+ All Categories
Home > Documents > CS654: Digital Image Analysis Lecture 12: Separable Transforms.

CS654: Digital Image Analysis Lecture 12: Separable Transforms.

Date post: 31-Dec-2015
Category:
Upload: jocelyn-taylor
View: 220 times
Download: 0 times
Share this document with a friend
Popular Tags:
17
CS654: Digital Image Analysis Lecture 12: Separable Transforms
Transcript

CS654: Digital Image Analysis

Lecture 12: Separable Transforms

Recap of Lecture 11

โ€ข Image Transforms

โ€ข Source and target domain

โ€ข Unitary transform, 1-D

โ€ข Unitary transform, 2-D

โ€ข High computational complexity

Outline of Lecture 12

โ€ข Unitary transforms

โ€ข Separable functions

โ€ข Properties of unitary transforms

Image transforms

โ€ข Operation to change the default representation space of a digital image (source domain target domain)

โ€ข All the information present in the image is preserved in the transformed domain, but represented differently;

โ€ข The transform is reversible

โ€ข Source domain = spatial domain and target domain= frequency domain

Unitary transform

1}Nn0{u(n), 1-D input sequence

1N

0n1Nk0,n)u(n)a(k,v(k)ro,Auv

If Transformed sequence

1N

0k

*T* 1Nn0,n)v(k)(k,au(n)orvAu

2-D sequence

v(k,l) a (m,n) u(m,n) , 0 k,l N 1k,ln 0

N 1

m 0

N 1

=

[๐‘Ž๐‘˜๐‘™ (0 ,0 ) โ‹ฏ ๐‘Ž๐‘˜๐‘™ (0 ,๐‘› ) โ‹ฏ ๐‘Ž๐‘˜๐‘™ (0 ,๐‘โˆ’1 )

โ‹ฎ โ‹ฏ โ‹ฏ โ‹ฏ โ‹ฎ๐‘Ž๐‘˜๐‘™ (๐‘š ,0 ) โ‹ฏ ๐‘Ž๐‘˜๐‘™ (๐‘š ,๐‘›) โ‹ฏ ๐‘Ž๐‘˜๐‘™(๐‘š ,๐‘โˆ’1)

โ‹ฎ โ€ฆ โ€ฆ โ€ฆ โ‹ฎ๐‘Ž๐‘˜๐‘™(๐‘โˆ’1,0) โ€ฆ ๐‘Ž๐‘˜๐‘™(๐‘โˆ’1,๐‘›) โ€ฆ ๐‘Ž๐‘˜๐‘™(๐‘โˆ’1 ,๐‘โˆ’1)

]ร—[

๐‘ข (0 ,0 ) โ‹ฏ ๐‘ข (0 ,๐‘›) โ‹ฏ ๐‘ข (0 ,๐‘โˆ’1 )โ‹ฎ โ‹ฏ โ‹ฏ โ‹ฏ โ‹ฎ

๐‘ข (๐‘š ,0 ) โ‹ฏ ๐‘ข(๐‘š ,๐‘›) โ€ฆ ๐‘ข (๐‘š ,๐‘โˆ’1)โ‹ฎ โ€ฆ โ€ฆ โ€ฆ โ‹ฎ

๐‘ข(๐‘โˆ’1,0) โ€ฆ ๐‘ข(๐‘โˆ’1 ,๐‘™) โ€ฆ ๐‘ข(๐‘โˆ’1 ,๐‘โˆ’1)]

High computational complexity

O(N4)

Separable Transformations

โ€ข We like to design a transformation such that

๐‘Ž๐‘˜ ,๐‘™ (๐‘š ,๐‘›)=๐‘Ž๐‘˜ (๐‘š )๐‘๐‘™ (๐‘› )=๐‘Ž (๐‘˜ ,๐‘š )๐‘( ๐‘™ ,๐‘›)

{๐‘Ž๐‘˜ (๐‘š ) ,๐‘˜=0 ,โ€ฆ,๐‘โˆ’1}

{๐‘๐‘™ (๐‘›) , ๐‘™=0 ,โ€ฆ,๐‘โˆ’1 }

๐ด={๐‘Ž(๐‘˜ ,๐‘š)} ๐ต={๐‘ (๐‘™ ,๐‘›)}

Let there be two sets

1-D complete orthonormal basis vectors

Separable Transformations

๐ด ๐ดโˆ—๐‘‡=๐ดโˆ—๐‘‡ ๐ด=๐ผ

Assumption: the separable matrices be same, then

๐ต๐ตโˆ—๐‘‡=๐ตโˆ—๐‘‡ ๐ต=๐ผ

๐‘ฃ (๐‘˜ , ๐‘™ )=โˆ‘๐‘š=0

๐‘โˆ’1

โˆ‘๐‘›=0

๐‘โˆ’ 1

๐‘Ž (๐‘˜ ,๐‘š )๐‘ข (๐‘š ,๐‘›)๐‘Ž(๐‘™ ,๐‘›)

What would be v in matrix notation?

๐‘ฝ=๐‘จ๐‘ผ ๐‘จ๐‘ป

Reverse transformations

1N

0k

1N

0l

** ron),(l,al)v(k,m)(k,an)u(m, *T* VAAU

For non-square matrices

V A UAM N

U A VAM*T

N*T

V AUA , V A[AU]T T T

=

[๐‘Ž (0 ,0 ) โ‹ฏ ๐‘Ž (0 ,๐‘š ) โ‹ฏ ๐‘Ž (0 ,๐‘โˆ’1 )

โ‹ฎ โ‹ฏ โ‹ฏ โ‹ฏ โ‹ฎ๐‘Ž (๐‘˜ ,0 ) โ‹ฏ ๐‘Ž(๐‘˜ ,๐‘š) โ‹ฏ ๐‘Ž(๐‘˜ ,๐‘โˆ’1)

โ‹ฎ โ€ฆ โ€ฆ โ€ฆ โ‹ฎ๐‘Ž(๐‘โˆ’1,0) โ€ฆ ๐‘Ž(๐‘โˆ’1 ,๐‘š) โ€ฆ ๐‘Ž(๐‘โˆ’1 ,๐‘โˆ’1)

]ร—[

๐‘ข (0 ,0 ) โ‹ฏ ๐‘ข (0 ,๐‘›) โ‹ฏ ๐‘ข (0 ,๐‘โˆ’1 )โ‹ฎ โ‹ฏ โ‹ฏ โ‹ฏ โ‹ฎ

๐‘ข (๐‘š ,0 ) โ‹ฏ ๐‘ข(๐‘š ,๐‘›) โ€ฆ ๐‘ข (๐‘š ,๐‘โˆ’1)โ‹ฎ โ€ฆ โ€ฆ โ€ฆ โ‹ฎ

๐‘ข(๐‘โˆ’1,0) โ€ฆ ๐‘ข(๐‘โˆ’1 ,๐‘™) โ€ฆ ๐‘ข(๐‘โˆ’1 ,๐‘โˆ’1)]ร—

[๐‘Ž (0 ,0 ) โ‹ฏ ๐‘Ž (0 ,๐‘›) โ‹ฏ ๐‘Ž (0 ,๐‘โˆ’1 )

โ‹ฎ โ‹ฏ โ‹ฏ โ‹ฏ โ‹ฎ๐‘Ž (๐‘™ ,0 ) โ‹ฏ ๐‘Ž(๐‘™ ,๐‘›) โ‹ฏ ๐‘Ž(๐‘™ ,๐‘โˆ’1)

โ‹ฎ โ€ฆ โ€ฆ โ€ฆ โ‹ฎ๐‘Ž(๐‘โˆ’1,0) โ€ฆ ๐‘Ž(๐‘โˆ’1 ,๐‘›) โ€ฆ ๐‘Ž(๐‘โˆ’1 ,๐‘โˆ’1)

]

Computational complexity

O(N3)

Example

๐ด=12 [โˆš 3 1โˆ’1 โˆš3 ] ๐‘ˆ=[2 3

1 2]๐‘‰=๐ด๐‘ˆ ๐ด๐‘‡

๐‘‰=12 [โˆš 3 1โˆ’1 โˆš3 ][2 3

1 2] 12 [โˆš 3 โˆ’11 โˆš3 ]

๐‘‰=[2+โˆš3 20 2โˆ’โˆš 3]

Inverse transforms

๐‘‰=[2+โˆš3 20 2โˆ’โˆš 3] ๐ดโˆ—๐‘‡=1

2 [โˆš 3 โˆ’11 โˆš3 ]

๐‘ข (1,0 )=โˆ‘๐‘˜=0

1

โˆ‘๐‘™=0

1

๐‘Žโˆ— (๐‘˜ ,1 )๐‘ฃ (๐‘˜ , ๐‘™ )๐‘Žโˆ—( ๐‘™ ,0)

1N

0k

1N

0l

** ron),(l,al)v(k,m)(k,an)u(m, *T* VAAU

Kronecker Products

โ€ข Kronecker Product

Arbitrary 1-D transformation

This will be separable if๐’œ=๐ด1โจ‚ ๐ด2

= Kronecker Product

It is a generalization of the outer product

Kronecker Products

๐ดโจ‚๐ต=[ ๐‘Ž0 , 1๐ต โ€ฆ ๐‘Ž0 ,๐‘€2๐ต

โ‹ฎ โ‹ฑ โ‹ฎ๐‘Ž๐‘€1โˆ’1,0

๐ต โ€ฆ ๐‘Ž๐‘€ 1โˆ’1 ,๐‘€ 2โˆ’1๐ต]

If and are and matrices then Kronecker product of and is defined as

block matrix of dimension

If

Computational complexity?? Fast image transforms

Basis Images

column of

Outer product

Inner product

โŸจ ๐น ,๐บ โŸฉ=โˆ‘๐‘š=0

๐‘ โˆ’1

โˆ‘๐‘›=0

๐‘โˆ’1

๐‘“ (๐‘š ,๐‘› )๐‘”โˆ—(๐‘š ,๐‘›)

Basis Images

Imagine originala

=

=

V(1,3)

+ + +

+ + + + + +

+ + + + โ€ฆ +

V(1,5) V(1,7) V(1,9)

V(1,13) V(1,15) V(2,1) V(2,9) V(3,1) V(3,5)

V(5,1) V(5,2) V(5,6) V(5,8) V(16,15)

Imagine aproximata

Keeping only 50% of coefficients

Thank youNext Lecture: Discrete Fourier Transform


Recommended