+ All Categories
Home > Documents > CS#109 Lecture#19 May 9th, 2016 - Stanford...

CS#109 Lecture#19 May 9th, 2016 - Stanford...

Date post: 13-Jul-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
44
CS 109 Lecture 19 May 9th, 2016
Transcript
Page 1: CS#109 Lecture#19 May 9th, 2016 - Stanford Universityweb.stanford.edu/class/archive/cs/cs109/cs109.1166/ppt/19-CLT.pdf · Lecture#19 May 9th, 2016. 0 5 10 15 20 25 30 5 10 15 20 25

CS  109Lecture  19

May  9th,  2016

Page 2: CS#109 Lecture#19 May 9th, 2016 - Stanford Universityweb.stanford.edu/class/archive/cs/cs109/cs109.1166/ppt/19-CLT.pdf · Lecture#19 May 9th, 2016. 0 5 10 15 20 25 30 5 10 15 20 25

0

5

10

15

20

25

30

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

105

110

115

120

Midterm Distribution

E[X] = 87√Var(X) = 15median = 90

Page 3: CS#109 Lecture#19 May 9th, 2016 - Stanford Universityweb.stanford.edu/class/archive/cs/cs109/cs109.1166/ppt/19-CLT.pdf · Lecture#19 May 9th, 2016. 0 5 10 15 20 25 30 5 10 15 20 25

0

5

10

15

20

25

30

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

105

110

115

120

A+

AA-B+

B

B-

Cs

Midterm Distribution

E[X] = 87√Var(X) = 15median = 90

Page 4: CS#109 Lecture#19 May 9th, 2016 - Stanford Universityweb.stanford.edu/class/archive/cs/cs109/cs109.1166/ppt/19-CLT.pdf · Lecture#19 May 9th, 2016. 0 5 10 15 20 25 30 5 10 15 20 25

0

5

10

15

20

25

30

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

105

110

115

120

Core Understanding

AdvancedUnderstanding

Midterm Distribution

E[X] = 87√Var(X) = 15median = 90

Page 5: CS#109 Lecture#19 May 9th, 2016 - Stanford Universityweb.stanford.edu/class/archive/cs/cs109/cs109.1166/ppt/19-CLT.pdf · Lecture#19 May 9th, 2016. 0 5 10 15 20 25 30 5 10 15 20 25

0

5

10

15

20

25

30

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

105

110

115

120

Midterm Beta

E[X] = 87√Var(X) = 15median = 90

ɑ = 7.1β = 2.7

Page 6: CS#109 Lecture#19 May 9th, 2016 - Stanford Universityweb.stanford.edu/class/archive/cs/cs109/cs109.1166/ppt/19-CLT.pdf · Lecture#19 May 9th, 2016. 0 5 10 15 20 25 30 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100 120

0.000.020.040.060.080.100.120.14

0 20 40 60 80 100 120

You can interpret this as a percentile

function

Derivative of percentile per point

CS109 Midterm CDF

CS109 Midterm PDF

Midterm Beta

Page 7: CS#109 Lecture#19 May 9th, 2016 - Stanford Universityweb.stanford.edu/class/archive/cs/cs109/cs109.1166/ppt/19-CLT.pdf · Lecture#19 May 9th, 2016. 0 5 10 15 20 25 30 5 10 15 20 25

0

50

100

2 4 6 8 10 12 14 16 18 20 22 24

Problem 1

0

50

100

2 4 6 8 10 12 14 16 18 20

Problem 2

0

50

100

2 4 6 8 10 12 14 16 18 20

Problem 3

0

50

100

2 4 6 8 10 12 14 16 18 20

Problem 4

0

50

100

2 4 6 8 10 12

Problem 5

0

50

100

2 4 6 8 10 12 14 16 18 20 22 24

Problem 6

Midterm Question Correlations

Page 8: CS#109 Lecture#19 May 9th, 2016 - Stanford Universityweb.stanford.edu/class/archive/cs/cs109/cs109.1166/ppt/19-CLT.pdf · Lecture#19 May 9th, 2016. 0 5 10 15 20 25 30 5 10 15 20 25

1.a

1.b

1.c

1.d

2.a

2.b2.c

3.a

3.b

3.c

4.a4.b

4.c

5 6.a 6.b

6.c 0.600.400.22

Correlation

*Correlations bellow 0.22 are not shown **Almost all correlations were positive

Midterm Question Correlations

Page 9: CS#109 Lecture#19 May 9th, 2016 - Stanford Universityweb.stanford.edu/class/archive/cs/cs109/cs109.1166/ppt/19-CLT.pdf · Lecture#19 May 9th, 2016. 0 5 10 15 20 25 30 5 10 15 20 25

y = 0.46x + 2.6

-1

0

1

2

3

4

5

6

7

8

-1 0 1 2 3 4 5 6 7 8

Points on 6.a

Poin

ts o

n 6.

cJoint Probability Mass Function 6.a,6.cJoint PMF for Questions 6.a,6.c

Page 10: CS#109 Lecture#19 May 9th, 2016 - Stanford Universityweb.stanford.edu/class/archive/cs/cs109/cs109.1166/ppt/19-CLT.pdf · Lecture#19 May 9th, 2016. 0 5 10 15 20 25 30 5 10 15 20 25

y = 0.2x + 11

0

2

4

6

8

10

12

14

16

18

20

0 4 8 12 16 20 24

Joint Probability Mass Function 4, 6

Total Points on 6

Tota

l Poi

nts o

n 4

Joint PMF for Questions 4,6

Page 11: CS#109 Lecture#19 May 9th, 2016 - Stanford Universityweb.stanford.edu/class/archive/cs/cs109/cs109.1166/ppt/19-CLT.pdf · Lecture#19 May 9th, 2016. 0 5 10 15 20 25 30 5 10 15 20 25

Joint Probability Mass Function 4, 6Conditional Expectation• Let  X  be  your  score  on  problem  4.  • Let  Y  be  your  score  on  problem  6.• E[X  |  Y]?

02468

101214161820

0 4 8 12 16 20 24

y

E[X|Y = y]

I use standard error because expectation is from a sample

Page 12: CS#109 Lecture#19 May 9th, 2016 - Stanford Universityweb.stanford.edu/class/archive/cs/cs109/cs109.1166/ppt/19-CLT.pdf · Lecture#19 May 9th, 2016. 0 5 10 15 20 25 30 5 10 15 20 25

Four Prototypical Trajectories

1.  Inequalities

Page 13: CS#109 Lecture#19 May 9th, 2016 - Stanford Universityweb.stanford.edu/class/archive/cs/cs109/cs109.1166/ppt/19-CLT.pdf · Lecture#19 May 9th, 2016. 0 5 10 15 20 25 30 5 10 15 20 25

• In  many  cases,  we  don’t  know  the  true  form  of  a  probability  distribution§ E.g.,  Midterm  scores§ But,  we  know  the  mean

§ May  also  have  other  measures/propertieso Variance

o Non-­negativity

o Etc.

§ Inequalities  and  bounds  still  allow  us  to  say  something  about  the  probability  distribution   in  such  caseso May  be  imprecise  compared  to  knowing  true  distribution!

Inequality, Probability and Joviality

Page 14: CS#109 Lecture#19 May 9th, 2016 - Stanford Universityweb.stanford.edu/class/archive/cs/cs109/cs109.1166/ppt/19-CLT.pdf · Lecture#19 May 9th, 2016. 0 5 10 15 20 25 30 5 10 15 20 25

• Say  X  is  a  non-­negative  random  variable

• Proof:§ I =  1  if  X  ≥  a,  0  otherwise

§

§ Taking  expectations:

0 ,][)( >≤≥ aaXEaXP all  for

,0 aXIX ≤≥Since

aXE

aXEaXPIE ][ )(][ =⎥⎦

⎤⎢⎣

⎡≤≥=

Markov’s Inequality

Page 15: CS#109 Lecture#19 May 9th, 2016 - Stanford Universityweb.stanford.edu/class/archive/cs/cs109/cs109.1166/ppt/19-CLT.pdf · Lecture#19 May 9th, 2016. 0 5 10 15 20 25 30 5 10 15 20 25

• Andrey  Andreyevich Markov  (1856-­1922)  was  a  Russian  mathematician

§ Markov’s  Inequality  is  named  after  him§ He  also  invented  Markov  Chains…

o …which  are  the  basis  for  Google’s  PageRank  algorithm

Andrey Markov

Page 16: CS#109 Lecture#19 May 9th, 2016 - Stanford Universityweb.stanford.edu/class/archive/cs/cs109/cs109.1166/ppt/19-CLT.pdf · Lecture#19 May 9th, 2016. 0 5 10 15 20 25 30 5 10 15 20 25

• Statistics  from  a  previous  quarter’s  CS109  midterm§ X  =  midterm  score

§ Using  sample  mean  X  =  86.7  ≈ E[X]

§ What  is  P(X  ≥  100)?

§ Markov  bound:  ≤ 86.7%  of  class  scored  100  or  greater

§ In  fact,  20.1%  of  class  scored  100  or  greatero Markov  inequality  can  be  a  very  loose  bound

o But,  it  made  no assumption  at  all  about  form  of  distribution!

867.01007.86

100][)100( ≈=≤≥XEXP

Markov and the Midterm

Page 17: CS#109 Lecture#19 May 9th, 2016 - Stanford Universityweb.stanford.edu/class/archive/cs/cs109/cs109.1166/ppt/19-CLT.pdf · Lecture#19 May 9th, 2016. 0 5 10 15 20 25 30 5 10 15 20 25

• X  is  a  random  variable  with  E[X]  =  µ,  Var(X)  =  σ2

• Proof:§ Since  (X  – µ)2 is  non-­negative  random  variable,  apply  Markov’s  Inequality  with  a =  k2

§ Note  that:    (X  – µ)2 ≥  k2 ⇔ |X  – µ|  ≥  k,    yielding:

0 ,)( 2

2

>≤≥− kk

kXP all  forσµ

2

2

2

222 ])[())((

kkXEkXP σµ

µ =−

≤≥−

2

2

)(k

kXP σµ ≤≥−

Chebyshev’s Inequality

Page 18: CS#109 Lecture#19 May 9th, 2016 - Stanford Universityweb.stanford.edu/class/archive/cs/cs109/cs109.1166/ppt/19-CLT.pdf · Lecture#19 May 9th, 2016. 0 5 10 15 20 25 30 5 10 15 20 25

• Pafnuty Lvovich Chebyshev (1821-­1894)  was  also  a  Russian  mathematician

§ Chebyshev’s Inequality   is  named  after  himo But  actually  formulated  by  his  colleague  Irénée-­Jules  Bienaymé

§ He  was  Markov’s  doctoral  advisoro And  sometimes  credited  with  first  deriving  Markov’s  Inequality

§ There  is  a  crater  on  the  moon  named  in  his  honor

Pafnuty Chebyshev

Page 19: CS#109 Lecture#19 May 9th, 2016 - Stanford Universityweb.stanford.edu/class/archive/cs/cs109/cs109.1166/ppt/19-CLT.pdf · Lecture#19 May 9th, 2016. 0 5 10 15 20 25 30 5 10 15 20 25

Four Prototypical Trajectories

2.  Law  of  Large  Numbers

Page 20: CS#109 Lecture#19 May 9th, 2016 - Stanford Universityweb.stanford.edu/class/archive/cs/cs109/cs109.1166/ppt/19-CLT.pdf · Lecture#19 May 9th, 2016. 0 5 10 15 20 25 30 5 10 15 20 25

• Consider  I.I.D.  random  variables  X1,  X2,  ...§ Xi   have  distribution  F with  E[Xi]  =  µ and  Var(Xi)  =  σ 2

§ Let

§ For  any  ε >  0:

• Proof:

§ By  Chebyshev’s   inequality:

0)( ⎯⎯→⎯≥− ∞→nXP εµ

[ ] µ== +++

nnXXXEXE ...21][ ( ) nn

nXXXX2...21Var)(Var σ== +++

0)( 2

2

⎯⎯ →⎯≤≥− ∞→n

nXP

εσ

εµ

∑=

=n

iiXn

X1

1

Weak Law of Large Numbers

2

2

)(k

kXP σµ ≤≥− Var(X)

k

Page 21: CS#109 Lecture#19 May 9th, 2016 - Stanford Universityweb.stanford.edu/class/archive/cs/cs109/cs109.1166/ppt/19-CLT.pdf · Lecture#19 May 9th, 2016. 0 5 10 15 20 25 30 5 10 15 20 25

• Consider  I.I.D.  random  variables  X1,  X2,  ...§ Xi   have  distribution  F with  E[Xi]  =  µ

§ Let

§ Strong  Law  ⇒Weak  Law,  but  not  vice  versa

§ Strong  Law  implies  that  for  any  ε >  0,  there  are  only  a  finite  number  of  values  of  n such  that  condition  of  Weak  Law:                                    holds.  

∑=

=n

iiXn

X1

1

1...lim 21 =⎟⎟⎠

⎞⎜⎜⎝

⎛=⎟

⎞⎜⎝

⎛ +++∞→

µn

XXXP nn

εµ ≥−X

Strong Law of Large Numbers

Page 22: CS#109 Lecture#19 May 9th, 2016 - Stanford Universityweb.stanford.edu/class/archive/cs/cs109/cs109.1166/ppt/19-CLT.pdf · Lecture#19 May 9th, 2016. 0 5 10 15 20 25 30 5 10 15 20 25

• Say  we  have  repeated  trials  of  an  experiment§ Let  event  E  =  some  outcome  of  experiment§ Let  Xi =  1  if  E  occurs  on  trial  i,  0  otherwise§ Strong  Law  of  Large  Numbers  (Strong  LLN)  yields:

§ Recall   first  week  of  class:

§ Strong  LLN  justifies  “frequency”  notion  of  probability§ Misconception  arising  from  LLN:

o Gambler’s  fallacy:  “I’m  due  for  a  win”o Consider  being  “due  for  a  win”  with  repeated  coin  flips...

)(][...21 EPXEn

XXXi

n =→+++

nEnEP

n

)(lim)(∞→

=

Intuitions and Misconceptions of LLN

Page 23: CS#109 Lecture#19 May 9th, 2016 - Stanford Universityweb.stanford.edu/class/archive/cs/cs109/cs109.1166/ppt/19-CLT.pdf · Lecture#19 May 9th, 2016. 0 5 10 15 20 25 30 5 10 15 20 25

• History  of  the  Law  of  Large  Numbers§ 1713:  Weak  LLN  described  by  Jacob  Bernoulli

§ 1835:  Poisson  calls  it  “La  Loi  des  Grands  Nombres”o That  would  be  “Law  of  Large  Numbers”  in  French

§ 1909:  Émile  Borel  develops  Strong  LLN  for              Bernoulli   random  variables

§ 1928:  Andrei  Nikolaevich  Kolmogorov  proves                Strong  LLN  in  general  case

La Loi des Grands Nombres

Page 24: CS#109 Lecture#19 May 9th, 2016 - Stanford Universityweb.stanford.edu/class/archive/cs/cs109/cs109.1166/ppt/19-CLT.pdf · Lecture#19 May 9th, 2016. 0 5 10 15 20 25 30 5 10 15 20 25

And  now  a  moment  of  silence...

...before  we  present...

...the  greatest  result  of  probability  theory!

Silence!!

Page 25: CS#109 Lecture#19 May 9th, 2016 - Stanford Universityweb.stanford.edu/class/archive/cs/cs109/cs109.1166/ppt/19-CLT.pdf · Lecture#19 May 9th, 2016. 0 5 10 15 20 25 30 5 10 15 20 25

Four Prototypical Trajectories

3.  Central  Limit  Theorem

Page 26: CS#109 Lecture#19 May 9th, 2016 - Stanford Universityweb.stanford.edu/class/archive/cs/cs109/cs109.1166/ppt/19-CLT.pdf · Lecture#19 May 9th, 2016. 0 5 10 15 20 25 30 5 10 15 20 25
Page 27: CS#109 Lecture#19 May 9th, 2016 - Stanford Universityweb.stanford.edu/class/archive/cs/cs109/cs109.1166/ppt/19-CLT.pdf · Lecture#19 May 9th, 2016. 0 5 10 15 20 25 30 5 10 15 20 25

• Consider  I.I.D.  random  variables  X1,  X2,  ...§ Xi   have  distribution  F with  E[Xi]  =  µ and  Var(Xi)  =  σ 2

§ Let:  

§ Central  Limit  Theorem:

∑=

=n

iiXn

X1

1

∞→n ),(~2

asn

NX σµ

The Central Limit Theorem

http://onlinestatbook.com/stat_sim/sampling_dist/

Page 28: CS#109 Lecture#19 May 9th, 2016 - Stanford Universityweb.stanford.edu/class/archive/cs/cs109/cs109.1166/ppt/19-CLT.pdf · Lecture#19 May 9th, 2016. 0 5 10 15 20 25 30 5 10 15 20 25

The Central Limit Theorem

• Consider  I.I.D.  random  variables  X1,  X2,  ...§ Xi   have  distribution  F with  E[Xi]  =  µ and  Var(Xi)  =  σ 2

§ Let:  

§ Recall where  Z ~ N(0, 1):

∑=

=n

iiXn

X1

1∞→n ),(~

2

asn

NX σµ

n/2σ

µ−= XZ

( ) ( ) ( )nnX

nn

Xn

n

n

XnZ

nNX

n

i i

n

i in

i i

σ

µ

σ

µ

σ

µσµ

−=

⎥⎦

⎤⎢⎣

⎡ −=

−=⇔

∑∑∑=

== 12

1

2

1211

),(~

∞→→−+++ nN

nnXXX n )1 ,0(...21  as

σµ ~

Another form of the Central Limit Theorem

Page 29: CS#109 Lecture#19 May 9th, 2016 - Stanford Universityweb.stanford.edu/class/archive/cs/cs109/cs109.1166/ppt/19-CLT.pdf · Lecture#19 May 9th, 2016. 0 5 10 15 20 25 30 5 10 15 20 25

1733

Once Upon a Time…Abraham De Moivre

Page 30: CS#109 Lecture#19 May 9th, 2016 - Stanford Universityweb.stanford.edu/class/archive/cs/cs109/cs109.1166/ppt/19-CLT.pdf · Lecture#19 May 9th, 2016. 0 5 10 15 20 25 30 5 10 15 20 25

• History  of  the  Central  Limit  Theorem§ 1733:  CLT  for  X  ~  Ber(1/2)  postulated  by                      Abraham  de  Moivre

§ 1823:  Pierre-­Simon  Laplace  extends  de  Moivre’s        work  to  approximating  Bin(n,  p)  with  Normal

§ 1901:  Aleksandr  Lyapunov  provides  precise                                      definition  and  rigorous  proof  of  CLT

§ 2003:  Charlie  Sheen  stars  in  television  series                  “Two  and  a  Half  Men”o By  end  of  the  7th  (final)  season,  there  were  161  episodes

o Mean  quality  of  subsamples  of  episodes  is  Normally  distributed  (thanks  to  the  Central  Limit  Theorem)

Once Upon a Time…

Page 31: CS#109 Lecture#19 May 9th, 2016 - Stanford Universityweb.stanford.edu/class/archive/cs/cs109/cs109.1166/ppt/19-CLT.pdf · Lecture#19 May 9th, 2016. 0 5 10 15 20 25 30 5 10 15 20 25

• CLT  is  why  many  things  in  “real  world”  appear  Normally  distributed§ Many  quantities  are  sum  of  independent   variables§ Exams  scores

o Sum  of  individual  problems  on  the  SATo Why  does  the  CLT  not  apply  to  our  midterm?

§ Election  pollingo Ask  100  people  if  they  will   vote  for  candidate  X  (p1 =  #  “yes”/100)o Repeat  this  process  with  different  groups  to  get  p1,  ...  ,  pno Will  have  a  normal  distribution  over  pio Can  produce  a  “confidence  interval”

• How  likely  is  it  that  estimate  for  true  p  is  correct

Central Limit Theorem in the Real World

Page 32: CS#109 Lecture#19 May 9th, 2016 - Stanford Universityweb.stanford.edu/class/archive/cs/cs109/cs109.1166/ppt/19-CLT.pdf · Lecture#19 May 9th, 2016. 0 5 10 15 20 25 30 5 10 15 20 25

• Consider  I.I.D.  Bernoulli  variables  X1,  X2,  ...  With  probability  p§ Xi   have  distribution  F with  E[Xi]  =  µ and  Var(Xi)  =  σ 2

§ Let:   Let:∑=

=n

iiXn

X1

1

Binomial Approximation

Y = nX

Y ⇠ N(nµ, n2�2

n)

X ⇠ N(µ,�2) as n ! 1

Y ⇠ N(np, np(1� p))

Page 33: CS#109 Lecture#19 May 9th, 2016 - Stanford Universityweb.stanford.edu/class/archive/cs/cs109/cs109.1166/ppt/19-CLT.pdf · Lecture#19 May 9th, 2016. 0 5 10 15 20 25 30 5 10 15 20 25

• Start  with  370  midterm  scores:  X1,  X2,  ...,  X370§ E[Xi]  =  87  and  Var(Xi)  =  225§ Created  50  samples  (Yi ) of  size  n =  10

§ Prediction  by  CLT:

048

1216

-­‐3 -­‐2 -­‐1 0 1 2 3

Your Midterm on the Central Limit Theorem

Zi =Yi � E[Xi]p

�2/n=

Yi � 87p22.5

Yi ⇠ N(87, 22.5)

Z =1

50

50X

i=1

Zi = 4⇥ 10�16

Var(Z) = 0.997

Page 34: CS#109 Lecture#19 May 9th, 2016 - Stanford Universityweb.stanford.edu/class/archive/cs/cs109/cs109.1166/ppt/19-CLT.pdf · Lecture#19 May 9th, 2016. 0 5 10 15 20 25 30 5 10 15 20 25

• Have  new  algorithm  to  test  for  running  time§ Mean  (clock)  running  time:  µ =  t sec.§ Variance  of  running  time:  σ2 =  4  sec2.§ Run  algorithm  repeatedly  (I.I.D.  trials),  measure  time

o How  many  trials  so  estimated  time  =  t  ± 0.5  with  95%  certainty?o Xi =  running  time  of  i-­th run  (for  1  ≤ i ≤ n)

o By  Central  Limit  Theorem,  Z  ~  N(0,  1),  where:

Estimating Clock Running Time

Zn =(Pn

i=1 Xi)� nµ

�pn

=(Pn

i=1 Xi)� nt

2pn

0.95 = P (�0.5 Pn

i=1 Xi

n� t 0.5)

= P (�0.5

pn

2

Pni=1 Xi

n� t 0.5

pn

2)

= P (�0.5

pn

2

pn

2

Pni=1 Xi

n�

pn

2t 0.5

pn

2)

= P (�0.5

pn

2

Pni=1 Xi

2pn

�pnpn

pnt

2 0.5

pn

2)

= P (�0.5

pn

2

Pni=1 Xi � nt

2pn

0.5pn

2)

= P (�0.5

pn

2 Z 0.5

pn

2)

Page 35: CS#109 Lecture#19 May 9th, 2016 - Stanford Universityweb.stanford.edu/class/archive/cs/cs109/cs109.1166/ppt/19-CLT.pdf · Lecture#19 May 9th, 2016. 0 5 10 15 20 25 30 5 10 15 20 25

Zn =(Pn

i=1 Xi)� nt

2pn

0.95 = P (�0.5 Pn

i=1 Xi

n� t 0.5)

= P (�0.5

pn

2

Pni=1 Xi

n� t 0.5

pn

2)

= P (�0.5

pn

2

pn

2

Pni=1 Xi

n�

pn

2t 0.5

pn

2)

= P (�0.5

pn

2

Pni=1 Xi

2pn

�pnpn

pnt

2 0.5

pn

2)

= P (�0.5

pn

2

Pni=1 Xi � nt

2pn

0.5pn

2)

= P (�0.5

pn

2 Z 0.5

pn

2)

0.95 = P (�0.5 Pn

i=1 Xi

n� t 0.5)

= P (�0.5

pn

2

Pni=1 Xi

n� t 0.5

pn

2)

= P (�0.5

pn

2

pn

2

Pni=1 Xi

n�

pn

2t 0.5

pn

2)

= P (�0.5

pn

2

Pni=1 Xi

2pn

�pnpn

pnt

2 0.5

pn

2)

= P (�0.5

pn

2

Pni=1 Xi � nt

2pn

0.5pn

2)

= P (�0.5

pn

2 Z 0.5

pn

2)

0.95 = P (�0.5 Pn

i=1 Xi

n� t 0.5)

= P (�0.5

pn

2

Pni=1 Xi

n� t 0.5

pn

2)

= P (�0.5

pn

2

pn

2

Pni=1 Xi

n�

pn

2t 0.5

pn

2)

= P (�0.5

pn

2

Pni=1 Xi

2pn

�pnpn

pnt

2 0.5

pn

2)

= P (�0.5

pn

2

Pni=1 Xi � nt

2pn

0.5pn

2)

= P (�0.5

pn

2 Z 0.5

pn

2)

0.95 = P (�0.5 Pn

i=1 Xi

n� t 0.5)

= P (�0.5

pn

2

Pni=1 Xi

n� t 0.5

pn

2)

= P (�0.5

pn

2

pn

2

Pni=1 Xi

n�

pn

2t 0.5

pn

2)

= P (�0.5

pn

2

Pni=1 Xi

2pn

�pnpn

pnt

2 0.5

pn

2)

= P (�0.5

pn

2

Pni=1 Xi � nt

2pn

0.5pn

2)

= P (�0.5

pn

2 Z 0.5

pn

2)

0.95 = P (�0.5 Pn

i=1 Xi

n� t 0.5)

= P (�0.5

pn

2

Pni=1 Xi

n� t 0.5

pn

2)

= P (�0.5

pn

2

pn

2

Pni=1 Xi

n�

pn

2t 0.5

pn

2)

= P (�0.5

pn

2

Pni=1 Xi

2pn

�pnpn

pnt

2 0.5

pn

2)

= P (�0.5

pn

2

Pni=1 Xi � nt

2pn

0.5pn

2)

= P (�0.5

pn

2 Z 0.5

pn

2)

0.95 = P (�0.5 Pn

i=1 Xi

n� t 0.5)

= P (�0.5

pn

2

Pni=1 Xi

n� t 0.5

pn

2)

= P (�0.5

pn

2

pn

2

Pni=1 Xi

n�

pn

2t 0.5

pn

2)

= P (�0.5

pn

2

Pni=1 Xi

2pn

�pnpn

pnt

2 0.5

pn

2)

= P (�0.5

pn

2

Pni=1 Xi � nt

2pn

0.5pn

2)

= P (�0.5

pn

2 Z 0.5

pn

2)

0.95 = P (�0.5 Pn

i=1 Xi

n� t 0.5)

= P (�0.5

pn

2

Pni=1 Xi

n� t 0.5

pn

2)

= P (�0.5

pn

2

pn

2

Pni=1 Xi

n�

pn

2t 0.5

pn

2)

= P (�0.5

pn

2

Pni=1 Xi

2pn

�pnpn

pnt

2 0.5

pn

2)

= P (�0.5

pn

2

Pni=1 Xi � nt

2pn

0.5pn

2)

= P (�0.5

pn

2 Z 0.5

pn

2)

Page 36: CS#109 Lecture#19 May 9th, 2016 - Stanford Universityweb.stanford.edu/class/archive/cs/cs109/cs109.1166/ppt/19-CLT.pdf · Lecture#19 May 9th, 2016. 0 5 10 15 20 25 30 5 10 15 20 25

0.95 = �(

pn

4)� �(

pn

4)

= �(

pn

4)� (1� �(

pn

4))

= 2�(

pn

4)� 1

0.975 = �(

pn

4)

��1(0.975) =

pn

4

1.96 =

pn

4n = 61.4

0.95 = P (�0.5 Pn

i=1 Xi

n� t 0.5)

= P (�0.5

pn

2

Pni=1 Xi

n� t 0.5

pn

2)

= P (�0.5

pn

2

pn

2

Pni=1 Xi

n�

pn

2t 0.5

pn

2)

= P (�0.5

pn

2

Pni=1 Xi

2pn

�pnpn

pnt

2 0.5

pn

2)

= P (�0.5

pn

2

Pni=1 Xi � nt

2pn

0.5pn

2)

= P (�0.5

pn

2 Z 0.5

pn

2)0.95 = �(

pn

4)� �(

pn

4)

= �(

pn

4)� (1� �(

pn

4))

= 2�(

pn

4)� 1

0.95 = �(

pn

4)� �(

pn

4)

= �(

pn

4)� (1� �(

pn

4))

= 2�(

pn

4)� 1

0.975 = �(

pn

4)

��1(0.975) =

pn

4

1.96 =

pn

4n = 61.4

0.95 = �(

pn

4)� �(

pn

4)

= �(

pn

4)� (1� �(

pn

4))

= 2�(

pn

4)� 1

0.975 = �(

pn

4)

��1(0.975) =

pn

4

1.96 =

pn

4n = 61.4

0.95 = �(

pn

4)� �(

pn

4)

= �(

pn

4)� (1� �(

pn

4))

= 2�(

pn

4)� 1

0.975 = �(

pn

4)

��1(0.975) =

pn

4

1.96 =

pn

4n = 61.4

0.95 = �(

pn

4)� �(

pn

4)

= �(

pn

4)� (1� �(

pn

4))

= 2�(

pn

4)� 1

0.975 = �(

pn

4)

��1(0.975) =

pn

4

1.96 =

pn

4n = 61.4

0.95 = �(

pn

4)� �(

pn

4)

= �(

pn

4)� (1� �(

pn

4))

= 2�(

pn

4)� 1

0.975 = �(

pn

4)

��1(0.975) =

pn

4

1.96 =

pn

4n = 61.4

0.95 = �(

pn

4)� �(

pn

4)

= �(

pn

4)� (1� �(

pn

4))

= 2�(

pn

4)� 1

0.975 = �(

pn

4)

��1(0.975) =

pn

4

1.96 =

pn

4n = 61.4

Page 37: CS#109 Lecture#19 May 9th, 2016 - Stanford Universityweb.stanford.edu/class/archive/cs/cs109/cs109.1166/ppt/19-CLT.pdf · Lecture#19 May 9th, 2016. 0 5 10 15 20 25 30 5 10 15 20 25

William Sealy Gosset(aka Student)

Page 38: CS#109 Lecture#19 May 9th, 2016 - Stanford Universityweb.stanford.edu/class/archive/cs/cs109/cs109.1166/ppt/19-CLT.pdf · Lecture#19 May 9th, 2016. 0 5 10 15 20 25 30 5 10 15 20 25

• Have  new  algorithm  to  test  for  running  time§ Mean  (clock)  running  time:  µ =  t sec.§ Variance  of  running  time:  σ2 =  4  sec2.§ Run  algorithm  repeatedly  (I.I.D.  trials),  measure  time

o How  many  trials  so  estimated  time  =  t  ± 0.5  with  95%  certainty?o Xi =  running  time  of  i-­th  run  (for  1  ≤ i  ≤ n),  and    

§ What  would  Chebyshev  say? 2

2

)(k

kXP SSS

σµ ≤≥−

nnn

nX

nXt

nXE

n

i

in

i

iS

n

i

iS

4VarVar 2

2

11

2

1==⎟

⎞⎜⎝

⎛=⎟⎠

⎞⎜⎝

⎛==⎥

⎤⎢⎣

⎡= ∑∑∑

===

σσµ

320 05.016)5.0(

/4)5.0( 21

≥⇒==≤≥−∑=

nn

ntnXP

n

i

i

∑=

=n

i

iS n

XX1

Thanks  for  playing,  Pafnuty!

Estimating Time With Chebyshev

Page 39: CS#109 Lecture#19 May 9th, 2016 - Stanford Universityweb.stanford.edu/class/archive/cs/cs109/cs109.1166/ppt/19-CLT.pdf · Lecture#19 May 9th, 2016. 0 5 10 15 20 25 30 5 10 15 20 25

• Number  visitors  to  web  site/minute:  X  ~  Poi(100)  § Server  crashes  if    ≥ 120  requests/minute§ What  is  P(crash  in  next  minute)?

§ Exact  solution:

§ Use  CLT,  where                                                                                      (all  I.I.D)

o Note:  Normal  can  be  used  to  approximate  Poisson

0282.0!)100()120(

120

100

≈=≥ ∑∞

=

i

i

ieXP

0256.0)95.1(1)1001005.119

100100()5.119()120( ≈Φ−=

−≥

−=≥=≥

YPYPXP

∑=

n

in

1

)/100(Poi~)100(Poi

Crashing Your Website

Page 40: CS#109 Lecture#19 May 9th, 2016 - Stanford Universityweb.stanford.edu/class/archive/cs/cs109/cs109.1166/ppt/19-CLT.pdf · Lecture#19 May 9th, 2016. 0 5 10 15 20 25 30 5 10 15 20 25

It’s  play  time!

Page 41: CS#109 Lecture#19 May 9th, 2016 - Stanford Universityweb.stanford.edu/class/archive/cs/cs109/cs109.1166/ppt/19-CLT.pdf · Lecture#19 May 9th, 2016. 0 5 10 15 20 25 30 5 10 15 20 25

• You  will  roll  10  6-­sided  dice  (X1,  X2,  …,  X10)§ X  =  total  value  of  all  10  dice  =  X1 +  X2 +  …  +  X10§ Win  if:    X  ≤ 25    or    X  ≥ 45§ Roll!

• And  now  the  truth  (according  to  the  CLT)…

Sum of Dice

Page 42: CS#109 Lecture#19 May 9th, 2016 - Stanford Universityweb.stanford.edu/class/archive/cs/cs109/cs109.1166/ppt/19-CLT.pdf · Lecture#19 May 9th, 2016. 0 5 10 15 20 25 30 5 10 15 20 25

• You  will  roll  10  6-­sided  dice  (X1,  X2,  …,  X10)§ X  =  total  value  of  all  10  dice  =  X1 +  X2 +  …  +  X10§ Win  if:    X  ≤ 25    or    X  ≥ 45

• Recall  CLT:

§ Determine  P(X  ≤ 25  or  X  ≥ 45)  using  CLT:

0784.0)9608.01(2)1)76.1(2(1 =−≈−Φ−≈

[ ]1235)(Var 5.3 2 ==== ii XXE σµ

)1012/35)5.3(105.44

1012/35)5.3(10

1012/35)5.3(105.25(1)5.445.25(1 −

≤−

≤−

−=≤≤−XPXP

∞→→−+++ nN

nnXXX n )1 ,0(...21  as

σµ

Sum of Dice

Page 43: CS#109 Lecture#19 May 9th, 2016 - Stanford Universityweb.stanford.edu/class/archive/cs/cs109/cs109.1166/ppt/19-CLT.pdf · Lecture#19 May 9th, 2016. 0 5 10 15 20 25 30 5 10 15 20 25

I  know  of  scarcely  anything  so  apt  to  impress  the  imagination  as  the  wonderful   form  of  cosmic  order  expressed  by  the  ”[Central  limit  theorem]".  The  law  would  have  been  personified  by  the  Greeks  and  deified,  if  they  had  known  of  it.  It  reigns  with  serenity  and  in  complete  self-­effacement,  amidst  the  wildest  confusion.  The  huger  the  mob,  and  the  greater  the  apparent  anarchy,  the  more  perfect  is  its  sway.  It  is  the  supreme  law  of  Unreason.  Whenever  a  large  sample  of  chaotic  elements  are  taken  in  hand  and  marshalled   in  the  order  of  their  magnitude,  an  unsuspected  and  most  beautiful   form  of  regularity  proves  to  have  been  latent  all  along.

-Sir Francis Galton

Wonderful Form of Cosmic Order

Page 44: CS#109 Lecture#19 May 9th, 2016 - Stanford Universityweb.stanford.edu/class/archive/cs/cs109/cs109.1166/ppt/19-CLT.pdf · Lecture#19 May 9th, 2016. 0 5 10 15 20 25 30 5 10 15 20 25

0

5

10

15

20

25

30

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

105

110

115

120

Beta

E[X] = 87√Var(X) = 15median = 90

ɑ = 7.1β = 2.7

Core Understanding

AdvancedUnderstanding

A+

AA-B+

B

B-

Cs


Recommended