+ All Categories
Home > Documents > cs194 -- light fields

cs194 -- light fields

Date post: 11-Sep-2021
Category:
Upload: others
View: 7 times
Download: 0 times
Share this document with a friend
99
Image Manipulation & Computational Photography UC Berkeley CS194, Fall 2016 Light Fields Guest Lecturer: Ren Ng
Transcript
Page 1: cs194 -- light fields

Image Manipulation & Computational Photography UC Berkeley CS194, Fall 2016

Light Fields Guest Lecturer: Ren Ng

Page 2: cs194 -- light fields

Fall 2016CS194

What’s Happening Inside the Camera?

Cross-section of Nikon D3, 14-24mm F/2.8 lens

Page 3: cs194 -- light fields

Fall 2016CS194

Three Focus-Related Problems in 2D Photography

1. Need to focus before taking the shotSim

on Bruty, Sports Illustrated

Page 4: cs194 -- light fields

Fall 2016CS194

2. Trade-off between depth of field and motion blur

f / 40.01 sec

f / 110.1 sec

f / 320.8 sec

Three Focus-Related Problems in 2D Photography

Page 5: cs194 -- light fields

Fall 2016CS194

3. Lens designs are complex due to optical aberrations

Three Focus-Related Problems in 2D Photography

Page 6: cs194 -- light fields

Light Field Photography Demo

Page 7: cs194 -- light fields

Fall 2016CS194

Light Field Photographs

Page 8: cs194 -- light fields

Fall 2016CS194

Lytro ILLUM with 30-250mm (equiv) lens F/2

Lens Designed For Light Field Computation

Page 9: cs194 -- light fields

2D Photographs vs 4D Light Fields

Page 10: cs194 -- light fields

Fall 2016CS194

What’s Happening Inside the Camera?

Cross-section of Nikon D3, 14-24mm F/2.8 lens

Page 11: cs194 -- light fields

Fall 2016CS194

2D Photographs vs 4D Light Fields

Photograph = light arriving at all points in image (2D)Light field = light traveling along every ray (4D)

Page 12: cs194 -- light fields

Fall 2016CS194

Page 13: cs194 -- light fields

Credit:

Page 14: cs194 -- light fields
Page 15: cs194 -- light fields

?

Page 16: cs194 -- light fields

?

Page 17: cs194 -- light fields

The 4D Light Field Flowing Into A Camera

Cross-section of Nikon D3, 14-24mm F/2.8 lens

Page 18: cs194 -- light fields

Fall 2016CS194

The 4D Light Field Flowing Into A Camera

Lens Sensor

Page 19: cs194 -- light fields

The 4D Light Field Flowing Into A Camera

ux

ux

Lens

Focal plane

Sensor

Page 20: cs194 -- light fields

What Does a 2D Photograph Record?

x

ux

u

Page 21: cs194 -- light fields

Imagine Recording the Entire 4D Light Field

x

ux

u

Page 22: cs194 -- light fields

Capturing Light Fields

Page 23: cs194 -- light fields

A Plenoptic Camera Samples The Light Field

x

ux

u

Microlens arraySensorLight Field Sensor

Page 24: cs194 -- light fields

Where Microlenses Go Inside Camera

Cross-section of Nikon D3, 14-24mm F/2.8 lens

Page 25: cs194 -- light fields

Where Microlenses Go Inside Camera

Lens SensorCover Glass

Page 26: cs194 -- light fields

Where Microlenses Go Inside Camera

Lens SensorCover Glass

Microlenses

Page 27: cs194 -- light fields

Glass

(0.5 mm thick)

…Air

(0.04 mm thick)

Microlenses

(0.02 mm spacing)

CMOS pixels

(0.0014 mm spacing)

Page 28: cs194 -- light fields
Page 29: cs194 -- light fields
Page 30: cs194 -- light fields

Raw Data From Light Field Sensor

Page 31: cs194 -- light fields

Raw Data From Light Field Sensor

Page 32: cs194 -- light fields

Raw Data From Light Field Sensor

One disk image

Page 33: cs194 -- light fields

Raw Data From Light Field Sensor

One disk image

Page 34: cs194 -- light fields

Raw Data From Light Field Sensor

One disk image

Page 35: cs194 -- light fields

Raw Data From Light Field Sensor

Page 36: cs194 -- light fields

u,v

x,y

Mapping Sensor Pixels to (x,y,u,v) Rays

u,v

Microlens location in image field of view gives (x,y) coord

Pixel location in microlens image gives (u,v) coordx,y

Page 37: cs194 -- light fields

u,v

x,y

Mapping Sensor Pixels to (x,y,u,v) Rays

u,v

Microlens location in image field of view gives (x,y) coord

Pixel location in microlens image gives (u,v) coordx,y

Page 38: cs194 -- light fields
Page 39: cs194 -- light fields
Page 40: cs194 -- light fields
Page 41: cs194 -- light fields
Page 42: cs194 -- light fields
Page 43: cs194 -- light fields
Page 44: cs194 -- light fields

Test Your Understanding

Page 45: cs194 -- light fields

Sub-Aperture Images

Sub-aperture image, min u

Image from selecting same pixel under every microlens

Page 46: cs194 -- light fields

Sub-Aperture Images

Image from selecting same pixel under every microlens

Sub-aperture image, max u

Page 47: cs194 -- light fields

Sub-Aperture Imagesx

ux

u

Sub-aperture image, max u

Page 48: cs194 -- light fields

Sub-Aperture Imagesx

ux

u

Sub-aperture image, min u

Page 49: cs194 -- light fields

How Does Computational Refocusing Work?

Page 50: cs194 -- light fields

Fall 2016CS194

Recall: How Physical Focusing Works

Sensor / lens gap determines plane of physical focus.

Credit: Stanford CS 178

Page 51: cs194 -- light fields

Fall 2016CS194

Computational Refocusing

Page 52: cs194 -- light fields

Fall 2016CS194

Computational Refocusing

Page 53: cs194 -- light fields

Fall 2016CS194

Computational Refocusing

focus far

Page 54: cs194 -- light fields

Fall 2016CS194

Computational Refocusing

Page 55: cs194 -- light fields

Fall 2016CS194

Computational Refocusing

Page 56: cs194 -- light fields

Fall 2016CS194

Computational Refocusing

compute ray projection

Page 57: cs194 -- light fields

Fall 2016CS194

Computational Refocusing

focus close

Page 58: cs194 -- light fields

Fall 2016CS194

Computational Refocusing

focus far

Page 59: cs194 -- light fields

Output Image Pixel is Sum of Many Sensor Pixels

x

ux

u

Virtual focal plane

Page 60: cs194 -- light fields

x

u

Output Image Pixel is Sum of Many Sensor Pixels

Page 61: cs194 -- light fields

Fall 2016CS194

Shift-And-Add Algorithm

Page 62: cs194 -- light fields

Fall 2016CS194

Shift-And-Add Algorithm

for every sub-aperture image I(x,y) • compute the (u,v) corresponding to that image • shift the sub-aperture image by Δ(x,y) = C * (u,v) • average the shifted image into an output image

Larger C means refocusing further from the physical focus Sign of C affects whether focusing closer or further

For non-integral Δ(x,y), use bilinear interpolation to blend into 4 nearest pixels of output image

Page 63: cs194 -- light fields

Fall 2016CS194

Sampling & Aliasing in Shift-And-Add Algorithm

Page 64: cs194 -- light fields

Fall 2016CS194

Antialiasing Shift-And-Add Algorithm

for a dense sampling of (u,v) over the lens aperture • compute a virtual sub-aperture image by bilinear

interpolation of the nearest 4 sub-aperture images • shift the image by Δ(x,y) = C * (u,v) • average the shifted image into an output image

Page 65: cs194 -- light fields

Computationally ChangingDepth of Field and Viewpoint

Page 66: cs194 -- light fields

Computationally Extended Depth of Field

Conventional Lens at f/22

Light Field Lens at f/4, all-focus algorithm

[Agarwala 2004]

Conventional Lens at f/4

Page 67: cs194 -- light fields

Partially Extended Depth of Field

Extended DOF

Partially Extended DOF

OriginalDOF

Page 68: cs194 -- light fields

Fall 2016CS194

Tilted Focal Plane

Page 69: cs194 -- light fields

Fall 2016CS194

Tilted Focal Plane

Page 70: cs194 -- light fields

View Camera, Scheimpflug Rule

Source: David Summerhayes, http://www.luminous-landscape.com/tutorials/focusing-ts.shtml

Page 71: cs194 -- light fields

Lateral movement (left)

Computational Change of Viewpoint

Page 72: cs194 -- light fields

Lateral movement (right)

Computational Change of Viewpoint

Page 73: cs194 -- light fields

Lateral left movement

Computational Change of Viewpoint

Backward movement(orthographic effect)Forward movement(wide angle effect)

Page 74: cs194 -- light fields

Lateral left movement

Computational Change of Viewpoint

Backward movement(orthographic effect)

Page 75: cs194 -- light fields

Moving the Viewpoint Side-to-Side

Moving viewpoint laterally = selecting a different sub-aperture image

Marc Levoy

Page 76: cs194 -- light fields

Moving the Viewpoint Back-to-Front

Moving viewpoint in/out = selecting pixels from different sub aperture images

Marc Levoy

Page 77: cs194 -- light fields

Many Ways to Capture Light Fields

Page 78: cs194 -- light fields

Spherical Gantry ⇒ 4D Light Field

Original light field rendering paper Take photographs of an object from all points on an enclosing sphere Captures all light leaving an object – like a hologram

L(x, y, ✓,�)

(✓,�)

Slide credit: Pat Hanrahan[Levoy & Hanrahan 1996] [Gortler et al. 1996]

Page 79: cs194 -- light fields

Multi-Camera Array ⇒ 4D Light Field

Slide credit: Pat Hanrahan

Page 80: cs194 -- light fields

Two-Plane Light Field

2D Array of Cameras 2D Array of Images

L(u,v,s,t) Slide credit: Pat Hanrahan

Page 81: cs194 -- light fields
Page 82: cs194 -- light fields

Fall 2016CS194

Camera Arrays

Very large “virtual aperture.” Very flexible imaging [Wilburn et al 2005] [Yang et al. 2002]

Page 83: cs194 -- light fields

Fall 2016CS194

Light Field Microscope

Use microlens in microscope imaging path [Levoy et al 2006]

Page 84: cs194 -- light fields

Mandibles of a silk worm

[Levoy et al 2006]

Page 85: cs194 -- light fields

Fern spore

[Levoy et al, 2006]

Page 86: cs194 -- light fields

Modeling Light - Another Way to Get to Light Fields

Page 87: cs194 -- light fields

Fall 2016CS194

What Do We See?

Page 88: cs194 -- light fields

Fall 2016CS194

What Do We See?

Page 89: cs194 -- light fields

Fall 2016CS194

The Plenoptic Function

Q: What is the set of all things that we can ever see? A: The Plenoptic Function (Adelson & Bergen)

Let’s start with a stationary person and try to parameterize everything that person can see…

Figure by Leonard McMillan

Page 90: cs194 -- light fields

Fall 2016CS194

Grayscale Snapshot

is intensity of light • Seen from a single view point • At a single time • Averaged over the wavelengths of the visible spectrum

(can also do P(x,y), but spherical coordinate are nicer)

P (✓,�)

Page 91: cs194 -- light fields

Fall 2016CS194

Color Snapshot

is intensity of light • Seen from a single view point • At a single time • As a function of wavelength

P (✓,�,�)

Page 92: cs194 -- light fields

Fall 2016CS194

A Movie

is intensity of light • Seen from a single view point • Over time • As a function of wavelength

P (✓,�,�, t)

Page 93: cs194 -- light fields

Fall 2016CS194

Holographic Movie

is intensity of light • Seen from ANY viewpoint • Over time • As a function of wavelength

P (✓,�,�, t, Vx

, Vy

, Vz

)

Page 94: cs194 -- light fields

Fall 2016CS194

The Plenoptic Function

• Can reconstruct every possible view, at every moment, from every position, at every wavelength

• Contains every photograph, every movie, everything that anyone has ever seen! it completely captures our visual reality! Not bad for a function…

P (✓,�,�, t, Vx

, Vy

, Vz

)

Page 95: cs194 -- light fields

Fall 2016CS194

The 5D Plenoptic Function

• Ignore time and wavelength • Focus just on spatial structure of light

P (✓,�, Vx

, Vy

, Vz

)

Page 96: cs194 -- light fields

Fall 2016CS194

4D Light Field

• In a region of free-space, 5D plenoptic function simplifies to 4D because light is constant along a ray

• In this lecture we focused on the 4D light field that flows into the body of a camera

P (✓,�, Vx

, Vy

) = P (u, v, s, t)

Page 97: cs194 -- light fields

Fall 2016CS194

On Simulating the Visual Experience

Just feed the eyes the right data • No one will know the difference!

Philosophy: • Ancient question: “Does the

world really exist?” Physics: • “Slowglass" might be possible?

Computer Science: • Virtual Reality

Page 98: cs194 -- light fields

Fall 2016CS194

Virtual Reality Capture (Outward Facing Light Fields)

GoPro Odyssey / Google Jump

Credit: Simon Crisp, gizmag.com

Page 99: cs194 -- light fields

Fall 2016CS194

Things to Remember

4D light field: radiance along every ray Light field camera • Capture light field flowing into lens in every shot • Light field sensor = microlens array in front of sensor

Computational refocusing • Refocusing = reproject rays assuming new sensor depth • Can think of this as shift-and-add of sub-aperture images

Plenoptic Function / Light Field • Represent the total geometric structure of light


Recommended