+ All Categories
Home > Documents > Current fluctuations in non-adiabatic electron pumpsqpump/kohler_talk_haifa07.pdf ·...

Current fluctuations in non-adiabatic electron pumpsqpump/kohler_talk_haifa07.pdf ·...

Date post: 29-Jul-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
44
Current fluctuations in non-adiabatic electron pumps Sigmund Kohler Universität Augsburg
Transcript
Page 1: Current fluctuations in non-adiabatic electron pumpsqpump/kohler_talk_haifa07.pdf · pumpingwithcoupledquantumdots Photon-assisted tunneling Pumping T. H. Oosterkampet al., Nature395,

Current fluctuations in non-adiabatic electronpumps

Sigmund Kohler

Universität Augsburg

Page 2: Current fluctuations in non-adiabatic electron pumpsqpump/kohler_talk_haifa07.pdf · pumpingwithcoupledquantumdots Photon-assisted tunneling Pumping T. H. Oosterkampet al., Nature395,

adiabatic vs. non-adiabatic pumping

X

A

1

X2

X2

X1

I

(a) (b)

P. W. Brouwer, PRB 58, 10135 (1998)

adiabatic pump current: I ∝ frequency

pumping is more effective beyond the adiabatic limit

Page 3: Current fluctuations in non-adiabatic electron pumpsqpump/kohler_talk_haifa07.pdf · pumpingwithcoupledquantumdots Photon-assisted tunneling Pumping T. H. Oosterkampet al., Nature395,

pumping with coupled quantum dots

Photon-assisted tunneling Pumping

T. H. Oosterkamp et al., Nature 395, 873 (1998)

current maximum at resonance ħΩ=√

(εL −εR)2 +∆2

Page 4: Current fluctuations in non-adiabatic electron pumpsqpump/kohler_talk_haifa07.pdf · pumpingwithcoupledquantumdots Photon-assisted tunneling Pumping T. H. Oosterkampet al., Nature395,

from artificial to real molecules

[M. A. Reed et al., Science 278, 252 (1997)]

larger systems

[X. D. Cui et al., Science 294, 571 (2001)]

AuAu S

AuAu S S

S

N

O2N

O

H

[J. Reichert et al., Phys. Rev. Lett. 88, 176804 (2002)]

Page 5: Current fluctuations in non-adiabatic electron pumpsqpump/kohler_talk_haifa07.pdf · pumpingwithcoupledquantumdots Photon-assisted tunneling Pumping T. H. Oosterkampet al., Nature395,

excitations of molecules

direct exposure to lightproblem: affects contactssolution: coated SNOM tip(scanning near-field optical microscope)

©J.

Rei

cher

t(U

nst

er)

focussing on moleculeTERS (tip-enhanced Raman spectroscopy):local field enhancement by several orders of magnitude

Page 6: Current fluctuations in non-adiabatic electron pumpsqpump/kohler_talk_haifa07.pdf · pumpingwithcoupledquantumdots Photon-assisted tunneling Pumping T. H. Oosterkampet al., Nature395,

tight-binding model

|2⟩

µR

|N⟩

ħΩ

acceptor

|N−1⟩

donor

|1⟩µL

Γ

Γ

hopping matrix elements ∆[molecule: Hückel model of a “molecular bridge”]

metallic contacts: ideal Fermi gases with chem. potential µ

effective coupling to metal contacts: Γ

laser field: Hmol −→ Hmol(t), dipole coupling

Page 7: Current fluctuations in non-adiabatic electron pumpsqpump/kohler_talk_haifa07.pdf · pumpingwithcoupledquantumdots Photon-assisted tunneling Pumping T. H. Oosterkampet al., Nature395,

Current fluctuations in non-adiabatic electron pumps

Floquet transport theory: current & noise

pumping electronssymmetry considerationsratchets vs. pumpsharmonic mixingresonant electron pumpingCoulomb repulsion effects

pumping heat

Page 8: Current fluctuations in non-adiabatic electron pumpsqpump/kohler_talk_haifa07.pdf · pumpingwithcoupledquantumdots Photon-assisted tunneling Pumping T. H. Oosterkampet al., Nature395,

static case: scattering formula

Landauer (1957): “conductance is transmission”

EF

EF−eV

current I = e

2πħ∫

dE T(E)[f (E +eV )− f (E)

]transmission of an electron with energy E

T(E) = ΓLΓR|⟨1|G(E)|N⟩|2

[Fischer, Lee, PRB’81; Meir, Wingreen, PRL’92]

Page 9: Current fluctuations in non-adiabatic electron pumpsqpump/kohler_talk_haifa07.pdf · pumpingwithcoupledquantumdots Photon-assisted tunneling Pumping T. H. Oosterkampet al., Nature395,

static case: current noise

zero-frequency noise / noise power:

static component of the current-current correlation function

S = S(ω= 0) =∫ +∞

−∞dτ⟨∆I(t)∆I(t +τ)⟩

S = e2

2πħ∫

dE T(E)[

1−T(E)][

f (E +eV )− f (E)]2

+ f (E +eV )[1− f (E +eV )]+ f (E)[1− f (E)]

shot noise (remains for kBT = 0)equilibrium noise (remains for eV = 0)

[Büttiker, PRB’92]

depends only on transmission probability T(E)

Page 10: Current fluctuations in non-adiabatic electron pumpsqpump/kohler_talk_haifa07.pdf · pumpingwithcoupledquantumdots Photon-assisted tunneling Pumping T. H. Oosterkampet al., Nature395,

current noise: Fano Factor

Landauer: “noise is the signal”

relative noise strength: Fano factor F = S/eI

ohmic resistor

U = RI

tunnel contact

U = RTI

thermal noise

−→ temperature dependent

shot noise S = qI

−→ F = q/e (size of charge carrier)

Cooper pair tunneling: F = 2

fractional quantum Hall effect: F = 13

Page 11: Current fluctuations in non-adiabatic electron pumpsqpump/kohler_talk_haifa07.pdf · pumpingwithcoupledquantumdots Photon-assisted tunneling Pumping T. H. Oosterkampet al., Nature395,

current noise: Fano factor

example: transport double quantum dot

0

732

0.5

1

FF

0

512

1 2 3 ∆/Γ∆/Γ

single barrier / point contact: F ≈ 1 (Poisson process)double barrier: F ≈ 1

2

Page 12: Current fluctuations in non-adiabatic electron pumpsqpump/kohler_talk_haifa07.pdf · pumpingwithcoupledquantumdots Photon-assisted tunneling Pumping T. H. Oosterkampet al., Nature395,

driven systems

problem: U(t, t′) =←−T exp

(− i

ħ∫ t

t′dt′′ H(t′′)

)←−T : time-ordering operator

periodic time-dependence:„Bloch theory in time“ (Floquet 1883)

periodic time-dependence:Floquet theorem: time-periodic Schrödinger equation has completesolution of the form

|ψα(t)⟩ = e−iεαt/ħ|φα(t)⟩, where |φα(t)⟩ = |φα(t +T )⟩

quasienergies εα, Brillouin zone structure

Floquet states |φα(t)⟩ =∑k e−ikΩt |φα,k⟩

non-linear response

Page 13: Current fluctuations in non-adiabatic electron pumpsqpump/kohler_talk_haifa07.pdf · pumpingwithcoupledquantumdots Photon-assisted tunneling Pumping T. H. Oosterkampet al., Nature395,

Floquet transport theory

transport and driving: computation of the Green functionand current formula for time-dependent situation

Floquet equationwith self-energy Σ= |1⟩ΓL

2 ⟨1|+ |N⟩ΓR2 ⟨N |

(H(t)−iΣ− iħ d

dt

)|ϕα(t)⟩ = (εα− iħγα)|ϕα(t)⟩

propagator in the presence of the contacts

G(t, t −τ) =∞∑

k=−∞eikΩt

∫dεe−iετ

∑α,k′

|ϕα,k+k′⟩⟨ϕα,k′ |ε− (εα+k′Ω− iħγα)︸ ︷︷ ︸

G(k)(ε)

propagation under absorption/emission of |k| photons

Page 14: Current fluctuations in non-adiabatic electron pumpsqpump/kohler_talk_haifa07.pdf · pumpingwithcoupledquantumdots Photon-assisted tunneling Pumping T. H. Oosterkampet al., Nature395,

Floquet transport theory: current

time-dependent current: change of electron number in, e.g., left lead(× electron charge e)

I(t) = ed

dt⟨NL(t)⟩

two periodically time-dependent contributionstransport between contactsperiodic charging/discharging of the conductor

Page 15: Current fluctuations in non-adiabatic electron pumpsqpump/kohler_talk_haifa07.pdf · pumpingwithcoupledquantumdots Photon-assisted tunneling Pumping T. H. Oosterkampet al., Nature395,

Floquet transport theory: current

dc current [note: no blocking factors (1− f`)]

I = e

2πħ∞∑

k=−∞

∫dε

T (k)

LR (ε)fR(ε)−T (k)RL (ε)fL(ε)

transmission under absorption of k photons

T (k)LR (ε) = ΓLΓR|⟨1|G(k)(ε)|N⟩|2 6≡ T (±k)

RL (ε±kħΩ)

ε

ε+ħΩ

ε

ε−ħΩ

RL

Page 16: Current fluctuations in non-adiabatic electron pumpsqpump/kohler_talk_haifa07.pdf · pumpingwithcoupledquantumdots Photon-assisted tunneling Pumping T. H. Oosterkampet al., Nature395,

Floquet transport theory — current noise

time-averaged zero-frequency noise

S = 1

T

∫ T

0dt

∫ +∞

−∞dτ⟨∆I(t)∆I(t +τ)⟩

=e2

h

∑k

∫dε

Γ2

R

∣∣∣∑k′ΓL(εk′)G(k′−k)

1N (εk)[G(k′)

1N (ε)]∗∣∣∣2

fR(ε)fR(εk)

+ΓRΓL

∣∣∣∑k′ΓLG(k′−k)

1N (εk)[G(k′)

11 (ε)]∗− iG(−k)

1N (εk)∣∣∣2

fL(ε)fR(εk)

+ same terms with the replacement (L,1) ↔ (R,N)

where εk = ε+kħΩ

depends on transmission amplitudes G(k)1N

[S. Camalet, J. Lehmann, S. Kohler, and P. Hänggi, Phys. Rev. Lett. 90, 210602 (2003)]

Page 17: Current fluctuations in non-adiabatic electron pumpsqpump/kohler_talk_haifa07.pdf · pumpingwithcoupledquantumdots Photon-assisted tunneling Pumping T. H. Oosterkampet al., Nature395,

Current fluctuations in non-adiabatic electron pumps

Floquet transport theory: current & noise

pumping electronssymmetry considerationsratchets vs. pumpsharmonic mixingresonant electron pumpingCoulomb repulsion effects

pumping heat

Page 18: Current fluctuations in non-adiabatic electron pumpsqpump/kohler_talk_haifa07.pdf · pumpingwithcoupledquantumdots Photon-assisted tunneling Pumping T. H. Oosterkampet al., Nature395,

coherent quantum ratchet: symmetries

Pumping: interplay of driving and asymmetry

Which symmetries inhibit a ratchet current?

parity of a time-dependent Hamiltonian

H (x, t) = H0(x)−xa(t)

symmetry-related process have equal transmissionharmonic driving [a(t) = sin(Ωt)] and H0(x) = H0(−x) symmetric

−→ indentify the symmetry-related scattering processes

Page 19: Current fluctuations in non-adiabatic electron pumpsqpump/kohler_talk_haifa07.pdf · pumpingwithcoupledquantumdots Photon-assisted tunneling Pumping T. H. Oosterkampet al., Nature395,

process vs. symmetry-related process

ε

L R

T(−1)LR

(ε+ħΩ)

T(1)RL

(ε)ε+ħΩ

time-reversal

t →−t: I 6= 0 not relevant!

ε

L R

ε+ħΩT

(1)RL

(ε)

T(−1)RL (ε+ħΩ)

time-reversal parity

(x, t →−x,−t): I =O (Γ2)

ε

L R

T(1)

RL(ε)

T(1)

LR(ε)

ε+ħΩ generalized parity

(x, t →−x, t + T2 ): I = 0

inhibits ratchet current!

Page 20: Current fluctuations in non-adiabatic electron pumpsqpump/kohler_talk_haifa07.pdf · pumpingwithcoupledquantumdots Photon-assisted tunneling Pumping T. H. Oosterkampet al., Nature395,

Current fluctuations in non-adiabatic electron pumps

Floquet transport theory: current & noise

pumping electronssymmetry considerationsratchets vs. pumpsharmonic mixingresonant electron pumpingCoulomb repulsion effects

pumping heat

Page 21: Current fluctuations in non-adiabatic electron pumpsqpump/kohler_talk_haifa07.pdf · pumpingwithcoupledquantumdots Photon-assisted tunneling Pumping T. H. Oosterkampet al., Nature395,

coherent quantum ratchet: motivation

classical Brownian motionin a periodic but asymmetric potential

despite asymmetry: zero current in equilibriumasymmetry plus driving −→ directed transport

here: coherent quantum dynamics, non-adiabatic driving

Page 22: Current fluctuations in non-adiabatic electron pumpsqpump/kohler_talk_haifa07.pdf · pumpingwithcoupledquantumdots Photon-assisted tunneling Pumping T. H. Oosterkampet al., Nature395,

coherent quantum ratchet

ħΩ

Γ|1⟩µ

Γ

|N⟩

|N−1⟩

µ

no transport voltage

µL =µR

finite periodic systemconsisting of Ng

asymmetric groups

Hnn′(t) =−∆(δn,n′+1 +δn+1,n′)+(En +Axn cos(Ωt)

)δnn′

length dependence?

coherent vs. incoherent quantum transport?

[J. Lehmann, SK, P. Hänggi, and A. Nitzan, Phys. Rev. Lett. 88, 228305 (2002)]

Page 23: Current fluctuations in non-adiabatic electron pumpsqpump/kohler_talk_haifa07.pdf · pumpingwithcoupledquantumdots Photon-assisted tunneling Pumping T. H. Oosterkampet al., Nature395,

coherent quantum ratchet: length dependence

dc current vs. length

A = 7∆

A = 3∆

A = 5∆−2

0

2c

urr

en

t[1

0−

3eΓ

/ħ]

cu

rre

nt

[10−

3eΓ

/ħ]

1 2 3 4 5 6 7 8 9 10

# asymm. groups# asymm. groups

∆= 1, ħΩ= 3, Γ= 0.1,

kT = 0.25, µ= 0, EB = 10,

ES = 1

current converges to non-zero value

Page 24: Current fluctuations in non-adiabatic electron pumpsqpump/kohler_talk_haifa07.pdf · pumpingwithcoupledquantumdots Photon-assisted tunneling Pumping T. H. Oosterkampet al., Nature395,

coherent quantum ratchet: resonances

−1

0

1

2

cu

rre

nt

I[1

0−

3eΓ

]c

urr

en

tI

[10−

3eΓ

]

5 10 15

frequency Ω [∆/ħ]frequency Ω [∆/ħ]

A = 2∆, Ng = 1

−0.1

0

0.1

cu

rre

nt

cu

rre

nt

−1 0 1voltage [∆/e]voltage [∆/e]

−0.1

0

0.1

cu

rre

nt

cu

rre

nt

−1 0 1voltage [∆/e]voltage [∆/e]

∆= 1, µL =µR = 0, Γ= 0.1, ED = EA = 0,EB = 10, ES = 1

ratchet current exhibits resonances −→ coherent transport

e.g. molecule: A = eE dsite. dsite ≈ 1nm, ∆= 0.1eV=⇒ electric field strength E = 106 V/cm

Page 25: Current fluctuations in non-adiabatic electron pumpsqpump/kohler_talk_haifa07.pdf · pumpingwithcoupledquantumdots Photon-assisted tunneling Pumping T. H. Oosterkampet al., Nature395,

Current fluctuations in non-adiabatic electron pumps

Floquet transport theory: current & noise

pumping electronssymmetry considerationsratchets vs. pumpsharmonic mixingresonant electron pumpingCoulomb repulsion effects

pumping heat

Page 26: Current fluctuations in non-adiabatic electron pumpsqpump/kohler_talk_haifa07.pdf · pumpingwithcoupledquantumdots Photon-assisted tunneling Pumping T. H. Oosterkampet al., Nature395,

dynamical symmetry breaking: harmonic mixing

mixing with higher harmonics

a(t) = A1 sin(Ωt)+A2 sin(2Ωt +φ)

Γ Γ

|N⟩|1⟩

|2⟩ |N−1⟩∆

ħΩ

µL µR

A2 = 0:−→ generalized parity−→ I = 0

φ 6= 0:−→ no symmetry−→ I ∝ Γ

φ= 0:−→ time-reversal parity−→ I ∝ Γ2

[J. Lehmann, SK, P. Hänggi, and A. Nitzan, J. Chem. Phys. 118, 3283 (2003)]

Page 27: Current fluctuations in non-adiabatic electron pumpsqpump/kohler_talk_haifa07.pdf · pumpingwithcoupledquantumdots Photon-assisted tunneling Pumping T. H. Oosterkampet al., Nature395,

harmonic mixing: dc current

dc current vs. coupling strength

10−10

10−8

10−6

10−4

10−2

I/eΓ

I/eΓ

10−4 10−3 10−2 10−1 100

Γ [∆]Γ [∆]

φ= 0

φ= 0.001

φ= 0.01

φ= 0.1

φ=π/2

I ∝Γ

2

crossover between

I ∝ Γ für φ=π/2I ∝ Γ2 for φ= 0, e.g. for time-reversal parity

Page 28: Current fluctuations in non-adiabatic electron pumpsqpump/kohler_talk_haifa07.pdf · pumpingwithcoupledquantumdots Photon-assisted tunneling Pumping T. H. Oosterkampet al., Nature395,

Current fluctuations in non-adiabatic electron pumps

Floquet transport theory: current & noise

pumping electronssymmetry considerationsratchets vs. pumpsharmonic mixingresonant electron pumpingCoulomb repulsion effects

pumping heat

Page 29: Current fluctuations in non-adiabatic electron pumpsqpump/kohler_talk_haifa07.pdf · pumpingwithcoupledquantumdots Photon-assisted tunneling Pumping T. H. Oosterkampet al., Nature395,

non-adiabatic electron pumping

µL =µ µR =µ

ΓL ∆ ΓR

ħΩ

zero voltage: µL =µR =µcoupling to microwaves:

H(t) ∼ x cos(Ωt)

? behaviour close to resonances

? current noise

? pumping andtime-reversal symmetry

[M. Strass, P. Hänggi, and S. Kohler, Phys. Rev. Lett. 95, 130601 (2005)]

Page 30: Current fluctuations in non-adiabatic electron pumpsqpump/kohler_talk_haifa07.pdf · pumpingwithcoupledquantumdots Photon-assisted tunneling Pumping T. H. Oosterkampet al., Nature395,

rotating-wave approximation at first resonance

double dot

H(t) =−∆2

(c†1c2 + c†

2c1)+ 1

2

(δ+ħΩ︸ ︷︷ ︸+Acos(Ωt)

)(n1 −n2)

internal bias

1 interaction picture w.r.t. H0(t) −→ H(t) = H(t +2π/Ω) ¿ħΩ2 time-scale separation: replace H(t) by its time average

−→ effective static Hamiltonian

Heff =−∆eff

2(c†

1c2 + c†2c1)+ δ

2(n1 −n2)

renormalized tunnel matrix element ∆−→∆eff = J1(A/ħΩ)∆

leads: t-average of Green’s function g< = iħ ⟨c†

q(t −τ)cq(t)⟩effective electron distribution

feff(ε) =∑k

Jk2(A/2ħΩ) f (ε+ (k± 1/2)ħΩ)

Page 31: Current fluctuations in non-adiabatic electron pumpsqpump/kohler_talk_haifa07.pdf · pumpingwithcoupledquantumdots Photon-assisted tunneling Pumping T. H. Oosterkampet al., Nature395,

rotating-wave approximation at first resonance

effective static problem

00.51

0

εε

ħΩ

fR,eff

0 0.5 1

0

εε

fL,effTeff

total transmission at ε= 0 determined byinter-well coupling ∆eff = J1(A/ħΩ)∆dot-lead coupling Γ

“voltage”: fL,eff(0)− fR,eff(0) = J20 (A/2ħΩ)

Page 32: Current fluctuations in non-adiabatic electron pumpsqpump/kohler_talk_haifa07.pdf · pumpingwithcoupledquantumdots Photon-assisted tunneling Pumping T. H. Oosterkampet al., Nature395,

non-adiabatic electron pumping

Γ= 0.5∆, A = 6.3∆, ε0 = 10∆

0.5

1.0

Fa

no

fac

tor

Fa

no

fac

tor

0 1 2 3 4 5 6 7

frequency Ω [∆/ħ]frequency Ω [∆/ħ]

(b)

0.0

0.1

0.2

0.3

I,S

/e[eΓ

/ħ]

I,S

/e[eΓ

/ħ] current I

noise S

(a)

n = 1

n = 2

n = 3

0.0

0.1

0.2

0.3

I,S

/e[eΓ

/ħ]

I,S

/e[eΓ

/ħ] current I

noise S

current maximum andnoise minimum

Fano factor F = S/eI

noise strength considerablybelow shot noise level F = 1

at n-photon resonanceintra-well coupling

∆eff = Jn(A/ħΩ)

“voltage”

fL,eff(0)− fR,eff(0) = J20 (A/2ħΩ)

Page 33: Current fluctuations in non-adiabatic electron pumpsqpump/kohler_talk_haifa07.pdf · pumpingwithcoupledquantumdots Photon-assisted tunneling Pumping T. H. Oosterkampet al., Nature395,

optimizing the pump

goal: large current and low noise

0.0

732

0.5

1.0

Fa

t1

.re

son

an

ce

Fa

t1

.re

son

an

ce

0.0 0.5 1.0 1.5

A/ħΩA/ħΩ

Γ= 0.01∆

Γ= 0.1∆

Γ= 0.3∆

0.0

732

0.5

1.0

Fa

t1

.re

son

an

ce

Fa

t1

.re

son

an

ce

0.0 0.5 1.0 1.5

A/ħΩA/ħΩ

double dot,wide-band limit: Fmin = 7

32

ideal conditions: – large bias ε0

– resonant driving ħΩ≈ ε0

– weak wire-lead coupling Γ. 0.1∆

typical parameters: ∆= 10µeV,Ω= 2π×15 GHz

=⇒ I ≈ 40pA with F ≈ 0.23

Page 34: Current fluctuations in non-adiabatic electron pumpsqpump/kohler_talk_haifa07.pdf · pumpingwithcoupledquantumdots Photon-assisted tunneling Pumping T. H. Oosterkampet al., Nature395,

the adiabatic limit

adiabatic pumps:cyclic evolution in parameter spacecurrent determined by enclosed area −→ Iadiabatic ∝Ω

here:one parameter, area = 0 −→ Iadiabatic = 0I ∝Ω2 ?

current & noise in the adiabatic limit?

10−6

10−5

10−4

10−3

10−2

I,S

/e[eΓ

/ħ]

I,S

/e[eΓ

/ħ]

0.02 0.05 0.1 0.2 0.5

frequency Ω [∆]frequency Ω [∆]

current ∝Ω

2

noise ∝Ω

current ∝Ω2 (as expected)

noise ∝Ω

Fano factor ∝Ω−1

Page 35: Current fluctuations in non-adiabatic electron pumpsqpump/kohler_talk_haifa07.pdf · pumpingwithcoupledquantumdots Photon-assisted tunneling Pumping T. H. Oosterkampet al., Nature395,

Current fluctuations in non-adiabatic electron pumps

Floquet transport theory: current & noise

pumping electronssymmetry considerationsratchets vs. pumpsharmonic mixingresonant electron pumpingCoulomb repulsion effects

pumping heat

Page 36: Current fluctuations in non-adiabatic electron pumpsqpump/kohler_talk_haifa07.pdf · pumpingwithcoupledquantumdots Photon-assisted tunneling Pumping T. H. Oosterkampet al., Nature395,

strong Coulomb repulsion

strong e-e interaction U

master equation approach:perturbation theory for weak wire-lead couplingmaster equation for reduced density operator

d

dtρwire = d

dttrleadsρ, I = d

dttrleadsNLρ, S ∼ d

dttrleadsN2

counting statistics, Mac Donald formulaElattari & Gurvitz, Phys. Lett. (2002)

Bagrets & Nazarov, PRB (2003)

decompostion into Floquet basisU →∞: at most one excess electronspin vs. spinless electrons

Page 37: Current fluctuations in non-adiabatic electron pumpsqpump/kohler_talk_haifa07.pdf · pumpingwithcoupledquantumdots Photon-assisted tunneling Pumping T. H. Oosterkampet al., Nature395,

strong Coulomb repulsion

two-level electron pump:current

0

0.1

0.2

0.3

I[eΓ

/ħ]

I[eΓ

/ħ]

0 2 4 6

frequency Ω [∆/ħ]frequency Ω [∆/ħ]

U =∞

U =∞, spinless

U = 0, spinless

[F.J. Kaiser et al., EPJ B 54, 201 (2006)]

noise

0.5

1.0

Fa

no

fac

tor

Fa

no

fac

tor

0 1 2 3 4 5 6 7

frequency Ω [∆/ħ]frequency Ω [∆/ħ]

0.0

0.1

0.2

S[e

/ħ]

S[e

/ħ]

U =∞, spinless

U = 0, spinless

0.0

0.1

0.2

S[e

/ħ]

S[e

/ħ]

U =∞, spinless

U = 0, spinless

close to resonance: no significant changes

finite U : work in progress

Page 38: Current fluctuations in non-adiabatic electron pumpsqpump/kohler_talk_haifa07.pdf · pumpingwithcoupledquantumdots Photon-assisted tunneling Pumping T. H. Oosterkampet al., Nature395,

Current fluctuations in non-adiabatic electron pumps

Floquet transport theory: current & noise

pumping electronssymmetry considerationsratchets vs. pumpsharmonic mixingresonant electron pumpingCoulomb repulsion effects

pumping heat

Page 39: Current fluctuations in non-adiabatic electron pumpsqpump/kohler_talk_haifa07.pdf · pumpingwithcoupledquantumdots Photon-assisted tunneling Pumping T. H. Oosterkampet al., Nature395,

pumping heat

Can one extract heat/energy from the lead by AC driving ?

“heat”:energy w.r.t. chemical potential µ

“cooling”:- remove electrons with ε>µ- fill holes with ε<µ

ensure I = 0to avoid charging of the leads

ε>µ

ε<µ

Page 40: Current fluctuations in non-adiabatic electron pumpsqpump/kohler_talk_haifa07.pdf · pumpingwithcoupledquantumdots Photon-assisted tunneling Pumping T. H. Oosterkampet al., Nature395,

NIS interface

J. P. Pekola, Nature 435, 889 (2005)

Page 41: Current fluctuations in non-adiabatic electron pumpsqpump/kohler_talk_haifa07.pdf · pumpingwithcoupledquantumdots Photon-assisted tunneling Pumping T. H. Oosterkampet al., Nature395,

heat balance under AC driving

cooling

RL

heating

RL

dER

dt=∑

q(εq −µR)

dNR,q

dt= . . . = 1

h

∞∑k=−∞

∫dε

[(µR −ε)T (k)

LR (ε)fR(ε)

+kħΩR(k)RR(ε)fR(ε)

+(ε+kħΩ−µR)T (k)RL (ε)fL(ε)

]reflection always leads to heating

I = 0 anddER

dt< 0 nevertheless possible ?

Page 42: Current fluctuations in non-adiabatic electron pumpsqpump/kohler_talk_haifa07.pdf · pumpingwithcoupledquantumdots Photon-assisted tunneling Pumping T. H. Oosterkampet al., Nature395,

heat pumping

ħΩ

ħΩ

−1

0

1

2

ER

[pW

]E

R[p

W]

0 0.1 0.2 0.3 0.4 0.5

amplitude eVac/ħΩamplitude eVac/ħΩ

T = 30 K

T = 20 K

T = 10 K

T = 5 K

GaAs heterostructuresize ∼ 10nm, ħΩ= 2meV,

amplitude Vac ∼ 100µV

ER < 0, cooling!

cooling power: ∼ pW(at 10K)

M. Rey, M. Strass, S. Kohler, P. Hänggi, and F. Sols, cond-mat/0610155

Page 43: Current fluctuations in non-adiabatic electron pumpsqpump/kohler_talk_haifa07.pdf · pumpingwithcoupledquantumdots Photon-assisted tunneling Pumping T. H. Oosterkampet al., Nature395,

summary

Floquet transport theory for driven conductors

effectsratchets, pumps, rectificationnoise propertiesheat pump

current projectsCoulomb repulsioncoupling to molecule vibrationsphonons: decoherence / dissipation

review article[S. Kohler, J. Lehmann, and P. Hänggi, Phys. Rep. 406, 379 (2005)]

Page 44: Current fluctuations in non-adiabatic electron pumpsqpump/kohler_talk_haifa07.pdf · pumpingwithcoupledquantumdots Photon-assisted tunneling Pumping T. H. Oosterkampet al., Nature395,

thanks to . . .

Franz-Josef KaiserChristoph KreisbeckGert-Ludwig IngoldPeter Hänggi (Augsburg)

Michael Strass (Nagler & Co)

Jörg Lehmann (Basel)

Sébastien Camalet (CNRS Paris)

Abraham Nitzan (Tel Aviv)

Miguel ReyFernando Sols (Madrid)

Joachim Reichert (Münster)

Heiko Weber (Erlangen)

SPP

1243


Recommended