+ All Categories
Home > Documents > CS654: Digital Image Analysis Lecture 14: Properties of DFT.

CS654: Digital Image Analysis Lecture 14: Properties of DFT.

Date post: 21-Jan-2016
Category:
Upload: robert-eaton
View: 236 times
Download: 1 times
Share this document with a friend
Popular Tags:
17
CS654: Digital Image Analysis Lecture 14: Properties of DFT
Transcript
Page 1: CS654: Digital Image Analysis Lecture 14: Properties of DFT.

CS654: Digital Image Analysis

Lecture 14: Properties of DFT

Page 2: CS654: Digital Image Analysis Lecture 14: Properties of DFT.

Recap of Lecture 13

β€’ Introduction to DFT

β€’ 1D and 2D DFT - Unitary

β€’ Separability of DFT

β€’ Computational complexity

β€’ Improvement in computational complexity

Page 3: CS654: Digital Image Analysis Lecture 14: Properties of DFT.

Outline of Lecture 14

β€’ Properties of DFT

β€’ Translation

β€’ Periodicity

β€’ Conjugate symmetry

β€’ Distributivity

β€’ Scaling

β€’ Average value

β€’ Convolution

Page 4: CS654: Digital Image Analysis Lecture 14: Properties of DFT.

Numerical example

A DFT transformation matrix can be written as

𝐴=12 [1 1 1 11 βˆ’ 𝑗 βˆ’1 𝑗1 βˆ’1 1 βˆ’11 𝑗 βˆ’1 βˆ’ 𝑗

] 𝑒=[0 0 1 00 0 1 00 0 1 00 0 1 0

]𝑣=[ 1 βˆ’1 1 βˆ’1

0 0 0 00 0 0 00 0 0 0

]𝑽=𝑨𝑼𝑨

Page 5: CS654: Digital Image Analysis Lecture 14: Properties of DFT.

Translation property of DFT

β€’ Let, the input image is translated to a location

𝑣𝑑 (π‘˜ , 𝑙 )=1𝑁 βˆ‘π‘š=0

π‘βˆ’1

βˆ‘π‘›= 0

π‘βˆ’ 1

𝑒 (π‘š ,𝑛) exp [βˆ’ 𝑗 2πœ‹ (π‘˜(π‘šβˆ’π‘š0)+ 𝑙(π‘›βˆ’π‘›0))𝑁 ]

ΒΏ 1𝑁 βˆ‘π‘š=0

π‘βˆ’ 1

βˆ‘π‘›=0

𝑁 βˆ’1

𝑒 (π‘š ,𝑛) exp [βˆ’ 𝑗2πœ‹ (π‘˜π‘š+𝑙𝑛)𝑁 ]exp [ 𝑗 2πœ‹ (π‘˜π‘š0+𝑛0 𝑙)

𝑁 ]𝑣𝑑 (π‘˜ , 𝑙 )=𝑣 (π‘˜ ,𝑙)exp [ 𝑗 2πœ‹ (π‘˜π‘š0+𝑛0𝑙)

𝑁 ]

Page 6: CS654: Digital Image Analysis Lecture 14: Properties of DFT.

Translation property

𝑣𝑑 (π‘˜ , 𝑙 )=𝑣 (π‘˜ ,𝑙)exp [ 𝑗 2πœ‹ (π‘˜π‘š0+𝑛0𝑙)𝑁 ]DFT of translated image

Inverse DFT 𝑣 (π‘˜βˆ’π‘˜0 , π‘™βˆ’ 𝑙0 )=𝑒 (π‘š ,𝑛)exp [ 𝑗 2πœ‹ (π‘˜0π‘š+𝑙0𝑛)𝑁 ]

𝑒(π‘š ,𝑛)exp [ 𝑗2πœ‹ (π‘˜0π‘š+ 𝑙0𝑛)𝑁 ]↔𝑣 (π‘˜βˆ’π‘˜0 ,π‘™βˆ’ 𝑙0)

𝑒(π‘šβˆ’π‘š0 ,π‘›βˆ’π‘›0)↔𝑣 (π‘˜ , 𝑙)exp [ 𝑗 2πœ‹ (π‘˜π‘š0+𝑛0𝑙)𝑁 ]

Page 7: CS654: Digital Image Analysis Lecture 14: Properties of DFT.

Periodicity

𝑣 (π‘˜ , 𝑙 )=𝑣 (π‘š+𝑁 ,𝑛)=𝑣 (π‘š ,𝑛+𝑁 )=𝑣 (π‘š+𝑛 ,𝑛+𝑁 )

𝑣 (π‘˜ , 𝑙 )= 1𝑁 βˆ‘π‘š=0

π‘βˆ’ 1

βˆ‘π‘›=0

𝑁 βˆ’1

𝑒 (π‘š ,𝑛 ) exp [ βˆ’ 𝑗2πœ‹ (π‘˜π‘š+𝑛𝑙)𝑁 ]

𝑣 (π‘˜+𝑁 , 𝑙+𝑁 )= 1𝑁 βˆ‘π‘š=0

𝑁 βˆ’1

βˆ‘π‘›=0

π‘βˆ’1

𝑒 (π‘š ,𝑛) exp [βˆ’ 𝑗 2πœ‹π‘ {(π‘˜+𝑁 )π‘š+(𝑙+𝑁 )𝑛}]ΒΏ 1𝑁 βˆ‘π‘š=0

π‘βˆ’ 1

βˆ‘π‘›=0

𝑁 βˆ’1

𝑒 (π‘š ,𝑛) exp [βˆ’ 𝑗2πœ‹ (π‘˜π‘š+𝑛𝑙)𝑁 ]𝑒π‘₯𝑝 [βˆ’ 𝑗2πœ‹ (π‘₯+𝑦 )]

βˆ€π‘˜ ,𝑙

Page 8: CS654: Digital Image Analysis Lecture 14: Properties of DFT.

Conjugate symmetry

𝑣 (𝑁2 Β±π‘˜ , 𝑁2 Β± 𝑙)=π‘£βˆ—(𝑁2 βˆ“π‘˜ ,𝑁2 βˆ“π‘™) 0β‰€π‘˜ , 𝑙≀𝑁2βˆ’1

π‘˜=0 𝑁𝑁2

1-D Example

(𝑁2 ,𝑁2 )

2-D Example

When is real

Page 9: CS654: Digital Image Analysis Lecture 14: Properties of DFT.

Conjugate symmetry

𝑣 (π‘˜ , 𝑙 )= 1𝑁 βˆ‘π‘š=0

π‘βˆ’ 1

βˆ‘π‘›=0

𝑁 βˆ’1

𝑒 (π‘š ,𝑛 ) exp [ βˆ’ 𝑗2πœ‹ (π‘˜π‘š+𝑛𝑙)𝑁 ]π‘˜=𝑁2Β±π‘˜ , 𝑙=

𝑁2Β± 𝑙

𝑣 (π‘˜ , 𝑙 )= 1𝑁 βˆ‘π‘š=0

π‘βˆ’ 1

βˆ‘π‘›=0

𝑁 βˆ’1

𝑒 (π‘š ,𝑛 ) exp [ βˆ’ 𝑗2πœ‹ ((𝑁2 +π‘˜)π‘š+(𝑁2 +𝑙  )𝑛)𝑁 ]

Page 10: CS654: Digital Image Analysis Lecture 14: Properties of DFT.

Distributivity

β€’ DFT of sum of two signals is equal to the sum of their individual summations

𝐷𝐹𝑇 {𝑒1 (π‘š ,𝑛)+𝑒2(π‘š ,𝑛) }=𝐷𝐹𝑇 {𝑒1(π‘š ,𝑛)}+𝐷𝐹𝑇 {𝑒2(π‘š ,𝑛) }

Scaling𝑒(π‘Žπ‘š ,𝑏𝑛)↔

1

ΒΏ π‘Žπ‘βˆ¨ΒΏπ‘£ (π‘˜π‘Ž , 𝑙𝑏 )ΒΏ

are scaling parameters

Page 11: CS654: Digital Image Analysis Lecture 14: Properties of DFT.

Average value

𝑒 (π‘š ,𝑛)= 1𝑁 2 βˆ‘

π‘š=0

𝑁 βˆ’1

βˆ‘π‘›=0

π‘βˆ’1

𝑒(π‘š ,𝑛)Average value of image

𝑣 (π‘˜ , 𝑙 )= 1𝑁 βˆ‘π‘š=0

π‘βˆ’ 1

βˆ‘π‘›=0

𝑁 βˆ’1

𝑒 (π‘š ,𝑛 ) exp [ βˆ’ 𝑗2πœ‹ (π‘˜π‘š+𝑛𝑙)𝑁 ]

For

𝑣 (0,0 )= 1𝑁 βˆ‘π‘š=0

π‘βˆ’1

βˆ‘π‘›=0

π‘βˆ’ 1

𝑒 (π‘š ,𝑛 )=𝑁𝑒 (π‘š ,𝑛)

DC Component of an image

Page 12: CS654: Digital Image Analysis Lecture 14: Properties of DFT.

Rotation

π‘š=π‘Ÿπ‘π‘œπ‘ ΞΈ

𝑛=π‘Ÿπ‘ π‘–π‘›ΞΈPolar coordinate in source domain

π‘˜=πœ”π‘π‘œπ‘ πœ™

𝑛=πœ”π‘ π‘–π‘›πœ™

Polar coordinate in target domain

Instead of working in the Cartesian coordinate, we are working in the polar coordinate

𝑒 (π‘Ÿ ,πœƒ )↔𝑣 (πœ” ,πœ™)If we have

𝑒 (π‘Ÿ , πœƒ+πœƒ0 )↔𝑣 (πœ” ,πœ™+πœƒ0)Then,

Page 13: CS654: Digital Image Analysis Lecture 14: Properties of DFT.

Convolution

β€’ Let there be two images of different size

(0,0) (π‘βˆ’1)

(π‘βˆ’1)

β‰ πŸŽ(π‘€βˆ’1)

(π‘€βˆ’1)

𝑒1(π‘š ,𝑛)

h (π‘š ,𝑛)

π‘š

𝑛

(𝒉 ,π’Ž )=𝟎

h (π‘š ,𝑛)𝑐=h(π‘šπ‘šπ‘œπ‘‘π‘ ,π‘›π‘šπ‘œπ‘‘π‘ )

Page 14: CS654: Digital Image Analysis Lecture 14: Properties of DFT.

π‘š β€²

𝑛 β€²

Circular Symmetry

(0,0) (π‘βˆ’1)

(π‘βˆ’1)

β‰ πŸŽ(π‘€βˆ’1)

(π‘€βˆ’1)

𝑒1(π‘š ,𝑛)

h (π‘š ,𝑛)π‘š

𝑛

(𝒉 ,π’Ž )=𝟎

𝑒1(π‘š β€² ,𝑛 β€²)

𝒉 (π’Žβˆ’π’Žβ€² ,π’βˆ’π’β€² )𝒄

Computational complexity??

Page 15: CS654: Digital Image Analysis Lecture 14: Properties of DFT.

2D DFT for h in frequency domain

𝐷𝐹𝑇 {h (π‘šβˆ’π‘šβ€² ,π‘›βˆ’π‘›β€² )𝑐 }=ΒΏ

βˆ‘π‘š=0

π‘βˆ’1

βˆ‘π‘›=0

π‘βˆ’ 1

h (π‘šβˆ’π‘šβ€² ,π‘›βˆ’π‘›β€² )π‘π‘Š π‘π‘šπ‘˜+𝑛𝑙

ΒΏπ‘Š π‘π‘šβ€² π‘˜+𝑛′ π‘™βˆ‘

π‘š= 0

π‘βˆ’1

βˆ‘π‘›=0

π‘βˆ’1

h (π‘šβˆ’π‘šβ€² ,π‘›βˆ’π‘›β€² )π‘π‘Š 𝑁(π‘šβˆ’π‘š β€²)π‘˜+(π‘›βˆ’π‘›β€² )𝑙

Let, and

ΒΏπ‘Š π‘π‘šβ€² π‘˜+𝑛′ 𝑙 βˆ‘

𝑝=βˆ’π‘š β€²

π‘βˆ’1βˆ’π‘š β€²

βˆ‘π‘ž=βˆ’π‘› β€²

π‘βˆ’1βˆ’π‘› β€²

h (𝑝 ,π‘ž )π‘π‘Š π‘π‘π‘˜+π‘žπ‘™

ΒΏπ‘Š π‘π‘šβ€² π‘˜+𝑛′ π‘™βˆ‘

𝑝=0

π‘βˆ’1

βˆ‘π‘ž=0

π‘βˆ’1

h (𝑝 ,π‘ž)π‘π‘Š π‘π‘π‘˜+π‘žπ‘™

Page 16: CS654: Digital Image Analysis Lecture 14: Properties of DFT.

DFT of Convolution Function

𝐷𝐹𝑇 {𝑒2 (π‘š ,𝑛) }𝑁=𝐷𝐹𝑇 {h (π‘š ,𝑛) }𝑁𝐷𝐹𝑇 {𝑒1(π‘š ,𝑛)}

DFT of a two dimensional circular convolution of two arrays is the product of their DFTs

Page 17: CS654: Digital Image Analysis Lecture 14: Properties of DFT.

Thank youNext Lecture: Hadamard Transform


Recommended