanical effects

    – creeping on vertical surfaces

    – vortex core with radius 0.8Å @ 0.6K

    – explained by a two-fluid model

    • density 125 kg/m3

    IV.1 Generation of Low Temperatures IV.1.6 Evaporation Cooling

  • Chapt. IV - 68

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    Liquid Helium cryostats:

    • LHe has small latent heat

    good thermal insulation by vacuum

    LHe container of poor thermal conductivity, glass or stainless steel

    thermal radiation shield at liquid Nitrogen temperature to reduce black-body radiation

    IV.1 Generation of Low Temperatures IV.1.6 Evaporation Cooling

    bath cryostat - sample is immersed in the LHe

    gas flow cryostat - sample is located in cold He gas

  • Chapt. IV - 69

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    LHe

    IV.1 Generation of Low Temperatures IV.1.6 Evaporation Cooling

    Liquid Helium container

    vacuum radiation shields

    narrow neck to minimize - heating by radiation - heating by thermal conduction

    typical losses

    - 1 l of LHe / day

  • Chapt. IV - 70

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.6 Evaporation Cooling

    He-bath cryostat

  • Chapt. IV - 71

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.6 Evaporation Cooling

    He-gas flow cryostat

  • Chapt. IV - 72

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    • no liquid Nitrogen required • radiation shield cooled by cold helium return gas

    IV.1 Generation of Low Temperatures IV.1.6 Evaporation Cooling

    He-gas flow cryostat (II)

  • Chapt. IV - 73

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3) • reducing the vapour pressure over

    bath of 4Helium

    • temperature down to 1.2 K at pumping speed of 10 m3/h

    Hvap: molar latent heat [J/mole]

    ≈ NA∙Ebinding: 90 J/mole for 4He

    IV.1 Generation of Low Temperatures IV.1.6 Evaporation Cooling

    Liquid 4He temperature < 4.2 K Clausius-Clapeyron equation:

    cooling power:

    RT

    HpHnQ

    vapvapgas

    exp

    rate of atoms going to gas phase up to 10 mW cooling power @ 1.2K

  • Chapt. IV - 75

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    Liquid 3Helium (c.f. chapter II):

    • fermion

    • superfluid at 2.5mK

    – formation of weakly bound fermions: Cooper pairs

    • density 59 kg/m3

    • higher vapour pressure than 4He due to smaller latent heat: Hvap = 40 J/mole cooling power ≈ 80mW @ 1.2K and 10 m

    3/h pumping speed

    • 0.3 K by pumping 3He vapour

    – some cm3

    – 0.1mW cooling power @ 0.3K

    • 3He obtained by nuclear reactions

    • extremely expensive

    • 1 liter of 3He gas costs about US $5.000 (2012)

    IV.1 Generation of Low Temperatures IV.1.6 Evaporation Cooling

  • Chapt. IV - 76

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.6 Evaporation Cooling

    Liquid 3He cryostat

    4He

    3He ≈ 0.3 K

    4He pump

    3He pump

    3He backflow

    4He impedance 4He bath 4.2 K

    vacuum

    condensation of backflowing 3He gas

    latent heat of 3He: Hvap = 40 J/mole as compared to 90 J/mole for 4He larger cooling power

    ≈ 80mW @ 1.2 K for 3He as compared to ≈ 10mW @ 1.2 K for 4He

    minimum temperature: ≈ 300 mK (cooling power ≈ 0.1 mW)

    ≈ 1.2K

    flow restriction for condensed 3He

    RT

    HpHnQ

    vapvapgas

    exp

  • Chapt. IV - 77

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.7 Dilution Cooling

    makes use of miscibility gap of 3He/4He mixtures (compare section I.6)

    revision of some facts on 3He/4He mixtures cf. chapter I.6

  • Chapt. IV - 79

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    • bonding:

    • 𝑉𝐴𝐵 >1

    2𝑉𝐴𝐴 + 𝑉𝐵𝐵 complete miscibility (e.g. water and alcohol)

    • 1

    2𝑉𝐴𝐴 + 𝑉𝐵𝐵 > 𝑉𝐴𝐵 phase separation (e.g. water and petrol)

    A A A B B B

    VAA VAB VBB

    critical point

    miscibility gap

    increasing mixing with increasing T:

    F = U – TS min

    binding energy

    thermal motion

    optimization of binding energy complete phase separation @ T = 0

    minimization of free energy

    IV.1 Generation of Low Temperatures IV.1.7 Dilution Cooling – revision of I.6

  • Chapt. IV - 80

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    • binding energy of 3He in 3He (V33) and 4He (V34):

    (i) 3He in 3He: binding energy is given by the latent heat of evaporation L3:

    binding energy for single 3He atom: 𝜖3,𝑐 = −𝐿3

    𝑁𝐴=

    𝜇3,𝑐

    𝑁𝐴

    𝜇3,𝑐 = chemical potential of pure (concentrated) liquid

    (ii) single 3He atom in liquid 4He:

    binding energy for single 3He atom: 𝜖3,𝑑(𝑥3 → 0) =𝜇3,𝑑 𝑥3→0

    𝑁𝐴

    𝜇3,𝑑 = chemical potential of dilute phase

    • 𝜖3,𝑑 0 > 𝜖3,𝑐 or vice versa ? 3He has smaller mass larger zero point fluctuations occupies larger volume binding of 3He is larger in 4He than in 3He due to larger density of 4He |𝜖3,𝑑 0 | > |𝜖3,𝑐|

    corresponds to case 𝑉𝐴𝐵 >1

    2𝑉𝐴𝐴 + 𝑉𝐵𝐵 complete miscibility expected,

    why miscibility only up to 6.5% ??

    IV.1 Generation of Low Temperatures IV.1.7 Dilution Cooling – revision of I.6

  • Chapt. IV - 81

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    Questions:

    • why can‘t we dissolve more than 6.5% of 3He in 4He at T = 0 ? two effects: (i) 3He forms degenerate Fermi liquid 𝑇𝐹 increases with 𝑥3 for 𝑥3 > 6.5%, the Fermi energy exceeds the gain in binding energy

    (ii) 𝜖3,𝑑 𝑥3 > 𝜖3,𝑑(𝑥3 = 0) effective attraction between two ³He atoms (magnetic and volume effect)

    • why don‘t we have a complete phase separation into 3He and 4He at T = 0 ? results in finite disorder, violation of 3. law of thermodynamic ? no: we have degenerate Fermi gas, ordering in k-space

    IV.1 Generation of Low Temperatures IV.1.7 Dilution Cooling – revision of I.6

  • Chapt. IV - 82

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    x3

    0.065

    −𝜖3,𝑑(0)

    −𝜖3,𝑐

    𝑬𝐩𝐨𝐭 𝒙𝟑 + 𝒌𝐁𝑻𝐅 𝒙𝟑

    0 gaseous ³He

    pure liquid ³He

    ³He diluted in 4He

    𝑬𝐩𝐨𝐭 𝒙𝟑 = 𝟏 + 𝒌𝐁𝑻𝐅 𝒙𝟑 = 𝟏

    for 𝑥3 > 6.5%: 𝑬𝐩𝐨𝐭 𝒙𝟑 + 𝒌𝐁𝑻𝐅 𝒙𝟑 > 𝝐𝟑,𝒄 = 𝑬𝐩𝐨𝐭 𝒙𝟑 = 𝟏 + 𝒌𝑩𝑻𝐅 𝒙𝟑 = 𝟏

    separation of pure ³He

    energy

    𝑬𝐩𝐨𝐭 𝒙𝟑

    IV.1 Generation of Low Temperatures IV.1.7 Dilution Cooling – revision of I.6

  • Chapt. IV - 83

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    • for Fermi liquid: Cconcentrated < Cdiluted (x3 = 0.065) (𝐶𝑉 ∝ 𝑇/𝑇𝐹, 𝑇𝐹 ∝ 𝑛

    2/3)

    • with we therefore obtain:

    Uconcentrated (T) < Udiluted (T) • on transition across phase boundary: F ≈ U = const increase of U results in decrease of temperature !

    ³He/4He dilution refrigerator

    • operation principle: remove ³He atoms from the dilute phase below Tk = 0.87 K

    transport of ³He atoms across phase boundary to maintain equilibrium concentration corresponds to evaporation of ³He from concentrated phase cools as the latent heat of evaporation is removed

    concentrated (lighter)

    diluted,6.5% (heavier)

    ³He

    U

    T

    Uconcentrated

    Udiluted

    ³He

    IV.1 Generation of Low Temperatures IV.1.7 Dilution Cooling – revision of I.6

  • Chapt. IV - 84

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    • assumption: one mole of ³He crosses boundary

    • removed heat depends on enthalpy difference between concentrated and dilute phase

    • cooling power

    • since there is no volume change

    • with and

    we obtain the entropy

    (standard expressions for Fermi liquid)

    IV.1 Generation of Low Temperatures IV.1.7 Dilution Cooling – revision of I.6

  • Chapt. IV - 85

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.7 Dilution Cooling – revision of I.6

    3He, concentrated

    3He, diluted

    Fermi sphere

    large 3He density large Fermi sphere high TF

    small 3He density small Fermi sphere low TF

    fraction of thermally excited 3He atoms increases ( T/TF) entropy increases going from concentrated to diluted phase removed heat: dQ = TdS

    thermally excited 3He atoms

    plausibility consideration kBT

    kBT

    Fermi sphere

  • Chapt. IV - 86

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    • large cooling power requires large throuphput

    IV.1 Generation of Low Temperatures IV.1.7 Dilution Cooling

    23 84 TnQ

    > 90% 3He

    3He pump

    from ≈ 1.2 K 3He condenser

    heat exchangers < 1% 3He

    still (≈ 0.7 K)

    flow impedance

    concentrated phase

    dilute phase

    6.5% 3He

    100% 3He

    heater to allow for effective pumping of 3He

    mixing chamber (≈ 0.01 K)

    dilute phase

    concentrated phase

    pumping of 3He generates osmotic pressure 3He flows from mixing chamber to still only possible if 3He atoms cross phase boundary cooling

    minimum temperature: ≈ 1.5 mK

  • Chapt. IV - 87

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    • numbers: vapor pressure of 3He at 0.7 K: 0.0828 mbar = 8.28 Pa @ 300 K we obtain:

    large 3He pump is required

    • what is the required pumping speed ??

    we assume that 3He is an ideal gas (R = 8.31 J / mole K)

    IV.1 Generation of Low Temperatures IV.1.7 Dilution Cooling

    • example: desired cooling power: 10-5 W still temperature: 0.7 K mixing chamber temperature: 10 mK

    s /mole 0012.0)10(84

    1022

    5

    3

    n

    pRTnV /3

    l/s 360 s/m 0.363 28.8/30031.80012.0 3 V

    23 84 TnQ

    𝑅 = 8.31 J/mole K

  • Chapt. IV - 88

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    mixing

    chamber

    heat

    exchangers

    still

    IV.1 Generation of Low Temperatures IV.1.7 Dilution Cooling

  • Chapt. IV - 89

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    JANIS Model JDR-500 Dilution Refrigerator

    IV.1 Generation of Low Temperatures IV.1.7 Dilution Cooling

  • Chapt. IV - 90

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    3He shows minimum in melting curve at T = 0.32 K (compare I.5.2) can be used for cooling of ³He Pomeranchuk effect

    Isaak Jakowlewitsch Pomeranschuk

    (Исаак Яковлевич Померанчук;

    born: 20. Mai 1913 at Warschau;

    died: 14. Juli 1966 at Moscow)

    Russian physicist.

    IV.1 Generation of Low Temperatures IV.1.8 Pomeranchuk Cooling

    0.1 1 1010

    1

    102

    103

    104

    p (

    bar

    )

    T (K)

    phase diagram of 4He and 3He

    3He

    4He hcp

    bcc

    liquid

    hcp

    liquid

    bcc

    fcc

  • Chapt. IV - 91

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.8 Pomeranchuk Cooling

    F

    liquidsolidT

    TTRSSTnQ

    2-ln2) -(

    2

    3

    • explanation: solid phase: atoms are ordered,

    spins are disordered and determine entropy: Ssolid = R ln2 at low T: antiparallel ordering of spins, S decreases towards zero liquid phase: atoms are spatially disordered, but ordering in k-space (Fermi liquid) entropy of Fermi liquid:

    • Clausius-Clapeyron equation:

    • always: Vsol < Vliq

    • for T < 0.32 K: disorder larger in solid than in liquid phase !!

    S

    lnT

    R ln2

    0

    liquid

    solid

    320 mK

    • cooling power:

  • Chapt. IV - 92

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.8 Pomeranchuk Cooling

    stamp stainless steel bellow

    liquid

    solid pressure cell

    • precooling to T < Tmin

    • adiabatic compression solidification and cooling • lowest T: ≈ 1.5 mK limitation due to antiparallel

    spin ordering in solid 3He

    10-3

    10-2

    10-1

    100

    2.8

    2.9

    3.0

    3.1

    3.2

    3.3

    3.4

    p (

    MP

    a)

    10-3

    10-2

    10-1

    100

    0.0

    0.2

    0.4

    0.6

    0.8

    S /

    R

    T (K)

    liquid

    solid

    liquid

    solid

    Tmin

    ln 2

  • Chapt. IV - 93

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.9 Adiabatic demagnetization

    magnetic refrigeration: based on the magnetocaloric effect

    magnetocaloric effect: - magneto-thermodynamic phenomenon - reversible change in temperature is caused by exposing a material to a changing magnetic field - also known as adiabatic demagnetization

    http://upload.wikimedia.org/wikipedia/commons/0/08/Magnetocaloric_effect1_04a.svg

  • Chapt. IV - 94

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.9 Adiabatic demagnetization

    Adiabatic magnetization: - substance is placed in an insulated environment - increasing external magnetic field (+H) causes magnetic ordering reduction of magnetic entropy and heat capacity - overall energy is not lost and therefore total entropy is not reduced (T + ΔTad). Isomagnetic enthalpic transfer: - added heat is removed by coupling to heat sink (-Q) - magnetic field is held constant - after heat removal, magnetocaloric material and the coolant are separated (H = 0). Adiabatic demagnetization: - the substance is decoupled from heat sink no heat exchange with environment entropy stays constant - magnetic field is decreased, the thermal energy causes the magnetic moments to overcome the field, and thus the sample cools energy (and entropy) transfers from thermal entropy to magnetic entropy (disorder of the magnetic dipoles). Isomagnetic entropic transfer: - the magnetic field is held constant to prevent the material from heating up - the material is brought in thermal contact with the environment being refrigerated cooling effect - magnetic materials heats up (+Q)

    thermodynamic cycle:

    http://upload.wikimedia.org/wikipedia/en/c/cb/MCE.gif

  • Chapt. IV - 95

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    • adiabatic 𝑆𝐵𝑖

    𝑇𝑖= 𝑆

    𝐵𝑓

    𝑇𝑓 𝑇𝑓 = 𝑇𝑖 ⋅

    𝐵𝑓

    𝐵𝑖

    • experiment: use of copper: Bi = 3 T, Bf = 0.3 mT, Ti = 10 mK Tf ≈ 1μK

    IV.1 Generation of Low Temperatures IV.1.9 Adiabatic demagnetization

    • generation of temperatures below 1 mK

    • dQ = TdS = dU – dW = dU + pdV – B dM ≈ dU – B dM (for solid: pdV small)

    • adiabatic cooling: dQ = 0 dU = B dM

    – step1: magnetize sample with field B, work must be done on sample and heat is released to thermal bath at Ti

    – step2: thermally isolated sample and remove magnetic field B, sample uses internal energy to demagnetize and temperature falls to Tf < Ti

  • Chapt. IV - 96

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.9 Adiabatic demagnetization

    more detailed discussion:

    • which amount of heat Qspin can be absorbed by the spin systems ?

    i

    f

    i

    f

    T

    TB

    spinT

    Tspinspin dT

    T

    STdTCBQ )0(

    2

    2int

    2

    2

    22

    6

    )1()12ln(

    T

    BB

    k

    JJgJNkS

    B

    BB

    2int

    2

    2int

    2

    BB

    BBTT

    i

    f

    if

    remaining internal field due to finite magnetic interactions (should be as small as possible)

    (cooling capacity)

    • entropy of spin system with spin quantum number J for gµBB

  • Chapt. IV - 97

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.9 Adiabatic demagnetization

    Ti Tf

    Bf = 0 Bi = 5T en

    tro

    py

    S

    1

    2

    1 switch on magnetic field at constant Ti (coupling to heat sink)

    2 switch off magnetic field for thermally isolated sample cooling to Tf

    i

    f

    i

    f

    T

    TB

    spinT

    Tspinspin dT

    T

    STdTCBQ )0(

    )12ln( JNkB

    0 0

    medium

    heat sink

    heat switch

    T

  • Chapt. IV - 98

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.9 Adiabatic demagnetization

    • paramagnetic salts: e.g MAS = MnSO4 · (NH4)2SO4 · 6H2O cooling of electron spins material with large entropy S/R but large Bint lowest temperatures Tf ≈ 100 mK large cooling capacity

    e.g CMN = 2Ce(NO3)3 · 2Mg(NO3)2 · 24H2O cooling of electron spins material with small entropy S/R but small Bint lowest temperatures Tf ≈ 2 mK small cooling capacity • nuclear demagnetization: e.g 63Cu (L = 3/2) or 65Cu (L = 3/2) (Bint ≈ 0.3 mT, Ti ≈ 10 mK, Bi ≈ 3 T) cooling of nuclear spins Tf (Bf = 0) ≈ 1 µK problem: transfer of spin temperature to lattice long spin-lattice relaxation time other materials: 141PrNi5 (L=5/2),

    195Pt (L=1/2)

  • Chapt. IV - 99

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    • spin-lattice coupling cools the lattice

    – metals: ≈ 1000 s (hyperfine interaction: t = CKorringa/Te, Korringa relation) – non-metals: ≈ hours to several days

    • spin-lattice coupling: spin temperature increases and lattice temperature decreases

    in thermal equilibrium

    • calculation of equilibrium temperature for copper: (Bint ≈ 0.3 mT, Ti ≈ 10 mK, Bi ≈ 3 T)

    Teq = 1.03 μK

    • lowest reported experimental temperature

    demagnetization of Pt: Teq = 2 μK (F. Pobell et al., (1996))

    0 nT

    T

    nucleare

    T

    T

    electron dTcdTceq

    f

    eq

    i

    IV.1 Generation of Low Temperatures IV.1.9 Adiabatic demagnetization

  • Chapt. IV - 100

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.9 Adiabatic demagnetization

    R. Gloss et al.,

    J. Low Temp. Phys. 73, 101 (1988)

    Cu demagnetization stage (length: 525 mm, diameter: 78 mm)

  • Chapt. IV - 101

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    µK facility of PTB Berlin: Lattice temperatures measured on the 105-mol-copper stage of the Berlin microkelvin facility with Pt-NMR. The achieved minimal temperature was 23.3 µK. The red line depicts the calculated course of temperature for the thermodynamically optimized demagnetization function. heat leak: below 1.5 nW.

    IV.1 Generation of Low Temperatures IV.1.9 Adiabatic demagnetization

  • Chapt. IV - 102

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    Cryogen-free Two Stage Adiabatic Demagnetization Refrigerator from Janis

    A cryogen-free two stage adiabatic demagnetization refrigerator using a 4 K pulse tube cryocooler. Gallium Gadolinium Garnet (GGG) and Ferric Ammonium Alum (FAA) paramagnetic pills were used for the first and second stage of the ADR, with Kevlar string supports for each stage. The FAA stage reaches a base temperature below 50 mK, and remains below 100 mK for more than two days.

    IV.1 Generation of Low Temperatures IV.1.9 Adiabatic demagnetization

  • Chapt. IV - 104

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.9 Adiabatic demagnetization

    Continuous Adiabatic Demagnetization Refrigerator (CADR) under development at NASA´s Goddard Space Flight Center - CADR to cool from below 5K to ≈ 35 mK - advantage: no stored cryogens maximizing the lifetime/mass ratio for the instrument

  • Chapt. IV - 105

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    Contents: IV.1 Generation of Low Temperatures IV.1.1 Introduction IV.1.2 Expansion Machine IV.1.3 Regenerative Machine IV.1.4 Joule-Thomson Cooling IV.1.5 Summary IV.1.6 Evaporation Cooling IV.1.7 Dilution Cooling IV.1.8 Pomeranchuk Cooling IV.1.9 Adiabatic Demagnetization

    IV.2 Thermometry IV.2.1 Introduction IV.2.2 Primary Thermometers IV.2.3 Secondary Thermometers

  • Chapt. IV - 106

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.2 Thermometry IV.2.1 Introduction

    temperature and temperature scales

    • temperature of a system in thermodynamic equilibrium: defined as the relation between the amount of heat δQ incident on the system during an infinitesimal quasi-static transformation, and the variation δS of its entropy during this transformation: for reversible Carnot process (dS = 0):

    S

    QT

    T

    Q0

    Kelvin scale Celsius scale (1742)

    see http://www.its-90.com

    • Lord Kelvin (1854): there is an absolute zero of temperature scale T0 = 0 K = - 273.15°C 1 K = 1°C

    http://www.its-90.com/http://www.its-90.com/http://www.its-90.com/http://www.its-90.com/

  • Chapt. IV - 107

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    William Thomson (Lord Kelvin)

    http://br.geocities.com/saladefisica3/fotos/kelvin.gif

    Lord Kelvin by Hubert von Herkomer

    Born 26 June 1824(1824-06-26) Belfast, Co. Antrim, Ireland

    Died 17 December 1907 (aged 83)[1] Largs, Ayrshire, Scotland [1]

    Residence Cambridge, England Glasgow, Scotland

    Nationality United Kingdom of Great Britain and Ireland

    Institutions University of Glasgow

    Alma mater Glasgow University Peterhouse, Cambridge

    A variety of physical phenomena and concepts with which Thomson is associated are named Kelvin: • Kelvin material • Kelvin water dropper • Kelvin wave • Kelvin-Helmholtz instability • Kelvin-Helmholtz mechanism • Kelvin-Helmholtz luminosity • The SI unit of temperature, kelvin • Kelvin transform in potential theory • Kelvin's circulation theorem • Kelvin-bridge (also known as Thomson-bridge)

    IV.2 Thermometry IV.2.1 Introduction

    http://en.wikipedia.org/wiki/June_26http://en.wikipedia.org/wiki/1824http://en.wikipedia.org/wiki/Belfasthttp://en.wikipedia.org/wiki/County_Antrimhttp://en.wikipedia.org/wiki/Irelandhttp://en.wikipedia.org/wiki/December_17http://en.wikipedia.org/wiki/1907http://en.wikipedia.org/wiki/Largshttp://en.wikipedia.org/wiki/Ayrshirehttp://en.wikipedia.org/wiki/Scotlandhttp://en.wikipedia.org/wiki/Cambridgehttp://en.wikipedia.org/wiki/Englandhttp://en.wikipedia.org/wiki/Glasgowhttp://en.wikipedia.org/wiki/Scotlandhttp://en.wikipedia.org/wiki/United_Kingdom_of_Great_Britain_and_Irelandhttp://en.wikipedia.org/wiki/United_Kingdom_of_Great_Britain_and_Irelandhttp://en.wikipedia.org/wiki/University_of_Glasgowhttp://en.wikipedia.org/wiki/Alma_materhttp://en.wikipedia.org/wiki/Glasgow_Universityhttp://en.wikipedia.org/wiki/Peterhouse,_Cambridgehttp://en.wikipedia.org/wiki/Peterhouse,_Cambridge

  • Chapt. IV - 108

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    • SI temperature scale - the SI temperature scale is the Kelvin scale. It defines the triple point of water as the numerical value of 273.16, i.e., 273.16 K. The unit of temperature in this scale is the Kelvin (K).

    • Celsius scale: the Celsius scale has units of °C (degrees Celsius) with the size of the unit equal to 1 Kelvin.

    T(°C) = T(K) – 273.15

    • agreement of bureaus of standards:

    ITS-90 temperature scale for T > 0.65 K (Comité International des Poids et Messures 1990) - the ITS-90 is defined by 17 fixed points and 4 defining instruments. It spans a temperature range from 0.65 K to 10 000 K. For cryogenic purposes the three defining instruments are helium vapor pressure thermometry, gas thermometry, and platinum resistance thermometry.

    PLTS-2000 for lower T (Provisonal Low Temperature Scale, melting curve of 3He ) - the PLTS-2000 is defined by a polynomial, relating the melting pressure of 3He to temperature from the range 0.9 mK to 1 K. The pressure to temperature relationship

    is based on primary thermometers such as Johnson noise and nuclear orientation.

    IV.2 Thermometry IV.2.1 Introduction

  • Chapt. IV - 109

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    The Water Triple Point The triple point of water is the most important defining thermometric fixed point used in the calibration of thermometers to the International Temperature Scale of 1990 (ITS-90). It is the sole realizable defining fixed point common to the Kelvin Thermodynamic Temperature Scale (KTTS) and the ITS-90; the assigned value on these scales is 273.16 K (0.01°C)

    solid

    liquid

    gaseous

    critical point

    triple point

    (0.01°C, 603 Pa)

    273.15 K

    (374°C, 21800 kPa)

    273.16 K

    IV.2 Thermometry IV.2.1 Introduction

  • Chapt. IV - 110

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    Defining Fixed Points of the ITS-90

    Number Temperature Substance a State b Wr (T90)

    T90/K t90/°C

    1 3 to 5 -270.15 to -268.15 He V

    2 13.8033 -259.3467 e-H2 T 0.001 190 07

    3 ~17 ~-256.15 e-H2 (or He) V (or G)

    4 ~20.3 -252.85 e-H2 (or He) V (or G)

    5 24.5561 -248.5939 Ne T 0.008 449 74

    6 54.3584 -218.7916 O2 T 0.091 718 04

    7 83.8058 -189.3442 Ar T 0.215 859 75

    8 234.3156 -38.8344 Hg T 0.844 142 11

    9 273.16 0.01 H20 T 1.000 000 00

    10 302.9146 29.7646 Ga M 1.118 138 89

    11 429.7485 156.5985 In F 1.609 801 85

    12 505.078 231.928 Sn F 1.892 797 68

    13 692.677 419.527 Zn F 2.568 917 30

    14 933.473 660.323 Al F 3.376 008 60

    15 1234.93 961.78 Ag F 4.286 420 53

    16 1337.33 1064.18 Au F

    17 1357.77 1084.62 Cu F

    a All substances except 3He are of natural isotopic composition, e-H2 is hydrogen at the equilibrium concentration of the ortho- and para-molecular forms. b V: vapour pressure point; T: Triple Point (temperature at which the solid, liquid and vapour phases are in equilibrium); G: gas thermometer point; M,F melting point, freezing point (temperature, at a pressure of 101 325 Pa, at which the solid and liquid phases are in equilibrium)

    see http://www.its-90.com

    IV.2 Thermometry IV.2.1 Introduction

    http://www.its-90.com/http://www.its-90.com/http://www.its-90.com/http://www.its-90.com/

  • Chapt. IV - 111

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    temperature measurement

    • definition of temperature via reversible Carnot process is not well suited for establishing useful measuring methods

    • in practice: use of fixpoints and interpolation polynoms

    • primary thermometers: measured quantity is related directly to temperature (in a theoretically predictably way) no calibration is required

    • secondary thermometers: measured quantity varies with temperature in a reproducible way must be calibrated using a primary thermometer

    • requirements for temperature measurement: good thermal contact between thermometer and sample low self-heating fast response to temperature changes

    IV.2 Thermometry IV.2.1 Introduction

  • Chapt. IV - 112

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    T(K)

    typical temperature range of some thermometers

    IV.2 Thermometry IV.2.1 Introduction

  • Chapt. IV - 113

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    most common thermometers for 1K < T < 300K

    • gas thermometer: p = p(T) – Helium gas ≈ ideal gas down to 10K:

    • vapour pressure thermometer: Tliquid = f(pvapor) – pressure of 10 Pa corresponds to 0.4K for 3He

    • thermocouples: Vth = Vth(T)

    • resistance thermometry: R = R(T) – 1K - 300K – semiconductors (e.g. Ge doped with Arsenic has 100-500 Ω/K @ 4.2K,

    self-heating around 10μA) – p-n junction diode (problem with high bias current self heating)

    • capacitance thermometry: C = C(T) – based on temperature change of dielectric properties – virtually no magnetic field-induced errors

    • noise thermometer: S = S(T) – Johnson noise in resistor: SV = 4kBTR – like gas thermometer, but with electrons – with SQUID measurements: 0.1% @ 1K

    IV.2 Thermometry IV.2.1 Introduction

  • Chapt. IV - 114

    R. G

    ross

    an

    d A

    . Mar

    x , ©

    Wal

    the

    r-M

    eiß

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3) 1mK ≤ T ≤ 1K:

    • magnetic suceptibility thermometer

    T

    C

    B

    M 0Curie’s law:

    Ce


Recommended