+ All Categories
Home > Education > Cu06997 lecture 6_flow in pipes 1_2013

Cu06997 lecture 6_flow in pipes 1_2013

Date post: 03-Jun-2015
Category:
Upload: henk-massink
View: 1,381 times
Download: 3 times
Share this document with a friend
Popular Tags:
17
CU06997 Fluid Dynamics Flow in pipes and closed conduits 4.1 Introduction (page 91) 4.2 The historical context (page 91-93) 4.3 Fundamental concepts of pipe flow (page 94-97) 4.4 Laminar flow (page 97-100) 4.5 Turbulent flow (page 100 – 111) 1
Transcript
Page 1: Cu06997 lecture 6_flow in pipes 1_2013

CU06997 Fluid Dynamics

Flow in pipes and closed conduits

4.1 Introduction (page 91)

4.2 The historical context (page 91-93)

4.3 Fundamental concepts of pipe flow (page 94-97)

4.4 Laminar flow (page 97-100)

4.5 Turbulent flow (page 100 – 111)

1

Page 2: Cu06997 lecture 6_flow in pipes 1_2013

Pipe with head loss

41

2

44

2

11

22 H

g

uh

g

uh

4411 AuAuQ

Pressure

Head

Total

Head

Head loss

1

Page 3: Cu06997 lecture 6_flow in pipes 1_2013

Reynolds number:

p 93 (pipe), p 127 (open channel)

πœ‡ = Absolute viscosity [m2/s]

𝜐 = Kinematic viscosity [kg/ms]

water, 20Β°C= 1,00 βˆ™ 10βˆ’6

𝜌 = Density of liquid [kg/m3]

𝑉 = Velocity [m/s]

D = Hydraulic diameter [m]

R = Hydraulic Radius = D/4 [m]

𝑅𝑒 = Reynolds Number [1]

𝑹𝒆 > πŸ’πŸŽπŸŽπŸŽ Turbulent flow

𝑹𝒆 < 𝟐𝟎𝟎𝟎 Laminar flow

𝑅𝑒 =𝑉. 4𝑅

𝜈

𝑅𝑒 =𝜌 βˆ™ 𝑉 βˆ™ 𝐷

πœ‡=

𝑉 βˆ™ 𝐷

𝜈

1

Page 4: Cu06997 lecture 6_flow in pipes 1_2013

Laminar flow, frictional head loss

[Energieverlies tgv wrijving]

β„Žπ‘“ =32 βˆ™ πœ‡ βˆ™ 𝐿 βˆ™ 𝑉

𝜌 βˆ™ 𝑔 βˆ™ 𝐷2

β„Žπ‘“ = frictional head loss βˆ†H [m]

πœ‡ = Absolute viscosity [kg/ms]

𝐿 = Length between the Head Loss [m]

𝑉 = mean velocity [m/s]

D = Hydraulic Diameter [m]

𝜌 = Density of liquid [kg/m3]

𝑔 = earths gravity [m/s2] 2

Total Head

Pressure Head

Page 5: Cu06997 lecture 6_flow in pipes 1_2013

Laminar flow, wall shear stress

[Schuifspanning]

𝜏0=

4 βˆ™ πœ‡ βˆ™ 𝑉

𝑅

Ο„0 = shear stress at solid boundary [N/m2]

πœ‡ = Absolute viscosity [kg/ms]

𝑉 = mean velocity [m/s]

R = Hydraulic Radius [m]

2

Page 6: Cu06997 lecture 6_flow in pipes 1_2013

Head loss /Energy loss [m]

β€’ Turbulent flow

β€’ Friction loss (wrijvingsverlies)

β€’ Local loss (lokaal verlies)

[m] 2g

uΔΗ

2

β€’ Ξ”H = Head loss or Energy loss [m]

β€’ u2/2g = Velocity head [m]

β€’ ΞΎ (ksie) = Loss coΓ«fficiΓ«nt [1]

3

Page 7: Cu06997 lecture 6_flow in pipes 1_2013

Darcy-Weisbach

2g

u

2g

u

4ΔΗ

22

f R

L

β€’ Ξ”H = Head loss by friction [m]

β€’ u2/2g = Velocity head [m]

β€’ L = Length [m]

β€’ Ξ» = (lamda) = Friction coΓ«fficiΓ«nt[1]

β€’ ΞΎ (ksie) = Loss coΓ«fficiΓ«nt [1]

β€’ R = hydraulic radius [m]

R

Lf

4

Total Head

Pressure Head

3

Page 8: Cu06997 lecture 6_flow in pipes 1_2013

Remarks friction loss Darcy-Weisbach

β€’ Ξ» (boundary roughness) depends on material and

construction. Ξ» often between 0,01 and 0,10

β€’ Ξ» is not a constant, depends on β€œboundary layer”.

β€œSmooth” or β€œRough”, Most of the time β€œSmooth”

How to calculate Ξ» !!!

3

β€’ During exams Fluid Dynamics, the Ξ» will be given

Page 9: Cu06997 lecture 6_flow in pipes 1_2013

Colebrook-White transition formula

1

πœ†= βˆ’2 βˆ™ π‘™π‘œπ‘”

π‘˜π‘ 

3,70 βˆ™ 𝐷+

2,51

Reβˆ™ πœ†

πœ† = Friction coefficient [1]

D = Hydraulic Diameter 4R [m]

kS = surface roughness [m]

(k-waarde)

Difficult to solve

Could use figure 4.5 page 105

Nowadays computers?

3

Page 10: Cu06997 lecture 6_flow in pipes 1_2013

Moody diagram

3

Page 11: Cu06997 lecture 6_flow in pipes 1_2013

Colebrook-White and Darcy Weisbach

𝑉 = βˆ’2 2𝑔 βˆ™ 𝐷 βˆ™ π‘†π‘“βˆ™ π‘™π‘œπ‘”π‘˜π‘ 

3,70𝐷+

2,51Ο…

D 2π‘”βˆ™π·βˆ™π‘†π‘“

with 𝑆𝑓 =β„Žπ‘“

𝐿

𝑉 = Average velocity [m/s]

D = Hydraulic Diameter (4R) [m]

kS = surface roughness [m]

𝜐 = Kinematic viscosity [kg/ms]

Sf = slope of hydraulic gradient [-]

hf = frictional head loss (βˆ†Hf) [m]

𝐿 = Length between the Head Loss [m]

3

Page 12: Cu06997 lecture 6_flow in pipes 1_2013

Turbulent flow ,

Mean boundary shear stress

𝜏0 = 𝜌 βˆ™ 𝑔 βˆ™ 𝑅 βˆ™ 𝑆0

Ο„0 = shear stress at solid boundary [N/m2]

R = Hydraulic Radius [m]

𝑆0 = Slope of channel bed [1]

In sewer minimum shear stress value

(0.5 – 1.5 N/m2)

3

Page 13: Cu06997 lecture 6_flow in pipes 1_2013

Local head losses

[m] 2g

uΔΗ

2

l

4

Page 14: Cu06997 lecture 6_flow in pipes 1_2013

Head loss Sudden Pipe Enlargement

2g

VVΔΗ

2

21

l

βˆ†π»π‘™= (1 βˆ’

𝐴1

𝐴2)2βˆ™

𝑉12

2𝑔

4

Page 15: Cu06997 lecture 6_flow in pipes 1_2013

Head loss Sudden Pipe Enlargement

βˆ†π»π‘™ =(𝑉1 βˆ’ 𝑉2)2

2𝑔 βˆ†π»π‘™= (1 βˆ’

𝐴1

𝐴2)2βˆ™

𝑉12

2𝑔 πœ‰π‘™ = (1 βˆ’

𝐴1

𝐴2)2

βˆ†π»π‘™ = Head Loss due to sudden pipe enlargement [m]

πœ‰π‘™ = Loss coefficient due to sudden pipe enlargement [1]

𝐴 = Wetted Area [m2]

𝑉 = Mean Fluid Velocity [m/s]

𝑔 = earths gravity [m/s2]

1= Before enlargement

2= After enlargement

4

Page 16: Cu06997 lecture 6_flow in pipes 1_2013

Head loss Sudden Pipe Contraction

βˆ†π»π‘™= (𝐴1

𝐴3βˆ’ 1)2βˆ™

𝑉22

2𝑔 and 𝐴3 β‰… 0,6 βˆ™ 𝐴2 βˆ†π»π‘™= 0,44 βˆ™

𝑉22

2𝑔

βˆ†π»π‘™ = Head Loss due to sudden pipe contraction [m]

𝑉2 = Mean Fluid Velocity after sudden pipe contraction [m/s]

𝑔 = earths gravity [m/s2]

4

Page 17: Cu06997 lecture 6_flow in pipes 1_2013

Local head loss coefficients

βˆ†π»π‘™ = π‘˜π‘™ βˆ™π‘’2

2𝑔

π‘˜π‘™ = πœ‰π‘™

4


Recommended