+ All Categories
Home > Documents > CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF...

CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF...

Date post: 09-Mar-2020
Category:
Upload: others
View: 8 times
Download: 0 times
Share this document with a friend
68
112 CHAPTER 4 CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE BASED PYRROLIDINE DERIVATIVES AND A PYRROLOPYRROLE DERIVATIVE 4.1 INTRODUCTION Pyrrolidine occurs widely in nature and is a structural part of porphyrin heme, chlorophyll and vitamin B12. Compounds containing pyrrolidine are also of significant because of their biological activities and widespread employment in catalysis [85, 86]. The spiro-indole-pyrrolidine ring system is a frequently encountered structural motif in many biologically important and pharmacologically relevant alkaloids, e.g. vincrinstine, vinblastine and spirotypostatins [87]. It is also found in phermones, antibiotics [88] and antitumour agents [89, 90]. Pyrrolidine and oxindole alkaloids constitute another class of compounds with significant biological activities which are normally found in rhyncophylline, corynoxeine, nitraphylline, vincatine, horsifiline, etc [91]. Highly substituted pyrrolidines have gained much prominence since they form the central skeleton of many natural products and pharmacologically active compounds [92]. Optically active pyrrolidine derivatives have been used as intermediates in controlled asymmetric synthesis [93]. Several unusual amino acids which contain a pyrrolidine ring have been investigated [94].
Transcript
Page 1: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

112

CHAPTER 4

CRYSTAL STRUCTURE AND CONFORMATIONAL

STUDIES OF SOME INDOLE BASED PYRROLIDINE

DERIVATIVES AND A PYRROLOPYRROLE DERIVATIVE

4.1 INTRODUCTION

Pyrrolidine occurs widely in nature and is a structural part of porphyrin

heme, chlorophyll and vitamin B12. Compounds containing pyrrolidine are also

of significant because of their biological activities and widespread employment

in catalysis [85, 86].

The spiro-indole-pyrrolidine ring system is a frequently encountered

structural motif in many biologically important and pharmacologically relevant

alkaloids, e.g. vincrinstine, vinblastine and spirotypostatins [87]. It is also found

in phermones, antibiotics [88] and antitumour agents [89, 90]. Pyrrolidine and

oxindole alkaloids constitute another class of compounds with significant

biological activities which are normally found in rhyncophylline, corynoxeine,

nitraphylline, vincatine, horsifiline, etc [91]. Highly substituted pyrrolidines

have gained much prominence since they form the central skeleton of many

natural products and pharmacologically active compounds [92].

Optically active pyrrolidine derivatives have been used as intermediates

in controlled asymmetric synthesis [93]. Several unusual amino acids which

contain a pyrrolidine ring have been investigated [94].

Page 2: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

113

Pyrrolopyrrole compounds exhibit anti-inflammatory and analgesic

activities [95, 96]. Inhibitors of human cytomegalovirus (HCMV) protease have

been designed based on the 5-oxo-hexahydropyrrolo [3, 2-b] pyrrole ring

system [97]. It has been shown that N-substituted pyrrole derivatives inhibit

human immunodeficiency virus type-1(HIV-I) [98]. These derivatives also

possess antileukemic activity [99] and some of them are used as Platelet

Activating Factor (PAF) antagonists [100, 101].

This chapter deals with X-ray crystal structure analysis of three indole

based pyrrolidine derivatives and a pyrrolopyrrole derivative, namely

· Methyl 3-(4-bromophenyl)-2-(1H-indol-3-ylmethyl)-5-[1-(4-

methoxyphenyl)-4-oxo-2-phenylazetidin-2-yl]-4-nitropyrrolidine-2-

carboxylate [PD1]

· Methyl 3-(2-chlorophenyl)-2-(1H-indol-3-ylmethyl)-5-[1-(4-

methoxyphenyl)-4-oxo-3-phenylazetidin-2-yl]-4-nitropyrrolidine-2-

carboxylate [PD2]

· 4'-(4-Methoxyphenyl)-1,1',1''-trimethyldispiro [indoline-3,2'-pyrrolidine-

3',3''- pyrrolidine]-2,2'',5''-trione [PD3]

· cis-1-(4-Bromophenyl)-6-ethyl-5-(phenylsulfonyl)perhydropyrrolo

[3,4-b]pyrrole [PP1]

These compounds will herein after be referred to as PD1, PD2, PD3 and PP1 as

mentioned in brackets. The indole unit present in the pyrrolidine compounds

PD1, PD2, PD3 and the β-lactam group in PD1, PD2 have also been found to

exhibit some important biological and medicinal activities.

As already discussed in Chapter 3, indole and its derivatives are

important heterocyclic nitrogen compounds which display a wide range of

Page 3: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

114

biological activities [16]. Some of the indole alkaloids extracted from plants

possess interesting cytotoxic, antitumour or antiparasitic properties [102].

Indole derivatives are known to exhibit anti-oxidant activity [103], antihepatitis

B virus activities [104], anti-malarial [105], cytoprotective and radical

scavenging activities [106].

The role of β-lactam antibiotics is well known and since 1945, these have

saved many lives [107, 108]. In the late 1970's and early 1980's, the first classes

of the monocyclic β-lactam antibacterial agents were found in natural sources

[109]. Monocyclic β-lactams such as nocardicins [110] and monobactams [111]

are of interest as they have been found to exhibit antibiotic properties. An

extensive use of common β-lactam antibiotics, such as penicillin and

cephalosporins, in medicine has resulted in an increasing number of resistant

bacteria through mutation and β-lactamase gene transfer. The β-lactam classes

of drugs have revolutionized treatment in medicine [112].

These compounds can be synthesized by various routes, although the

preparation of N-unsubstituted β-lactam is a common feature [113]. β-Lactams

are one of the best known and most extensively studied class of compounds due

to their biological activities [114-117] and the selectivity of β-lactam ring can

be influenced decisively by the attached substituent [118].

β-Lactams with a substituent at the N atom, which is easily removable

under mild conditions have found wide applicability in the synthesis of bicyclic

β-lactam antibiotics [119]. The importance and structural diversity of

biologically active β-lactam antibiotics, the most widely employed family of

antimicrobial agents led to the development of efficient approaches for the

construction of appropriately substituted 2-azetidinones [120]. The

2-azetidinone ring system is the common structural feature of a number of broad

spectrum β-lactam antibiotics [121] and also possesses other pharmalogical

properties [122]. Since the discovery of β-lactam antibiotics, the β-lactam ring

Page 4: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

115

(azetidin-2-one) is considered a general ‘lead structure’ for the design of new

inhibitors of enzymes containing a serine nucleophile in the active site.

4.2 EXPERIMENTAL STUDY OF INDOLE BASED PYRROLIDINEDERIVATIVES

The chemical diagram of pyrrolidines PD1, PD2 and PD3 are shown in

Figures 4.1 and 4.2.

NH

NH

NO2

N

H3CO

H3COOC

O

X1

X2

NN

N

OMe

OO

O

PD1 → X1 = Br; X2 = H

PD2 → X1 = H; X2 = Cl

Figure 4.1 Chemical diagram of Figure 4.2 Chemical diagram of PD1 and PD2 PD3

4.2.1 Crystallization

4.2.1.1 Pyrrolidine PD1

β-Lactam aldehyde (1.0 mol) was treated with tryptophanmethylester

hydrochloride (1.0 mol) in the presence of Et3N (2.5 mol) and anhydrous

MgSO4 (2.0 g) in dry dichloromethane (10 ml) at room temperature for 12 h to

give the imine. The imine was washed with water and dried over Na2SO4. The

solvent was evaporated under vacuum. The imine (1.0 mol) was then strirred

Page 5: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

116

with silver (I) acetate and p-bromo nitrostyrene (1.0 mol) in the presence of

Et3N (1.2 mol) and molecular sieves in dry toluene (30 ml) at room temperature

for 12 h. The reaction mixture was filtered through a plug celite. The solvent

was evaporated under reduced pressure and the residue was subjected to column

chromatography on silica gel (100-200 mesh), with hexane-ethyl acetate (7:3)

as eluent to give the product. The compound was recrystallized from ethyl

acetate.

4.2.1.2 Pyrrolidine PD2

β-Lactam aldehyde (1.0 mol) was treated with tryptophanmethylester

hydrochloride (1.0 mol) in the presence of Et3N (2.5 mol) and anhydrous

MgSO4 (2.0 g) in dry dichloromethane (10 ml) at room temperature for 12 h to

give the imine. The imine was washed with water and dried over Na2SO4. The

solvent was evaporated under vacuum. The imine (1.0 mol) was then strirred

with silver (I) acetate and p-chloro nitrostyrene (1.0 mol) in the presence of

Et3N (1.2 mol) and molecular sieves in dry toluene (30 ml) at room temperature

for 12 h. The reaction mixture was filtered through a plug celite. The solvent

was evaporated under reduced pressure and the residue was subjected to column

chromatography on silica gel (100-200 mesh), with hexane-ethyl acetate (7:3)

as eluent to give the product. The compound was recrystallized from ethyl

acetate.

4.2.1.3 Pyrrolidine PD3

A solution of sarcosine (1.0 mmol), 1-methylisatin (1.0 mmol) and 3-(4-

methoxybenzylidine)-1-methyl-pyrrolidine-2, 5-dione (1.0 mmol) was refluxed

in methanol. Completion of the reaction was evidenced by TLC analysis. The

solvent was then removed in vacuo and the crude product subjected to column

chromatography (100-200 mesh) using petroleum ether-ethyl acetate as eluent.

Page 6: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

117

Single crystals were obtained by crystallization from petroleum ether and ethyl

acetate mixture.

4.2.2 Structure Solution and Refinement

The molecular structures of PDI and PD3 were solved by direct methods

procedure as implemented in SHELXS97 [20], whereas the molecular structure

of PD2 was solved using SIR92 [21]. The residual factors calculated on the

point atom model (RE) were 0.243, 0.177 and 0.170 for compounds PD1, PD2

and PD3, respectively. While the solution gave all the non-hydrogen atoms of

PD2 and PD3, only a partial structure of PD1 could be obtained from the

solution. Successive difference Fourier maps revealed the rest of the structure of

PD1. The positions of all the non-hydrogen atoms were included in the

full-matrix least-squares refinement using SHELXL97 [20] program. Initially

isotropic refinements of non-hydrogen atoms were carried out till convergence

and subsequently with anisotropic thermal parameters and it resulted in further

reduction of R-factors.

At this stage, H atoms were placed in idealized positions and allowed to

ride on their parent atoms, with C-H = 0.93, 0.98, 0.97 and 0.96 Å for aromatic,

methine, methylene and methyl H, respectively and N-H = 0.86 Å, and with

Uiso(H) = 1.5Ueq(C) for methyl and Uiso(H) = 1.2Ueq(C, N) for all other H

atoms. The final refinements converged to the R-values of 0.040, 0.067 and

0.049 for PD1, PD2 and PD3 compounds. The final difference Fourier map

showed featureless electron densities for compounds PD1, PD2 and PD3. For

PD1, the value of absolute structure parameter [123] is 0.008(6).

4.3 STRUCTURE ANALYSIS OF PYRROLIDINE DERIVATIVES

Table 4.1 summarizes the crystal data, intensity data collection and

refinement details for PD1, PD2 and PD3. The atomic coordinates of the

non-hydrogen atoms with their equivalent displacement parameters for the

Page 7: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

118

compounds PD1, PD2 and PD3 are presented in Tables 4.2, 4.3 and 4.4. Their

anisotropic temperature parameters are given in Tables 4.5, 4.6 and 4.7,

respectively. Tables 4.8, 4.9 and 4.10 contain the atomic coordinates and

isotropic displacement parameters for the hydrogen atoms. The bond lengths for

the non-hydrogen atoms are given in Tables 4.11 and 4.12 and the

corresponding bond angles are given in Tables 4.13 and 4.14 for all the three

compounds. The torsion angles for the non-hydrogen atoms are listed in Tables

4.15, 4.16 and 4.17, respectively. The least-squares planes calculated using the

program PARST [4] are tabulated in Tables 4.18, 4.19 and 4.20, respectively.

4.4 RESULTS AND DISCUSSION OF PYRROLIDINE DERIVATIVES

4.4.1 Pyrrolidine PD1

A displacement ellipsoid plot of the molecule is shown in Figure 4.3. In

the compound, PD1, the four-membered β-lactam ring N4/C14/C15/C16 is

planar, with a maximum deviation of -0.003(3) Å for atom C16 and its internal

angles lies in the range 84.4(2)° to 95.5(2)°. The C14-C15 [1.576(4) Å] and

C15-C16 [1.529(5) Å] bonds agree with those observed in a similar structure

[124]. The C14-C15-C16 [84.4(2)º] bond angle is comparable to the

corresponding value [87.0(3)º] in a related structure [125]. The bond length,

N4-C16 [1.350(4) Å], is shorter than the bond lengths, N4-C14 [1.465(3) Å]

and N4-C17 [1.408(4) Å], and is close to the length of a double bond, a feature

observed in β-propiolactam [126]. This is due to a delocalization of the lone pair

on N4 over atoms N4 and C16, which are conjugated with the C16-O5 bond.

This is confirmed by the C16-O5 bond length of 1.202(4) Å. The sum of the

bond angles around atom N4 (359.5°) indicates sp2 hybridization [47]. In the

pyrrolidine ring N2/C10-C13, the bond length C10-C11 [1.600(3) Å] is high

and it is due to steric effect caused by bulky substituents at C10 and C11

[45, 46]. In the carboxylate group, the bond lengths C36-O1 [1.180(3) Å] and

C36-O2 [1.325(3) Å] are shorter and it indicate electron delocalization.

Page 8: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

119

The methoxy group is almost coplanar with the C17-C22 benzene ring

[C21-C20-O6-C23 = 161.0(4)°]. The bromophenyl ring is planar with a

maximum deviation of 0.013(3) Å for atom C32. The methoxyphenyl and the

C24-C29 phenyl rings bridged by the β-lactam ring are oriented at an angle of

42.32(11)° with respect to each other, whereas the β-lactam ring makes dihedral

angles of 28.32(13)° and 70.16(13)° with them respectively. The indole moiety

N1/C1-C8 is planar and the dihedral angle between the fused benzene and

pyrrole ring of the indole moiety is 0.2(1)°. The indole moiety makes dihedral

angles of 38.01(11)°, 62.82(7)° and 73.79(9)° with the β-lactam, bromophenyl

and C24-C29 phenyl rings respectively. The nitro group is orthogonal to indole

moiety [89.2(2)°] and makes a dihedral angle of 66.6(3)° with the β-lactam ring.

In the benzene ring of the indole system, the variation in endocyclic angles at

C3 [118.6(2)°] and C8 [121.8(3)°] are due to fusion of five- and six-membered

rings [83].

The pyrrolidine ring adopts an envelope conformation, with puckering

parameters [2] q2 = 0.377(2) Å, φ = 150.8(3)° and asymmetry parameter [4],

ΔCS(C13) = 0.038(2).

4.4.1.1 Hydrogen bonding and crystal packing

The details of hydrogen bondings and non-bonded interactions are given

in Table 4.21. Intermolecular N-H…O, C-H…O and C-H…π interactions

viewed down ‘a’ axis are shown in Figure 4.6. The intramolecular interaction

C11-H11…O4 generates a five-membered ring, with one S(5) graph-set motif

[9].

In the crystal structure of the compound, adjacent molecules are linked

by N-H…O [N1-H1A…O5 (N1…O5 (1/2+x, 3/2-y, -1/2+z) = 2.820(3) Å)] and

C-H…O [C4-H4…O4 (C4…O4 (x, y, -1+z) = 3.186(3) Å); C31-H31…O4

(C31…O4 (x, 2-y, -1/2+z) = 3.399(3) Å)] hydrogen bonds into chains. In

Page 9: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

120

addition, the packing is stabilized by C-H…π [C18-H18…Cg1 (C18…Cg1 (x,

y, 1+z) = 3.641(4) Å)] interactions involving C3-C8 rings with centroid Cg1.

4.4.2 Pyrrolidine PD2

A displacement ellipsoid plot of the molecule is shown in Figure 4.4. In

the compound, PD2, the four-membered β-lactam ring N4/C14/C15/C16 is

nearly planar with its internal angles in the range 84.6(2)° to 94.5(3)°. The

C14-C15 [1.581(4) Å] and C15-C16 [1.523(5) Å] bonds agree with those

observed in a similar structure [124]. The C14-C15-C16 [84.6(2)º] bond angle is

comparable to the corresponding value [87.0(3)º] in a related structure [125].

The bond length, N4-C16 [1.365(4) Å], is shorter than the bond lengths,

N4-C14 [1.478(4) Å] and N4-C17 [1.418(4) Å], and is close to the length of a

double bond, a feature observed in β-propiolactam [126]. This is due to a

delocalization of the lone pair on N4 over atoms N4 and C16, which are

conjugated with the C16-O5 bond. This is confirmed by the C16-O5 bond

length of 1.206(5) Å. The sum of the bond angles around atom N4 (355.6°)

indicates sp2 hybridization [47]. In the pyrrolidine ring N2/C10-C13, the bond

length C10-C11 [1.603(3) Å] is high and it is due to steric effect caused by

bulky substituents at C10 and C11 [45, 46]. In the carboxylate group, the bond

lengths C36-O1 [1.197(4) Å] and C36-O2 [1.319(4) Å] are shorter and it

indicate electron delocalization.

The methoxy group is almost coplanar with the C17-C22 benzene ring

[C21-C20-O6-C23 = 176.0(4)°]. The chlorophenyl ring is planar with a

maximum deviation of -0.042(6) Å for atom C34. The phenyl rings C17-C22

and C24-C29 bridged by the β-lactam ring are oriented at an angle of 50.2(1)°

with respect to each other, whereas the β-lactam ring makes dihedral angles of

30.0(1)° and 76.3(1)° with them respectively. The indole moiety N1/C1-C8 is

planar and the dihedral angle between the fused benzene and pyrrole ring of the

indole moiety is 1.2(1)°. The indole moiety makes dihedral angles of 30.9(1)°,

Page 10: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

121

73.0(1)° and 70.7(1)° with the β-lactam, phenyl rings C24-C29 and C30-C35

respectively. The nitro group is orthogonal to indole moiety [87.1(3)°] and

makes a dihedral angle of 69.1(3)° with the β-lactam ring. In the benzene ring of

the indole system, the variation in endocyclic angles at C3 [118.1(3)°] and

C8 [122.5(4)°] are due to fusion of five- and six- membered rings [83].

The pyrrolidine ring N2/C10/C11/C12/C13 adopts a twist conformation,

with puckering parameters [2] q2 = 0.402(3) Å, φ = -21.1(4)° and asymmetry

parameters [4], ΔC2(C11) = 0.011(1), ΔCS(C13) = 0.085(2).

4.4.2.1 Hydrogen bonding and crystal packing

The details of hydrogen bondings are given in Table 4.22. Intermolecular

N-H…O, C-H…O and π…π interactions viewed down ‘a’ axis are shown in

Figure 4.7. The intramolecular hydrogen bonds C11-H11…Cl1, C11-H11…O3

result in the formation of five-membered rings, with two S(5) graph-set motifs;

C22-H22…O5 result in the formation of a six-membered ring, with one S(6)

graph-set motif [9].

In the crystal structure, intermolecular C-H…O [C14-H14…O4

(C14…O4 (-x, -y, -z) = 3.443(5) Å); C34-H34…O4 (C34…O4 (-x, 1-y, -z) =

3.414(6) Å)] and N-H…O [N1-H1A…O6 (N1…O6 (1-x, -y, 1-z) =

2.982(5) Å)] hydrogen bonds link the molecules, in which they may be effective

in the stabilization of the structure. Weak π…π interactions between

N1/C1/C2/C3/C8 rings at x, y, z and 1–x, 1–y, 1–z further stabilize the

structure, with a centroid-centroid distance of 3.806(2) Å.

4.4.3 Pyrrolidine PD3

An ORTEP [23] plot of the molecule is shown in Figure 4.5. In the

molecule, the two spiro junctions link two pyrrolidine rings and an indole ring.

The indole unit (N1/C1/C5-C11) is planar, with a maximum deviation of

Page 11: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

122

-0.050(9) Å for atom C1 and the dihedral angle between the fused benzene and

pyrrole ring is 2.6(1)º. The methoxy group is almost coplanar with the C15-C20

benzene ring [C21-O4-C18-C17 = 174.7(2)°]. The dihedral angle between the

indole unit and the methoxyphenyl ring is 40.36(4)°. The sum of angles at

atoms N1 (360.0°) and N3 (359.9°) is in accordance with sp2 hybridization,

whereas the sum of angles at N2 (335.5°) is in accordance with sp3

hybridization [47]. The bond lengths N1-C5 [1.357(2) Å] and C5-O1 [1.213(2)

Å] shows electron delocalization over atoms N1, C5 and O1. In the oxindole

ring system, the variation in endocyclic angles [C6 (122.2(2)°), C7 (117.1(2)°),

C8 (121.5(2)°), C10 (119.0(2)°), C11 (119.6(2)°)] are due to the fusion of the

five- and six-membered rings [83].

In the pyrrolidine ring N2/C1-C4, the bond length C1-C2 [1.577(2) Å] is

longer than the normal value due to spiro-atom character and steric forces of the

bulky substituents at C1 and C2 [45, 46]. The bond lengths [C13-N3 =

1.377(2) Å, C13-O3 = 1.206(2) Å and C14-N3 = 1.379(2) Å, C14-O2 =

1.202(2) Å] in the pyrrolidinedione ring N3/O2/O3/C2/C12-C14 indicate

electron delocalization over atoms C13, N3, O3 and C14, N3, O2, respectively.

The methyl group attached at N1 is in the equatorial position, evidenced by the

C22-N1-C5-C1 torsion angle of -179.8(2)°.

The pyrrolidine ring N2/C1-C4 adopts an envelope conformation with

puckering parameters q2 and φ of 0.404(2) Å and -38.8(2)° respectively [2] and

asymmetry parameter [4], ΔCS(N2) = 0.017(1). Atom N2 deviates by 0.590 Å

from the least-squares plane through the remaining four atoms. The pyrrolidine

ring N3/C2/C12-C14 adopts a twist conformation, with puckering parameters q2

and φ of 0.233(2) Å and -13.2(4)° respectively [2] and asymmetry parameters

[4], ΔC2(N3) = 0.012(1) and ΔCS(C12) = 0.041(1). Atom C12 deviates by

0.369(2) Å from the least-squares plane through the remaining four atoms.

Page 12: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

123

4.4.3.1 Hydrogen bonding and crystal packing

The details of hydrogen bondings and non-bonded interactions are given

in Table 4.23. Intermolecular C-H…O interactions viewed down ‘a’ axis are

shown in Figure 4.8. The intramolecular interactions C3-H3…O2,

C23-H23B…O2 result in the formation of five-membered rings, with two S(5)

graph-set motifs; C4-H4B…O1, C12- H12A…O1 result in the formation of

six-membered rings, with two S(6) graph-set motifs; C10-H10…O2 results in

the formation of a seven-membered ring, with one S(7) graph-set motif and

C20- H20…O1 results in the formation of a eight-membered ring, with one S(8)

graph-set motif [9].

In the crystal structure, molecules are linked into a two-dimensional

network parallel to the ‘ab’ plane by intermolecular C-H…O [C12-H12B…O1

(C12…O1 (-1/2-x, -1/2+y, z) = 3.264(2) Å); C16-H16…O4 (C16…O4 (1/2+x,

1/2-y, -z) = 3.394(2) Å); C19-H19…O2 (C19…O2 (-1/2-x, 1/2+y, z) =

3.440(2) Å)] hydrogen bonds and C-H…π [C21-H21C…Cg1 (C21…Cg1 (1-x,

1-y, -z) = 3.592(2) Å)] interactions involving C15-C20 benzene rings with

centroid Cg1. In addition the packing is stabilized by van der Waals forces.

4.5 COMPARATIVE STUDY OF PD1 AND PD2

The main skeleton of the molecules PD1 and PD2 consists of a

pyrrolidine ring joined to a β-lactam, an indole and phenyl rings. The geometric

parameters of PD1 and PD2 agree well with those reported in similar structures

[124, 127]. In both the compounds, the bond length, N4-C16 [1.350(4) Å in

PD1 and 1.365(4) Å in PD2], is shorter than the bond lengths, N4-C14

[1.465(3) Å in PD1 and 1.478(4) Å in PD2] and N4-C17 [1.408(4) Å in PD1

and 1.418(4) Å in PD2], and is close to the length of a double bond, a feature

observed in β-propiolactam.

Page 13: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

124

The internal angles for β-lactam ring lies in the range 84.4(2)º to 95.5(2)º

for PD1 and 84.6(2)º to 94.5(3)º for PD2. In both the compounds, the sum of

bond angles around atom N4 (359.5º in PD1 and 355.6º in PD2) indicates sp2

hybridization.

The values of various dihedral angles are almost similar for both the

compounds because of the general similarity in the structure. The indole moiety

is planar and makes dihedral angles of [38.01(11) and 73.79(9)° in PD1; 30.9(1)

and 73.0(1)° in PD2] with the β-lactam and C24-C29 phenyl rings. Also the

β-lactam ring makes dihedral angles of [70.16(13)º in PD1 and 76.3(1)º in PD2]

with phenyl ring C24-C29.

In spite of general similarity, the conformations of the pyrrolidine ring

system N2/C10/C11/C12/C13 in these molecules are quite different. This is

because of difference in their substitutions to pyrrolidine rings. In PD1, the

pyrrolidine ring adopts an envelope conformation, while, in PD2, the

pyrrolidine ring adopts a twist conformation on the basis of puckering and

asymmetry parameters.

In both the compounds, adjacent molecules are linked by N-H…O and

C-H…O hydrogen bonds into chains. In addition, the packing is stabilized by

C-H…π interactions in PD1 and π…π interactions in PD2. A comparative study

of conformational parameters of PD1 and PD2 with other related molecules is

given in Table 4.24.

Page 14: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

125

Figure 4.3 ORTEP plot of the molecule PD1 with the thermal ellipsoidsdrawn at 30% probability level

Page 15: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

126

Figure 4.4 ORTEP plot of the molecule PD2 with the thermal ellipsoidsdrawn at 30% probability level

Page 16: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

127

Figure 4.5 ORTEP plot of the molecule PD3 with the thermal ellipsoidsdrawn at 30% probability level

Page 17: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

128

Symmetry equivalent positions:

(i) x, y, -1+z(ii) x, 2-y, -1/2+z(iii) 1/2+x, 3/2-y, -1/2+z(iv) x, y, 1+z

Cg1 is the centroid of C3-C8 ring

1

Figure 4.6 Intermolecular N-H…O, C-H…O and C-H…π interactions ofPD1 molecules viewed down ‘a’ axis

Page 18: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

129

N1

H1AO6i

C34

H34O4ii

Symmetry equivalent positions:

(i) 1-x, -y, 1-z(ii) -x, 1-y, -z

Figure 4.7 Intermolecular N-H…O, C-H…O and π…π interactions of PD2molecules viewed down ‘a’ axis

Page 19: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

130

C19H19

O2i

Symmetry equivalent positions:

(i) -1/2-x, 1/2+y, z

Figure 4.8 Intermolecular C-H…O interactions of PD3 molecules vieweddown ‘a’ axis

Page 20: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

131

4.6 EXPERIMENTAL STUDY OF A PYRROLOPYRROLEDERIVATIVE PP1

The chemical diagram of the compound PP1 is shown in Figure 4.9.

NNS

O

O

Br

H

H

Figure 4.9 Chemical diagram of PP1

4.6.1 Crystallization

A mixture of 2(N-allyl-N-tosylamino)butanal (1.0 mmol) and 2-(p-

bromo)phenyl- thiazolidine-4-carboxylic acid (1.0 mmol) in toluene (20 ml)

was refluxed until the disappearance of the starting materials, as evidenced by

thin-layer chromatography. The solvent was evaporated under vacuum and the

residue was column-chromatographed with a hexane-ethyl acetate mixture (8:2)

to obtain the title compound.

4.6.2 Structure Solution and Refinement

The molecular structure of PP1 was solved by direct methods procedure

as implemented in SHELXS97 [20]. The residual factor calculated on the point

atom model (RE) was 0.271. The positions of all the non-hydrogen atoms were

included in the full-matrix least-squares refinement using SHELXL97 [20]

program. Initially isotropic refinements of non-hydrogen atoms were carried out

till convergence and subsequently with anisotropic thermal parameters and it

Page 21: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

132

resulted in further reduction of R-factor. At this stage, the positions of all the

hydrogen atoms were fixed geometrically and allowed to ride on their parent

atoms, with C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H

respectively, and Uiso(H) = 1.5Ueq(C) for methyl H and Uiso(H) = 1.2Ueq(C)

for all other H atoms. The final refinement converged to R-value of 0.035. The

final difference Fourier map showed featureless electron densities for the

compound. The value of absolute structure parameter [123] is 0.003(7).

4.7 STRUCTURE ANALYSIS OF PP1

Table 4.25 summarizes the crystal data, intensity data collection and

refinement details for PP1. The atomic coordinates of the non-hydrogen atoms

with their equivalent displacement parameters for the compound are presented

in Table 4.26. The anisotropic temperature parameters are given in Table 4.27.

Table 4.28 contains the atomic coordinates and isotropic displacement

parameters for the hydrogen atoms. The bond lengths for the non-hydrogen

atoms are given in Table 4.29 and the corresponding bond angles are given in

Table 4.30. The torsion angles for the non-hydrogen atoms are listed in Table

4.31. The least-squares planes calculated using the program PARST [4] are

tabulated in Table 4.32. A comparative study of PP1 with other related

molecules is shown in Table 4.34.

4.8 RESULTS AND DISCUSSION OF PP1

An ORTEP [23] plot of the molecule is shown in Figure 4.10. Bond

lengths and angles of the compound agree with those observed in a similar

structure, cis-1-(4-bromophenyl)-6-ethyl-5-tosylperhydropyrrolo[3,4-b]pyrrole

[128]. The sum of the bond angles around atoms N1 (357.3°) and N2 (352.1°)

indicate sp2 hybridization [47]. Atom S1 has a distorted tetrahedral geometry,

with angles O1-S1-O2 [120.06(14)°] and N2-S1-O1 [106.52(13)°] deviating

significantly from the ideal tetrahedral value (109.5º), as a result of the

Page 22: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

133

Thorpe-Ingold effect [129]. The widening of the angles may be due to the

repulsive interactions between the two short S=O bonds. The bromophenyl ring

is planar with a maximum deviation of 0.029(3) Å for atom C11. The two

aromatic rings are almost parallel to one another with a dihedral angle of

4.9(2)º. The bond length C5-N2 [1.486(3) Å] in the pyrrolidine ring N2/C3-C6

is slightly high due to steric effect caused by bulky substituents at C5 and N2

[45, 46].

Both pyrrolidine rings N1/C1-C3/C6 and N2/C3-C6 adopt twist

conformations. The puckering parameters [2] and the asymmetry parameters [4]

are q2 = 0.320(3) Å, φ = 87.2(5)° and ΔC2(N1) = 3.1(3)° for ring N1/C1-C3/C6,

and q2 = 0.281(3) Å, φ = 302.4(5)º and ΔC2(C4) = 1.7(3)° for ring N2/C3–C6.

In ring N1/C1-C3/C6, Atom C2 deviates by -0.492(3), whereas in ring

N2/C3-C6, Atom C6 deviates by -0.441(3) from the least-squares plane through

the remaining four atoms.

4.8.1 Hydrogen bonding and crystal packing

The details of hydrogen bondings are given in Table 4.33. Intermolecular

C-H…O interactions viewed down ‘b’axis are shown in Fig. 4.11. The

intramolecular interactions C5-H5…O2 and C18-H18…O1 generate

five-membered rings, with two S(5) graph-set motifs [9].

In the crystal structure, C-H…O [C17-H17…O2 (C17…O2 (3-x, -y,

1/2+z) = 3.433(4) Å); C19-H19A…O1 (C19…O1 (-1/2+x, -1/2-y, z) =

3.453(4) Å)] intermolecular hydrogen bonds link the molecules into a

three-dimensional framework. In addition, π…π interactions involving the

C7-C12 rings of the molecule at (x, y, z) and the C13-C18 rings of the molecule

at (-1+x, y, z) are observed, with a centroid-centroid distance of 3.632(2) Å.

Page 23: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

134

Figure 4.10 ORTEP plot of the molecule PP1 with the thermal ellipsoidsdrawn at 30% probability level

Page 24: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

135

C19H19A

Symmetry equivalent positions:

(i) -1/2+x, -1/2-y, z

O1i

Figure 4.11 Intermolecular C-H…O interactions of PP1 molecules vieweddown ‘b’ axis

Page 25: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

136

Table 4.1 Crystal data and other relevant details for PD1, PD2 and PD3

Compound Code PD1 PD2 PD3Empirical formula C37H33BrN4O6 C37H33ClN4O6 C24H25N3O4

Formula weight 709.58 665.12 419.47

Temperature (K) 293(2) 293(2) 293(2)

Wavelength (λ) 0.71073 Å 0.71073 Å 0.71073 Å

Crystal system Monoclinic Triclinic Orthorhombic

Space group Cc P1 Pbca

Unit cell dimensions

a (Å) 11.3988(4) 10.399(3) 11.2074(3)

b (Å) 34.8587(13) 12.500(3) 11.2406(3)

c (Å) 8.7039(3) 14.211(3) 33.6082(9)

a (º) 90 93.766(6) 90

β (º) 100.982(2) 99.962(6) 90

γ (º) 90 114.066(5) 90

Volume (Å3) 3395.1(2) 1642.1(7) 4233.9(2)

Molecules / unit cell, Z 4 2 8

Density calculated, Dc (Mgm-3) 1.388 1.345 1.316

Absorption coefficient (mm-1) 1.263 0.170 0.091

F(000) 1464 696 1776

Crystal size (mm) 0.30 x 0.22 x 0.22 0.30 x 0.20 x 0.16 0.25 x 0.17 x 0.15

q range for data collection (º) 1.17 to 28.67 1.47 to 24.99 1.21 to 28.38

Index ranges -15<=h<=15, -12<=h<=12 -14<=h<=11

-46<=k<=46, -14<=k<=14 -15<=k<=11

-11<=l<=11 -16<=l<=16 -43<=l<=43

Reflections collected 37282 25481 17736

Independent reflections 8532 [R(int) = 0.0284] 5563 [R(int) = 0.0569] 5023 [R(int) = 0.0283]

Completeness to q = 25.00° 100.0 % 96.5 % 98.2 %

Max. and min. transmission 0.7686 and 0.7031 0.9733 and 0.9507 0.9865 and 0.9777

Refinement method Full-matrix least- Full-matrix least- Full-matrix least-

squares on F2 squares on F2 squares on F2

Data / restraints / parameters 8532 / 2 / 433 5563 / 0 / 433 5023 / 0 / 284

Goodness-of-fit on F2 1.037 1.104 1.072

Final R indices [I > 2s (I)] R1 = 0.0399, R1 = 0.0668, R1 = 0.0489,

wR2 = 0.1063 wR2 = 0.2004 wR2 = 0.1261

R indices (all data) R1 = 0.0604, R1 = 0.1310, R1 = 0.0869,

wR2 = 0.1200 wR2 = 0.3165 wR2 = 0.1520

Absolute structure parameter 0.008(6) --- ---

Largest diff. peak and hole 0.430 and -0.368 e.Å-3 0.509 and -0.636 e.Å-3 0.243 and -0.178 e.Å-3

Page 26: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

137

Table 4.2 Atomic coordinates (x 104) and equivalent isotropic displacementparameters (Å2 x 103) for non-hydrogen atoms of PD1

Atoms x y z U(eq)

C1 10310(3) 8285(1) 512(3) 54(1)C2 9937(2) 8627(1) -140(3) 41(1)C3 10709(2) 8720(1) -1184(3) 39(1)C4 10793(2) 9028(1) -2186(3) 49(1)C5 11678(3) 9028(1) -3055(4) 61(1)C6 12498(3) 8726(1) -2947(4) 63(1)C7 12437(2) 8421(1) -1991(4) 59(1)C8 11543(2) 8419(1) -1104(3) 45(1)C9 8907(2) 8861(1) 180(3) 41(1)C10 9174(2) 9056(1) 1798(2) 35(1)C11 8117(2) 9327(1) 2125(3) 35(1)C12 7686(2) 9130(1) 3488(3) 39(1)C13 8177(2) 8718(1) 3464(3) 39(1)C14 8218(2) 8471(1) 4896(3) 44(1)C15 6981(3) 8333(1) 5252(3) 54(1)C16 7435(3) 7932(1) 4961(4) 64(1)C17 9507(3) 7871(1) 4405(3) 56(1)C18 10634(3) 8022(1) 4846(4) 69(1)C19 11637(4) 7833(1) 4579(5) 77(1)C20 11543(4) 7477(1) 3916(5) 74(1)C21 10396(5) 7326(1) 3432(6) 99(2)C22 9395(4) 7517(1) 3643(6) 89(1)C23 13582(4) 7448(2) 3661(7) 105(1)C24 5832(3) 8451(1) 4218(3) 54(1)C25 5431(3) 8277(1) 2772(4) 67(1)C26 4380(3) 8390(1) 1818(4) 80(1)C27 3718(3) 8685(1) 2234(5) 80(1)C28 4099(3) 8859(1) 3652(5) 80(1)

contd…

Page 27: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

138

Table 4.2 contd…

Atoms x y z U(eq)C29 5143(3) 8749(1) 4641(4) 68(1)

C30 7139(2) 9411(1) 732(3) 36(1)

C31 7291(2) 9717(1) -228(3) 47(1)

C32 6435(2) 9812(1) -1500(4) 54(1)

C33 5397(2) 9606(1) -1828(3) 51(1)

C34 5213(2) 9302(1) -920(4) 59(1)

C35 6090(2) 9204(1) 358(3) 50(1)

C36 10328(2) 9289(1) 1965(3) 42(1)

C37 11292(3) 9788(1) 855(6) 81(1)

N1 11279(2) 8158(1) -61(3) 55(1)

N2 9335(2) 8764(1) 3021(2) 40(1)

N3 8208(2) 9314(1) 5030(3) 46(1)

N4 8479(2) 8066(1) 4657(3) 53(1)

O1 11180(2) 9244(1) 2958(3) 69(1)

O2 10239(2) 9551(1) 846(2) 55(1)

O3 7714(2) 9250(1) 6116(3) 77(1)

O4 9117(2) 9504(1) 5130(2) 62(1)

O5 7038(3) 7612(1) 4957(4) 89(1)

O6 12477(3) 7257(1) 3636(4) 100(1)

Br1 4224(1) 9749(1) -3583(1) 89(1)

Ueq = (1/3)Σi ΣjUijai*aj*ai.aj

Page 28: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

139

Table 4.3 Atomic coordinates (x 104) and equivalent isotropic displacementparameters (Å2 x 103) for non-hydrogen atoms of PD2

Atoms x y z U(eq)

C1 4247(4) 3105(3) 4029(2) 45(1)

C2 4455(3) 4115(3) 3646(2) 34(1)

C3 5947(3) 4900(3) 4004(2) 36(1)

C4 6834(4) 6067(3) 3897(2) 46(1)

C5 8251(4) 6574(4) 4383(3) 61(1)

C6 8836(4) 5963(5) 4969(3) 67(1)

C7 8008(4) 4815(5) 5083(3) 59(1)

C8 6570(4) 4301(3) 4609(2) 41(1)

C9 3323(3) 4348(3) 3002(2) 34(1)

C10 2943(3) 3712(3) 1948(2) 31(1)

C11 1669(3) 3868(3) 1245(2) 34(1)

C12 405(3) 2628(3) 1066(2) 33(1)

C13 886(3) 1980(3) 1857(2) 32(1)

C14 125(3) 649(3) 1707(2) 36(1)

C15 -1531(3) 61(3) 1733(3) 46(1)

C16 -1057(4) -505(3) 2560(3) 52(1)

C17 1534(3) -169(3) 2985(2) 38(1)

C18 2642(3) -60(3) 2526(2) 39(1)

C19 3685(3) -420(3) 2917(3) 43(1)

C20 3619(4) -899(3) 3756(3) 46(1)

C21 2550(4) -962(4) 4239(3) 54(1)

C22 1513(4) -600(4) 3857(3) 51(1)

C23 5611(5) -1357(5) 3669(4) 81(2)

C24 -2264(3) 835(3) 1965(3) 42(1)

C25 -1948(4) 1455(3) 2876(3) 46(1)

C26 -2613(4) 2174(4) 3075(3) 56(1)

C27 -3605(4) 2289(4) 2362(3) 61(1)

C28 -3929(4) 1674(4) 1442(3) 62(1)

contd…

Page 29: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

140

Table 4.3 contd…

Atoms x y z U(eq)

C29 -3278(4) 951(4) 1250(3) 54(1)

C30 1230(3) 4815(3) 1585(2) 39(1)

C31 321(4) 4623(4) 2234(3) 47(1)

C32 -116(5) 5464(4) 2530(3) 66(1)

C33 349(7) 6529(5) 2198(4) 84(2)

C34 1243(6) 6751(4) 1557(4) 78(2)

C35 1674(4) 5889(3) 1239(3) 54(1)

C36 4283(3) 4159(3) 1513(2) 38(1)

C37 6263(4) 5862(5) 1315(3) 77(2)

N1 5503(4) 3211(3) 4608(2) 50(1)

N2 2433(3) 2437(2) 1940(2) 34(1)

N3 198(3) 1926(3) 102(2) 44(1)

N4 375(3) 89(2) 2561(2) 41(1)

O1 4619(3) 3522(3) 1048(2) 62(1)

O2 4973(3) 5325(3) 1698(2) 55(1)

O3 1219(3) 2147(3) -280(2) 69(1)

O4 -986(3) 1137(3) -230(2) 65(1)

O5 -1691(3) -1217(3) 3043(3) 86(1)

O6 4562(3) -1339(3) 4179(2) 65(1)

Cl1 2715(2) 6205(1) 379(1) 91(1)

Ueq = (1/3)Σi ΣjUijai*aj*ai.aj

Page 30: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

141

Table 4.4 Atomic coordinates (x 104) and equivalent isotropic displacementparameters (Å2 x 103) for non-hydrogen atoms of PD3

Atoms x y z U(eq)C1 185(2) 4730(2) 1282(1) 33(1)C2 -651(1) 3688(1) 1136(1) 32(1)C3 -950(2) 4020(2) 695(1) 37(1)C4 -332(2) 5211(2) 629(1) 43(1)C5 -556(2) 5664(2) 1517(1) 36(1)C6 873(2) 4986(2) 1941(1) 41(1)C7 1549(2) 4819(2) 2279(1) 58(1)C8 2500(2) 4037(2) 2252(1) 67(1)C9 2780(2) 3480(2) 1900(1) 61(1)C10 2097(2) 3667(2) 1563(1) 46(1)C11 1119(2) 4405(2) 1587(1) 35(1)C12 -1661(2) 3396(2) 1431(1) 37(1)C13 -1170(2) 2421(2) 1685(1) 43(1)C14 59(2) 2528(2) 1142(1) 35(1)C15 -2249(2) 3973(2) 578(1) 36(1)C16 -2640(2) 3084(2) 323(1) 40(1)C17 -3821(2) 2994(2) 215(1) 44(1)C18 -4650(2) 3786(2) 362(1) 39(1)C19 -4281(2) 4690(2) 607(1) 45(1)C20 -3089(2) 4778(2) 713(1) 47(1)C21 -6702(2) 4326(2) 417(1) 60(1)C22 -594(2) 6521(2) 2197(1) 59(1)C23 372(2) 838(2) 1611(1) 63(1)C24 1292(2) 6318(2) 942(1) 54(1)N1 -116(1) 5737(1) 1892(1) 42(1)N2 659(1) 5189(1) 910(1) 38(1)N3 -253(1) 1893(1) 1477(1) 42(1)O1 -1385(1) 6247(1) 1391(1) 51(1)O2 793(1) 2199(1) 905(1) 45(1)O3 -1496(1) 2112(2) 2011(1) 63(1)O4 -5802(1) 3602(1) 248(1) 53(1)

Ueq = (1/3)Σi ΣjUijai*aj*ai.aj

Page 31: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

142

Table 4.5 Anisotropic temperature parameters (Å2 x 103) for non-hydrogenatoms of PD1

Atoms U11 U22 U33 U23 U13 U12

C1 69(2) 36(1) 60(2) 2(1) 18(1) 7(1)

C2 47(1) 34(1) 42(1) -3(1) 10(1) 1(1)

C3 39(1) 36(1) 39(1) -6(1) 2(1) 3(1)

C4 52(1) 50(2) 44(1) 4(1) 7(1) 7(1)

C5 68(2) 68(2) 48(2) 4(1) 16(1) -7(1)

C6 50(1) 89(2) 54(2) -15(2) 19(1) -3(1)

C7 47(1) 71(2) 59(2) -19(2) 6(1) 14(1)

C8 45(1) 43(1) 43(1) -9(1) 0(1) 9(1)

C9 42(1) 36(1) 44(1) 0(1) 8(1) 1(1)

C10 33(1) 30(1) 44(1) 4(1) 9(1) 1(1)

C11 37(1) 26(1) 43(1) 0(1) 10(1) -1(1)

C12 39(1) 35(1) 42(1) 0(1) 9(1) -2(1)

C13 47(1) 27(1) 41(1) -1(1) 6(1) -6(1)

C14 57(1) 34(1) 38(1) 3(1) 3(1) -8(1)

C15 74(2) 47(2) 44(1) 4(1) 19(1) -17(1)

C16 90(2) 46(2) 54(2) 12(1) 11(2) -20(1)

C17 87(2) 33(1) 46(1) 5(1) 8(1) -4(1)

C18 74(2) 46(2) 73(2) -6(1) -22(2) 13(1)

C19 79(2) 57(2) 82(2) 1(2) -16(2) 9(2)

C20 104(3) 50(2) 68(2) 2(2) 20(2) 11(2)

C21 138(4) 46(2) 128(4) -32(2) 64(3) -17(2)

C22 107(3) 50(2) 22(3) -26(2) 50(3) -27(2)

C23 89(3) 113(4) 105(3) 4(3) -3(2) 30(3)

C24 56(1) 56(2) 53(2) 2(1) 15(1) -23(1)

C25 71(2) 64(2) 64(2) -8(2) 12(2) -18(2)

C26 71(2) 97(3) 65(2) -12(2) -3(2) -29(2)

C27 58(2) 100(3) 81(2) 1(2) 9(2) -8(2)

C28 58(2) 105(3) 81(2) -3(2) 22(2) -1(2)

contd...

Page 32: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

143

Table 4.5 contd…

Atoms U11 U22 U33 U23 U13 U12C29 64(2) 89(2) 57(2) -9(2) 24(1) -12(2)

C30 36(1) 28(1) 46(1) 2(1) 13(1) 3(1)

C31 42(1) 39(1) 58(2) 15(1) 8(1) -4(1)

C32 53(1) 47(2) 64(2) 20(1) 14(1) 1(1)

C33 50(1) 49(1) 51(1) 9(1) 4(1) 10(1)

C34 44(1) 56(2) 70(2) 12(1) -5(1) -13(1)

C35 46(1) 44(1) 56(2) 17(1) 2(1) -7(1)

C36 37(1) 36(1) 53(1) -1(1) 11(1) 0(1)

C37 68(2) 71(2) 109(3) 15(2) 26(2) -31(2)

N1 72(1) 34(1) 59(1) 0(1) 12(1) 20(1)

N2 43(1) 30(1) 46(1) 7(1) 9(1) 7(1)

N3 58(1) 35(1) 45(1) -2(1) 7(1) 11(1)

N4 76(2) 33(1) 50(1) 6(1) 9(1) -10(1)

O1 43(1) 82(2) 77(1) 15(1) -2(1) -11(1)

O2 47(1) 45(1) 74(1) 13(1) 12(1) -13(1)

O3 95(2) 92(2) 51(1) -12(1) 31(1) -1(1)

O4 71(1) 47(1) 58(1) -3(1) -11(1) -6(1)

O5 115(2) 48(1) 105(2) 11(1) 20(2) -36(1)

O6 128(3) 69(2) 109(2) -3(2) 42(2) 22(2)

Br1 74(1) 97(1) 83(1) 31(1) -18(1) 6(1)

The anisotropic temperature parameters exponent takes the form:

-2π2 [h2 a*2 U11 + ... + 2 h k a* b* U12]

Page 33: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

144

Table 4.6 Anisotropic temperature parameters (Å2 x 103) for non-hydrogenatoms of PD2

Atoms U11 U22 U33 U23 U13 U12

C1 53(2) 47(2) 36(2) 13(2) 9(1) 21(2)

C2 42(2) 40(2) 28(2) 11(1) 10(1) 23(2)

C3 44(2) 44(2) 24(2) 3(1) 7(1) 26(2)

C4 50(2) 48(2) 39(2) 4(2) 11(2) 19(2)

C5 49(2) 58(3) 61(3) -3(2) 10(2) 10(2)

C6 40(2) 100(4) 50(2) -3(2) 0(2) 25(2)

C7 58(2) 98(4) 37(2) 6(2) 2(2) 53(3)

C8 52(2) 50(2) 28(2) 3(2) 6(1) 29(2)

C9 36(1) 39(2) 33(2) 7(1) 9(1) 21(1)

C10 33(1) 35(2) 32(2) 10(1) 8(1) 20(1)

C11 43(2) 37(2) 28(2) 12(1) 9(1) 23(1)

C12 38(2) 38(2) 31(2) 5(1) 7(1) 24(1)

C13 36(1) 32(2) 32(2) 6(1) 7(1) 20(1)

C14 41(2) 31(2) 41(2) 5(1) 7(1) 22(1)

C15 38(2) 39(2) 64(2) 9(2) 8(1) 21(2)

C16 44(2) 42(2) 80(3) 25(2) 20(2) 24(2)

C17 42(2) 30(2) 47(2) 12(2) 11(1) 19(1)

C18 40(2) 37(2) 45(2) 16(2) 11(1) 19(2)

C19 43(2) 43(2) 51(2) 18(2) 18(1) 21(2)

C20 46(2) 44(2) 54(2) 23(2) 11(2) 23(2)

C21 60(2) 70(3) 49(2) 33(2) 21(2) 37(2)

C22 54(2) 61(3) 52(2) 25(2) 24(2) 31(2)

C23 70(3) 103(4) 116(4) 63(3) 43(3) 66(3)

C24 36(2) 38(2) 57(2) 16(2) 12(1) 19(1)

C25 44(2) 47(2) 50(2) 16(2) 10(2) 21(2)

C26 57(2) 62(3) 60(2) 17(2) 25(2) 32(2)

C27 59(2) 64(3) 85(3) 27(2) 32(2) 44(2)

C28 57(2) 80(3) 71(3) 31(2) 17(2) 47(2)

contd...

Page 34: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

145

Table 4.6 contd…

Atoms U11 U22 U33 U23 U13 U12

C29 49(2) 64(3) 56(2) 13(2) 7(2) 33(2)

C30 44(2) 41(2) 36(2) 8(2) -3(1) 26(2)

C31 57(2) 52(2) 45(2) 4(2) 5(2) 38(2)

C32 74(3) 80(3) 59(3) -8(2) -4(2) 56(3)

C33 106(4) 64(3) 90(4) -19(3) -25(3) 67(3)

C34 93(3) 41(3) 93(4) 7(2) -20(3) 39(3)

C35 57(2) 37(2) 62(2) 13(2) -7(2) 22(2)

C36 40(2) 53(2) 32(2) 18(2) 10(1) 28(2)

C37 52(2) 97(4) 61(3) 27(3) 24(2) 4(2)

N1 70(2) 57(2) 37(2) 20(2) 10(1) 40(2)

N2 35(1) 35(2) 40(2) 12(1) 8(1) 22(1)

N3 59(2) 46(2) 34(2) 5(1) 1(1) 32(2)

N4 36(1) 35(2) 59(2) 18(1) 14(1) 19(1)

O1 72(2) 76(2) 71(2) 29(2) 41(1) 51(2)

O2 50(1) 55(2) 52(2) 15(1) 21(1) 9(1)

O3 81(2) 83(2) 50(2) -3(2) 23(2) 41(2)

O4 70(2) 60(2) 49(2) -11(1) -11(1) 26(2)

O5 53(2) 84(2) 149(3) 78(2) 49(2) 37(2)

O6 60(2) 83(2) 79(2) 49(2) 24(1) 48(2)

Cl1 103(1) 75(1) 100(1) 58(1) 32(1) 32(1)

The anisotropic temperature parameters exponent takes the form:

-2π2 [h2 a*2 U11 + ... + 2 h k a* b* U12]

Page 35: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

146

Table 4.7 Anisotropic temperature parameters (Å2 x 103) for non-hydrogenatoms of PD3

Atoms U11 U22 U33 U23 U13 U12C1 32(1) 31(1) 36(1) -3(1) -2(1) 4(1)C2 30(1) 31(1) 34(1) -5(1) 0(1) 1(1)C3 38(1) 41(1) 31(1) -5(1) -2(1) 3(1)C4 46(1) 47(1) 37(1) 5(1) -1(1) 0(1)C5 35(1) 33(1) 40(1) -5(1) -1(1) 2(1)C6 39(1) 43(1) 41(1) -2(1) -6(1) -2(1)C7 60(1) 69(2) 45(1) -2(1) -14(1) -2(1)C8 63(1) 70(2) 66(2) 13(1) -31(1) 0(1)C9 49(1) 50(1) 83(2) 5(1) -22(1) 9(1)C10 37(1) 39(1) 61(1) -3(1) -8(1) 3(1)C11 32(1) 32(1) 42(1) -1(1) -5(1) -2(1)C12 32(1) 40(1) 40(1) -3(1) 0(1) 0(1)C13 39(1) 47(1) 42(1) 1(1) -4(1) -8(1)C14 35(1) 32(1) 39(1) -4(1) -2(1) 0(1)C15 41(1) 36(1) 32(1) -3(1) -6(1) 4(1)C16 44(1) 38(1) 39(1) -8(1) -3(1) 5(1)C17 50(1) 39(1) 44(1) -10(1) -8(1) -3(1)C18 38(1) 42(1) 36(1) 2(1) -7(1) -2(1)C19 44(1) 44(1) 48(1) -11(1) -4(1) 10(1)C20 46(1) 45(1) 49(1) -18(1) -12(1) 6(1)C21 39(1) 70(2) 69(2) -4(1) -1(1) 6(1)C22 55(1) 71(2) 50(1) -25(1) 4(1) 4(1)C23 82(2) 47(1) 61(1) 12(1) -3(1) 16(1)C24 50(1) 44(1) 68(1) 7(1) 0(1) -12(1)N1 43(1) 45(1) 39(1) -11(1) -4(1) 4(1)N2 37(1) 36(1) 41(1) 2(1) 1(1) -5(1)N3 48(1) 35(1) 43(1) 4(1) -2(1) 4(1)O1 50(1) 47(1) 55(1) -10(1) -8(1) 19(1)O2 47(1) 39(1) 50(1) -9(1) 6(1) 8(1)O3 61(1) 85(1) 42(1) 16(1) 5(1) -2(1)O4 39(1) 58(1) 62(1) -10(1) -9(1) 0(1)

The anisotropic temperature parameters exponent takes the form:

-2π2 [h2 a*2 U11 + ... + 2 h k a* b* U12]

Page 36: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

147

Table 4.8 Hydrogen atom coordinates (x 104) and isotropic displacementparameters (Å2 x 103) for PD1

Atoms x y z UisoH1 9961 8156 1244 65H4 10255 9231 -2262 59H5 11734 9231 -3728 73H6 13096 8734 -3539 75H7 12978 8219 -1932 71H9A 8213 8697 119 49H9B 8715 9057 -622 49H11 8474 9573 2510 42H12 6811 9128 3319 46H13 7664 8584 2596 46H14 8738 8578 5822 52H15 6945 8369 6359 65H18 10722 8259 5342 83H19 12383 7949 4852 93H21 10312 7087 2950 119H22 8642 7413 3281 107H23A 14164 7267 3445 158H23B 13853 7559 4674 158H23C 13475 7646 2881 158H25 5881 8082 2445 80H26 4118 8263 876 96H27 3024 8766 1571 96H28 3645 9057 3958 96H29 5386 8874 5591 82H31 7989 9862 -2 56H32 6561 10016 -2139 65H34 4507 9161 -1153 70H35 5969 8995 973 60H37A 11137 9966 -2 122H37B 11957 9628 749 122H37C 11476 9927 1823 122H1A 11659 7948 197 66H2 9983 8644 3403 48

Page 37: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

148

Table 4.9 Hydrogen atom coordinates (x 104) and isotropic displacementparameters (Å2 x 103) for PD2

Atoms x y z UisoH1 3372 2435 3914 54H4 6465 6488 3504 56H5 8838 7347 4320 74H6 9802 6335 5289 80H7 8402 4400 5465 71H9A 3665 5194 2999 41H9B 2457 4079 3260 41H11 1957 4033 630 40H12 -490 2678 1139 40H13 732 2268 2468 38H14 309 299 1137 43H15 -2101 -532 1159 55H18 2685 256 1952 47H19 4434 -337 2610 52H21 2533 -1250 4826 65H22 796 -645 4185 61H23A 6198 -1683 4029 121H23B 6208 -564 3585 121H23C 5137 -1838 3048 121H25 -1276 1389 3365 55H26 -2388 2582 3696 67H27 -4052 2774 2495 73H28 -4591 1752 953 74H29 -3517 531 632 64H31 3 3906 2472 57H32 -731 5307 2957 80H33 62 7101 2406 101H34 1564 7477 1333 93H37A 6678 6708 1491 115H37B 6014 5664 623 115H37C 6950 5570 1577 115H1A 5602 2674 4921 60H2 2943 2039 1976 41

Page 38: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

149

Table 4.10 Hydrogen atom coordinates (x 104) and isotropic displacementparameters (Å2 x 103) for PD3

Atoms x y z Uiso

H3 -535 3440 527 44

H4A -46 5282 358 52

H4B -868 5868 685 52

H7 1375 5215 2515 70

H8 2959 3885 2476 80

H9 3434 2972 1888 73

H10 2295 3301 1324 55

H12A -1860 4087 1591 45

H12B -2371 3133 1291 45

H16 -2092 2538 224 48

H17 -4061 2395 41 53

H19 -4829 5242 702 55

H20 -2848 5395 879 56

H21A -6672 4262 702 89

H21B -7469 4068 324 89

H21C -6575 5139 341 89

H22A -1135 7077 2077 88

H22B 48 6945 2322 88

H22C -1011 6058 2393 88

H23A 928 1050 1816 95

H23B 795 491 1391 95

H23C -193 274 1713 95

H24A 752 6924 1031 81

H24B 1609 6532 686 81

H24C 1934 6240 1129 81

Page 39: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

150

Table 4.11 Bond lengths (Å) for non-hydrogen atoms of PD1 and PD2

Atoms PD1 PD2C1-C2 1.351(4) 1.358(5)C1-N1 1.370(4) 1.369(4)C2-C3 1.419(3) 1.431(5)C2-C9 1.500(3) 1.501(4)C3-C4 1.398(4) 1.408(5)C3-C8 1.410(3) 1.417(4)C4-C5 1.371(4) 1.371(5)C5-C6 1.399(5) 1.390(7)C6-C7 1.359(5) 1.377(7)C7-C8 1.391(4) 1.383(5)C8-N1 1.357(4) 1.362(5)C9-C10 1.540(3) 1.553(4)C10-N2 1.458(3) 1.459(4)C10-C36 1.529(3) 1.531(4)C10-C11 1.600(3) 1.603(3)C11-C30 1.511(3) 1.511(4)C11-C12 1.532(3) 1.538(5)C12-N3 1.505(3) 1.511(4)C12-C13 1.544(3) 1.558(4)C13-N2 1.453(3) 1.451(4)C13-C14 1.508(3) 1.503(4)C14-N4 1.465(3) 1.478(4)C14-C15 1.576(4) 1.581(4)C15-C24 1.498(4) 1.507(4)C15-C16 1.529(5) 1.523(5)C16-O5 1.202(4) 1.206(5)C16-N4 1.350(4) 1.365(4)C17-C18 1.374(5) 1.384(5)C17-C22 1.393(5) 1.383(5)C17-N4 1.408(4) 1.418(4)C18-C19 1.377(5) 1.382(4)C19-C20 1.364(5) 1.368(5)C20-O6 1.371(5) 1.380(4)C20-C21 1.397(7) 1.383(5)

contd...

Page 40: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

151

Table 4.11 contd…

C21-C22 1.364(6) 1.375(5)

C23-O6 1.420(6) 1.417(5)

C24-C25 1.393(4) 1.378(5)

C24-C29 1.393(5) 1.392(4)

C25-C26 1.379(5) 1.380(5)

C26-C27 1.366(6) 1.376(5)

C27-C28 1.369(6) 1.384(6)

C28-C29 1.384(5) 1.373(5)

C30-C35 1.381(3) 1.385(5)

C30-C31 1.388(3) 1.395(5)

C31-C32 1.369(4) 1.374(5)

C32-C33 1.366(4) 1.365(8)

C33-C34 1.363(4) 1.374(8)

C33-Br1 1.895(3) -

C34-C35 1.390(4) 1.402(6)

C35-Cl1 - 1.730(5)

C36-O1 1.180(3) 1.197(4)

C36-O2 1.325(3) 1.319(4)

C37-O2 1.458(3) 1.454(4)

N3-O3 1.210(3) 1.215(4)

N3-O4 1.218(3) 1.208(4)

Page 41: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

152

Table 4.12 Bond lengths (Å) for non-hydrogen atoms of PD3

Atoms Distance Atoms DistanceC1-N2 1.452(2) C10-C11 1.377(2)

C1-C11 1.511(2) C12-C13 1.495(3)

C1-C5 1.555(2) C13-O3 1.206(2)

C1-C2 1.577(2) C13-N3 1.377(2)

C2-C14 1.528(2) C14-O2 1.202(2)

C2-C12 1.541(2) C14-N3 1.379(2)

C2-C3 1.564(2) C15-C20 1.382(2)

C3-C15 1.509(2) C15-C16 1.387(2)

C3-C4 1.524(3) C16-C17 1.377(3)

C5-O1 1.213(2) C17-C18 1.380(3)

C5-N1 1.357(2) C18-O4 1.363(2)

C6-C7 1.379(3) C18-C19 1.371(3)

C6-C11 1.383(3) C19-C20 1.386(3)

C6-N1 1.402(2) C21-O4 1.417(2)

C7-C8 1.384(3) C22-N1 1.453(2)

C8-C9 1.374(3) C23-N3 1.449(2)

C9-C10 1.382(3) C24-N2 1.457(2)

Page 42: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

153

Table 4.13 Bond angles (°) for non-hydrogen atoms of PD1 and PD2

Atoms PD1 PD2C2-C1-N1 110.1(2) 110.6(3)C1-C2-C3 106.7(2) 106.0(3)C1-C2-C9 126.7(2) 126.1(3)C3-C2-C9 126.6(2) 127.9(3)C4-C3-C8 118.6(2) 118.1(3)C4-C3-C2 134.5(2) 134.6(3)C8-C3-C2 106.9(2) 107.3(3)C5-C4-C3 119.2(3) 118.9(4)C4-C5-C6 121.1(3) 121.8(4)C7-C6-C5 121.2(2) 121.1(4)C6-C7-C8 118.2(3) 117.7(3)N1-C8-C7 130.8(2) 130.5(3)N1-C8-C3 107.4(2) 107.0(3)C7-C8-C3 121.8(3) 122.5(4)C2-C9-C10 112.2(2) 112.3(2)N2-C10-C36 108.4(2) 108.6(2)N2-C10-C9 109.7(2) 109.8(2)C36-C10-C9 109.7(2) 110.0(2)N2-C10-C11 106.1(2) 105.2(2)C36-C10-C11 109.4(2) 108.7(2)C9-C10-C11 113.5(2) 114.2(2)C30-C11-C12 114.3(2) 111.5(2)C30-C11-C10 115.9(2) 117.8(2)C12-C11-C10 103.6(2) 103.5(2)N3-C12-C11 111.6(2) 113.1(3)N3-C12-C13 109.0(2) 106.7(2)C11-C12-C13 103.7(2) 103.8(2)N2-C13-C14 113.3(2) 113.7(2)N2-C13-C12 104.5(2) 103.5(2)C14-C13-C12 118.4(2) 117.3(2)N4-C14-C13 114.1(2) 115.3(3)N4-C14-C15 87.0(2) 87.1(2)C13-C14-C15 116.6(2) 117.8(2)C24-C15-C16 115.9(2) 116.4(3)

contd…

Page 43: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

154

Table 4.13 contd…C24-C15-C14 120.7(2) 119.7(3)C16-C15-C14 84.4(2) 84.6(2)O5-C16-N4 131.8(4) 132.5(3)O5-C16-C15 135.1(3) 133.9(3)N4-C16-C15 93.1(2) 93.6(3)C18-C17-C22 118.0(3) 119.3(3)C18-C17-N4 122.2(3) 121.8(3)C22-C17-N4 119.8(3) 118.8(3)C17-C18-C19 122.1(3) 120.2(3)C20-C19-C18 120.4(4) 120.1(3)C19-C20-O6 125.6(4) 124.7(3)C19-C20-C21 117.6(4) 119.7(3)O6-C20-C21 116.8(3) 115.6(3)C22-C21-C20 122.3(3) 120.4(3)C21-C22-C17 119.5(4) 120.0(3)C25-C24-C29 117.3(3) 118.1(3)C25-C24-C15 121.5(3) 121.7(3)C29-C24-C15 121.2(3) 120.3(3)C24-C25-C26 121.2(3) 121.1(3)C27-C26-C25 121.1(3) 120.4(4)C26-C27-C28 118.4(4) 119.1(3)C29-C28-C27 121.7(4) 120.3(3)C28-C29-C24 120.3(3) 121.0(4)C35-C30-C31 117.5(2) 117.5(3)C35-C30-C11 124.2(2) 121.3(3)C31-C30-C11 118.3(2) 121.2(3)C32-C31-C30 121.4(2) 121.9(4)C33-C32-C31 119.9(2) 120.2(5)C34-C33-C32 120.7(3) 119.7(4)C34-C33-Br1 120.6(2) -C32-C33-Br1 118.8(2) -C33-C34-C35 119.3(2) 120.4(4)C30-C35-C34 121.3(2) 120.3(4)C30-C35-Cl1 - 122.1(3)O1-C36-O2 124.4(2) 125.4(3)

contd…

Page 44: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

155

Table 4.13 contd…

O1-C36-C10 125.0(2) 123.6(3)

O2-C36-C10 110.6(2) 111.0(3)

C8-N1-C1 108.9(2) 109.2(3)

C13-N2-C10 106.1(2) 105.6(2)

O3-N3-O4 124.1(2) 123.6(3)

O3-N3-C12 117.0(2) 119.5(3)

O4-N3-C12 118.8(2) 116.9(3)

C16-N4-C17 130.8(2) 128.4(3)

C16-N4-C14 95.5(2) 94.5(3)

C17-N4-C14 133.2(2) 132.7(3)

C36-O2-C37 116.1(3) 116.4(3)

C20-O6-C23 116.9(3) 116.9(3)

Page 45: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

156

Table 4.14 Bond angles (°) for non-hydrogen atoms of PD3

Atoms Angle Atoms Angle

N2-C1-C11 114.6(1) C13-C12-C2 104.7(1)

N2-C1-C5 113.1(1) O3-C13-N3 124.3(2)

C11-C1-C5 100.8(1) O3-C13-C12 128.2(2)

N2-C1-C2 102.4(1) N3-C13-C12 107.5(2)

C11-C1-C2 116.3(1) O2-C14-N3 123.7(2)

C5-C1-C2 110.0(1) O2-C14-C2 127.6(2)

C14-C2-C12 101.1(1) N3-C14-C2 108.7(2)

C14-C2-C3 109.1(1) C20-C15-C16 117.4(2)

C12-C2-C3 120.2(1) C20-C15-C3 123.3(2)

C14-C2-C1 108.7(1) C16-C15-C3 119.3(2)

C12-C2-C1 113.2(1) C17-C16-C15 121.3(2)

C3-C2-C1 104.2(1) C16-C17-C18 120.3(2)

C15-C3-C4 115.6(2) O4-C18-C19 124.6(2)

C15-C3-C2 116.4(1) O4-C18-C17 116.0(2)

C4-C3-C2 104.4(1) C19-C18-C17 119.4(2)

N2-C4-C3 103.7(1) C18-C19-C20 119.8(2)

O1-C5-N1 126.6(2) C15-C20-C19 121.7(2)

N1-C5-C1 108.6(2) C5-N1-C6 111.0(2)

C7-C6-C11 122.2(2) C5-N1-C22 123.9(2)

C7-C6-N1 127.7(2) C6-N1-C22 125.1(2)

C11-C6-N1 110.0(2) C1-N2-C24 115.2(2)

C6-C7-C8 117.1(2) C1-N2-C4 106.5(1)

C9-C8-C7 121.5(2) C24-N2-C4 113.8(2)

C8-C9-C10 120.6(2) C13-N3-C14 112.4(2)

C11-C10-C9 119.0(2) C13-N3-C23 123.8(2)

C10-C11-C6 119.6(2) C14-N3-C23 123.7(2)

C10-C11-C1 131.1(2) C18-O4-C21 118.3(2)

C6-C11-C1 109.3(2)

Page 46: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

157

Table 4.15 Torsion angles (°) for non-hydrogen atoms of PD1

Atoms Angle Atoms Angle

N1-C1-C2-C3 0.1(3) C10-C11-C12-C13 -18.3(2)

N1-C1-C2-C9 -179.8(2) N3-C12-C13-N2 -82.7(2)

C1-C2-C3-C4 -179.9(3) C11-C12-C13-N2 36.4(2)

C9-C2-C3-C4 0.0(4) N3-C12-C13-C14 44.5(3)

C1-C2-C3-C8 0.0(3) C11-C12-C13-C14 163.6(2)

C9-C2-C3-C8 179.9(2) N2-C13-C14-N4 -68.2(3)

C8-C3-C4-C5 0.0(4) C12-C13-C14-N4 169.0(2)

C2-C3-C4-C5 179.9(3) N2-C13-C14-C15 -167.4(2)

C3-C4-C5-C6 -0.4(4) C12-C13-C14-C15 69.8(3)

C4-C5-C6-C7 0.8(5) N4-C14-C15-C24 -116.5(3)

C5-C6-C7-C8 -0.8(4) C13-C14-C15-C24 -1.0(4)

C6-C7-C8-N1 -179.4(3) N4-C14-C15-C16 0.3(2)

C6-C7-C8-C3 0.4(4) C13-C14-C15-C16 115.8(2)

C4-C3-C8-N1 179.9(2) C24-C15-C16-O5 -57.5(5)

C2-C3-C8-N1 -0.1(3) C14-C15-C16-O5 -178.9(4)

C4-C3-C8-C7 0.0(4) C24-C15-C16-N4 121.1(2)

C2-C3-C8-C7 -179.9(2) C14-C15-C16-N4 -0.3(2)

C1-C2-C9-C10 72.9(3) C22-C17-C18-C19 -1.0(5)

C3-C2-C9-C10 -107.0(3) N4-C17-C18-C19 -179.1(3)

C2-C9-C10-N2 -65.0(2) C17-C18-C19-C20 -2.8(6)

C2-C9-C10-C36 53.9(2) C18-C19-C20-O6 -178.0(4)

C2-C9-C10-C11 176.6 (2) C18-C19-C20-C21 4.1(6)

N2-C10-C11-C30 -131.2(2) C19-C20-C21-C22 -1.8(7)

C36-C10-C11-C30 112.1(2) O6-C20-C21-C22 -179.9(4)

C9-C10-C11-C30 -10.8(2) C20-C21-C22-C17 -1.9(7)

N2-C10-C11-C12 -5.2(2) C18-C17-C22-C21 3.2(6)

C36-C10-C11-C12 -121.9(2) N4-C17-C22-C21 -178.6(4)

C9-C10-C11-C12 115.2(2) C16-C15-C24-C25 -21.8(3)

C30-C11-C12-N3 -134.0(2) C14-C15-C24-C25 77.4(3)

C10-C11-C12-N3 99.0(2) C16-C15-C24-C29 160.5(3)

C30-C11-C12-C13 108.8(2) C14-C15-C24-C29 -100.3(3)

contd…

Page 47: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

158

Table 4.15 contd…

C29-C24-C25-C26 -1.5(4) C7-C8-N1-C1 79.9(3)

C15-C24-C25-C26 -179.3(3) C3-C8-N1-C1 0.1(3)

C24-C25-C26-C27 2.4(5) C2-C1-N1-C8 -0.1(3)

C25-C26-C27-C28 -2.3(6) C14-C13-N2-C10 -171.0(2)

C26-C27-C28-C29 1.5(6) C12-C13-N2-C10 -40.8(2)

C27-C28-C29-C24 -0.8(5) C36-C10-N2-C13 145.9(2)

C25-C24-C29-C28 0.7(4) C9-C10-N2-C13 -94.4(2)

C15-C24-C29-C28 178.5(3) C11-C10-N2-C13 28.5(2)

C12-C11-C30-C35 -26.5(3) C11-C12-N3-O3 161.8(2)

C10-C11-C30-C35 93.9(3) C13-C12-N3-O3 -84.1(3)

C12-C11-C30-C31 152.7(2) C11-C12-N3-O4 -21.0(3)

C10-C11-C30-C31 -86.9(3) C13-C12-N3-O4 93.0(2)

C35-C30-C31-C32 0.0(4) O5-C16-N4-C17 -8.2(6)

C11-C30-C31-C32 -179.3(2) C15-C16-N4-C17 173.2(3)

C30-C31-C32-C33 1.1(4) O5-C16-N4-C14 179.0(4)

C31-C32-C33-C34 -1.4(5) C15-C16-N4-C14 0.4(2)

C31-C32-C33-Br1 79.2(2) C18-C17-N4-C16 -147.7(3)

C32-C33-C34-C35 0.6(5) C22-C17-N4-C16 34.2(5)

Br1-C33-C34-C35 79.9(2) C18-C17-N4-C14 22.5(5)

C31-C30-C35-C34 -0.8(4) C22-C17-N4-C14 -155.6(3)

C11-C30-C35-C34 178.4(3) C13-C14-N4-C16 -118.3(2)

C33-C34-C35-C30 0.6(5) C15-C14-N4-C16 -0.3(2)

N2-C10-C36-O1 -2.4(3) C13-C14-N4-C17 69.2(4)

C9-C10-C36-O1 -122.1(3) C15-C14-N4-C17 -172.9(3)

C11-C10-C36-O1 112.8(3) O1-C36-O2-C37 1.6(4)

N2-C10-C36-O2 178.1(2) C10-C36-O2-C37 -178.9(3)

C9-C10-C36-O2 58.4(2) C19-C20-O6-C23 -17.0(6)

C11-C10-C36-O2 -66.7(2) C21-C20-O6-C23 161.0(4)

Page 48: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

159

Table 4.16 Torsion angles (°) for non-hydrogen atoms of PD2

Atoms Angle Atoms Angle

N1-C1-C2-C3 0.6(4) N3-C12-C13-N2 84.1(3)

N1-C1-C2-C9 -178.0(3) C11-C12-C13-N2 -35.6(3)C1-C2-C3-C4 -178.8(3) N3-C12-C13-C14 -42.0(3)

C9-C2-C3-C4 -0.3(6) C11-C12-C13-C14 -161.7(2)C1-C2-C3-C8 -0.5(4) N2-C13-C14-N4 72.2(3)

C9-C2-C3-C8 178.1(3) C12-C13-C14-N4 -166.9(2)C8-C3-C4-C5 -0.3(5) N2-C13-C14-C15 172.8(3)

C2-C3-C4-C5 177.9(4) C12-C13-C14-C15 -66.3(4)C3-C4-C5-C6 0.6(6) N4-C14-C15-C24 113.5(3)

C4-C5-C6-C7 0.1(7) C13-C14-C15-C24 -3.7(5)C5-C6-C7-C8 -1.2(6) N4-C14-C15-C16 -3.9(3)

C6-C7-C8-N1 -178.1(4) C13-C14-C15-C16 -121.1(3)C6-C7-C8-C3 1.5(5) C24-C15-C16-O5 63.8(6)

C4-C3-C8-N1 178.9(3) C14-C15-C16-O5 -175.6(5)C2-C3-C8-N1 0.2(3) C24-C15-C16-N4 -116.3(3)

C4-C3-C8-C7 -0.7(5) C14-C15-C16-N4 4.2(3)C2-C3-C8-C7 -179.4(3) C22-C17-C18-C19 2.4(5)

C1-C2-C9-C10 -76.9(4) N4-C17-C18-C19 -174.1(3)C3-C2-C9-C10 104.8(4) C17-C18-C19-C20 0.8(6)

C2-C9-C10-N2 58.5(3) C18-C19-C20-O6 176.6(4)C2-C9-C10-C36 -61.0(3) C18-C19-C20-C21 -3.5(6)

C2-C9-C10-C11 176.5(2) C19-C20-C21-C22 3.2(6)N2-C10-C11-C30 134.8(3) O6-C20-C21-C22 -176.9(4)

C36-C10-C11-C30 -109.0(3) C20-C21-C22-C17 -0.1(7)C9-C10-C11-C30 14.2(4) C18-C17-C22-C21 -2.7(6)

N2-C10-C11-C12 11.2(3) N4-C17-C22-C21 173.9(4)C36-C10-C11-C12 127.4(3) C16-C15-C24-C25 29.9(5)

C9-C10-C11-C12 -109.4(3) C14-C15-C24-C25 -69.4(5)C30-C11-C12-N3 131.4(2) C16-C15-C24-C29 -150.9(3)

C10-C11-C12-N3 -101.0(2) C14-C15-C24-C29 109.9(4)C30-C11-C12-C13 -113.4(3) C29-C24-C25-C26 -0.2(5)

contd…

Page 49: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

160

Table 4.16 contd…

C10-C11-C12-C13 14.3(3) C15-C24-C25-C26 179.1(3)

C24-C25-C26-C27 -0.3(6) C3-C8-N1-C1 0.1(4)

C25-C26-C27-C28 0.1(6) C2-C1-N1-C8 -0.4(4)

C26-C27-C28-C29 0.6(6) C14-C13-N2-C10 172.5(2)

C27-C28-C29-C24 -1.1(6) C12-C13-N2-C10 44.1(3)

C25-C24-C29-C28 0.9(6) C36-C10-N2-C13 -150.8(2)

C15-C24-C29-C28 -178.4(4) C9-C10-N2-C13 88.8(2)

C12-C11-C30-C35 -138.3(3) C11-C10-N2-C13 -34.6(3)

C10-C11-C30-C35 102.2(3) C11-C12-N3-O4 -157.2(3)

C12-C11-C30-C31 39.4(4) C13-C12-N3-O4 89.3(3)

C10-C11-C30-C31 -80.1(4) C11-C12-N3-O3 25.3(4)

C35-C30-C31-C32 -0.5(5) C13-C12-N3-O3 -88.2(3)

C11-C30-C31-C32 -178.3(3) O5-C16-N4-C17 16.9(7)

C30-C31-C32-C33 -0.7(6) C15-C16-N4-C17 -163.0(3)

C31-C32-C33-C34 0.8(7) O5-C16-N4-C14 175.3(5)

C32-C33-C34-C35 0.3(7) C15-C16-N4-C14 -4.5(3)

C31-C30-C35-C34 1.6(5) C22-C17-N4-C16 -36.5(5)

C11-C30-C35-C34 179.4(3) C18-C17-N4-C16 140.0(4)

C31-C30-C35-Cl1 -176.2(2) C22-C17-N4-C14 173.4(3)

C11-C30-C35-Cl1 1.6(5) C18-C17-N4-C14 0.1(6)

C33-C34-C35-C30 -1.5(6) C13-C14-N4-C16 123.8(3)

C33-C34-C35-Cl1 176.4(4) C15-C14-N4-C16 4.4(3)

N2-C10-C36-O1 16.0(4) C13-C14-N4-C17 -79.3(4)

C9-C10-C36-O1 136.2(3) C15-C14-N4-C17 161.3(4)

C11-C10-C36-O1 -98.0(3) O1-C36-O2-C37 -1.3(5)

N2-C10-C36-O2 -165.9(2) C10-C36-O2-C37 -179.4(3)

C9-C10-C36-O2 -45.6(3) C19-C20-O6-C23 -4.1(6)

C11-C10-C36-O2 80.1(3) C21-C20-O6-C23 176.0(4)

C7-C8-N1-C1 179.7(4)

Page 50: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

161

Table 4.17 Torsion angles (°) for non-hydrogen atoms of PD3

Atoms Angle Atoms AngleN2-C1-C2-C14 93.5(2) C3-C2-C14-O2 35.9(2)C11-C1-C2-C14 -32.3(2) C1-C2-C14-O2 -77.1(2)C5-C1-C2-C14 -146.0(1) C12-C2-C14-N3 -17.9(2)N2-C1-C2-C12 -155.1(1) C3-C2-C14-N3 -145.6(1)C11-C1-C2-C12 79.2(2) C1-C2-C14-N3 101.4(2)C5-C1-C2-C12 -34.6(2) C4-C3-C15-C20 -52.9(2)N2-C1-C2-C3 -22.8(2) C2-C3-C15-C20 70.3(2)C11-C1-C2-C3 -148.5(1) C4-C3-C15-C16 127.2(2)C5-C1-C2-C3 97.7(2) C2-C3-C15-C16 -109.7(2)C14-C2-C3-C15 113.0(2) C20-C15-C16-C17 -1.2(3)C12-C2-C3-C15 -2.9(2) C3-C15-C16-C17 178.8(2)C1-C2-C3-C15 -131.1(2) C15-C16-C17-C18 -0.7(3)C14-C2-C3-C4 -118.3(2) C16-C17-C18-O4 -178.0(2)C12-C2-C3-C4 125.8(2) C16-C17-C18-C19 2.2(3)C1-C2-C3-C4 -2.4(2) O4-C18-C19-C20 178.4(2)C15-C3-C4-N2 156.0(1) C17-C18-C19-C20 -1.8(3)C2-C3-C4-N2 26.7(2) C16-C15-C20-C19 1.6(3)N2-C1-C5-O1 52.8(2) C3-C15-C20-C19 -178.4(2)C11-C1-C5-O1 175.7(2) C18-C19-C20-C15 -0.1(3)C2-C1-C5-O1 -61.0(2) O1-C5-N1-C6 -177.5(2)N2-C1-C5-N1 -126.6(2) C1-C5-N1-C6 2.0(2)C11-C1-C5-N1 -3.7(2) O1-C5-N1-C22 0.8(3)C2-C1-C5-N1 119.6(2) C1-C5-N1-C22 -179.8(2)C11-C6-C7-C8 0.0(3) C7-C6-N1-C5 -179.8(2)N1-C6-C7-C8 -179.1(2) C11-C6-N1-C5 0.9(2)C6-C7-C8-C9 2.0(4) C7-C6-N1-C22 2.0(3)C7-C8-C9-C10 -1.5(4) C11-C6-N1-C22 -177.3(2)C8-C9-C10-C11 -1.1(3) C11-C1-N2-C24 -64.5(2)C9-C10-C11-C6 3.1(3) C5-C1-N2-C24 50.3(2)C9-C10-C11-C1 176.7(2) C2-C1-N2-C24 168.6(1)C7-C6-C11-C10 -2.6(3) C11-C1-N2-C4 168.3(2)N1-C6-C11-C10 176.7(2) C5-C1-N2-C4 -76.9(2)C7-C6-C11-C1 177.2(2) C2-C1-N2-C4 41.5(2)N1-C6-C11-C1 -3.5(2) C3-C4-N2-C1 -43.9(2)N2-C1-C11-C10 -54.1(3) C3-C4-N2-C24 -171.9(2)C5-C1-C11-C10 -175.9(2) O3-C13-N3-C14 -170.6(2)C2-C1-C11-C10 65.2(2) C12-C13-N3-C14 10.2(2)N2-C1-C11-C6 126.1(2) O3-C13-N3-C23 5.3(3)C5-C1-C11-C6 4.3(2) C12-C13-N3-C23 -174.0(2)C2-C1-C11-C6 -114.6(2) O2-C14-N3-C13 -175.9(2)C14-C2-C12-C13 22.9(2) C2-C14-N3-C13 5.5(2)C3-C2-C12-C13 143.0(2) O2-C14-N3-C23 8.3(3)C1-C2-C12-C13 -93.1(2) C2-C14-N3-C23 -170.30(2)C2-C12-C13-O3 159.5(2) C19-C18-O4-C21 -5.5(3)C2-C12-C13-N3 -21.2(2) C17-C18-O4-C21 174.7(2)C12-C2-C14-O2 163.6(2)

Page 51: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

162

Table 4.18 Mean planes through various groups of atoms and deviations(Å) from the planes for PD1

The equation of the plane is m1X+m2Y+m3Z-D=0, where m1, m2 and D are constants

Plane m1 m2 m3 D Atoms Deviation

1 -0.2304(17) 0.0830(16) -0.9696(4) -3.58(5) N4C14C15C16

0.002(2)-0.002(3)0.002(3)

-0.003(3)

2 0.6110(11) 0.6589(12) -0.4388(14) 21.47(3) C24C25C26C27C28C29

-0.002(3)0.007(4)

-0.012(4)0.007(4)

-0.002(4)0.001(4)

3 0.0638(11) 0.4278(14) -0.9016(7) 8.97(5) C17C18C19C20C21C22O6C23

0.013(3)-0.024(3)-0.024(4)-0.044(4)0.026(5)0.073(5)

-0.085(3)0.260(6)

4 -0.4781(5) -0.4737(6) -0.7397(4) -19.581(17) N1C1C2C3C4C5C6C7C8C9

-0.001(2)-0.000(3)0.001(2)0.002(2)0.002(3)0.001(3)

-0.007(3)0.002(3)0.002(3)

-0.002(2)

5 0.5411(8) - 0.6095(9) -0.5795(4) -16.01(4) C30C31C32C33C34C35

-0.007(2)-0.003(3)0.013(3)0.001(3)0.003(3)0.005(3)

contd…

Page 52: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

163

Table 4.18 contd…

Plane m1 m2 m3 D Atoms Deviation

6 -0.5256(9) -0.5810(10) -0.6214(12) -24.67(3) C10C11C12N2C13*

0.031(2)-0.031(2)0.023(2)

-0.017(2)0.573(2)

7 -0.5185(17) 0.827(2) -0.216(5) 21.52(10) N3O3O4

0.000(2)0.000(3)0.000(2)

* indicates atoms not included in plane calculation

Dihedral angles (°)

Plane Plane Angle (s.u.)111112222333445

234573457457577

70.16(13)28.32(13)38.01(11)62.82(7)66.6(3)

42.32(11)73.79(9)79.44(8)

71.15(16)64.29(8)72.77(9)59.0(3)

62.70(5)89.2 (2)48.7(3)

Page 53: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

164

Table 4.19 Mean planes through various groups of atoms and deviations(Å) from the planes for PD2

The equation of the plane is m1X+m2Y+m3Z-D=0, where m1, m2 and D are constants

Plane m1 m2 m3 D Atoms Deviation

1 0.352(2) -0.700(2) -0.622(2) -1.975(6) N4C14C15C16

-0.020(3)0.023(3)

-0.028(4)0.038(4)

2 0.5175(15) 0.8190(10) -0.2479(17) -1.925(9) C24C25C26C27C28C29

0.002(4)0.001(4)

-0.003(4)0.000(5)0.005(5)

-0.006(4)

3 -0.1297(15) -0.8527(8) -0.5060(14) -1.526(8) C17C18C19C20C21C22

0.017(3)-0.007(4)-0.012(4)0.022(4)

-0.012(4)-0.014(4)

4 0.5688(9) -0.2411(10) -0.7864(8) -3.976(6) N1C1C2C3C4C5C6C7C8

-0.005(3)-0.007(4)-0.005(3)0.014(3)0.004(4)

-0.016(5)-0.014(5)0.011(4)0.009(4)

5 -0.5876(16) -0.2712(19) -0.7623(12) -2.147(13) C30C31C32C33C34C35

-0.004(3)0.000(4)0.006(5)

-0.006(6)-0.008(6)0.009(4)

contd…

Page 54: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

165

Table 4.19 contd...

Plane m1 m2 m3 D Atoms Deviation

6 0.5454(12) -0.019(2) -0.8380(8) -1.886(7) C10C11C12N2C13*

-0.068(3)0.070(3)

-0.046(3)0.035(3)

-0.599(3)

7 -0.484(3) 0.715(3) -0.504(6) 1.873(7) N3O3O4

0.000(3)0.000(3)0.000(3)

* indicates atoms not included in plane calculation

Dihedral angles (°)

Plane Plane Angle (s.u.)

1

1

1

1

1

2

2

2

2

3

3

3

4

4

5

2

3

4

5

7

3

4

5

7

4

5

7

5

7

7

76.30(14)

30.04(14)

30.93(12)

62.79(16)

69.1(3)

50.21(12)

73.03(10)

70.29(14)

62.61(19)

58.02(10)

46.11(14)

73.0(3)

70.69(10)

87.1(3)

61.6(3)

Page 55: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

166

Table 4.20 Mean planes through various groups of atoms and deviations(Å) from the planes for PD3

The equation of the plane is m1X+m2Y+m3Z-D=0, where m1, m2 and D are constants

Plane m1 m2 m3 D Atoms Deviation

1 0.8079(7) -0.4918(11) -0.3248(8) -3.856(5) C1C2C3C4N2*

0.009(2)-0.012(2)0.015(2)

-0.012(2) 0.590

2 -0.6911(9) -0.4628(9) -0.5552(8) -3.519(5) C2C13N3C14C12*

-0.014(2)0.023(2)

-0.026(2)0.028(2)0.369(2)

3 0.1455(4) 0.5980(6) -0.7882(5) 0.804 (4) C15C16C17C18C19C20O4C21

-0.032(2)-0.018(2)0.016(2)0.023(2)0.042(2)0.015(2)0.015(1)

-0.095(2)

4 0.5911(3) 0.7545(3) -0.2851(5) 2.957(4) N1C6C7C8C9C10C11C1C5

0.019(2)-0.009(2)-0.027(2)-0.035(3)0.016(2)0.045(2)

-0.000(2)-0.050(9)0.025(2)

* indicates atoms not included in plane calculation

contd…

Page 56: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

167

Table 4.20 contd…

Dihedral angles (°)

Plane Plane Angle (s.u.)

1

1

1

2

2

3

2

3

4

3

4

4

81.35(7)

85.45(6)

78.52(6)

86.54(6)

53.17(6)

40.36(4)

Table 4.21 Hydrogen bonding and non-bonded interactions (Å, °) for PD1

Interactions D-H H…A D…A D- H…A

C11-H11...O4 0.98 2.27 2.717(3) 107

C4-H4...O4i 0.93 2.57 3.186(3) 124

C31-H31...O4ii 0.93 2.55 3.399(3) 152

N1-H1A...O5iii 0.86 2.02 2.820(3) 155

C23-H23A...N1v 0.96 2.92 3.721(6) 142

C18-H18...Cg1iv 0.93 2.80 3.641(4) 151

Symmetry Code:

(i) x, y, -1+z

(ii) x, 2-y, -1/2+z

(iii) 1/2+x, 3/2-y, -1/2+z

(iv) x, y, 1+z

(v) 1/2+x, 3/2-y, 1/2+z

Cg1 is the centroid of C3-C8 ring

Page 57: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

168

Table 4.22 Hydrogen bonding geometry (Å, °) for PD2

Interactions D-H H…A D…A D- H…A

C11-H11…O3 0.98 2.37 2.786(4) 105

C22-H22…O5 0.93 2.59 3.080(6) 113

C11-H11…C11 0.98 2.57 3.095(4) 114

N1-H1A…O6i 0.86 2.14 2.982(5) 167

C34-H34…O4ii 0.93 2.59 3.414(6) 148

C14-H14…O4iii 0.98 2.53 3.443(5) 154

Symmetry Code:

(i) 1-x, -y, 1-z(ii) -x, 1-y, -z(iii) -x, -y, -z

Table 4.23 Hydrogen bonding and non-bonded interactions (Å, °) for PD3

Interactions D-H H…A D…A D- H…A

C3-H3…O2 0.98 2.40 2.917(2) 112

C4-H4B…O1 0 .97 2.48 3.049(2) 118

C10-H10…O2 0.93 2.52 3.121(2) 123

C12-H12A…O1 0 .97 2.58 3.222(2) 124

C20-H20…O1 0.93 2.56 3.400(2) 150

C23-H23B…O2 0.96 2.52 2.861(3) 101

C19-H19…O2i 0.93 2.55 3.440(2) 162

C16-H16…O4ii 0.93 2.50 3.394(2) 161

C12-H12B…O1iii 0.97 2.56 3.264(2) 129

C21-H21C...Cg1iv 0.96 2.93 3.592(2) 127

Symmetry Code:

(i) -1/2-x, 1/2+y, z(ii) 1/2+x, 1/2-y, -z(iii) -1/2-x, -1/2+y, z(iv) 1-x, 1-y, -z

Cg1 is the centroid of C15-C20 ring

Page 58: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

169

Table 4.24 Comparative study of conformational parameters of PD1 and PD2 with other related molecules

Structure Crystal system andspace group

Conformationof pyrrolidine

ring

Dihedral angle betweenphenyl rings bridged by

β-lactam

Sum of bond angles atβ-lactam N4 (°) and

hybridization Packing due to

PD1 Monoclinic, Cc Envelope 38.01(11) 359.5, sp2 Intermolecular C-H…O, N-H…O and C-H…π interactions.

PD2 Triclinic, P1 Twist 30.9(1) 355.6, sp2 Intermolecular C-H…O, N-H…O and π…π interactions.

PD4* Triclinic, P1 Twist - 359.9, sp2 Weak intermolecular C-H…Ointeractions.

PD5* Triclinic, P1 Twist 56.1(1) 359.9, sp2 Weak intermolecular C-H…Oand N-H…O interactions.

* indicates related literature

PD1, PD2 - Present Study

PD4* - Methyl 2-benzyl-5-[1-(4-methoxyphenyl)-4-oxo-3-phenylazetidin-2-yl]-4- nitro- 3-phenylpyrrolidine-2-carboxylate [127]

PD5* - 1-N-methyl-2 [1'-N-(p-methoxyphenyl)-3'-phenyl azetidine-2'-one]-3-(p-methoxy benzoyl) spiro[4.4"]- oxindole- pyrrolidine [124]

169

Page 59: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

170

Table 4.25 Crystal data and other relevant details for PP1

Compound Code PP1Empirical formula C20H23BrN2O2SFormula weight 435.37Temperature (K) 293(2)Wavelength (λ) 0.71073 ÅCrystal system OrthorhombicSpace group Pna21

Unit cell dimensions a (Å) 7.9894(2) Å b (Å) 18.8355(5) Å c (Å) 12.9451(4) Åa (º) 90

β (º) 90 γ (º) 90

Volume (Å3) 1948.03(9)Molecules / unit cell, Z 4Density calculated, Dc (Mgm-3) 1.484Absorption coefficient (mm-1) 2.234F(000) 896Crystal size (mm) 0.25 x 0.17 x 0.15q range for data collection (º) 2.16 to 27.53Index ranges -10<=h<=10

-21<=k<=24-16<=l<=16

Reflections collected 16756Independent reflections 4421 [R(int) = 0.0278]Completeness to q = 25.00° 99.4 %Max. and min. transmission 0.715 and 0.640Refinement method Full-matrix least- squares on F2

Data / restraints / parameters 4421 / 1 / 235Goodness-of-fit on F2 1.021Final R indices [I > 2σ (I)] R1 = 0.0354, wR2 = 0.0804R indices (all data) R1 = 0.0570, wR2 = 0.0879Absolute structure parameter 0.003(7)Largest diff. peak and hole (e.Å-3) 0.365 and -0.358

Page 60: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

171

Table 4.26 Atomic coordinates (x 104) and equivalent isotropicdisplacement parameters (Å2 x 103) for non-hydrogen

atoms of PP1

Atoms x y z U(eq)

C1 9343(4) -264(2) 3324(2) 58(1)

C2 9019(4) -1006(2) 3717(2) 63(1)

C3 9215(3) -1477(2) 2778(2) 51(1)

C4 11038(3) -1660(2) 2505(2) 60(1)

C5 9665(3) -1220(1) 960(2) 43(1)

C6 8587(3) -1019(1) 1874(2) 45(1)

C7 8220(3) 279(1) 1704(2) 46(1)

C8 7330(3) 202(2) 785(2) 48(1)

C9 6674(4) 785(2) 285(2) 58(1)

C10 6894(4) 1456(2) 687(3) 63(1)

C11 7795(4) 1546(2) 1578(3) 68(1)

C12 8444(4) 969(1) 2077(3) 60(1)

C13 13255(3) -251(2) 1719(2) 51(1)

C14 12501(4) 341(2) 1295(2) 64(1)

C15 12689(5) 993(2) 1750(3) 87(1)

C16 13660(5) 1051(2) 2623(4) 91(1)

C17 14393(4) 469(3) 3053(3) 84(1)

C18 14221(4) -199(2) 2606(2) 65(1)

C19 8852(4) -1830(2) 357(2) 59(1)

C20 9839(5) -2107(2) -542(3) 75(1)

N1 8851(3) -294(1) 2238(2) 48(1)

N2 11281(2) -1437(1) 1433(2) 47(1)

O1 14320(3) -1529(1) 1511(2) 81(1)

O2 12962(3) -952(1) 22(2) 75(1)

S1 13045(1) -1084(1) 1104(1) 54(1)

Br1 5903(1) 2237(1) -2(1) 104(1)

Ueq = (1/3)Σi ΣjUijai*aj*ai.aj

Page 61: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

172

Table 4.27 Anisotropic temperature parameters (Å2 x 103) for non-hydrogen atoms of PP1

Atoms U11 U22 U33 U23 U13 U12

C1 64(2) 64(2) 46(2) -7(1) -4(1) 3(1)

C2 62(2) 76(2) 50(2) 10(1) 9(1) 0(1)C3 47(2) 51(2) 57(2) 11(1) 6(1) -9(1)

C4 56(2) 61(2) 63(2) 23(1) 7(1) 5(1)

C5 42(1) 36(1) 50(2) 5(1) -2(1) -5(1)C6 35(1) 47(1) 53(2) -1(1) 1(1) -7(1)

C7 44(1) 47(1) 47(2) -1(1) 7(1) -1(1)

C8 48(2) 48(2) 50(2) -4(1) 2(1) 2(1)

C9 57(2) 66(2) 52(2) 5(1) -2(1) 6(1)C10 64(2) 53(2) 73(2) 12(1) 13(2) 12(1)

C11 73(2) 46(2) 85(2) -7(1) 5(2) 2(1)

C12 65(2) 48(2) 68(2) -11(1) -9(1) -1(1)C13 37(1) 62(2) 53(2) 5(1) 9(1) -14(1)

C14 63(2) 64(2) 65(2) 13(2) -2(1) -22(1)

C15 83(3) 61(2) 115(3) 2(2) 9(2) -25(2)

C16 91(3) 81(3) 102(3) -20(2) 15(2) -42(2)C17 68(2) 125(4) 60(2) -21(2) 3(2) -37(2)

C18 47(2) 94(2) 52(2) -4(2) 2(1) -12(2)

C19 69(2) 47(2) 61(2) -4(1) -6(1) -9(1)C20 94(2) 69(2) 63(2) -13(2) -3(2) -6(2)

N1 52(1) 44(1) 48(1) -1(1) -7(1) 4(1)

N2 41(1) 46(1) 56(1) 4(1) 3(1) -1(1)

O1 46(1) 78(2) 118(2) -11(1) 2(1) 12(1)O2 73(1) 95(2) 58(1) -17(1) 28(1) -23(1)

S1 40(1) 65(1) 56(1) -5(1) 9(1) -2(1)

Br1 125(1) 71(1) 116(1) 28(1) 0(1) 33(1)

The anisotropic temperature parameters exponent takes the form:

-2π2 [h2 a*2 U11 + ... + 2 h k a* b* U12]

Page 62: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

173

Table 4.28 Hydrogen atom coordinates (x 104) and isotropic displacementparameters (Å2 x 103) for PP1

Atoms x y z Uiso

H1A 8675 81 3698 69

H1B 10516 -140 3393 69

H2A 7898 -1045 4000 76

H2B 9821 -1134 4248 76

H3 8541 -1909 2848 62

H4A 11805 -1409 2958 72

H4B 11232 -2166 2576 72

H5 9830 -808 508 51

H6 7401 -1109 1733 54

H8 7177 -248 506 58

H9 6080 725 -326 70

H11 7966 1999 1843 81

H12 9051 1037 2682 72

H14 11864 297 697 77

H15 12165 1390 1472 104

H16 13818 1495 2924 109

H17 15018 519 3655 101

H18 14736 -596 2891 77

H19A 8651 -2219 832 71

H19B 7772 -1670 106 71

H20A 9235 -2488 -864 113

H20B 10903 -2277 -305 113

H20C 10009 -1732 -1034 113

Page 63: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

174

Table 4.29 Bond lengths (Å) for non-hydrogen atoms of PP1

Atoms Distance Atoms Distance

C1-N1 1.461(4) C10-C11 1.370(5)

C1-C2 1.510(4) C10-Br1 1.893(3)

C2-C3 1.512(4) C11-C12 1.366(4)

C3-C6 1.538(4) C13-C14 1.381(4)

C3-C4 1.538(4) C13-C18 1.387(4)

C4-N2 1.463(4) C13-S1 1.767(3)

C5-N2 1.486(3) C14-C15 1.370(4)

C5-C6 1.512(4) C15-C16 1.375(6)

C5-C19 1.532(4) C16-C17 1.363(6)

C6-N1 1.460(3) C17-C18 1.391(5)

C7-N1 1.377(3) C19-C20 1.500(5)

C7-C8 1.393(4) N2-S1 1.616(2)

C7-C12 1.398(4) O1-S1 1.421(2)

C8-C9 1.378(4) O2-S1 1.424(2)

C9-C10 1.378(4)

Page 64: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

175

Table 4.30 Bond angles (°) for non-hydrogen atoms of PP1

Atoms Angle Atoms Angle

N1-C1-C2 104.1(2) C14-C13-C18 121.0(3)

C1-C2-C3 104.7(2) C14-C13-S1 119.8(2)

C2-C3-C6 104.5(2) C18-C13-S1 119.2(3)

C2-C3-C4 114.5(2) C15-C14-C13 120.3(3)

C6-C3-C4 105.0(2) C14-C15-C16 119.2(4)

N2-C4-C3 106.2(2) C17-C16-C15 120.9(4)

N2-C5-C6 104.0(2) C16-C17-C18 121.0(3)

N2-C5-C19 111.8(2) C13-C18-C17 117.6(3)

C6-C5-C19 110.2(2) C20-C19-C5 115.7(3)

N1-C6-C5 113.9(2) C7-N1-C6 121.2(2)

N1-C6-C3 103.4(2) C7-N1-C1 123.5(2)

C5-C6-C3 105.7(2) C6-N1-C1 112.6(2)

N1-C7-C8 122.2(2) C4-N2-C5 110.8(2)

N1-C7-C12 120.5(2) C4-N2-S1 118.9(2)

C8-C7-C12 117.2(3) C5-N2-S1 122.4(2)

C9-C8-C7 120.8(3) O1-S1-O2 120.1(1)

C8-C9-C10 120.4(3) O1-S1-N2 106.5(1)

C11-C10-C9 119.8(3) O2-S1-N2 106.8(1)

C11-C10-Br1 121.4(2) O1-S1-C13 106.9(1)

C9-C10-Br1 118.8(3) O2-S1-C13 107.0(1)

C12-C11-C10 120.0(3) N2-S1-C13 109.3(1)

C11-C12-C7 121.8(3)

Page 65: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

176

Table 4.31 Torsion angles (°) for non-hydrogen atoms of PP1

Atoms Angle Atoms Angle

N1-C1-C2-C3 27.9(3) N2-C5-C19-C20 -62.0(3)

C1-C2-C3-C6 -33.3(3) C6-C5-C19-C20 -177.0(2)

C1-C2-C3-C4 81.0(3) C8-C7-N1-C6 -1.2(4)

C2-C3-C4-N2 -124.3(3) C12-C7-N1-C6 178.2(2)

C6-C3-C4-N2 -10.3(3) C8-C7-N1-C1 -161.4(3)

N2-C5-C6-N1 83.7(2) C12-C7-N1-C1 18.1(4)

C19-C5-C6-N1 -156.4(2) C5-C6-N1-C7 75.3(3)

N2-C5-C6-C3 -29.1(2) C3-C6-N1-C7 -170.5(2)

C19-C5-C6-C3 90.8(2) C5-C6-N1-C1 122.6(2)

C2-C3-C6-N1 25.5(3) C3-C6-N1-C1 -8.4(3)

C4-C3-C6-N1 -95.3(2) C2-C1-N1-C7 149.6(2)

C2-C3-C6-C5 145.4(2) C2-C1-N1-C6 -12.1(3)

C4-C3-C6-C5 24.6(3) C3-C4-N2-C5 -8.2(3)

N1-C7-C8-C9 178.1(2) C3-C4-N2-S1 141.7(2)

C12-C7-C8-C9 -1.4(4) C6-C5-N2-C4 23.5(3)

C7-C8-C9-C10 0.2(4) C19-C5-N2-C4 -95.3(3)

C8-C9-C10-C11 1.2(5) C6-C5-N2-S1 -125.1(2)

C8-C9-C10-Br1 -177.9(2) C19-C5-N2-S1 16.1(2)C9-C10-C11-C12 -1.4(5) C4-N2-S1-O1 47.8(2)

Br1-C10-C11-C12 177.7(2) C5-N2-S1-O1 -166.0(2)

C10-C11-C12-C7 0.1(5) C4-N2-S1-O2 177.3(2)

N1-C7-C12-C11 -178.3(3) C5-N2-S1-O2 -36.6(2)

C8-C7-C12-C11 1.2(4) C4-N2-S1-C13 -67.3(2)

C18-C13-C14-C15 -0.4(4) C5-N2-S1-C13 78.9(2)

S1-C13-C14-C15 -178.4(2) C14-C13-S1-O1 162.6(2)

C13-C14-C15-C16 1.1(5) C18-C13-S1-O1 -15.4(2)

C14-C15-C16-C17 -1.8(6) C14-C13-S1-O2 32.8(2)

C15-C16-C17-C18 1.9(6) C18-C13-S1-O2 -145.2(2)

C14-C13-C18-C17 0.4(4) C14-C13-S1-N2 -82.5(2)

S1-C13-C18-C17 178.3(2) C18-C13-S1-N2 99.5(2)

C16-C17-C18-C13 -1.1(5)

Page 66: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

177

Table 4.32 Mean planes through various groups of atoms and deviations(Å) from the planes for PP1

The equation of the plane is m1X+m2Y+m3Z-D=0, where m1, m2 and D are constants

Plane m1 m2 m3 D Atoms Deviation

1 0.8450(6) 0.0899(12) -0.5272(10) 4.442(6) C7C8C9C10C11C12

-0.008(3)0.005(3)0.002(3)

-0.010(3)0.006(3)0.005(3)

2 0.8125(8) 0.1639(15) -0.5594(11) 7.282(11) C13C14C15C16C17C18

0.000(3)0.001(3)

-0.006(4)0.010(5)

-0.005(4)0.001(3)

3 0.9459(6) 0.0250(13) -0.3235(17) 5.703(9) C3C6N1C1C2*

0.028(3)-0.046(3)0.035(2)

-0.047(3)-0.492(3)

4 -0.2193(17) -0.9434(5) -0.2488(13) 0.144(15) N2C3C4C5C6*

-0.028(2)-0.030(3)0.064(3)0.021(2)

-0.441(3)

* indicates atoms not included in plane calculation

Dihedral angles (°)

Plane Plane Angle (s.u.)1 2 4.94(15)1 3 13.58(10)1 4 82.01(11)2 3 17.52(10)2 4 78.84(12)3 4 81.34(12)

Page 67: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

178

Table 4.33 Hydrogen bonding geometry (Å, °) for PP1

Interactions D-H H…A D…A D- H…A

C5-H5…O2

C18-H18…O1

C19-H19A…O1i

C17-H17…O2ii

0.98

0.93

0.97

0.93

2.59

2.53

2.57

2.53

2.944(3)

2.880(4)

3.453(4)

3.433(4)

101

103

151

164

Symmetry Code:

(i) -1/2+x, -1/2-y, z

(ii) 3-x, -y, 1/2+z

Page 68: CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF …shodhganga.inflibnet.ac.in/bitstream/10603/10469/11/11_chapter4.pdf · CRYSTAL STRUCTURE AND CONFORMATIONAL STUDIES OF SOME INDOLE

179

Table 4.34 Comparative study of conformational parameters of PP1 with other related molecules

Structure Crystal system andspace group

Conformation ofpyrrolidine rings N1/C1-

C3/C6 and N2/C3-C6

Dihedral anglebetween

phenyl rings(°)

Sum of bondangles at N1(°) and N2 (°)

Packing due to

PP1 Orthorhombic,Pna21

Twist and Twist 4.9(2) N1(357.3)N2(352.1)

Intermolecular C-H…Oand π…π interactions.

PP2* Orthorhombic,Pna21

Twist and Envelope 3.1(2) N1(355.9)N2(350.9)

π…π interactions and vander Waals forces.

PP3* Monoclinic, P21/c Envelope and Envelope 38.2(1) N1(354.2)N2(346.7)

Weak intermolecular C-H…O hydrogen bondsand van der Waals forces.

* indicates related literature

PP1 - Present Study

PP2* - cis-1-(4-Bromophenyl)-6-ethyl-5-tosylperhydropyrrolo[3,4-b]pyrrole [128]

PP3* - 1-(p-Bromophenyl)-5-p-tosylperhydropyrrolo[3,4-b]pyrrole [130] 179


Recommended