+ All Categories
Home > Technology > Curcic - Atomic and Molecular Physics Program - Spring Review 2012

Curcic - Atomic and Molecular Physics Program - Spring Review 2012

Date post: 11-May-2015
Category:
Upload: the-air-force-office-of-scientific-research
View: 411 times
Download: 2 times
Share this document with a friend
Description:
Dr. Tatjana Curcic presents an overview of his program - Atomic and Molecular Physics Program - at the AFOSR 2012 Spring Review.
Popular Tags:
39
1 DISTRIBUTION A: Approved for public release; distribution is unlimited. 15 February 2012 Integrity Service Excellence Tatjana Curcic Program Manager AFOSR/RSE Air Force Research Laboratory Atomic and Molecular Physics Program 7 March 2012
Transcript
Page 1: Curcic - Atomic and Molecular Physics Program - Spring Review 2012

1 DISTRIBUTION A: Approved for public release; distribution is unlimited. 15 February 2012

Integrity Service Excellence

Tatjana Curcic

Program Manager

AFOSR/RSE

Air Force Research Laboratory

Atomic and Molecular

Physics Program

7 March 2012

Page 2: Curcic - Atomic and Molecular Physics Program - Spring Review 2012

2 DISTRIBUTION A: Approved for public release; distribution is unlimited.

2012 AFOSR SPRING REVIEW

NAME: Tatjana Curcic

BRIEF DESCRIPTION OF PORTFOLIO:

Understanding interactions between atoms, molecules, ions, and

radiation.

LIST SUB-AREAS IN PORTFOLIO:

• Cold Quantum Gases − Strongly-interacting quantum gases

− Ultracold molecules

− New phases of matter

− Non-equilibrium quantum dynamics

• Quantum Information Science (QIS) − Quantum simulation

− Quantum communication

− Quantum metrology, sensing, and imaging

− Cavity optomechanics

NAME: Tatjana Curcic

BRIEF DESCRIPTION OF PORTFOLIO:

Understanding interactions between atoms, molecules, ions, and

radiation.

LIST SUB-AREAS IN PORTFOLIO:

• Cold Quantum Gases − Strongly-interacting quantum gases

− Ultracold molecules

− New phases of matter

− Non-equilibrium quantum dynamics

• Quantum Information Science (QIS) − Quantum simulation

− Quantum communication

− Quantum metrology, sensing, and imaging

− Cavity optomechanics

Page 3: Curcic - Atomic and Molecular Physics Program - Spring Review 2012

3 DISTRIBUTION A: Approved for public release; distribution is unlimited.

Scientific and Transformational

Opportunities

Scientific Opportunities Transformational Opportunities

Dipolar Matter, Ultracold Molecules • Novel phases of matter

• Ultracold chemistry

Quantum Memories and Interfaces • Long-distance quantum communication

Quantum Simulation • High-Tc superconductivity

• Novel phases of matter

Quantum Metrology and Sensing

• Ultra-high-precision clocks

• High-resolution, high-sensitivity magnetometry

• High-sensitivity gravimetry

• Precision inertial navigation in GPS-denied

environments

Non-equilibrium Quantum Dynamics • Dynamic control of materials

• Efficient optical devices

Page 4: Curcic - Atomic and Molecular Physics Program - Spring Review 2012

4 DISTRIBUTION A: Approved for public release; distribution is unlimited.

Outline

• Quantum Simulation, Strongly-Interacting Quantum Gases • Bosons: Markus Greiner, Harvard (MURI)

• Algorithmic Cooling in Quantum Gases Waseem Bakr, et al, Nature 480, 500 (2011)

• Quantum Magnetism Jonathan Simon, et al, Nature 472, 307 (2011)

• Fermions: Martin Zwierlein, MIT (PECASE, MURI)

• Evolution of Fermi Pairing from 3D to 2D Ariel T. Sommer, et al, Phys. Rev. Lett. 108, 045302 (2012)

• Spin Transport in a Strongly-Interacting Fermi Gas Ariel Sommer, et al, Nature 472, 201 (2011)

• Thermodynamics of a Unitary Fermi Gas: Superfluid Lambda Transition Mark J.H. Ku, et al, Science (in print); K. Van Houcke, et al (submitted to Nature Physics)

• Dipolar Matter: Benjamin Lev, UIUC/Stanford (YIP) • Dy BEC, and First Dipolar Degenerate Fermi Gas

Mingwu Lu, et al, Phys. Rev. Lett. 107, 190401 (2011)

• Quantum Metrology: Till Rosenband, NIST • Coherent Drive Spectroscopy

D.B. Hume, et al, Phys. Rev. Lett. 107, 243902 (2011)

• Quantum Simulation, Strongly-Interacting Quantum Gases • Bosons: Markus Greiner, Harvard (MURI)

• Algorithmic Cooling in Quantum Gases Waseem Bakr, et al, Nature 480, 500 (2011)

• Quantum Magnetism Jonathan Simon, et al, Nature 472, 307 (2011)

• Fermions: Martin Zwierlein, MIT (PECASE, MURI)

• Evolution of Fermi Pairing from 3D to 2D Ariel T. Sommer, et al, Phys. Rev. Lett. 108, 045302 (2012)

• Spin Transport in a Strongly-Interacting Fermi Gas Ariel Sommer, et al, Nature 472, 201 (2011)

• Thermodynamics of a Unitary Fermi Gas: Superfluid Lambda Transition Mark J.H. Ku, et al, Science (in print); K. Van Houcke, et al (submitted to Nature Physics)

• Dipolar Matter: Benjamin Lev, UIUC/Stanford (YIP) • Dy BEC, and First Dipolar Degenerate Fermi Gas

Mingwu Lu, et al, Phys. Rev. Lett. 107, 190401 (2011)

• Quantum Metrology: Till Rosenband, NIST • Coherent Drive Spectroscopy

D.B. Hume, et al, Phys. Rev. Lett. 107, 243902 (2011)

Page 5: Curcic - Atomic and Molecular Physics Program - Spring Review 2012

5 DISTRIBUTION A: Approved for public release; distribution is unlimited.

Strongly-correlated quantum gases

Optical lattices

Atoms interact strongly on lattice sites

Superfluid - Mott insulator transition

Electrons in a crystal lattice

Atoms in an optical lattice

Synthetic matter, quantum simulations

Strongly correlated materials

High Tc superconductors Quantum magnets

Quasi-low

dimensional

materials

Page 6: Curcic - Atomic and Molecular Physics Program - Spring Review 2012

6 DISTRIBUTION A: Approved for public release; distribution is unlimited.

Quantum magnetism

Ising model:

quantum phase transition

from paramagnet to

antiferromagnet

Quantum gas

microscope Algorithmic

cooling Quantum

magnetism

Page 7: Curcic - Atomic and Molecular Physics Program - Spring Review 2012

7 DISTRIBUTION A: Approved for public release; distribution is unlimited.

Many new

possibilities for

• Detection

• Manipulation

• Cooling

• Creating new

systems

Quantum Gas Microscope

Waseem S. Bakr, et al, Nature 463, 74 (2009)

Page 8: Curcic - Atomic and Molecular Physics Program - Spring Review 2012

8 DISTRIBUTION A: Approved for public release; distribution is unlimited.

Interaction induced orbital excitation

blockade

2,0

1,1

0,2

1,0

0,1

nground,nexcited

Axial vibrational

excitation

Page 9: Curcic - Atomic and Molecular Physics Program - Spring Review 2012

9 DISTRIBUTION A: Approved for public release; distribution is unlimited.

Orbital excitation blockade operations

1,0 « 0,1

2,0 « 1,1

3,0 « 2,1

Page 10: Curcic - Atomic and Molecular Physics Program - Spring Review 2012

10 DISTRIBUTION A: Approved for public release; distribution is unlimited.

Algorithmic cooling

Page 11: Curcic - Atomic and Molecular Physics Program - Spring Review 2012

11 DISTRIBUTION A: Approved for public release; distribution is unlimited.

4 3 3 2 2 1

thermal MI

Waseem Bakr, et al,

Nature 480, 500 (2011)

Algorithmic cooling

Page 12: Curcic - Atomic and Molecular Physics Program - Spring Review 2012

12 DISTRIBUTION A: Approved for public release; distribution is unlimited.

Quantum Magnetism

Quantum simulation of an antiferromagnetic Ising spin chain

H = J Szi

i

å Szi+1 -hzSz

i -hxSxi

hx =0: classical first order phase transition

Finite hx: quantum phase transition, second order

Page 13: Curcic - Atomic and Molecular Physics Program - Spring Review 2012

13 DISTRIBUTION A: Approved for public release; distribution is unlimited.

Tilted Hubbard Model and Mapping to

Spin Model

hz hx

realizes constraint drives transition

H = Ji

å SziSzi+1 - (1-D) Sz

i - 23/2 t Sxi D = E-U

E: energy difference per lattice

site, or lattice tilt

U: onsite interaction

Page 14: Curcic - Atomic and Molecular Physics Program - Spring Review 2012

14 DISTRIBUTION A: Approved for public release; distribution is unlimited.

• Low magnetic field:

antiferromagnetic

interactions

dominate, producing

Neel order

Adiabatic transition to the AF state

• High magnetic field:

spins align with field

= = Direct spin imaging

preliminary

Modulation spectroscopy:

turn double occupancy

into single occupancy

Jonathan Simon, et al, Nature 472, 307 (2011)

Page 15: Curcic - Atomic and Molecular Physics Program - Spring Review 2012

15 DISTRIBUTION A: Approved for public release; distribution is unlimited.

Selecting homogeneous domain

• 6 adjacent sites that transition simultaneously (RMS shift 6 Hz)

• Compare to 10%-90% width (105 Hz) and transverse field (28 Hz)

Mag

ne

tiza

tion

(p

od

d)

Page 16: Curcic - Atomic and Molecular Physics Program - Spring Review 2012

16 DISTRIBUTION A: Approved for public release; distribution is unlimited.

Transitioning at highest and lowest

energy many-body state

Mag

ne

tiza

tion

(p

od

d)

Jonathan Simon, et al, Nature 472, 307 (2011)

Page 17: Curcic - Atomic and Molecular Physics Program - Spring Review 2012

17 DISTRIBUTION A: Approved for public release; distribution is unlimited.

Direct measurement of Neel order

parameter

Gradient E/U

Norm

aliz

ed

Neel ord

er

Page 18: Curcic - Atomic and Molecular Physics Program - Spring Review 2012

18 DISTRIBUTION A: Approved for public release; distribution is unlimited.

Outline

• Quantum Simulation, Strongly-Interacting Quantum Gases • Bosons: Markus Greiner, Harvard (MURI)

• Algorithmic Cooling in Quantum Gases Waseem Bakr, et al, Nature 480, 500 (2011)

• Quantum Magnetism Jonathan Simon, et al, Nature 472, 307 (2011)

• Fermions: Martin Zwierlein, MIT (PECASE, MURI)

• Evolution of Fermi Pairing from 3D to 2D Ariel T. Sommer, et al, Phys. Rev. Lett. 108, 045302 (2012)

• Spin Transport in a Strongly-Interacting Fermi Gas Ariel Sommer, et al, Nature 472, 201 (2011)

• Thermodynamics of a Unitary Fermi Gas: Superfluid Lambda Transition Mark J.H. Ku, et al, Science (in print); K. Van Houcke, et al (submitted to Nature Physics)

• Dipolar Matter: Benjamin Lev, UIUC/Stanford (YIP) • Dy BEC, and First Dipolar Degenerate Fermi Gas

Mingwu Lu, et al, Phys. Rev. Lett. 107, 190401 (2011)

• Quantum Metrology: Till Rosenband, NIST • Coherent Drive Spectroscopy

D.B. Hume, et al, Phys. Rev. Lett. 107, 243902 (2011)

Page 19: Curcic - Atomic and Molecular Physics Program - Spring Review 2012

19 DISTRIBUTION A: Approved for public release; distribution is unlimited.

Strongly Interacting Fermi Gases

in coupled quasi-2D layers

High-Tc Superconductor

with stacks of CuO planes

Stacks of 2D coupled

fermionic superfluids

• Access physics of layered superconductors

• Evolution of Fermion Pairing from 3D to 2D

• Berezinskii-Kosterlitz-Thouless transition in deep 2D limit

Page 20: Curcic - Atomic and Molecular Physics Program - Spring Review 2012

20 DISTRIBUTION A: Approved for public release; distribution is unlimited.

Evolution of Fermion Pairing from

3D to 2D

Density of States: 3D

2D

~.const

Direct consequence:

Always a bound state in 2D

RF spectroscopy: V0 = 2 ER

V0 = 5 ER

V0 = 6 ER

V0 = 10 ER

V0 = 12 ER

V0 = 19 ER

V0 = 20 ER

3D

2D

RF Offset [kHz]

Ato

m tra

nsfe

r [a

.u.]

Ariel T. Sommer, et al, Phys. Rev. Lett. 108, 045302 (2012)

Page 21: Curcic - Atomic and Molecular Physics Program - Spring Review 2012

21 DISTRIBUTION A: Approved for public release; distribution is unlimited.

3D 2D

Resonance d/a = 0

3D BCS d/a = -1.2

3D BCS d/a = -2.7

On Resonance (in harmonic trap): zthBE 244.0,

• Observed fermion pairing from 3D to 2D

Are those pairs superfluid?

Study coherence, thermodynamics, rotation…

What is TC as a function of interlayer tunneling?

Towards a recipe for high TC

Evolution of Fermion Pairing from

3D to 2D

Page 22: Curcic - Atomic and Molecular Physics Program - Spring Review 2012

22 DISTRIBUTION A: Approved for public release; distribution is unlimited.

Fit: 6.3(3)

3/2

F

T

m T

5.8

m

Quantum Limit of

Spin Diffusion

Ariel Sommer, et al, Nature 472, 201 (2011)

Spin Transport − “Little Fermi

Collider” (LFC)

Spin Diffusion vs. Temperature

Page 23: Curcic - Atomic and Molecular Physics Program - Spring Review 2012

23 DISTRIBUTION A: Approved for public release; distribution is unlimited.

Revealing the Superfluid

Lambda Transition in a

Fermi Gas Mark J.H. Ku, et al, Science (in print)

“Feynman diagrams

versus Feynman

quantum emulator” K. Van Houcke, et al (submitted to

Nature Physics)

Thermodynamics of the Strongly-

Interacting Fermi Gas

Page 24: Curcic - Atomic and Molecular Physics Program - Spring Review 2012

24 DISTRIBUTION A: Approved for public release; distribution is unlimited.

Outline

• Quantum Simulation, Strongly-Interacting Quantum Gases • Bosons: Markus Greiner, Harvard (MURI)

• Algorithmic Cooling in Quantum Gases Waseem Bakr, et al, Nature 480, 500 (2011)

• Quantum Magnetism Jonathan Simon, et al, Nature 472, 307 (2011)

• Fermions: Martin Zwierlein, MIT (PECASE, MURI)

• Evolution of Fermi Pairing from 3D to 2D Ariel T. Sommer, et al, Phys. Rev. Lett. 108, 045302 (2012)

• Spin Transport in a Strongly-Interacting Fermi Gas Ariel Sommer, et al, Nature 472, 201 (2011)

• Thermodynamics of a Unitary Fermi Gas: Superfluid Lambda Transition Mark J.H. Ku, et al, Science (in print); K. Van Houcke, et al (submitted to Nature Physics)

• Dipolar Matter: Benjamin Lev, UIUC/Stanford (YIP) • Dy BEC, and First Dipolar Degenerate Fermi Gas

Mingwu Lu, et al, Phys. Rev. Lett. 107, 190401 (2011)

• Quantum Metrology: Till Rosenband, NIST • Coherent Drive Spectroscopy

D.B. Hume, et al, Phys. Rev. Lett. 107, 243902 (2011)

Page 25: Curcic - Atomic and Molecular Physics Program - Spring Review 2012

25 DISTRIBUTION A: Approved for public release; distribution is unlimited.

Ultracold Dipolar Physics

Page 26: Curcic - Atomic and Molecular Physics Program - Spring Review 2012

26 DISTRIBUTION A: Approved for public release; distribution is unlimited.

Ultracold dipolar Bose and Fermi

gases: Exotic quantum phases

Page 27: Curcic - Atomic and Molecular Physics Program - Spring Review 2012

27 DISTRIBUTION A: Approved for public release; distribution is unlimited.

Laser cooling Dysprosium

Page 28: Curcic - Atomic and Molecular Physics Program - Spring Review 2012

28 DISTRIBUTION A: Approved for public release; distribution is unlimited.

Strongly Dipolar Dy BEC

BECs of 164Dy and 162Dy

0o

1.5x104 atoms 1.5 x 104

M. Lu, N. Burdick, S.-H. Youn, and B. Lev, Phys. Rev. Lett. 107 190401 (2011)

Page 29: Curcic - Atomic and Molecular Physics Program - Spring Review 2012

29 DISTRIBUTION A: Approved for public release; distribution is unlimited.

Evaporative cooling of all isotopes

Universal dipolar scattering? Bohn, Cavagnero, Ticknor, New J. Phys. `09

Single beam ODT

Including identical fermions! T/TF = 1.3 in crossed ODT

Ultracold dipolar Bose-Fermi mixtures!

Page 30: Curcic - Atomic and Molecular Physics Program - Spring Review 2012

30 DISTRIBUTION A: Approved for public release; distribution is unlimited.

First dipolar degenerate Fermi gas! 161Dy Sympathetically cooled with 161Dy to T/TF < 0.3

Fermionic 161Dy time-of-flight expansion

Single shot: 6 x 103 atoms Average of three shots

Oblate initial trap

Green: Maxwell-Boltzmann Red: Fermi-Dirac

T/TF = 0.25

manuscript in preparation

Page 31: Curcic - Atomic and Molecular Physics Program - Spring Review 2012

31 DISTRIBUTION A: Approved for public release; distribution is unlimited.

Outline

• Quantum Simulation, Strongly-Interacting Quantum Gases • Bosons: Markus Greiner, Harvard (MURI)

• Algorithmic Cooling in Quantum Gases Waseem Bakr, et al, Nature 480, 500 (2011)

• Quantum Magnetism Jonathan Simon, et al, Nature 472, 307 (2011)

• Fermions: Martin Zwierlein, MIT (PECASE, MURI)

• Evolution of Fermi Pairing from 3D to 2D Ariel T. Sommer, et al, Phys. Rev. Lett. 108, 045302 (2012)

• Spin Transport in a Strongly-Interacting Fermi Gas Ariel Sommer, et al, Nature 472, 201 (2011)

• Thermodynamics of a Unitary Fermi Gas: Superfluid Lambda Transition Mark J.H. Ku, et al, Science (in print); K. Van Houcke, et al (submitted to Nature Physics)

• Dipolar Matter: Benjamin Lev, UIUC/Stanford (YIP) • Dy BEC, and First Dipolar Degenerate Fermi Gas

Mingwu Lu, et al, Phys. Rev. Lett. 107, 190401 (2011)

• Quantum Metrology: Till Rosenband, NIST • Coherent Drive Spectroscopy

D.B. Hume, et al, Phys. Rev. Lett. 107, 243902 (2011)

Page 32: Curcic - Atomic and Molecular Physics Program - Spring Review 2012

32 DISTRIBUTION A: Approved for public release; distribution is unlimited.

Motivation: Al+ clock accuracy

Clo

ck

1 cm

10 cm

1 m

Heig

ht

accu

racy

1 mm

NIST, Boulder,

USA redshift

uncertainty

Gravitational

shift:

Page 33: Curcic - Atomic and Molecular Physics Program - Spring Review 2012

33 DISTRIBUTION A: Approved for public release; distribution is unlimited.

Al+

optical

qubit = 267 nm

1S0

3P0

1P1

= 167 nm

Coulomb

interaction 2P3/2

2S1/2

Mg+

hyperfine

qubit

transfer information to 25Mg+

|↑ 𝑀𝑔

|↓ 𝑀𝑔

Quantum Logic Spectroscopy

Page 34: Curcic - Atomic and Molecular Physics Program - Spring Review 2012

34 DISTRIBUTION A: Approved for public release; distribution is unlimited.

1. Cool to motional ground-state with Mg+ (Raman cooling)

2. Depending on Al+ clock state, add one vibrational quantum via 1S0-3P1

3. Detect vibrational quantum with Mg+

Al+ quantum-logic spectroscopy

0 10 200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

PMT counts

Pro

babi

lity

0 10 200

0.02

0.04

0.06

0.08

0.1

0.12

0.14

27Al+ 1S0 27Al+ 3P0

QND

27Al+

I = 5/2

1S0

3P0

3P1 (300 ms) (21 s)

P.O. Schmidt, et al.

Science 309, 749 (2005)

D. B. Hume, et al.

PRL 99, 120502 (2007)

Mg+ photon counts

99.94% Detection fidelity

Mean = 1.3

Mean = 6.9

Pro

babili

ty

Page 35: Curcic - Atomic and Molecular Physics Program - Spring Review 2012

35 DISTRIBUTION A: Approved for public release; distribution is unlimited.

0 10 200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

PMT counts

Pro

babi

lity

0 10 200

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1. Cool to motional ground-state with Mg+ (Raman cooling)

2. Depending on Al+ clock state, add one vibrational quantum via 1S0-3P1

3. Detect vibrational quantum with Mg+

Mg+ photon counts

Mean = 1.3

Mean = 6.9

Pro

babili

ty

99.94% Detection fidelity

Al+ quantum-logic spectroscopy

D. B. Hume, et al.

PRL 107, 243902 (2011)

QND

27Al+ 1S0 27Al+ 3P0

coherent-drive

drive coherent motion

coherent motion

Measure

quantum state

w/o scattering

photons

Simplified

lasers

(no ground-

state cooling)

Slower

Mg+ Doppler

27Al+

I = 5/2

1S0

3P0

3P1 (300 ms) (21 s)

27Al+ 1S0 27Al+ 3P0

Page 36: Curcic - Atomic and Molecular Physics Program - Spring Review 2012

36 DISTRIBUTION A: Approved for public release; distribution is unlimited.

Al+ coherent-drive spectroscopy

D. B. Hume, et al., PRL107, 243902 (2011)

250 μs 400 μs 200 μs

27Al+ 1S0 27Al+ 3P0

Page 37: Curcic - Atomic and Molecular Physics Program - Spring Review 2012

37 DISTRIBUTION A: Approved for public release; distribution is unlimited.

Quantum jumps between clock states (1S0 and 3P0)

0.5

3 s

avera

ge

93% state-detection

fidelity within 80 ms

with quantum logic:

99% within 10 ms

● Coherent drive detection rate could be improved by higher modulation

amplitude or photon collection efficiency

● Can be generalized for more than one Al+ ion

1S0

3P0

Quantum Jumps

Page 38: Curcic - Atomic and Molecular Physics Program - Spring Review 2012

38 DISTRIBUTION A: Approved for public release; distribution is unlimited.

Interactions with Other Agencies

Agency/Group POC Scientific Area

ARO Peter Reynolds

Paul Baker

Cold Quantum Gases

(CQG)

TR Govindan Quantum Information

Science (QIS)

Rich Hammond Ultrafast/Ultraintense

Phenomena (UUP)

ONR Charles Clark CQG, QIS

Ralph Wachter QIS

DARPA Jamil Abo-Shaeer CQG, QIS

Jag Shah QIS

Matt Goodman QIS

NSF Wendell Hill CQG, QIS, UUP

DoE Jeff Krause CQG, UUP

IARPA Michael Mandelberg QIS

QISCOG >20 program managers from

~10 agencies/institutions

QIS

Page 39: Curcic - Atomic and Molecular Physics Program - Spring Review 2012

39

Thank you


Recommended