+ All Categories
Home > Documents > Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric...

Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric...

Date post: 12-Mar-2020
Category:
Upload: others
View: 5 times
Download: 0 times
Share this document with a friend
64
1 Lecture 3: Parametric Yield Closeout Spanos EE290H F05 Next Time on Parametric Yield Current and Advanced DFM techniques Worst Case Files The role of process simulation (TCAD) Complete Process Characterization Statistical Design The economics of DFM
Transcript
Page 1: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

1Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

Next Time on Parametric Yield

• Current and Advanced DFM techniques– Worst Case Files – The role of process simulation (TCAD)– Complete Process Characterization– Statistical Design

• The economics of DFM

Page 2: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

2Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

What Drives “Worst Case” Analysis?

• Basically, optimize an inverter design…• … then, since most designs are just

combinations of inverter-like gates…• …it follows that the entire design would be OK

even at the extreme points of process variation!

n

p

Process domain: Vtn, ΔLn, ΔWn, kpn,Vtp, ΔLp, ΔWp, kppTox, T, VddPerformance domain:τ, PYield Body:P < x μW, t < y nsec.

Process domain: Vtn, ΔLn, ΔWn, kpn,Vtp, ΔLp, ΔWp, kppTox, T, VddPerformance domain:τ, PYield Body:P < x μW, t < y nsec.

Page 3: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

3Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

Simple Digital Worst Case

Idsat sets power and speed in digital logic, so the extremes of Idsn and Idsp set the “performance”spread.

• Method– Identify typical, fast and slow N, P.– Extract the respective process parameters.– Name the cases TT, SS, FF, SF, FS, respectively.– Make sure performance meets specs at extremes.

Page 4: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

4Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

Parametric Transistor Measurements

Page 5: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

5Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

Simple Digital Worst Case (cont)

• Problems– It implies that the yield body is convex.– The box might be unnecessarily big (over-design).– Idsat extremes do not always map to performance

extremes.– Local variability is ignored (under-design).

SS FS

SF FF

Ids(n)

Ids(p)

Page 6: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

6Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

Table Driven Digital Worst Case• N and P device behavior is highly correlated!

Process Ids(n) Ids(p) Related?

Cox Yes

ΔW Yes

ΔL Yes

LatDiff no

μsurface no

Method• Use table to relate process variability to Idsat deviations.• Identify extremes through measurements.• Extract the process parameters for each.• Call them TT, SS, FF, SF, FS, respectively.• Make sure performance goals are met by all.

Page 7: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

7Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

Table Driven Worst Case (cont.)

• Problems– It still implies that the Yield Body is convex.– Idsat extremes do not always map to the actual performance

spread.– Local variability is ignored (under-design).

SS FS

SF FF

Ids(n)

Ids(p)

Page 8: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

8Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

Working with “Complete” Parameter Sets

• Do not just focus on Idsat.• Assume that all process parameters are varying.

Independence cannot be assumed - use Principal Component Analysis (PCA) to transform the Problem.

• Method– Extract process parameters from a population of devices.– Find the correlation matrix of the process parameters.– Apply PCA to transform to an independent parameter space.– Use Constrained optimization to find the performance extremes

(space is nicely convex).

Page 9: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

9Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

Complete Parameter Sets (cont.)

• Problems– Multiple extractions of

correlated parameters.– Performances analyzed at

device - not circuit level.– Local variability is ignored.

Page 10: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

10Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

Working with “Reduced” Parameter Sets

• Assume that only few process parameters (Vfb, Tox, L, W) and operational parameters (Vdd, T) are varying independently. (No PCA necessary!)

• Use circuit simulation to define extremes.• Method

– Develop special “statistical” device model.– Perform n+1 circuit simulations at extremes.– Establish linear approximation of yield body.– Integrate Yield numerically.– (Find Yield gradient, optimize yield)– (Non-linear modeling and complex experimental designs also

possible)

Page 11: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

11Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

Reduced Parameter Sets (cont.)

• Problems– Special device modeling considerations.– Linear approximations good for high yield only.– Local variability is ignored (no analog designs!)

Page 12: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

12Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

Modern Worst Case Files...

• We now fully realize that the device level worst case files are just an intermediate abstraction to capture the process variability.

• We also know that process parameters are highly correlated.

• So, state-of-the art techniques attempt to approximate the “ellipse” that typically describes the distribution of device parameters.

Page 13: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

13Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

Modern Worst Case files

Page 14: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

14Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

Carefully designed arrays of simulations can reproduce statistics of process

Page 15: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

15Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

Time out! What do all these Techniques need?

• Accurate process characterization!• Deep understanding of how

variability propagates from one level of abstraction to the next!

Process

Electrical

Circuit

Performance

Page 16: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

16Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

An Example of Using TCAD in Process Characterization

Accurate Statistical Process Variation Analysis for 0.25- m CMOS with Advanced TCAD Methodology, Hisako Sato, Hisaaki Kunitomo, Katsumi Tsuneno, Kazutaka Mori, and Hiroo Masuda, Senior Member, IEEE, IEE TSM, Vol 11, No 4, November 1998

Page 17: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

17Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

The basic Macro-modeling Idea

1. “tune” process/device simulator for good agreement with process. 2. Run the tuned simulator over a “designed” experiment.

3. Fit polynomial (macro-model) to simulator results.4. Replace costly simulator with inexpensive (but rather “local”) macro-model.

Page 18: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

18Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

Good Statistical Match Can be Achieved...

Page 19: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

19Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

How about Statistical Process Simulation?

• Low level, physical process parameters can be used with statistically independent disturbances.

• Method– Identify process disturbances.– Infer multi-level statistics of process disturbances.– Use fast process and device simulation to generate

device parameters.– Global and local variations can be represented.

Page 20: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

20Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

Statistical Process Simulation

• Compact Process / Device Models.– Typically 1-D or compact 2-D models.

• The concept of process disturbances.– Low level process parameters that are, almost by

definition, independent from each other.

Page 21: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

21Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

The Role of Statistical Process SimulationDiffusivity

Oxide Growth Coef.

Leff

Tox

Problems• Process

Characterization is difficult

• Modeling accuracy is an issue

• Monte Carlo simulation is still expensive

Page 22: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

22Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

Possible to Model Statistics of Device Performance

Page 23: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

23Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

For complex Analog Circuits...

• “Correlation” matters.

• It is nearly impossible to consider cross-correlation of individual devices

• It is practical to “group” devices, and consider correlation across groups.

Page 24: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

24Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

Why do we really loose Yield?

• Catastrophic defects due to contamination.• “One time” departures from Statistical Control.

Page 25: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

25Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

Problems with earlier Techniques

• Earlier Techniques assume:• The entire fab line is “under SPC”.• Critical steps can be “characterized” via

measurements.

• Cutting edge IC processes, however, are often too short-lived and too complex to achieve SPC status!

Page 26: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

26Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

A Binning Prediction Problem

Create a model that relates yield to easy-to-measure, in-line and electrical parameters.

Base model on process physics - so that is is valid even when the process is out of SPC.

Page 27: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

27Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

The Binning Prediction (cont.)• Use this model in conjunction with

measurements to predict functional yield (speed binning) early on.

• This will give early feedback about the line and the product in it.

• Some of the costly performance testing might be avoided.

StepStep StepStep StepStep P. TestP. Test

Performance Prediction ModelPerformance Prediction Model BinningBinning

Page 28: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

28Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

The Generic Process Model

Page 29: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

29Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

The Specific IC Product Model

Page 30: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

30Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

Simulated Statistical Distribution of Performances

Energy vs. Read 0 Access time Read 0 vs. Read 1 Access Time

Page 31: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

31Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

Yield Body Representation

• Using a linear model, each side of the yield body is a hyper-plane of the form:

Performance = A0+A1(Nld) + A2(Ntox)+...• The adequacy of the model can be examined by

plotting the distance of good and bad parts from the hyper-planes:

dp=AXp

• Projecting constraints into two dimensional planes gives insight into how to improve the model.

Page 32: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

32Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

Linear Approximation of the Yield Body

Page 33: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

33Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

Test Patterns

• We need to characterize both interconnect and active areas of the chip. Test patterns include:

– Transistor arrays (three sizes of each type).– Capacitors for three typical oxide thicknesses.– Polysilicon structures for word line resistance.

Page 34: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

34Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

In-Line and Electrical Measurements

• In order to use this model as a yield predictor, we have to “feed” to it easy to collect measurements.

• Standard test patterns are in use to collect Tox, Vt, kp, ΔL, ΔW, doping levels, poly resistivities.

Page 35: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

35Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

Overall Binning Prediction Methodology

Page 36: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

36Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

Page 37: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

37Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

Issues in IC Manufacturability

• Importance and Causes of Yield Loss

• A Formulation of the DFM Problem

• Circuit Design for Manufacturability

• Yield Modeling Methods

• CIM and DFM

Page 38: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

38Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

Projected Parametric Variation in Future Nodes

Page 39: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

39Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

Projected Parametric Variation in Future NodesTest Circuits used to facilitate Analysis

Logic Interconnect

Page 40: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

40Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

Projected Parametric Variation in Future Nodes

Performance Variation Trend - 8 Bit Mirror Adder

0

2

4

6

8

10

12

14

0 50 100 150 200Technology Node (nm)

% S

igm

a / M

ean

Linear (% Sigma / Mean (Delay))Linear (% Sigma / Mean (Energy))

Delay and Energy variation caused by vth0 variation - 8 Bit Mirror Adder

0

10

20

30

40

50

60

70

0 50 100 150 200Technology Node (nm)

% V

aria

tion

caus

ed b

y vt

h0

Linear (% Delay variation caused by vth0 variation )Linear (% Energy variation caused by vth0 variation)

Delay and Energy variation caused by lint variation - 8 Bit Mirror Adder

0

10

20

30

40

50

60

70

80

0 50 100 150 200Technology Node (nm)

% V

aria

tion

caus

ed b

y lin

t

Linear (% Delay variation caused by lint variation )Linear (% Energy variation caused by lint variation )

Page 41: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

41Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

Projected Parametric Variation in Future Nodes

Performance Variation Trend- Interconnect

0

0.5

1

1.5

2

2.5

3

3.5

4

0 50 100 150 200

Technology Node (nm)

% S

igm

a / M

ean

Linear (% Sigma / Mean (Delay))Linear (% Sigma / Mean (Energy))

Delay and Energy variation caused by width variation

0

20

40

60

80

100

120

140

0 50 100 150 200Technology (nm)

% P

erfo

rman

ce v

aria

tion

Linear (% Delay variation induced by w idth variation)Linear (% Energy variation caused by w idth variation)

Delay and Energy variation caused by spacing variation

0

10

20

30

40

50

60

70

80

0 50 100 150 200Technology Node (nm)

% P

erfo

rman

ce v

aria

tion

Linear (% Delay variation caused by spacing variation)Linear (% Energy variation caused by spacing variation)

Delay and Energy variation caused by thickness variation

0

10

20

30

40

50

60

70

80

0 50 100 150 200Technology Node (nm)

% P

erfo

rman

ce v

aria

tion

Linear (% Delay variation caused by thickness variation)Linear (% Energy variation caused by thickness variation)

Page 42: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

42Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

Projected Parametric Variation in Future Nodes

Delay and Energy Variation caused by height variation

0

5

10

15

20

25

0 50 100 150 200

Technology Node (nm)

% P

erfo

rman

ce

varia

tion

Linear (% Delay variation caused by height variation)

Linear (% Energy variation caused by height variation)

Delay and Energy variation caused by dielectric variation

0

5

10

15

20

25

30

35

0 50 100 150 200Technology Node (nm)

% P

erfo

rman

ce v

aria

tion

Linear (% Delay variation caused by dielectric variation)Linear (% Energy variation caused by dielectric variation)

Delay and Energy variation caused by interconnect variation

0102030405060708090

100

0 50 100 150 200Technology Node (nm)

% P

erfo

rman

ce

varia

tion

Linear (% Delay variation caused by interconnect variation)

Linear (% Energy variation caused by interconnect variation)

Delay and Energy variation caused by device variation

0

20

40

60

80

100

120

0 50 100 150 200Technology Node (nm)

% P

erfo

rman

ceva

riatio

n

Linear (% Delay variation caused by device variation)

Linear (% Energy variation caused by device variation)

Page 43: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

43Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

Let’s Summarize...

step 1 step 2 step n

e-test packagingfunctionaltest

binning/parametric test

field installation

in-line testsreal-time

measurements

fielddata

wafer fab

wafer yieldwafer yield die yield (functional)die yield (functional)

die yield (parametric)die yield (parametric)

back-end

EquipmentUtilization

EquipmentUtilization

Page 44: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

44Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

IC production suffers from routine and assignable variability.•Human errors, equipment failures•Processing instabilities•Material non-uniformities•Substrate inhomogeneites•Lithography spotsVariability causes deformations• Geometrical • Electrical° Lateral ° Global° Vertical ° Local° Spot defects

Deformations have deterministic and random components, are global and/or local, can be independent or can interact.

Page 45: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

45Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

Performance vs Yield

Page 46: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

46Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

How does reduced variability help?

600k APC investment, recovered in two days...

Page 47: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

47Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

Design Yield Prediction

QF = {q1F,q2

F,...,qnFF }T

QP = {q1P,q2

P,...,qnPP }T

First we define functional (timing and other functionality constraints) and parametric (speed, power etc.) measures:

Then we define the space that contains both types of measures:

The set of acceptable IC performances is given as:

AQ = {Q∈SQ| each qj acceptable ∀ j=1,2,..., nQ}nQ = nF + nP

SQ = SQF × SQ

P

Page 48: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

48Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

Design Yield Prediction (cont.)All performances are determined from the state variables of the process (geometric and electrical parameters after wafer fabrication):

AW = {Xw∈SW|Q (Xw)∈AQ}

This is the acceptability region defined in the state variable space. The Yield is defined as:

Y = fW(xW)dxWAW

Y = g(xW) fW(xW)dxW

fW(xW) is the jpdf of XW and g(xW) = {1, ∀ xW∈AW

0, otherwise

Page 49: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

49Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

Design Yield Prediction (cont.)Let us now assume that Xw really depends on the parameter sets defined as C (Controls), L (Layout), and D (disturbances). Given fixed values for C and L, then:

Let us further assume that C, L, D are separable (i.e. some affect performance and some functionality, but none affects both). Then:

Y = fD(δ)dδAD(C 0,L 0)

YFUN' = fD'(δ')dδ'

ADF(C0,L0)

and

YPAR' = fD''(δ'')dδ''

ADP(C0,L0)

Page 50: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

50Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

Manufacturing Yield vs. Design Yield

Because of test coverage limitations:

YM ≥ Y

Because of imperfect separation:

Y ≤ YPAR '⋅ YFUN '

Finally, since we do not probe the actual circuit, we have:

YPRO ≈ YPAR

YM = NFN = NW

N NFNW

NPNF

= YWYPTYFT

Page 51: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

51Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

Yield and Production CostThe objective is not to maximize yield but to minimize cost.Wafer Cost:

Probe Cost:

Final Test Cost:

Total Cost per chip sold:

C2 = (NW - NP)(cPT+ cP + cW)

C3 = NP(cFT+ cA+ cPT+cP + cW)

CNF

= NPNF

(cFT+ cA+ cPT+cP + cW) + NWNF

(1 - NPNW

)(cPT+ cP + cW) +

NNF

(1 - NWNF

)(cP*+ cW)

C1 = (N - NW)(cP*+ cW)

C = C1 + C2 + C3

Page 52: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

52Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

Yield and Production Cost (cont)Finally, total cost per chip sold:

This means that the yield maximization problem and the cost minimization problem are not equivalent!

VLSI Design for Manufacturing: Yield EnhancementDirector, Maly and Strojwas

Kluwer Academic Publishers 1989

CNF

= (cFT+ cA+ cPT+cP + cW) + YPYM

(1 - YFT)(cFT+ cA+ cPT+cP + cW) +

YWYM

(1 - YPT)(cPT+ cP + cW) + 1YM

(1 - YW)(cP*+ cW)

Page 53: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

53Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

In Conclusion

• Yield is good and Variability is bad.– metrology– statistical process control– run-to-run and real-time control

• Must manipulate process steps to accommodate circuits and designs.– modeling– design of experiments

• Must keep cost of manufacturing low.– Automation of product flow– Automation of information management

Page 54: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

54Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

Calculating IC Cost vs Defect Density

An example...

Page 55: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

55Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

The ITRS Roadmap (see transistor cost)Year 1997 1999 2001 2003 2006 2009 2012Feature nm 250 180 150 130 100 70 50

Area mm2 300 340 385 430 520 620 750Density cm-2 3.7M 6.2M 10M 18M 39M 84M 180MCost μc/tr 3000 1735 1000 580 255 110 50

technology 248 248 193? 157? 14 14 14wafer size 200 300 300 300 300 450 450

Year 1997 1999 2001 2003 2006 2009 2012Feature nm 250 180 150 130 100 70 50

Area mm2 300 340 385 430 520 620 750Density cm-2 3.7M 6.2M 10M 18M 39M 84M 180MCost μc/tr 3000 1735 1000 580 255 110 50

technology 248 248 193? 157? 14 14 14wafer size 200 300 300 300 300 450 450

1997 1999 2001 2003 2006 2009 2012

Function/milicent0

5

10

15

20

Function/milicent

Overall ProductionEfficiency up by ~20X (!) from 1997 to 2012.

Page 56: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

56Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

Negative Binomial (a widely accepted yield model)

If f(D) follows a Gamma distribution, then:

Y = 1 + A Dα - α

And if clustering becomes an issue, then:

Y = Yo 1 + A Dα

- α

where Yo is the “gross cluster yield”.

(α ~ 0.3 - 3)

Page 57: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

57Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

Typical Defect Size Distribution

This means that defectdensity increases to about1/square~1/cube of line width!

This means that defectdensity increases to about1/square~1/cube of line width!

Page 58: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

58Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

Line Yield, Memory

Historical data on what percentage of WAFERSmakes it to the end. We can assume that this Yield component will be a non-issue in the future...

Historical data on what percentage of WAFERSmakes it to the end. We can assume that this Yield component will be a non-issue in the future...

Page 59: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

59Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

Line Yield, CMOS Logic

...even though CMOS does not have perfect wafer yield yet!

...even though CMOS does not have perfect wafer yield yet!

Page 60: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

60Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

Memory Defect Density, 0.45-0.6μm

Y = [ (1-e-AD)/AD ]2

A is the area. D is the defect density (goes up to 1/cube~1/square of line width for a given clean room class).Numbers here are for class 10. See next slides for data points from older technologies...

A is the area. D is the defect density (goes up to 1/cube~1/square of line width for a given clean room class).Numbers here are for class 10. See next slides for data points from older technologies...

Page 61: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

61Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

Logic Defect Density, 0.7-0.9μm CMOS

Y = [ (1-e-AD)/AD ]2

Page 62: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

62Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

Logic Defect Density, 0.7-0.9μm CMOS

Y = [ (1-e-AD)/AD ]2

Page 63: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

63Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

Bringing the Puzzle Pieces together...

Year D CD Area GD/W Killer Def Wafer Size Density Yield Cent/Die 10^-6c/Tr1997 0.000600 0.250 300.000 88.096 0.000600 200.000 3.700 0.842 11351 30681999 0.000500 0.180 340.000 137.856 0.001340 300.000 6.200 0.663 10881 17552001 0.000140 0.150 385.000 145.052 0.000648 300.000 10.000 0.790 10341 10342003 0.000050 0.130 430.000 141.792 0.000356 300.000 18.000 0.863 10579 5882006 0.000002 0.100 520.000 133.684 0.000031 300.000 39.000 0.984 11220 2882009 0.000004 0.070 620.000 229.707 0.000182 450.000 84.000 0.896 9795 1172012 0.000001 0.050 750.000 193.394 0.000125 450.000 180.000 0.912 11634 65

Note how clean we must be!Note trade-offs between wafer size and defects!20x improvement will not be easy...

Page 64: Current and Advanced DFM techniquesee290h/fa05/Lectures/PDF/lecture 3... · Lecture 3: Parametric Yield Closeout 3 EE290H F05 Spanos Simple Digital Worst Case I dsat sets power and

64Lecture 3: Parametric Yield Closeout

SpanosEE290H F05

Fall 2005 EE290H Tentative Weekly Schedule1. Functional Yield of ICs and DFM. 2. Parametric Yield of ICs.3. Yield Learning and Equipment Utilization.

4. Statistical Estimation and Hypothesis Testing.5. Analysis of Variance.6. Two-level factorials and Fractional factorial Experiments.

7. System Identification. 8. Parameter Estimation.9. Statistical Process Control. Distribution of projects. (week 9)

10. Run-to-run control.11. Real-time control. Quiz on Yield, Modeling and Control (week 12)

12. Off-line metrology - CD-SEM, Ellipsometry, Scatterometry13. In-situ metrology - temperature, reflectometry, spectroscopy

14. The Computer-Integrated Manufacturing Infrastructure

15. Presentations of project results.

ProcessModeling

ProcessControl

IC Yield & Performance

Metrology

ManufacturingEnterprise


Recommended