+ All Categories
Home > Documents > CSE 326: Data Structures Topic 18: The Algorhythmics

CSE 326: Data Structures Topic 18: The Algorhythmics

Date post: 31-Dec-2015
Category:
Upload: rhonda-caldwell
View: 23 times
Download: 0 times
Share this document with a friend
Description:
CSE 326: Data Structures Topic 18: The Algorhythmics. Luke McDowell Summer Quarter 2003. Today’s Outline. Greedy Divide & Conquer Dynamic Programming. Greedy Algorithms. Repeat until problem is solved: Consider possible next steps Choose best-looking alternative and commit to it - PowerPoint PPT Presentation
Popular Tags:
26
CSE 326: Data Structures Topic 18: The Algorhythmics Luke McDowell Summer Quarter 2003
Transcript

CSE 326: Data StructuresTopic 18: The Algorhythmics

Luke McDowell

Summer Quarter 2003

Today’s Outline

• Greedy

• Divide & Conquer

• Dynamic Programming

Greedy Algorithms

Repeat until problem is solved:– Consider possible next steps

– Choose best-looking alternative and commit to it

Greedy algorithms are normally fast and simple.

Sometimes appropriate as a heuristic solution or to approximate the optimal solution.

Greed in Action

•Best First Search

• A* Search

• Huffman Encodings

• Kruskal’s Algorithm

• Prim’s Algorithm

• Dijkstra’s Algorithm

• Scheduling

The Grocery Bagging Problem• You are an environmentally-conscious grocery

bagger at QFC• You would like to minimize the total number of bags

needed to pack each customer’s items.Items (mostly junk food) Grocery bags

Sizes s1, s2,…, sN (0 < si 1) Size of each bag = 1

Optimal Grocery Bagging: An Example

• Example: Items = 0.5, 0.2, 0.7, 0.8, 0.4, 0.1, 0.3– How may bags of size 1 are required?

• Can find optimal solution through exhaustive search– Search all combinations of N items using 1 bag, 2 bags,

etc.– Runtime?

Only 3 bags needed:(0.2,0.8) (0.3,0.7) (0.1,0.4,0.5)

Exponential!

Bin Packing

• General problem: Given N items of sizes s1, s2,…, sN (0 < si 1), pack these items in the least number of bins of size 1.

• The general bin packing problem is NP-complete – Reductions: All NP-problems SAT 3SAT 3DM

PARTITION Bin Packing (see Garey & Johnson, 1979)

Items Bins

Sizes s1, s2,…, sN (0 < si 1) Size of each bin = 1

Greedy Solution?

FirstFit BestFit

Both use at most 1.7MM = optimal number.

Best Fit better on averageBest = tightest

Items = 0.5, 0.2, 0.7, 0.8, 0.4, 0.1, 0.3

Another Greedy Solution?

FirstFit DecreasingBoth use at most 1.2M + 4

Offline algorithm

Items = 0.5, 0.2, 0.7, 0.8, 0.4, 0.1, 0.3

Divide & Conquer

• Divide problem into multiple smaller parts• Solve smaller parts

– Solve base cases directly

– Otherwise, solve subproblems recursively

• Merge solutions together (Conquer!)

Often leads to elegant and simple recursive implementations.

Divide & Conquer in Action

•MergeSort

• QuickSort

• buildTree

• Closest points

• Find median

Fibonacci Numbers

F(n) = F(n - 1) + F(n - 2)

F(0) = 1 F(1) = 1

int fib(int n) {

if (n <= 1)

return 1;

else

return fib(n - 1) +

fib(n - 2);

}

Divide & Conquer

Fibonacci Numbers

F(n) = F(n - 1) + F(n - 2)

F(0) = 1 F(1) = 1

int fib(int n) {

if (n <= 1)

return 1;

else

return fib(n - 1) +

fib(n - 2);

}

Divide & Conquer F6

F5

F4 F3

F3

F2

F1 F0

F2

F1 F0

F2

F1 F0

F2

F1 F0

F2

F1 F0

F4

F3

F1 F1

F1

Runtime: > 1.5N

Fibonacci NumbersF(n) = F(n - 1) + F(n - 2)

F(0) = 1 F(1) = 1

int fib(int n) {// Create a “static” array however your favorite language allows

int fibs[n];

if (n <= 1)

return 1;

if (fibs[n] == 0)

fibs[n] = fib(n - 1) +

fib(n - 2);

return fibs[n];

}

Memoized

Runtime:

O(n)

Memoizing/Dynamic Programming

• Define problem in terms of smaller subproblems• Solve and record solution for base cases• Build solutions for subproblems up from solutions to

smaller subproblems

Can improve runtime of divide & conquer algorithms that have shared subproblems with optimal substructure.

Usually involves a table of subproblem solutions.

Dynamic Programming in Action

• Sequence Alignment• Fibonacci numbers• All pairs shortest path• Optimal Binary Search Tree• Matrix multiplication

Sequence Alignment

Biology 101:

DNA Sequence• String using letters (nucleotides): A,C,G,T

For example: ACGGGCATTATCGTA

• DNA can mutate!

Change a letter: ACGGGCAT → ACGTGCAT

Insert a letter: ACGGGCAT → ACGGGCAAT

Delete a letter: ACGGGCAT → ACGGGAT

• A few mutations makes sequences “different”, but “similar”

• Similar sequences often have similar functions

What is Sequence Alignment?

• Use underscores (_) or wildcards to match up 2 sequences

• The “best alignment” of 2 sequences is an alignment which minimizes the number of “underscores”

• For example: ACCCGTTT and TCCCTTT

A_CCCGTTT

_TCCC_TTTBest alignment:

(3 underscores)

Solutions

Naïve solution

• Try all possible alignments

• Running time: exponential

Dynamic Programming Solution

• Create a table

• Table(x,y): # errors in best alignment for first x letters of string 1, and first y letters of string 2

• Running time: polynomial

Example Alignment

• Suppose we have already determined the best alignment for:

– First x letters of string1 with first y-1 letters of string2

– First x-1 letters of string1 with first y-1 letters of string2

– First x-1 letters of string1 with first y letters of string2

If (string1[x] == string2[y]) then TABLE[x,y] = TABLE[x-1,y-1]

Else TABLE[x,y] = min(1+TABLE[x,y-1], 1+TABLE[x-1,y])

Match ACCGTTAG with ACTGTTAA

(1) match ‘G’ with ‘_’: 1 + align(ACCGTTA,ACTGTTAA)

(2) match ‘A’ with ‘_’: 1 + align(ACCGTTAG,ACTGTTA)

Example GGCAT and TGCAA

G

C

(empty)

G

A

T

1

3

0

2

4

5

(empty)

1

T

2

G

3

C

4

A

5

A

Example GGCAT and TGCAA

G

C

(empty)

G

A

T

1

3

0

2

4

5

(empty)

2

4

1

3

5

4

T

1

3

2

2

4

5

G

2

2

3

3

3

4

C

3

3

4

4

2

3

A

4

4

5

5

3

4

A

T_GCAA_

_GGCA_T

Pseudocode (bottom-up)

int align(String X, String Y, TABLE[1..x,1..y]) {int i,j;// Initialize top row and leftmost columnfor (i=1; i<=x, ++i) TABLE[i,1] = i;for (j=1; j<=y; ++j) TABLE[1,j] = j;

for (i=2; i<=x, ++i) {for (j=2; j<=y; ++j) {

if (X[i] == Y[j])TABLE[i,j] = TABLE[i-1,j-1]

elseTABLE[i,j] = min(TABLE[i-1,j],

TABLE[i,j-1])+1}

}return TABLE[x,y];

}runtime:

O(N2)

Pseudocode (top-down)

int align(String X,String Y,TABLE[1..x,1..y]){

Compute TABLE[x-1,y-1] if necessaryCompute TABLE[x-1,y] if necessaryCompute TABLE[x,y-1] if necessaryif (X[x] == Y[y])

TABLE[x,y] = TABLE[x-1,y-1];else

TABLE[x,y] = min(TABLE[x-1,y], TABLE[x,y-1]) + 1;

return TABLE[x,y];}

Dynamic Programming Wrap-Up

• Re-use expensive computations

• Store optimal solutions to sub-problems in table

• Use optimal solutions to sub-problems to determine optimal solution to slightly larger problem


Recommended