+ All Categories
Home > Documents > CRYSTAL LIZER DESIGN

CRYSTAL LIZER DESIGN

Date post: 10-Feb-2016
Category:
Upload: dudley
View: 49 times
Download: 2 times
Share this document with a friend
Description:
CRYSTAL LIZER DESIGN. CRYSTAL SIZE DISTRIBUTION (CSD). Crystal size distribution (CSD) is measured with a series of standard screens. The size of a crystal is taken to be the average of the screen openings of successive sizes that just pass and just retain the crystal. - PowerPoint PPT Presentation
Popular Tags:
22
CRYSTALLIZER DESIGN
Transcript
Page 1: CRYSTAL LIZER DESIGN

CRYSTALLIZER DESIGN

Page 2: CRYSTAL LIZER DESIGN

CRYSTAL SIZE DISTRIBUTION (CSD) Crystal size distribution (CSD) is measured with a series of

standard screens. The size of a crystal is taken to be the average of the screen

openings of successive sizes that just pass and just retain the crystal.

The cumulative wt % either greater or less than a specified screen opening is recorded.

Typical size distribution data on the following figure are plotted in two cumulative modes, greater than or less than, and as differential polygons or histograms.

Page 3: CRYSTAL LIZER DESIGN

(a)

Several ways of recording CSD

Page 4: CRYSTAL LIZER DESIGN

Cumulative wt % retained or passed, against sieve aperture

(b)

Page 5: CRYSTAL LIZER DESIGN

(c)

Differential polygon

Page 6: CRYSTAL LIZER DESIGN

Differential histogram

(d)

Page 7: CRYSTAL LIZER DESIGN
Page 8: CRYSTAL LIZER DESIGN

THE PROCESS OF CRYSTALLIZATION

CONDITIONS OF PRECIPITATION

evaporation of the solvent changing to a temperature at which the solubility is

lower chemical reaction between separately soluble gases or

liquids induced by additives (salting out)

Page 9: CRYSTAL LIZER DESIGN

SUPERSATURATION

Page 10: CRYSTAL LIZER DESIGN

GROWTH RATES

NUCLEATION

Nucleation rates are measured by counting the numbers of crystals formed over periods of time.

The nucleation rate depends on the extent of supersaturation

Values of the exponent b have been found to range from 2 to 9, but have not been correlated to be of quantitative value for prediction.

(2)bckB 1

Page 11: CRYSTAL LIZER DESIGN

The growth rates of crystals depend on their instantaneoussurface and the linear velocity of solution past the surface as well as the extent of supersaturation, and are thus represented by the equation

CRYSTAL GROWTH

(3)

Values of the exponent (g) have been found of the order of 1.5, but again no correlation of direct use to the design of crystallizers has been achieved.

gckG 2

Page 12: CRYSTAL LIZER DESIGN

In laboratory and commercial crystallizations, large crystals of more or less uniform size are desirable.

This condition is favored by operating at relatively low extents of supersaturation.

The optimum extent of supersaturation is strictly a matter for direct experimentation in each case.

As a rough guide, the data for allowable subcooling and corresponding supersaturation of the Table 1 may serve.

Since the recommended values are one-half the maxima shown, it appears that most crystallizations under commercial conditions should operate with less than about 2C subcooling or the corresponding supersaturation.

Page 13: CRYSTAL LIZER DESIGN

Table 1. Maximum Allowable Supercooling T (C) and Corresponding Supersaturation C (g/100 g water) at 25C

Page 14: CRYSTAL LIZER DESIGN
Page 15: CRYSTAL LIZER DESIGN

Growth rates of crystals also must be measured in the laboratory or pilot plant, although the suitable condition may be expressed simply as a residence time.

Table 2 gives some growth rate data at several temperatures and several extents of supersaturation for each substance.

In most instances the recommended supersaturation measured as the ratio of operating to saturation concentrations is less than 1.1.

It may be noted that at a typical rate of increase of diameter of 10–7 m/sec, the units used in this table, the time required for an increase of 1mm is 2.8 hr.

Page 16: CRYSTAL LIZER DESIGN

Table 2. Mean Overall Growth Rates of Crystals (m/sec) at Each Face

Page 17: CRYSTAL LIZER DESIGN
Page 18: CRYSTAL LIZER DESIGN
Page 19: CRYSTAL LIZER DESIGN

Batch crystallizers often are seeded with small crystals of a known range of sizes.

The resulting CSD for a given overall weight gain can be estimated by an approximate relation known as the McCabe Delta-L Law, which states that each original crystal grows by the same amount L:

1. All crystals have the same shape.2. They grow invariantly, i.e. the growth rate is

independent of crystal size.3. Supersaturation is constant throughout the crystallizer.4. No nucleation occurs.5. No size classification occurs in the crystallizer6. The relative velocity between crystals and liquor

remains constant.

Page 20: CRYSTAL LIZER DESIGN

The relation between the relative masses of the original and final size distributions is given in terms of the incremental L by

3

0

30

ii

ii

LwLLwR (4)

When R is specified, L is found by trial, and then the size distribution is evaluated

where R : ratio of final and initial weight of crystalwi : fraction of crystal of size LiL0i : initial dimension of crystal iLi : final dimension of crystal i

Page 21: CRYSTAL LIZER DESIGN

Seed crystals with this size distribution are charged to a batch crystallizer

L0, length (mm) 0.251 0.178 0.127 0.089 0.064w (wt fraction) 0.09 0.26 0.45 0.16 0.04

On the basis of the McCabe L law, find:

a. The length increment that will result in a 20-fold increase in mass of the crystals.

b. The mass growth corresponding to the maximum crystal length of 1.0 mm.

EXAMPLE

Page 22: CRYSTAL LIZER DESIGN

SOLUTION

a. When L is the increment in crystal length, the mass ratio is

20003935.0

30

30

30

LLw

LwLLwR ii

ii

ii

By trial, the value of L = 0.2804 mm

b. When Lmax = 1 L = 1 – 0.251 = 0.749

79.181003935.0

30

30

30

LLw

LwLLwR ii

ii

ii


Recommended