+ All Categories
Home > Documents > CS1m_part2_2013_2014

CS1m_part2_2013_2014

Date post: 03-Jun-2018
Category:
Upload: asdsd
View: 217 times
Download: 0 times
Share this document with a friend

of 55

Transcript
  • 8/12/2019 CS1m_part2_2013_2014

    1/55

    COMMUNICATIONSYSTEMS (1st module)

    Lecturer: Claudio Sacchi, Ph.D

    University of Trento, International Master in

    Telecommunications Enineerin, !cademic "ear#$%&'#$%(

    !ssistant lecturer: CosimoStallo, Ph.D

    )isitin *rofessor: Prof. Luc)andendor*e

    PART 2: NOISE INCOMMUNICATION SYSTEMS

  • 8/12/2019 CS1m_part2_2013_2014

    2/55

    #

    TABLE OF CONTENTS

    TECHNICAL INTROUCTION TO THERMALNOISE

    Thermal noise measured PSD+

    hite a**ro-imation+

    Euivalent model for am*lifier thermal noise.

    THERMAL NOISE PARAMETERI!ATION INTELECOMMUNICATION SYSTEMS

    /oise fiure+ Some cases of technical interest a0out noise *arameters

    com*utation.

    Telecommunication SystemsUniversity of Trento

  • 8/12/2019 CS1m_part2_2013_2014

    3/55

    &

    TABLE OF CONTENTS

    MAN"MAE NOISE AN INTERFERENCE Introduction+

    Man'made noise features+

    Man'made noise modelin+

    Co'channel interference and ad1acent channel interference+

    Phase noise.

    Telecommunication SystemsUniversity of Trento

  • 8/12/2019 CS1m_part2_2013_2014

    4/55

    (

    TECHNICAL INTROUCTION TOTHERMAL NOISE

    Telecommunication SystemsUniversity of Trento

  • 8/12/2019 CS1m_part2_2013_2014

    5/55

    2

    THERMAL NOISE MEASURE PS

    #HAT$S THERMAL NOISE % Thermal noise is the electronic noise enerated 0y thermal

    aitation of electrons inside an electrical conductor+

    It is also 3no4n as 5ohnson'/yuist noise, 0ecause it 4asmeasured 0y 5.6. 5ohnson at 6ell La0s in %7#8 and

    descri0ed in details 0y 9. /yuist 6ell La0s; in %7&$+ The t&ue thermal noise PSD has the follo4in e-*ression:

    ( )2

    1( )

    2 1 2

    n h

    h

    RkT hS f

    kTf

    = =

    +

    7?%$'#& @9A;B Bolt'm$s *ostt

  • 8/12/2019 CS1m_part2_2013_2014

    6/55

    THERMAL NOISE MEASURE PS

    #HAT$S THERMAL NOISE %

    Telecommunication SystemsUniversity of Trento

    -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

    x 1012

    1

    1.1

    1.2

    1.3

    1.4

    1.5

    1.6

    1.7

    1.8

    1.9

    2x 10

    -21

    frequency (Hz)

    ThermalnoisePSD

  • 8/12/2019 CS1m_part2_2013_2014

    7/55

    >

    THERMAL NOISE MEASURE PS

    #HITE APPRO,IMATION (1) If the freuency is lo4 enouh, in *articular:

    e can a**ro-imate very 4ell the a0ove mentioned PSD4ith a constant, i.e.:

    The 4hiteF a**ro-imation of the PSD is -ull. &eso/lein most cases of technical interest it is very difficult tothin3 a0out communication systems 4hose *ass0and is of

    the order of T9A;.

    Telecommunication SystemsUniversity of Trento

    1 @ 2902

    kTf THz T K

    h

  • 8/12/2019 CS1m_part2_2013_2014

    8/55

    8

    THERMAL NOISE MEASURE PS

    #HITE APPRO,IMATION (2) Thermal noise can 0e assumed to 0e 0uss"

    dst&/uted 0y invo3in the Central Limit Theorem+

    Thermal noise is 'e&o"me+

    Thermal noise sam*les are u*o&&elted 0y the 4ayconsiderin the 4hiteF assum*tion;+

    THEREFORE:!G/ modelin is deute for thermalnoise. e can use it, e-*loitin all its intrinsic advantaes H

    The *ro0lem is to find a *arameteriAation of this model thatsoundsF ood from an enineerin vie4*oint+

    The idea is to *arameteriAe the !G/ model of thermalnoise as a function of the tem3e&tu&e.

    Telecommunication SystemsUniversity of Trento

  • 8/12/2019 CS1m_part2_2013_2014

    9/55

    7

    E4UI5ALENT MOEL FORAMPLIFIER THERMAL NOISE

    #HY AMPLIFIERS ARE INTERESTIN0 FROM A

    6NOISE7 5IE#POINT % It is 3no4n that the 0iestF and most e-*ensive;

    com*onents of a communication system are am*lifiers+

    Po4er am*lifiers and lo4'noise am*lifiers are made 0ysaladsF of electronic com*onents semiconductors, ca*acities,resistors, etc.;+

    It is easy to understand that am*lifiers are &ele8t t9e&mlose sou&*es+

    or this reason, 4e ta3e a *articular attention to thesecom*onents. or this reason, 4e 4ill sho4 a s*ecific model fornoisy am*lifiers, 0ased on tem*erature.

    Telecommunication SystemsUniversity of Trento

  • 8/12/2019 CS1m_part2_2013_2014

    10/55

    %$

    E4UI5ALENT MOEL FORAMPLIFIER THERMAL NOISE

    E4UI5ALENT NOISE TEMPERATURE The eu8let ose tem3e&tu&e of a eneric

    0andlimited !G/ source is defined as follo4s:

    It is actually the t9e&mod.m* tem3e&tu&e of aresistor *rovidin the same thermal noise *o4er of theconsidered source.

    eq nP kB k = =

  • 8/12/2019 CS1m_part2_2013_2014

    11/55

    %%

    E4UI5ALENT MOEL FORAMPLIFIER THERMAL NOISE

    NOISELESS AMPLIFIER MOEL In the follo4in, a noiseless am*lifier model is sho4n.

    It is characteriAed 0y an in*ut resistance ri, an out*ut

    resistance roand a transfer function 9:f;freuency'selective ain;

    Telecommunication SystemsUniversity of Trento

  • 8/12/2019 CS1m_part2_2013_2014

    12/55

    %#

    E4UI5ALENT MOEL FORAMPLIFIER THERMAL NOISE

    A5AILABLE PO#ER AT THE OUTPUT OFTHE NOISELESS AMPLIFIER

    The 8l/le 3oe&; at the out*ut of thenoiseless am*lifier model is iven as follo4s:

    ?; 4e are considerin here the hy*othesis of im*edancematchin JL=ro; that allo4s the o*timal *o4er transfer.

    ( ) ( ) ( ) ( )

    ( )

    2 2 222

    2

    4 4 4

    io io s

    o o o s i

    H f V H fV f rP f V f

    r r r R r

    = = =

    +

    Telecommunication SystemsUniversity of Trento

  • 8/12/2019 CS1m_part2_2013_2014

    13/55

    %&

    E4UI5ALENT MOEL FORAMPLIFIER THERMAL NOISE

    A5AILABLE PO#ER 0AIN e define the availa0le *o4er ain of the

    am*lifier as follo4s:

    e are considerin the im*edancematchin condition also for the in*ut Js=ri.

    ( ) ( )

    ( )

    ( )

    ( )

    ( ) 22

    2

    io o s SA

    S S o s i o

    H f rP f V f R Rg f

    P f V f r R r r

    = = =

    +

    Telecommunication SystemsUniversity of Trento

  • 8/12/2019 CS1m_part2_2013_2014

    14/55

    %(

    E4UI5ALENT MOEL FORAMPLIFIER THERMAL NOISE

    PO#ER SPECTRAL ENSITY AT THEOUTPUT OF A NOISELESS AMPLIFIER

    LetKs su**ose that the in*ut sinal to the am*lifier is a4hite Gaussian noise *rocess 4ith euivalent noisetem*erature eual to s+

    The e-*ression of the PSD of the coloredF noise at theout*ut of the noisless am*lifier is the follo4in one:

    ( )( ) ( ) ( ) ( )o A S A snoiselessf g f f g f k = =

    Telecommunication SystemsUniversity of Trento

  • 8/12/2019 CS1m_part2_2013_2014

    15/55

    %2

    E4UI5ALENT MOEL FORAMPLIFIER THERMAL NOISE

    PO#ER SPECTRAL ENSITY AT THEOUTPUT OF A NOISY AMPLIFIER

    !s *reviously mentioned, am*lifiers are the mostrelevant thermal noise sources of a communicationsystem+

    Therefore, am*lifiers dd t9e&ml ose that isinternally enerated. Therefore:

    Telecommunication SystemsUniversity of Trento

    ( )( ) ( ) int ( )o A snoisyf g f k f = +

  • 8/12/2019 CS1m_part2_2013_2014

    16/55

    %

    E4UI5ALENT MOEL FORAMPLIFIER THERMAL NOISE

    A5AILABLE PO#ER AT THE OUTPUT OF A NOISYAMPLIFIER (1)

    The 8l/le ose 3oe& at the out*ut of the noisy am*lifier isiven 0y the follo4in e-*ression:

    Usually am*lifiers are characteriAed 0y t4o *arameters: the

    m

  • 8/12/2019 CS1m_part2_2013_2014

    17/55

    %>

    E4UI5ALENT MOEL FORAMPLIFIER THERMAL NOISE

    A5AILABLE PO#ER AT THE OUTPUT OF ANOISY AMPLIFIER (2)

    Therefore, 4e can 4rite:

    /o4 4e can define the e--e*t8e ose tem3e&tu&e

    of the am*lifier as:

    ( ) ( )int0 0

    o o s N N f df k gB f df

    + +

    = = +

    ( )+

    =

    0

    int

    1 dff

    gkBNe

    Telecommunication SystemsUniversity of Trento

  • 8/12/2019 CS1m_part2_2013_2014

    18/55

    %8

    E4UI5ALENT MOEL FORAMPLIFIER THERMAL NOISE

    AITI5E MOEL FOR NOISY AMPLIFIERS inally 4e can 4rite:

    e can derive a 8e&. use-ul ddt8e model of the noisyam*lifier see fiure 0elo4;, 4here the internal noise is 0rouht

    at the in*utF of the device. This 4ill ma3e easier the com*utationof sinal to'noise ratios.

    ( ) ( )0

    o o s N N e s e N N f df k gB gkB gk B

    +

    = = + = +

    Telecommunication SystemsUniversity of Trento

  • 8/12/2019 CS1m_part2_2013_2014

    19/55

    %7

    E4UI5ALENT MOEL FORAMPLIFIER THERMAL NOISE

    SI0NAL"TO"NOISE RATIO AT THE OUTPUT OF ANOISY AMPLIFIER (1) LetKs consider the system de*icted in the fiure 0elo4:

    The 8l/le s=l sou&*e 3oe& is Ss+

    LetKs su**ose that the sinal is 0and'limited and its J0and4idth is eual to a fraction of 6/.

    Telecommunication SystemsUniversity of Trento

  • 8/12/2019 CS1m_part2_2013_2014

    20/55

    #$

    E4UI5ALENT MOEL FORAMPLIFIER THERMAL NOISE

    SI0NAL"TO"NOISE RATIO AT THE OUTPUTOF A NOISY AMPLIFIER (2)

    Considerin the euivalent model of a noisy am*lifier,

    4e can 4rite that:

    e can conventionally define also the sinal'to'noiseratio t t9e 3ut of the am*lifier as:

    ( ) ( )S s s

    O o s e N s e N

    gS gS S S

    N N gk B k B

    = = =

    + +

    Ns

    s

    S Bk

    S

    N

    S

    =

    Telecommunication SystemsUniversity of Trento

  • 8/12/2019 CS1m_part2_2013_2014

    21/55

    #%

    E4UI5ALENT MOEL FORAMPLIFIER THERMAL NOISE

    SI0NAL"TO"NOISE RATIO AT THE OUTPUT OF ANOISY AMPLIFIER (>)

    /o4 4e can e-*loit the *revious euation in order toderive an e-*ression of the sinal'to'noise ratio at the

    out*ut of the am*lifier as a function of the sinal'to'noiseratio at the in*ut of the am*lifier, i.e.:

    ( ) ( ) SseNsses

    O N

    S

    Bk

    S

    N

    S

    +

    =

    +

    =

    1

    1

    1

    NoteO S

    S S

    N N

  • 8/12/2019 CS1m_part2_2013_2014

    22/55

    ##

    THERMAL NOISE PARAMETERI!ATIONIN TELECOMMUNICATION SYSTEMS

    Telecommunication SystemsUniversity of Trento

  • 8/12/2019 CS1m_part2_2013_2014

    23/55

    #&

    NOISE FI0URE

    EFINITION OF NOISE FI0URE The ose -=u&e of an am*lifier is defined in the follo4in

    4ay:

    Given the *revious euations, 4e can derive a formulation of thenoise fiure de*endin on the euivalent noise tem*erature:

    0

    1@ 290

    sO S

    S SK

    N F N

    = = =

    0

    1 eF

    = +

    Telecommunication SystemsUniversity of Trento

  • 8/12/2019 CS1m_part2_2013_2014

    24/55

    #(

    NOISE FI0URE

    #HAT OES FREPRESENT % e can note from the *revious euation that:

    Therefore a noisy am*lifier is characteriAed 0y a noise fiure% enerally e-*ressed in d6;. This means that it is

    hotterF from a noise vie4*oint; than the surroundinenvironment+

    ! lo"ose m3l-e& has a noise tem*erature lo4er thanenvironmental tem*erature. This means that it is colderF thanthe surroundin environment. Therefore: %#.

    ( ) 01 = Fe

    Telecommunication SystemsUniversity of Trento

  • 8/12/2019 CS1m_part2_2013_2014

    25/55

    #2

    NOISE FI0URE

    NOISE AN 0AIN PARAMETERS OFAMPLIFIERS

    Telecommunication SystemsUniversity of Trento

  • 8/12/2019 CS1m_part2_2013_2014

    26/55

    #

    NOISE PARAMETERS COMPUTATION:SOME CASES OF INTEREST

    CASE 1: CASCAE OF AMPLIFIERS LetKs consider the cascade of t4o am*lifier staes. 6oth staes

    are noisy+

    LetKs su**ose that 0oth staes are linear and time'invariant

    LTI;+ Moreover, letKs su**ose that the 0and*ass of the second stae

    falls 4ithin the 0and*ass of the first stae 6#6%;.

    Telecommunication SystemsUniversity of Trento

  • 8/12/2019 CS1m_part2_2013_2014

    27/55

    #>

    NOISE PARAMETERS COMPUTATION:SOME CASES OF INTEREST

    CASE 1: CASCAE OF AMPLIFIERS (2)

    Under this hy*othesis 4e can say that the 0and*ass of thecascade 6/ is eual to 6#+

    The availa0le noise *o4er at the out*ut of the t4o staes can0e e-*ressed 0y the sum of three terms:

    ( ) NNNsO BkgBkggBkggN 2211221 ++=

    Nose t t9e =&ess o-t9e *s*de (m3l-ed

    /. /ot9 st=es)

    Nose te&ll.=ee&ted /. t9e 1?

    st=e m3l-ed /. t9ese*od st=e

    Nose te&ll.=ee&ted /.t9e 2? st=e

    Telecommunication SystemsUniversity of Trento

  • 8/12/2019 CS1m_part2_2013_2014

    28/55

    #8

    NOISE PARAMETERS COMPUTATION:SOME CASES OF INTEREST

    CASE 1: CASCAE OF AMPLIFIERS (>) If 4e define as the total ain of the cascade, 4e can e-*ress the

    *o4er availa0le at the out*ut of the cascade as follo4s:

    Therefore, t9e eu8let ose tem3e&tu&e of the cascade

    can 0e iven as follo4s:

    NsO Bg

    gkN

    ++=

    1

    21

    1

    21

    ge

    +=

    Telecommunication SystemsUniversity of Trento

  • 8/12/2019 CS1m_part2_2013_2014

    29/55

    #7

    NOISE PARAMETERS COMPUTATION:SOME CASES OF INTEREST

    CASE 1: CASCAE OF AMPLIFIERS (@) The total noise fiure of the cascade is iven 0y:

    e can iterate this formula for the eneric case of /am*lifiers*ut in cascade. e o0tain the so'called F&s$s -o&mul:

    1 2 21

    0 1 0 1

    11

    FF F

    g g

    = + + = +

    12121

    3

    1

    21

    ...

    1...

    11

    ++

    +

    +=

    N

    N

    ggg

    F

    gg

    F

    g

    FFF

    Telecommunication SystemsUniversity of Trento

  • 8/12/2019 CS1m_part2_2013_2014

    30/55

    &$

    NOISE PARAMETERS COMPUTATION:SOME CASES OF INTEREST

    CASE 2: RECEI5ER (1) Let us consider no4 *om3lete &e*e8e& s*9eme consistin of

    t4o staes: a first J stae, namely: 3&ede*to ut and asecond 0ase0and stae, namely dete*to&:

    The first stae usually contains an am*lifier characteriAed 0y 9=9= d 9=9 ose -=u&e. Considerin the riisKs formula 4ecan say that:

    21 1 1

    1

    1ric ric ric

    FF F F F

    g

    = +

    Telecommunication SystemsUniversity of Trento

  • 8/12/2019 CS1m_part2_2013_2014

    31/55

    &%

    NOISE PARAMETERS COMPUTATION:SOME CASES OF INTEREST

    CASE 2: RECEI5ER (2) Under this hy*othesis, the m os. st=e of the

    system is the J *redetection unit+

    The detector *ut in cascade *erforms some nonlinear

    demodulation tas3s analo or diital; on the0ase0and am*lified sinal+

    Therefore, 4e can reasona0ly su**ose that thedetector *ot s=-*tl. dd ose to the

    system+ Moreover, /e= t t9e &=9t 3&t o- t9e *s*de,

    its noise contri0ution is reduced 0y the am*lifier ain.

    Telecommunication SystemsUniversity of Trento

  • 8/12/2019 CS1m_part2_2013_2014

    32/55

    NOISE PARAMETERS COMPUTATION:SOME CASES OF INTEREST

    CASE 2: RECEI5ER (>) /o4, 4e can com*ute the 3&e"dete*to s=l"to"

    ose &to that is 0y definition;:

    ( ) R TRS N S B=

    ( ) NeR kk =+=

    S.stem osetem3e&tu&e

    ( )( )

    RR

    R e T

    SS N

    k B =

    +

    Telecommunication SystemsUniversity of Trento

  • 8/12/2019 CS1m_part2_2013_2014

    33/55

    &&

    CASE >: CABLE REPEATER SYSTEMS (1)

    In a C!T) net4or3, the sinal transmitted throuh the ca0le isstronly attenuated 4ith distance. or this reason, it ismandatory to *ut some am*lifiers throuh the line+

    The most efficient solution is to em*loy &e3ete& m3l-e&s

    that e-actly com*ensate the ca0le attenuation in the considerednet4or3 sement see fiure 0elo4;:

    NOISE PARAMETERS COMPUTATION:SOME CASES OF INTEREST

    Telecommunication SystemsUniversity of Trento

    ( )1 1cr c r g L g= =

    N:t; % # & m ":t;

    ( )0

    TX

    c c T

    SS

    N k L B

    =

    0

    1 1cc c cF L L

    = + = +

    1 1( 1)

    (1/ )

    r rcr c c c c r c r

    c c

    F FF F L L L F L F

    g L

    = + = + = +

    1cL >> 1rF >

  • 8/12/2019 CS1m_part2_2013_2014

    34/55

    &(

    NOISE PARAMETERS COMPUTATION:SOME CASES OF INTEREST

    CASE >: CABLE REPEATER SYSTEMS (2) The o8e&ll ose -=u&e for the mcascaded

    sections can 0e com*uted as follo4s:

    If straihtfor4ardly follo4s the eu8let osetem3e&tu&e of the cascade:

    ( ) ( )2 1

    1 1 1 ( 1)cr cr cr cr cr cr mcr cr cr

    F F FF F mF m mF g g g

    = + + + + = +

    00)1( cre mFF =

    Telecommunication SystemsUniversity of Trento

  • 8/12/2019 CS1m_part2_2013_2014

    35/55

    &2

    NOISE PARAMETERS COMPUTATION:SOME CASES OF INTEREST

    CASE >: CABLE REPEATER SYSTEMS (>) e can reasona0ly *resume that the noise tem*erature at the

    transmitter 4ill 0e small com*ared to the euivalent noisetem*erature of the entire cascaded system+

    Under these conditions, the *redetection sinal'to'noise ratio can0e com*uted as follo4s:

    ( ) 10

    1

    =

    N

    S

    mBkFm

    S

    Bk

    S

    N

    S

    Tcr

    T

    Te

    T

    R

    Telecommunication SystemsUniversity of Trento

    ( )1 0

    T

    cr T

    SS

    N kF B

    =

    Sinal'to'noise ratio at theout*ut of the first re*eater

  • 8/12/2019 CS1m_part2_2013_2014

    36/55

    &

    MAN"MAE NOISE ANINTERFERENCE

    Telecommunication SystemsUniversity of Trento

  • 8/12/2019 CS1m_part2_2013_2014

    37/55

    &>

    MAN"MAE NOISE SOURCES

    INTROUCTION Thermal noise is not the only distur0ance added to a sinaltransmitted onto a real channel+

    Thermal noise is rearded as the natural or internal noise of atelecommunication system+

    It is naturally in o**osition to the man'made noise+

    Man'made noise is enerated 0y a variety of emissions fromelectrical dischares and other source, i.e.: /oise from electrical machinery+

    /oise from s*ar3 inition in *etrol enines+ S4itchin transients+

    Dischare lihtin, etc.

    Telecommunication SystemsUniversity of Trento

    5.J. 9erman, Electromanetic !m0ients and Man'Made /oiseF, in: Multi')olume EMCEncyclo*edia Series, %7>7.

  • 8/12/2019 CS1m_part2_2013_2014

    38/55

    &8

    MAN"MAE NOISE SOURCES

    MAN"MAE NOISE FEATURES (tmedom)

    Im3uls18eo1seA

    *9&*te&1'ed/. m.outl.e&s (ot0uss1)

    (8 M9A vehicular

    man'made noise

    Telecommunication SystemsUniversity of Trento

  • 8/12/2019 CS1m_part2_2013_2014

    39/55

    &7

    MAN"MAE NOISE SOURCES

    MAN"MAE NOISE FEATURES(-&eue*. dom)

    T9e s3e*t&um 1s

    -&e2ue*."sele*t18e (ot#91te o1se)

    /oise enerated 0ya hih'voltae

    electric line

    Telecommunication SystemsUniversity of Trento

  • 8/12/2019 CS1m_part2_2013_2014

    40/55

    ($

    MAN"MAE NOISE MOELIN0

    MOEL OF A SIN0LE"NOISE IMPULSE! reasona0le model for a sinle noise im*ulse

    is the follo4in:

    Telecommunication SystemsUniversity of Trento

    0( ) ( ) ( )z t p t t u t=

    Pulse function offinite duration

    /oise'li3e 4aveform

    !. Shu3la, easi0ility study of measurement of man'made noiseF, DEJ! re*ort, London U;:March #$$% htt* availa0le;.

    f

  • 8/12/2019 CS1m_part2_2013_2014

    41/55

    (%

    MAN"MAE NOISE MOELIN0

    MOEL OF A TRAIN OF NOISE PULSES Man'made noise may not com*rise a sinle

    im*ulse 0ut a train of *ulses e.. inress'

    noise in ca0le lines;+ The corres*ondin model is iven as follo4s:

    Telecommunication SystemsUniversity of Trento

    ( ) ( ) ( )n nnz t p t u t=

    4here:( ) n

    n n

    n

    t tp t a p

    =

    Pulse duration

    T l i ti S tU i it f T t

  • 8/12/2019 CS1m_part2_2013_2014

    42/55

    (#

    MAN"MAE NOISE MOELIN0

    SIN0LE NOISE IMPLUSE (E,AMPLE)

    Telecommunication SystemsUniversity of Trento

    a; The envelo*e is a0uss 3ulse+

    0; The noise 4aveform is aseuence of randomnum0er u-o&ml.dst&/uted in O'%,%.

    T l i ti S tU i it f T t

  • 8/12/2019 CS1m_part2_2013_2014

    43/55

    (&

    MAN"MAE NOISE MOELIN0

    TRAIN OF NOISE PULSES (E,AMPLE)

    Telecommunication SystemsUniversity of Trento

    a; e have 0uss 3ulses4ith different am*litudesand durations+

    0; The noise 4aveform is aseuence of randomnum0er u-o&ml.dst&/uted in O'%,%+

    c; 9ere, 4e have a 3e&od*emission of noise *ulses. Inmany cases, the emissions ot 3e&od*.

    Telecommunication SystemsUniversity of Trento

  • 8/12/2019 CS1m_part2_2013_2014

    44/55

    ((

    CO"CHANNEL AN AACENTCHANNEL INTERFERENCE

    CO"CHANNEL INTERFERENCE (CCI) It is 3no4n also as *&osstl++

    It is an interference due to telecommunication sinalssmulteousl. transmitted t t9e sme-&eue*. of the 4anted sinal+

    This ty*oloy of interference can 0e encountered onthe tele39oe les /ENT, ENT; and *ellul&

    eto&+s ty*ically in GSM;+ Co'channel interference is dest&u*t8e. It must 0e

    controlled in order to save system *erformances.

    yy

    Telecommunication SystemsUniversity of Trento

  • 8/12/2019 CS1m_part2_2013_2014

    45/55

    (2

    CO"CHANNEL AN AACENTCHANNEL INTERFERENCE

    E,AMPLES OF CCI Tele*hone lines Cellular /et4or3s

    yy

    Cells mar3ed 4ith the same letter transmitat the same freuency :freuency reuse;

    Physically ad1acent co**er *airs interfereone 4ith another

    1

    s

    N

    I

    i

    PC

    IP

    =

    =

    C&&1e& to1te&-e&e*e

    &t1o

    Telecommunication SystemsUniversity of Trento

  • 8/12/2019 CS1m_part2_2013_2014

    46/55

    (

    CO"CHANNEL AN AACENTCHANNEL INTERFERENCE

    AACENT CHANNEL INTERFERENCE(ACI)

    The ad1acent channel interference arises 4hen asinal is transmitted at a freuency very close to theone of the 4anted sinal+

    !CI is ty*ical of DM! systems. It can 0e reduced 0yusin front'end filters 4ith selective 0and*ass

    characteristics and adeuate uard'0ands+ The effects of !CI can 0e uite nasty es*ecially in

    lo= FM &do and T5 /&od*st.

    Telecommunication SystemsUniversity of Trento

  • 8/12/2019 CS1m_part2_2013_2014

    47/55

    (>

    CO"CHANNEL AN AACENTCHANNEL INTERFERENCE

    AACENT CHANNEL INTERFERENCE(ACI): PARAMETERI!ATION

    ( )10 1 2log 20.3

    ACIK f f BI

    =

    = filter slo*e factor d6@dec;

    6= sinal 0and4idth 4anted;

    S. Ta00ane, 9and0oo3 of Mo0ile Jadio /et4or3sF,!rtech'9ouse: #$$$.

    Telecommunication SystemsUniversity of Trento

  • 8/12/2019 CS1m_part2_2013_2014

    48/55

    (8

    PHASE NOISE

    #HAT PHASE NOISE IS % Phase noise is a sto*9st* 3e&tu&/to of the

    freuency of an analo or diital oscillator+

    Phase noise is involved 0y the *resence ofm3e&-e*tos d ose in the oscillator circuit+

    !ctually, *hase noise is oe o- t9e most &ele8td&-ts in hih'freuency analo J circuitry for

    telecommunication a**lications+ Phase noise im*act on system *erformance is often

    critical. It must 0e reduced.

    Telecommunication SystemsUniversity of Trento

  • 8/12/2019 CS1m_part2_2013_2014

    49/55

    (7

    PHASE NOISE

    PHASE NOISE MOELIN0 Phase noise is modeled as follo4s:

    n:t;is a SS Gaussian random *rocess 4hose*o4er s*ectral density is iven 0y:

    ( )( ) cos ( )c c nc t A t t = + +

    ( ) 2 2cS f f f

    is a *ostt usually re*orted in data'sheets e-*ressed in d6carrier@9A;

    :LaurentKs a**ro-imation;

    Telecommunication SystemsUniversity of Trento

  • 8/12/2019 CS1m_part2_2013_2014

    50/55

    2$

    PHASE NOISE

    PHASE NOISE SPECTRAL ANALYSIS

    Phase'noiseeffect on

    the carrier

    ro4

    Rel os*llto&out3utmeasured 0y as*ectrumanalyAer;

    .S. undert, Introduction to J Simulation and Its !**lication, IEEE 5ournal of Solid'StateCircuits, )ol. &(, /o.7, **. %#78'%&%7, Se*t. %777.

    Telecommunication SystemsUniversity of Trento

  • 8/12/2019 CS1m_part2_2013_2014

    51/55

    2%

    PHASE NOISE

    PHASE NOISE PO#ER SPECTRAL ENSITYPhase Noise Mask for 92.6 GHz solid state Oscillator

    -140

    -130

    -120

    -110

    -100

    -90

    -80

    -70

    -60

    -50

    -40

    1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08

    Freq. [Hz]

    Telecommunication SystemsUniversity of Trento

  • 8/12/2019 CS1m_part2_2013_2014

    52/55

    2#

    PHASE NOISE

    PHASE NOISE REALI!ATION

    Telecommunication SystemsUniversity of Trento

  • 8/12/2019 CS1m_part2_2013_2014

    53/55

    2&

    PHASE NOISE

    PHASE NOISE EFFECTS (1)

    Phase noise im*acts on the most critical tas3 in coherentdemodulation, i.e.: carrier recovery+

    Carrier recovery is *erformed 0y a circuit called P9se"Lo*+ed"Loo3 PLL;+

    In the *resence of *hase noise a eneric PLL converes 4ith aresidual 39se d&-t iven 0y:

    ( )

    2

    2

    T

    L

    B

    BS f d f =

  • 8/12/2019 CS1m_part2_2013_2014

    54/55

    2(

    PHASE NOISE

    PHASE NOISE EFFECTS (2)

    It is 4orth notin that the *hase drift due to *hase noise isadded to the *hase drift due to the !G/ noise+

    It is easy to understand that *hase noise can 0e lmostlet9l in diital communications+

    In fact, a &ele8t &esdul 39se d&-t e.. #$B; involvesa rotation of the constellation that may render demodulationim*ossi0le+

    ! small *hase drift e.. %$B; * s=-*tl. *&ese the0it'error'rate u* to t4o orders of manitude;+

    or this reason, oscillator 4ith &edu*ed 39se ose arealmost advisa0le. Unfortunately, they are uite e-*ensive.

    Telecommunication SystemsUniversity of Trento

  • 8/12/2019 CS1m_part2_2013_2014

    55/55

    22

    PHASE NOISE

    PHASE NOISE EFFECTS (>)

    Some 6EJ curves, as e-am*le: