+ All Categories
Home > Documents > CSIS Computer Visionscha/CV/cvintro.pdf · 2 Fall/2002 © S. Cha Perception CSIS Fall/2002 © S....

CSIS Computer Visionscha/CV/cvintro.pdf · 2 Fall/2002 © S. Cha Perception CSIS Fall/2002 © S....

Date post: 03-Aug-2020
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
51
1 © S. Cha Fall/2002 CSIS Fall of 2002 Prof. Sung-Hyuk Cha School of Computer Science & Information Systems Computer Vision © S. Cha Fall/2002 CSIS Artificial Intelligence
Transcript
Page 1: CSIS Computer Visionscha/CV/cvintro.pdf · 2 Fall/2002 © S. Cha Perception CSIS Fall/2002 © S. Cha Lena & Computer vision CSIS

1

© S. ChaFall/2002

CSIS

Fall of 2002

Prof. Sung-Hyuk Cha

School of Computer Science & Information Systems

Computer Vision

© S. ChaFall/2002

CSISArtificial Intelligence

Page 2: CSIS Computer Visionscha/CV/cvintro.pdf · 2 Fall/2002 © S. Cha Perception CSIS Fall/2002 © S. Cha Lena & Computer vision CSIS

2

© S. ChaFall/2002

CSISPerception

© S. ChaFall/2002

CSISLena & Computer vision

Page 3: CSIS Computer Visionscha/CV/cvintro.pdf · 2 Fall/2002 © S. Cha Perception CSIS Fall/2002 © S. Cha Lena & Computer vision CSIS

3

© S. ChaFall/2002

CSISMachine Vision

© S. ChaFall/2002

CSISPattern Recognition Applications

Page 4: CSIS Computer Visionscha/CV/cvintro.pdf · 2 Fall/2002 © S. Cha Perception CSIS Fall/2002 © S. Cha Lena & Computer vision CSIS

4

© S. ChaFall/2002

CSIS

�����

���

� ���

� �� �

������

� �� �

������

����� � � �����

I r is authentication

© S. ChaFall/2002

CSIS

Page 5: CSIS Computer Visionscha/CV/cvintro.pdf · 2 Fall/2002 © S. Cha Perception CSIS Fall/2002 © S. Cha Lena & Computer vision CSIS

5

© S. ChaFall/2002

CSIS

Each person has different faces.

Face Recognition System

© S. ChaFall/2002

CSIS

?Query

Face DB

Face Recognition System

Page 6: CSIS Computer Visionscha/CV/cvintro.pdf · 2 Fall/2002 © S. Cha Perception CSIS Fall/2002 © S. Cha Lena & Computer vision CSIS

6

© S. ChaFall/2002

CSISHead Pose Recognitionleft strt rght up

© S. ChaFall/2002

CSIS

Sargur N. Srihari

f6

street namef7

secondarydesignator abbr.

f5

primarynumber

f8

secondarynumber

Lee Entrance STE520 202

f2

state abbr.f3

5-digitZIP Code

f4

4-digitZIP+4 add-on

f1

city name

-Amherst NY 14228 2583

• Delivery point: 142282583

Complex Pattern Recognition Applications

Page 7: CSIS Computer Visionscha/CV/cvintro.pdf · 2 Fall/2002 © S. Cha Perception CSIS Fall/2002 © S. Cha Lena & Computer vision CSIS

7

© S. ChaFall/2002

CSISSpeech Recognition System

����������

© S. ChaFall/2002

CSIS

biomouseFingerprint

scanner

DigitalCamera

LCD Pentablet Microphone

),...,,( 21x

dxx fff ),...,,( 21

xd

xx fff ),...,,( 21x

dxx fff ),...,,( 21

xd

xx fff),...,,( 21x

dxx fff ),...,,( 21

xd

xx fff

Vital Sign

monitor

Applications

Page 8: CSIS Computer Visionscha/CV/cvintro.pdf · 2 Fall/2002 © S. Cha Perception CSIS Fall/2002 © S. Cha Lena & Computer vision CSIS

8

© S. ChaFall/2002

CSIS

© S. ChaFall/2002

CSIS

br ightness, length

Salmon

Bass

Salmon1 = ( 12 , 16 )

Salmon2 = ( 11 , 20 )

Bass1 = ( 7 , 6 )

Bass2 = ( 3 , 4 )

Truth features

Measurements

Page 9: CSIS Computer Visionscha/CV/cvintro.pdf · 2 Fall/2002 © S. Cha Perception CSIS Fall/2002 © S. Cha Lena & Computer vision CSIS

9

© S. ChaFall/2002

CSIS

© S. ChaFall/2002

CSIS

Page 10: CSIS Computer Visionscha/CV/cvintro.pdf · 2 Fall/2002 © S. Cha Perception CSIS Fall/2002 © S. Cha Lena & Computer vision CSIS

10

© S. ChaFall/2002

CSISDecision theory (cost)

© S. ChaFall/2002

CSIS

Page 11: CSIS Computer Visionscha/CV/cvintro.pdf · 2 Fall/2002 © S. Cha Perception CSIS Fall/2002 © S. Cha Lena & Computer vision CSIS

11

© S. ChaFall/2002

CSISDistr ibutions and Errors

Bass

Salmon

Bass identified as salmon

salmonidentified as

bass

Decisionboundary

© S. ChaFall/2002

CSISParametr ic Univar iate Dichotomizer

(a) length (b) lightness (c) width

39 %Type II 27 % 26 %9 %Type I 7 % 5 %(a) (b) (c)

Page 12: CSIS Computer Visionscha/CV/cvintro.pdf · 2 Fall/2002 © S. Cha Perception CSIS Fall/2002 © S. Cha Lena & Computer vision CSIS

12

© S. ChaFall/2002

CSISMultivar iate Analysis

© S. ChaFall/2002

CSIS

length

br ightness

Salmon

Bass

= salmon?

Nearest Neighbor Classifier

Page 13: CSIS Computer Visionscha/CV/cvintro.pdf · 2 Fall/2002 © S. Cha Perception CSIS Fall/2002 © S. Cha Lena & Computer vision CSIS

13

© S. ChaFall/2002

CSIS

• too slow for users to wait for the output.

q = 4, 6

r2 = 3, 8

r1 = 5, 7

r3 = 10, 16

r4 = 12, 14

Salmon

Bass

Salmon

Bass

Salmon

rn = 14, 15

R =

t2 = 2, 5

t1 = 4, 6

t3 = 11, 17

t4 = 14, 12

Salmon

Bass

Salmon

Bass

Salmon

tn = 14, 17

T =

Bass

Bass

Salmon

Bass

Bass

• Performance is evaluated by using a testing set.

reference set testing set

Nearest Neighbor Classifier

© S. ChaFall/2002

CSIS

length

br ightness

Salmon

Bass

Y > aX + b

? = salmon

Machine Learning (L inear function)

Page 14: CSIS Computer Visionscha/CV/cvintro.pdf · 2 Fall/2002 © S. Cha Perception CSIS Fall/2002 © S. Cha Lena & Computer vision CSIS

14

© S. ChaFall/2002

CSIS

synapse

nucleus

axon

dendrites

the biological neuron

Σ

x1(t)

x2(t)

xn(t)

w1

w2

wn

a(t)

w0

y

a

y=f(a)

O(t+1)

the artificial neuron

Artificial Neural Network

© S. ChaFall/2002

CSIS

• extremely fast.

r2 = 3, 8

r1 = 5, 7

r3 = 10, 16

r4 = 12, 14

Salmon

Bass

Salmon

Bass

Salmon

rn = 14, 15

R =

t2 = 2, 5

t1 = 4, 6

t3 = 11, 17

t4 = 14, 12

Salmon

Bass

Salmon

Bass

Salmon

tn = 14, 17

T =

Bass

Bass

Salmon

Bass

Bass

• Performance is evaluated by using a testing set.

reference set testing set

Y > aX + b

• Performance is not as good as the NN classifier’s.

training set

• No need to load the training data during the classification.

Machine Learning (L inear function)

Page 15: CSIS Computer Visionscha/CV/cvintro.pdf · 2 Fall/2002 © S. Cha Perception CSIS Fall/2002 © S. Cha Lena & Computer vision CSIS

15

© S. ChaFall/2002

CSIS

length

br ightness

Salmon

Bass

Y > aX + b

Non-L inear case

© S. ChaFall/2002

CSIS

length

br ightness

Salmon

Bass

• NN is better.• will learn artificial neural network which is non-linear function.

Non-L inear case

Page 16: CSIS Computer Visionscha/CV/cvintro.pdf · 2 Fall/2002 © S. Cha Perception CSIS Fall/2002 © S. Cha Lena & Computer vision CSIS

16

© S. ChaFall/2002

CSISHuman Brain

© S. ChaFall/2002

CSIS

Class

2f

3f

4f

5f

6f

1f

7f

Fully Connected, feed forward, back-propagation

multi-layer Artificial neural network (11-6-1) (ANN).

Artificial Neural Network

Page 17: CSIS Computer Visionscha/CV/cvintro.pdf · 2 Fall/2002 © S. Cha Perception CSIS Fall/2002 © S. Cha Lena & Computer vision CSIS

17

© S. ChaFall/2002

CSIS

© S. ChaFall/2002

CSIS

Page 18: CSIS Computer Visionscha/CV/cvintro.pdf · 2 Fall/2002 © S. Cha Perception CSIS Fall/2002 © S. Cha Lena & Computer vision CSIS

18

© S. ChaFall/2002

CSIS

• Predict unseen future instance.

• Generalization.

• Inductive step.

Purpose of Pattern Recognition

© S. ChaFall/2002

CSIS

length

width

Generalizability (statistical inferece)

length

width

length

width

training set

validating set

universe

Page 19: CSIS Computer Visionscha/CV/cvintro.pdf · 2 Fall/2002 © S. Cha Perception CSIS Fall/2002 © S. Cha Lena & Computer vision CSIS

19

© S. ChaFall/2002

CSISInferential Statistics

1. Inferential Statistics is inferring a conclusion about population of interest from a sample.- need a procedure for sampling the population.- need a measure of reliability for the inference.

2. If error rate in a random sample set is the same as in universe, then the procedure is a sound inferential statistical procedure.

3. If error rate in one random sample set is the same as in another random sample set, then the procedure is sound.

© S. ChaFall/2002

CSISGeneralization

δδδδf2

δδδδf1

Universe

Page 20: CSIS Computer Visionscha/CV/cvintro.pdf · 2 Fall/2002 © S. Cha Perception CSIS Fall/2002 © S. Cha Lena & Computer vision CSIS

20

© S. ChaFall/2002

CSISSampling & learning

δδδδf2

δδδδf1

Sample 1

© S. ChaFall/2002

CSISTesting on another sample

δδδδf2

δδδδf1

Sample 2

Page 21: CSIS Computer Visionscha/CV/cvintro.pdf · 2 Fall/2002 © S. Cha Perception CSIS Fall/2002 © S. Cha Lena & Computer vision CSIS

21

© S. ChaFall/2002

CSISGeneralization

δδδδf2

δδδδf1

Universe

© S. ChaFall/2002

CSISMultiple classification

f1

f2

class 1 class 3

class 2

Classes = {class 1, 2, 3}

Page 22: CSIS Computer Visionscha/CV/cvintro.pdf · 2 Fall/2002 © S. Cha Perception CSIS Fall/2002 © S. Cha Lena & Computer vision CSIS

22

© S. ChaFall/2002

CSIS

© S. ChaFall/2002

CSIS

Page 23: CSIS Computer Visionscha/CV/cvintro.pdf · 2 Fall/2002 © S. Cha Perception CSIS Fall/2002 © S. Cha Lena & Computer vision CSIS

23

© S. ChaFall/2002

CSIS

1. Data acquisition:

Template for PR Applications

2. Feature Extraction:

3. Training a classifier:

4. Classification system:

a. Recruit subjects.b. Modality interface (Scanning, picturing, recording, etc).

a. Raw data to feature vectors.b. Involves image/ voice/ signal processing techniques.

a. Design a classifier (e.g., ANN).b. Enter the training (& validating) feature vector set(s).

a. embed the ANN engine to your actual program (Java/C)b. User interface for the Final Product.

© S. ChaFall/2002

CSIS

• Fast Nearest Neighbor Search Algorithms

• Decision Tree

• Statistical Pattern Recognition.

• Artificial Neural Network.

• Clustering

• etc.

http://www.csis.pace.edu/~scha/PR

Fur ther Pattern Recognition

Page 24: CSIS Computer Visionscha/CV/cvintro.pdf · 2 Fall/2002 © S. Cha Perception CSIS Fall/2002 © S. Cha Lena & Computer vision CSIS

24

© S. ChaFall/2002

CSIS

outlook temperature humidity windy playsunny hot high false nosunny hot high true noovercast hot high false yesrainy mild high false yesrainy cool normal false yesrainy cool normal true noovercast cool normal true yessunny mild high false nosunny cool normal false yesrainy mild normal false yessunny mild normal true yesovercast mild high true yesovercast hot normal false yesrainy mild high true no

Decision Tree

© S. ChaFall/2002

CSIS

(b)

ad

kj

h

gif

ec

b

ad

kj

h

g if

ec

b

(a)

(c) 1 2 3

abc

0.4 0.1 0.50.1 0.8 0.10.3 0.3 0.4

...

(d)

g a c i e d k b j f h

Cluster ing

Page 25: CSIS Computer Visionscha/CV/cvintro.pdf · 2 Fall/2002 © S. Cha Perception CSIS Fall/2002 © S. Cha Lena & Computer vision CSIS

25

© S. ChaFall/2002

CSISTerminology

Classification:

The process of assigning one of a limited set of alternative interpretations to (the generator of) a set of data. Often requires the steps of the computation of relative probabilities (or a quantity related to them) followed by the application of a decision rule. All classification processes can be evaluated in terms of "detection" and "mis-classification" rates.

© S. ChaFall/2002

CSISTerminology

• Computer Vision: Compter Vision is the subject area which deals with the automatic analysis of images for the purposes of quantification or system control (often mimicking tasks which humans find trivial). It is to be distinguised from "Image Processing" which deals only with the computational processes applied to images, including enhancement and compression, but does not deal with abstract representation for the purposes of reasoning and interpretation. Compter Vision can be seen as the inverse of Computer Graphics, though generally the representations and methods of this area are not of use in Computer Vision due to the incomplete and therefore ambiguous nature of images. This requires prior knowledge to be used in order to obtain robust scene interpretation.

Page 26: CSIS Computer Visionscha/CV/cvintro.pdf · 2 Fall/2002 © S. Cha Perception CSIS Fall/2002 © S. Cha Lena & Computer vision CSIS

26

© S. ChaFall/2002

CSISTerminology

• Machine Vision:Like "computer vision" but generally more closely associated with its use in robotics.

• Pattern Recognition Pattern recognition is the process of assigning a pattern classification to a particular set of measurements, normally represented as a high dimensional vector. This is normally done within the context of "probability theory", whereby a particular set of assumptions regarding the expected statisticaldistribution of measurements is used to compute classification probabilities which can be used as the basis for a decision such as the "Bayes decision rule". There are several popular forms of classifier including "k-nearest neighbour", "parzenwindows", "mixture methods" and more recently "artificial neural networks".

© S. ChaFall/2002

CSISTerminology

• Images:An image is two dimensional spatial representation of a group of "objects" (or "scene") which exists in two or more dimensions. It is an intuitive way of presenting data for computer interfaces in the area of graphics, but in machine vision it may be defined as a continuous function of two variables defined within a bounded (generally rectangular) region.

• Histograms A histogram is an array of non negative integer counts from a set of data, which represents the frequency of occurance of values within a set of non-overlapping regions.

Page 27: CSIS Computer Visionscha/CV/cvintro.pdf · 2 Fall/2002 © S. Cha Perception CSIS Fall/2002 © S. Cha Lena & Computer vision CSIS

27

© S. ChaFall/2002

CSIS

.95 .49 .70 .71 .50 .10 .51 .92 .13 .47 .32 .21

.94 .49 .75 .70 .50 .11 .53 .84 .26 .54 .35 .18

.94 .49 .67 .74 .50 .10 .45 .85 .23 .48 .32 .22

.93 .72 .33 .47 .50 .21 .28 .30 .66 .60 .42 .10

.93 .74 .33 .48 .50 .22 .26 .30 .60 .59 .45 .10

.93 .79 .36 .54 .50 .18 .27 .32 .60 .59 .52 .09

.92 .30 .61 .66 .60 .11 .35 .49 .70 .71 .57 .10

.94 .42 .72 .66 .60 .11 .32 .49 .67 .74 .53 .10

.94 .40 .75 .67 .60 .12 .34 .49 .75 .70 .54 .11

.96 .30 .60 .59 .50 .10 .21 .30 .66 .60 .36 .10

.95 .32 .60 .59 .50 .09 .22 .30 .60 .59 .39 .10

.95 .30 .66 .60 .50 .10 .21 .32 .60 .59 .34 .09

dar k blob hole slant width skew ht pixel hslope nslope pslope vslope

int int int real int real int int int int int int

Features

SSSSSS

BBBBBB

class

Features & Class

© S. ChaFall/2002

CSIS

length4035302520151050-5-10

lightness

width

10 1214 16

18 20 2224

56

78

910

a

b

c

a = (12,6,-5)

b = (16,9,10)

c = (19,7,-10)

Representation

Page 28: CSIS Computer Visionscha/CV/cvintro.pdf · 2 Fall/2002 © S. Cha Perception CSIS Fall/2002 © S. Cha Lena & Computer vision CSIS

28

© S. ChaFall/2002

CSIS

?

?

?

Image Classification

© S. ChaFall/2002

CSISImage Indexing & Retr ieval

Page 29: CSIS Computer Visionscha/CV/cvintro.pdf · 2 Fall/2002 © S. Cha Perception CSIS Fall/2002 © S. Cha Lena & Computer vision CSIS

29

© S. ChaFall/2002

CSIS

Acute myeloid leukemia

?

Acute myeloid leukemia

Acute myeloid leukemia

Query by Image Content

© S. ChaFall/2002

CSIS

D( ) = ?,

S( ) = ?,

Dissimilar ity (distance) / Similar ity

Page 30: CSIS Computer Visionscha/CV/cvintro.pdf · 2 Fall/2002 © S. Cha Perception CSIS Fall/2002 © S. Cha Lena & Computer vision CSIS

30

© S. ChaFall/2002

CSIS

• Image processing vs. computer vision

• Human vision & illusion.

• Basic Image Processing

• Machine Vision Applications.

• Histogram based Image Indexing & Retrieval.

Overview

© S. ChaFall/2002

CSIS

• There are no clear distinction• Image processing

– Applications where humans are in the loop. – Humans supply the intelligence– Image Analysis - extracting quantitative info.

• Size of a tumor• distance between objects• facial expression

– Image restoration. Try to undo damage• needs a model of how the damage was made

– Image enhancement. Try to improve the quality of an image– Image compression. How to convey the most amount of

information with the least amount of data

Digital Image Processing vs. Computer Vision

Page 31: CSIS Computer Visionscha/CV/cvintro.pdf · 2 Fall/2002 © S. Cha Perception CSIS Fall/2002 © S. Cha Lena & Computer vision CSIS

31

© S. ChaFall/2002

CSIS

• Computer Vision– Take the human out of the loop

– The computer supplies the intelligence

– Where does the computer get it’s intelligence?

Digital Image Processing vs. Computer Vision

© S. ChaFall/2002

CSISHuman Vision

Page 32: CSIS Computer Visionscha/CV/cvintro.pdf · 2 Fall/2002 © S. Cha Perception CSIS Fall/2002 © S. Cha Lena & Computer vision CSIS

32

© S. ChaFall/2002

CSISCerebral Cor tex

© S. ChaFall/2002

CSIS

Monocular Visual Field: 160 deg (w) X 175 deg (h)Binocular Visual Field: 200 deg (w) X 135 deg (h)

Human Vision

Page 33: CSIS Computer Visionscha/CV/cvintro.pdf · 2 Fall/2002 © S. Cha Perception CSIS Fall/2002 © S. Cha Lena & Computer vision CSIS

33

© S. ChaFall/2002

CSISThe figure-Ground Problem

© S. ChaFall/2002

CSIS

Mouth

Mouth

The Bunny/Duck illusion

Page 34: CSIS Computer Visionscha/CV/cvintro.pdf · 2 Fall/2002 © S. Cha Perception CSIS Fall/2002 © S. Cha Lena & Computer vision CSIS

34

© S. ChaFall/2002

CSIS

Squares or lines?

More illusions

© S. ChaFall/2002

CSISMore illusions: How many colors?

Page 35: CSIS Computer Visionscha/CV/cvintro.pdf · 2 Fall/2002 © S. Cha Perception CSIS Fall/2002 © S. Cha Lena & Computer vision CSIS

35

© S. ChaFall/2002

CSISMore illusions: parallel line

© S. ChaFall/2002

CSISMore illusions

Page 36: CSIS Computer Visionscha/CV/cvintro.pdf · 2 Fall/2002 © S. Cha Perception CSIS Fall/2002 © S. Cha Lena & Computer vision CSIS

36

© S. ChaFall/2002

CSISMore illusions

© S. ChaFall/2002

CSISMore illusions

Page 37: CSIS Computer Visionscha/CV/cvintro.pdf · 2 Fall/2002 © S. Cha Perception CSIS Fall/2002 © S. Cha Lena & Computer vision CSIS

37

© S. ChaFall/2002

CSISMore illusions

© S. ChaFall/2002

CSIS

Concerned with mechanisms for converting light energy into electrical energy.

World Optics Sensor

Signal Digitizer

Digital Representation

Photometry

Page 38: CSIS Computer Visionscha/CV/cvintro.pdf · 2 Fall/2002 © S. Cha Perception CSIS Fall/2002 © S. Cha Lena & Computer vision CSIS

38

© S. ChaFall/2002

CSIS

1 2 3 4 5 6 7i 1234567

j

Binary image

© S. ChaFall/2002

CSIS

.

OpticsImage Plane

A/D Converterand Sampler

E(x,y) : Electricalvideo signal

Image L(x,y)

VideoCamera

I(i,j) Digital Image

22 34 22 0 18 •••

••••••

Grayscale Image Data

Computer Memory

Grey image

Page 39: CSIS Computer Visionscha/CV/cvintro.pdf · 2 Fall/2002 © S. Cha Perception CSIS Fall/2002 © S. Cha Lena & Computer vision CSIS

39

© S. ChaFall/2002

CSIS

.

Blue ChannelA/D ConverterGreen Channel

A/D Converter

OpticsImage Plane

Digital Image

E(x,y) : Electricalvideo signal

Image L(x,y)

Computer Memory

22 3422 0 18 •••

••••••

Red ChannelA/D Converter

VideoCamera

B(i,j)G(i,j)

R(i,j)

Color image

© S. ChaFall/2002

CSIS

Hue (color)

Saturation (white)

Lightness

HSL Color Space

Page 40: CSIS Computer Visionscha/CV/cvintro.pdf · 2 Fall/2002 © S. Cha Perception CSIS Fall/2002 © S. Cha Lena & Computer vision CSIS

40

© S. ChaFall/2002

CSISColor

© S. ChaFall/2002

CSISContrast Stretching

Page 41: CSIS Computer Visionscha/CV/cvintro.pdf · 2 Fall/2002 © S. Cha Perception CSIS Fall/2002 © S. Cha Lena & Computer vision CSIS

41

© S. ChaFall/2002

CSIS

0 255

255

INPUTO

UT

PU

T

Linear Stretching

© S. ChaFall/2002

CSISHistogram Equalization

Adjust peaks and plains

Page 42: CSIS Computer Visionscha/CV/cvintro.pdf · 2 Fall/2002 © S. Cha Perception CSIS Fall/2002 © S. Cha Lena & Computer vision CSIS

42

© S. ChaFall/2002

CSISFalse Color

© S. ChaFall/2002

CSISWarping

http://www.doctorwarp.com/index.php?ID=23&flx=world

Page 43: CSIS Computer Visionscha/CV/cvintro.pdf · 2 Fall/2002 © S. Cha Perception CSIS Fall/2002 © S. Cha Lena & Computer vision CSIS

43

© S. ChaFall/2002

CSISCompression

© S. ChaFall/2002

CSISMosaics

Page 44: CSIS Computer Visionscha/CV/cvintro.pdf · 2 Fall/2002 © S. Cha Perception CSIS Fall/2002 © S. Cha Lena & Computer vision CSIS

44

© S. ChaFall/2002

CSISStereo

© S. ChaFall/2002

CSISStereo vision

Page 45: CSIS Computer Visionscha/CV/cvintro.pdf · 2 Fall/2002 © S. Cha Perception CSIS Fall/2002 © S. Cha Lena & Computer vision CSIS

45

© S. ChaFall/2002

CSISNoise Removal

salt

pepper

© S. ChaFall/2002

CSISZooming

Important for size invariance

Page 46: CSIS Computer Visionscha/CV/cvintro.pdf · 2 Fall/2002 © S. Cha Perception CSIS Fall/2002 © S. Cha Lena & Computer vision CSIS

46

© S. ChaFall/2002

CSISRotation

Important for rotation invariance

© S. ChaFall/2002

CSISSubtraction

Page 47: CSIS Computer Visionscha/CV/cvintro.pdf · 2 Fall/2002 © S. Cha Perception CSIS Fall/2002 © S. Cha Lena & Computer vision CSIS

47

© S. ChaFall/2002

CSIS

• Goal: To find clusters of pixels that are similar and connected to each other

• How it works:– Assign a value to each pixel

– Define what similar values mean• e.g., 10 +/- 2

– Determine if like pixels are connected

Connected Components/ Image Labeling

4- connected 8-connected

© S. ChaFall/2002

CSIS

1 1 1 1 1 1

1 0 0 1 1 1

1 1 1 0 1 1

1 2 2 0 0 1

1 2 2 0 0 1

A A A A A A

A B B A A A

A A A C A A

A D D C C A

A D D C C A

Connected Components/ Image Labeling

Page 48: CSIS Computer Visionscha/CV/cvintro.pdf · 2 Fall/2002 © S. Cha Perception CSIS Fall/2002 © S. Cha Lena & Computer vision CSIS

48

© S. ChaFall/2002

CSIS

1 1 1 1 1 1

1 0 0 1 1 1

1 1 1 0 1 1

1 2 2 0 0 1

1 2 2 0 0 1

A A A A A A

A B B A A A

A A A B A A

A C C B B A

A C C B B A

Connected Components/ Image Labeling

© S. ChaFall/2002

CSISSegmentation

Page 49: CSIS Computer Visionscha/CV/cvintro.pdf · 2 Fall/2002 © S. Cha Perception CSIS Fall/2002 © S. Cha Lena & Computer vision CSIS

49

© S. ChaFall/2002

CSISSegmentation

© S. ChaFall/2002

CSIS

���

���

−−−−+−−−−

=111

181

111

B

Edge Detection

convolution

mask

Page 50: CSIS Computer Visionscha/CV/cvintro.pdf · 2 Fall/2002 © S. Cha Perception CSIS Fall/2002 © S. Cha Lena & Computer vision CSIS

50

© S. ChaFall/2002

CSIS

Each person writes differently.

Handwriting

© S. ChaFall/2002

CSIS

Analysis of Handwriting

Recognition Examination Personality identification(Graphology)

On-line Off-line Writer VerificationWriter Identification

Natural Writing Forgery Disguised Writing

Handwriting Analysis Taxonomy

Page 51: CSIS Computer Visionscha/CV/cvintro.pdf · 2 Fall/2002 © S. Cha Perception CSIS Fall/2002 © S. Cha Lena & Computer vision CSIS

51

© S. ChaFall/2002

CSIS

The EndSee U all next week.

Pattern Recognition


Recommended