+ All Categories
Home > Documents > Cyclic polymers from alkynes - media. · PDF fileCyclic polymers from alkynes Christopher D....

Cyclic polymers from alkynes - media. · PDF fileCyclic polymers from alkynes Christopher D....

Date post: 21-Mar-2018
Category:
Upload: doandang
View: 217 times
Download: 4 times
Share this document with a friend
27
NATURE CHEMISTRY | www.nature.com/naturechemistry 1 SUPPLEMENTARY INFORMATION DOI: 10.1038/NCHEM.2516 S1 Cyclic polymers from alkynes Christopher D. Roland, Hong Li, Khalil A. Abboud, Kenneth B. Wagener, and Adam S. Veige* University of Florida, Department of Chemistry, Center for Catalysis, P.O. Box 117200, Gainesville, FL, 32611. Table of Contents 1. General Considerations. ........................................................................................... 2 2. Synthesis of 4. ............................................................................................................ 3 3. NMR spectra of catalyst 4. ....................................................................................... 5 4. General Polymerization Procedure ......................................................................... 9 5. Polymerization Kinetics Data ................................................................................ 10 6. Light Scattering....................................................................................................... 11 7. General Hydrogenation Procedure ....................................................................... 12 8. Ozonolysis of Cyclic Poly(phenylacetylene).......................................................... 14 9. Crystallography Data for 4 .................................................................................... 18
Transcript
Page 1: Cyclic polymers from alkynes - media.  · PDF fileCyclic polymers from alkynes Christopher D. Roland, Hong Li, Khalil A. Abboud, Kenneth B. Wagener, and Adam S. Veige*

NATURE CHEMISTRY | www.nature.com/naturechemistry 1

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NCHEM.2516

S1

Supporting Information for

Cyclic polymers from alkynes Christopher D. Roland, Hong Li, Khalil A. Abboud, Kenneth B. Wagener, and Adam S.

Veige*

University of Florida, Department of Chemistry, Center for Catalysis, P.O. Box 117200, Gainesville, FL, 32611.

Table of Contents

1. General Considerations. ........................................................................................... 2

2. Synthesis of 4. ............................................................................................................ 3

3. NMR spectra of catalyst 4. ....................................................................................... 5

4. General Polymerization Procedure ......................................................................... 9

5. Polymerization Kinetics Data ................................................................................ 10

6. Light Scattering ....................................................................................................... 11

7. General Hydrogenation Procedure ....................................................................... 12

8. Ozonolysis of Cyclic Poly(phenylacetylene).......................................................... 14

9. Crystallography Data for 4 .................................................................................... 18

Page 2: Cyclic polymers from alkynes - media.  · PDF fileCyclic polymers from alkynes Christopher D. Roland, Hong Li, Khalil A. Abboud, Kenneth B. Wagener, and Adam S. Veige*

NATURE CHEMISTRY | www.nature.com/naturechemistry 2

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NCHEM.2516

S2

1. General Considerations.

Unless specified otherwise, all manipulations were performed under an inert atmosphere

using glove-box techniques. Toluene and pentane were dried using a GlassCountour drying

column. Phenylacetylene was purchased from Sigma-Aldrich, distilled from magnesium

sulfate, degassed by freeze pump thawing, and filtered through a column of basic alumina

immediately prior to use. Toluene-d8 was dried over phosphorous pentoxide (P2O5), distilled,

degassed by freeze pump thawing, and stored over 4Å molecular sieves.

[tBuOCO]W≡C(tBu)(THF)2 (1) was prepared according to literature procedure.32 NMR

spectra were obtained on Varian INOVA 500 MHz and Varian INOVA2 500 MHz

spectrometers. Chemical shifts are reported in δ (ppm). For 1H and 13C NMR spectra, the

residual solvent peaks were used as an internal reference. Molecular weight, radius of

gyration and polydispersity were determined by size exclusion chromatography (SEC) in

dimethylacetamide (DMAc) with 50 mM LiCl at 50 °C and a flow rate of 1.0 mL/min

(Agilent isocratic pump, degasser, and auto-sampler, columns: PLgel 5 μm guard + two

ViscoGel I-series G3078 mixed bed columns: molecular weight range 0-20 × 103 and 0-

100 × 104 g mol-1). Detection consisted of a Wyatt Optilab T-rEX refractive index

detector operating at 658 nm and a Wyatt miniDAWN Treos light scattering detector

operating at 659 nm. Absolute molecular weights and polydispersities were calculated

using Wyatt ASTRA software. Intrinsic viscosity measurements were performed in THF

at 35 °C and a flow rate of 1.0 mL/min (Agilent isocratic pump, degasser, and

autosampler; columns: three PLgel 5 μm MIXED-D mixed bed columns, molecular

weight range 200−400,000 g/mol). Detection consisted of a Wyatt Optilab rEX refractive

index detector operating at 658 nm, a Wyatt miniDAWN Treos light scattering detector

operating at 656 nm, and a Wyatt ViscoStar-II viscometer.

Page 3: Cyclic polymers from alkynes - media.  · PDF fileCyclic polymers from alkynes Christopher D. Roland, Hong Li, Khalil A. Abboud, Kenneth B. Wagener, and Adam S. Veige*

NATURE CHEMISTRY | www.nature.com/naturechemistry 3

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NCHEM.2516

S3

2. Synthesis of 4.

Synthesis of Catalyst 4. In a nitrogen filled glovebox, a glass vial equipped with a stir

bar was charged with 1 (400 mg, 0.52 mmol) and dissolved in toluene (5.0 mL). 3,3-

dimethyl-1-butyne (214 mg, 321 µL, 2.60 mmol) was added via micropipette with

stirring. After 5 min, the solvent and residual 3,3-dimethyl-1-butyne were removed in

vacuo to yield the light brown solid 4 in >99% yield (405 mg, 0.52 mmol). The resulting

solid was dissolved in minimal pentane and cooled to -35 °C to yield single crystals

amenable to X-ray diffraction. 1H NMR (500 MHz, C7D8, δ (ppm)): 11.61 (s, 1H, W-

CH32), 7.41 (d, 2H, Ar-H8,10), 7.28 (dd, 2H, Ar-H3,16), 7.26 (t, 1H, Ar-H9), 7.19 (dd, 2H,

Ar-H5,14), 6.77 (t, 2H, Ar-H4,15), 3.60 (t, 4H, THF-H38,41), 1.66 (s, 9H, W-C-C(CH3)3 (H29-

31)), 1.20 (s, 18H, ligand C(CH3)3 (H20-22,24-26)), 1.16 (t, 4H, THF-H39,40), 0.90 (s, 9H,

W=C(CH3)3 (H35-37)). 13C NMR: 268.8 (s, W=CC(CH3)3 (C33)), 213.0 (s, WCCC(CH3)3

(C27)), 184.0 (s, WCCC(CH3)3 (C32)), 168.5 (s, C1,18), 153.7 (s, Ar-C7,11), 137.4 (s, Ar-

C6,13), 137.3 (s, Ar-C2,17), 132.5 (s, Ar-C12), 130.9 (s, Ar-C9), 129.2 (s, Ar-C8,10), 128.2 (s,

Ar-C3,16), 125.7 (s, Ar-C5,14), 118.7 (s, Ar-C4,15), 71.3 (s, THF-C38,41), 46.0 (s,

W=CC(CH3)3 (C34)), 39.2 (s, WCCC(CH3)3 (C28)), 36.0 (s, W=CC(CH3)3 (C35-37)), 34.3

(s, ligand C(CH3)3 (C19,23)), 31.1 (s, WCCC(CH3)3 (C29-31)), 30.1 (s, ligand C(CH3)3 (C20-

Page 4: Cyclic polymers from alkynes - media.  · PDF fileCyclic polymers from alkynes Christopher D. Roland, Hong Li, Khalil A. Abboud, Kenneth B. Wagener, and Adam S. Veige*

NATURE CHEMISTRY | www.nature.com/naturechemistry 4

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NCHEM.2516

S4

22,24-26)), 25.00 (s, THF C39,40). Anal. Calcd.: C: 63.24% H: 6.99%, Found: C: 63.28%, H:

7.09%

Table S1. 1H and 13C NMR chemical shifts Position δ1H (ppm) δ13C (ppm)

1, 18 - 168.5 2, 17 - 137.3 3, 16 7.28 128.2 4, 15 6.77 118.7 5, 14 7.19 125.7 6, 13 - 137.4 7, 11 - 153.7 8, 10 7.41 129.2

9 7.26 130.9 12 - 132.5

19, 23 - 34.3 20-22, 24-26 1.20 30.1

27 - 213.0 28 - 39.2

29-31 1.66 31.1 32 11.61 184.0 33 - 268.8 34 - 46.0

35-37 0.90 36.0 38, 41 3.60 71.3 39, 40 1.16 25.0

Page 5: Cyclic polymers from alkynes - media.  · PDF fileCyclic polymers from alkynes Christopher D. Roland, Hong Li, Khalil A. Abboud, Kenneth B. Wagener, and Adam S. Veige*

NATURE CHEMISTRY | www.nature.com/naturechemistry 5

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NCHEM.2516

S5

3. NMR spectra of catalyst 4.

Figure S1. 1H NMR spectrum of catalyst 4.

Figure S2. 1H NMR spectrum (expanded) of catalyst 4.

Page 6: Cyclic polymers from alkynes - media.  · PDF fileCyclic polymers from alkynes Christopher D. Roland, Hong Li, Khalil A. Abboud, Kenneth B. Wagener, and Adam S. Veige*

NATURE CHEMISTRY | www.nature.com/naturechemistry 6

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NCHEM.2516

S6

Figure S3. 1H NMR spectrum (expanded) of catalyst 4.

Figure S4. 1H-13C gHMBC spectrum of catalyst 4.

Page 7: Cyclic polymers from alkynes - media.  · PDF fileCyclic polymers from alkynes Christopher D. Roland, Hong Li, Khalil A. Abboud, Kenneth B. Wagener, and Adam S. Veige*

NATURE CHEMISTRY | www.nature.com/naturechemistry 7

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NCHEM.2516

S7

Figure S5. 1H-13C gHMBC spectrum (expanded) of catalyst 4.

Figure S6. 1H-13C gHMBC spectrum (expanded) of catalyst 4.

Page 8: Cyclic polymers from alkynes - media.  · PDF fileCyclic polymers from alkynes Christopher D. Roland, Hong Li, Khalil A. Abboud, Kenneth B. Wagener, and Adam S. Veige*

NATURE CHEMISTRY | www.nature.com/naturechemistry 8

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NCHEM.2516

S8

Figure S7. 13C{1H} NMR spectrum of catalyst 4.

Figure S8. 1H-1H COSY spectrum of catalyst 4.

Page 9: Cyclic polymers from alkynes - media.  · PDF fileCyclic polymers from alkynes Christopher D. Roland, Hong Li, Khalil A. Abboud, Kenneth B. Wagener, and Adam S. Veige*

NATURE CHEMISTRY | www.nature.com/naturechemistry 9

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NCHEM.2516

S9

4. General Polymerization Procedure

In an inert atmosphere glove box, toluene (2.0 mL) was added to a glass vial

equipped with a stir bar. Phenylacetylene (218 µL, 2.00 mmol) was added via

micropipete with stirring. A stock solution (1 mg/mL) of 4 (157 µL, 0.20 µmol) was

added to the stirring solution in one shot to initiate polymerization. Polymerization was

terminated via addition into tenfold excess of stirring anhydrous ether. The resulting

polymer samples were isolated via vacuum filtration and residual solvent removed in

vacuo.

Table S2. Selected Polymerization Results Monomer [4]:[M] Time Yield Mn (kDa) PDI

Phenylacetylene 1:10000 2m30s 86.7% 35.3 2.19

Phenylacetylene 1:10000 15m 94.1% 30.8 2.23

Phenylacetylene 1:10000 24hrs 97.5% 30.4 2.03

Phenylacetylene 1:5000 15m 96.4% 68.9 1.75

Phenylacetylene 1:10000 15m 83.0% 57.9 1.66

p-fluorophenylacetylene 1:1000 75m 88.0% 22.5 1.93

p-fluorophenylacetylene 1:1000 120m 89.5% 20.9 1.90

p-fluorophenylacetylene 1:1000 150m 91.5% 21.0 1.99

p-methoxyphenylacetylene 1:1000 135m 81.3% 5.4 1.59

p-methoxyphenylacetylene 1:1000 150m 78.1% 6.1 1.61

p-methoxyphenylacetylene 1:1000 165m 96.3% 6.6 1.65

Page 10: Cyclic polymers from alkynes - media.  · PDF fileCyclic polymers from alkynes Christopher D. Roland, Hong Li, Khalil A. Abboud, Kenneth B. Wagener, and Adam S. Veige*

NATURE CHEMISTRY | www.nature.com/naturechemistry 10

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NCHEM.2516

S10

5. Polymerization Kinetics Data

Table S3. Triplicate polymerization of phenylacetylene by 4. Trial 1 Trial 2 Trial 3

Time (s) Yield (mg) Yield (mg) Yield (mg) Average (mg)

30 50 34 67 50.3

150 77 73 75 75.0

300 98 93 90 93.7

600 111 133 104 116.0

900 134 146 168 149.3

Figure S9. Catalytic turnover number (TON) determined by quantitative yield of cyclic poly(phenylacetylene) vs. time (min) for 2, 3, and 4. All data shown in triplicate

(averages shown).

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 5 10 15 20

TON

Time (min)

2

4

3

Page 11: Cyclic polymers from alkynes - media.  · PDF fileCyclic polymers from alkynes Christopher D. Roland, Hong Li, Khalil A. Abboud, Kenneth B. Wagener, and Adam S. Veige*

NATURE CHEMISTRY | www.nature.com/naturechemistry 11

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NCHEM.2516

S11

6. Light Scattering

Figure S10. GPC traces for molecular weight matched linear (red) and cyclic (blue) poly(phenylacetylene) used for light scattering measurements.

Figure S11. Dynamic light scattering number average diameter measurements for linear (left) and cyclic (right) poly(phenylacetylene) samples.

Table S4. RMS radius of gyration measurements and <𝑅𝑅𝑔𝑔2>𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐<𝑅𝑅𝑔𝑔2>𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

ratios

Mn (Da) <Rg2>0.5

Linear (nm) <Rg2>0.5

Cyclic (nm) < 𝑹𝑹𝒈𝒈

𝟐𝟐 >𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄

< 𝑹𝑹𝒈𝒈𝟐𝟐 >𝒄𝒄𝒄𝒄𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍

350,000 20.4 ± 0.4 14.8 ± 1.3 0.52(6) 322,000 18.8 ± 0.5 14.4 ± 1.3 0.58(7) 299,000 17.4 ± 0.6 14 ± 1.5 0.64(10) 275,000 16.7 ± 0.5 13.4 ± 1.4 0.64(10) 250,000 15.9 ± 1.0 12.9 ± 1.4 0.65(11) 223,000 15.2 ± 1.0 12.1 ± 1.5 0.63(12)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

12 13 14 15 16 17 18 19

Linear

Cyclic

1 10 100Diameter (nm)

Linear Number Average Diameter

1 10 100Diameter (nm)

Cyclic Number Average Diameter

Page 12: Cyclic polymers from alkynes - media.  · PDF fileCyclic polymers from alkynes Christopher D. Roland, Hong Li, Khalil A. Abboud, Kenneth B. Wagener, and Adam S. Veige*

NATURE CHEMISTRY | www.nature.com/naturechemistry 12

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NCHEM.2516

S12

202,000 14.4 ± 1.3 11.6 ± 1.5 0.65(15) 177,000 13.5 ± 1.4 10.8 ± 1.8 0.64(17) 151,000 12.8 ± 1.5 9.8 ± 1.9 0.58(18)

7. General Hydrogenation Procedure

Hydrogenation was performed using a 150 mL Parr high-pressure stainless steel reaction

vessel equipped with a 50 mL glass round bottom flask and a Teflon stirring bar. Unsaturated

polymers were dissolved in anhydrous toluene and degassed for 1 h before adding Pd/C. The

round bottom flask was placed into the reactor and then sealed. The Parr vessel was purged

with 500 psi of H2 three times. The pressure reactor was then charged to the desired psi, and

the mixture was stirred. Catalyst was added every two days in the process. The resultant

polymer was filtered through Celite® and precipitated into cold methanol to obtain a solid,

which was then filtered and transferred to a vial and dried under high vacuum (3 Χ 10-4

mmHg) overnight. Different hydrogenation conditions are shown in supplementary Table S4.

Entry 1, 2, 3 are the conditions of partial hydrogenations and entry 4 is full hydrogenation

conditions. Figure S12 shows the color of the polymer after different hydrogenation

conditions.

Table S5. Catalytic hydrogenation via Pd/C Entry Loading (wt%) Temperature (°C) Time (days) psi Color

1 10 75 2 750 yellow

2 10,10 75 4 900 Light yellow

3 15,15 90 5 900 Trace color

4 15,15,15 90 6 900 white

Page 13: Cyclic polymers from alkynes - media.  · PDF fileCyclic polymers from alkynes Christopher D. Roland, Hong Li, Khalil A. Abboud, Kenneth B. Wagener, and Adam S. Veige*

NATURE CHEMISTRY | www.nature.com/naturechemistry 13

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NCHEM.2516

S13

(a) (b) (c) (d) (e)

Figure S12. Polymer generated from different hydrogenation conditions. (a) no hydrogenation, (b) Entry 1, Table S5, (c) Entry 2, Table S5, (d) Entry 3, Table S5, (e)

Entry 4, Table S5

Figure S13: Stacked 1H NMR spectra of cyclic poly(phenylacetylene) and partial

hydrogenation. From top to bottom: unhydrogenated cyclic poly(phenylacetylene), partially hydrogenated sample from entry 2 of table S5, and partially hydrogenated

phenylacetylene prior to ozonolysis.

Page 14: Cyclic polymers from alkynes - media.  · PDF fileCyclic polymers from alkynes Christopher D. Roland, Hong Li, Khalil A. Abboud, Kenneth B. Wagener, and Adam S. Veige*

NATURE CHEMISTRY | www.nature.com/naturechemistry 14

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NCHEM.2516

S14

8. Ozonolysis of Cyclic Poly(phenylacetylene)

In a 50 ml one-neck flask equipped with a stir bar, were added 20 mL of dichloromethane and 0.1 g of polymer (Entry 3, Table S4). Ozone in oxygen was bubbled through the polymer solution, which was kept at -78 °C during the whole process. Aliquots of the solution were taken at the 30 s and 16 min. The ozonolysis products were then reduced by slowly adding dimethyl sulfide at 0 °C with stirring. The solution was then washed with deionized water and then a solution of brine, three times each. After extraction, the organic phase was dried over anhydrous sodium sulfate. The solvent was then removed in vacuo and the product was dried under high vacuum (3 Χ 10-4 mmHg) overnight.

Figure S14. 1H NMR spectra of partially hydrogenated cyclic poly(phenylacetylene) before and after ozonolysis. From top to bottom: no ozonolysis, ozonolysis for 30 s,

ozonolysis for 16 min.

Page 15: Cyclic polymers from alkynes - media.  · PDF fileCyclic polymers from alkynes Christopher D. Roland, Hong Li, Khalil A. Abboud, Kenneth B. Wagener, and Adam S. Veige*

NATURE CHEMISTRY | www.nature.com/naturechemistry 15

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NCHEM.2516

S15

Figure S15. IR spectra of partially hydrogenated cyclic poly(phenylacetylene) before and after ozonolysis. Frombottom to top: no ozonolysis, ozonolysis for 30 s, ozonolysis for 16

min. The occurrence of the absorption peak at 1725 cm-1 after ozonolysis suggests the formation of aldehyde.

Figure S16. 1H NMR spectra of partially hydrogenated linear poly(phenylacetylene) before and after ozonolysis. From top to bottom: no ozonolysis, ozonolysis for 30 s,

ozonolysis for 16 min.

Page 16: Cyclic polymers from alkynes - media.  · PDF fileCyclic polymers from alkynes Christopher D. Roland, Hong Li, Khalil A. Abboud, Kenneth B. Wagener, and Adam S. Veige*

NATURE CHEMISTRY | www.nature.com/naturechemistry 16

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NCHEM.2516

S16

Figure S17. IR spectra of partially hydrogenated linear poly(phenylacetylene) before and after ozonolysis. From bottom to top: no ozonolysis, ozonolysis for 30 s, ozonolysis for

16 min. The occurrence of the absorption peak at 1720 cm-1 after ozonolysis suggests the formation of aldehyde.

Figure S18. DLS measurement for the ozonolysis of linear poly(phenylacetylene); no ozonolysis (blue), ozonolysis 30 s (red), ozonolysis 16 min (black).

Cyclic polystyrene was generated as a white solid (Table S4 (e)) under the

hydrogenation conditions listed in Entry 4, Table 4. The disappearance of the olefinic

Page 17: Cyclic polymers from alkynes - media.  · PDF fileCyclic polymers from alkynes Christopher D. Roland, Hong Li, Khalil A. Abboud, Kenneth B. Wagener, and Adam S. Veige*

NATURE CHEMISTRY | www.nature.com/naturechemistry 17

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NCHEM.2516

S17

proton signal at ~5.8 ppm, and the 3:5 proton integration ratio of aliphatic and aromatic

protons confirms the exhaustive hydrogenation of cyclic poly(phenylacetylene)

backbone. The resonance at 0.96 ppm suggests the formation of cyclohexyl moeity from

hydrogenation of the phenyl groups.

Figure S19. 1H NMR spectrum of cyclic polystyrene.

Page 18: Cyclic polymers from alkynes - media.  · PDF fileCyclic polymers from alkynes Christopher D. Roland, Hong Li, Khalil A. Abboud, Kenneth B. Wagener, and Adam S. Veige*

NATURE CHEMISTRY | www.nature.com/naturechemistry 18

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NCHEM.2516

S18

9. Crystallography Data for 4

Figure S20. Molecular structure of 4 with ellipsoids drawn at the 50% probability level.

Page 19: Cyclic polymers from alkynes - media.  · PDF fileCyclic polymers from alkynes Christopher D. Roland, Hong Li, Khalil A. Abboud, Kenneth B. Wagener, and Adam S. Veige*

NATURE CHEMISTRY | www.nature.com/naturechemistry 19

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NCHEM.2516

S19

Experimental: X-Ray Intensity data were collected at 100 K on a Bruker DUO

diffractometer using MoK radiation ( = 0.71073 Å) and an APEXII CCD area detector.

The structure was deposited in the Cambridge Structural Database under # 1046062

Raw data frames were read by program SAINT1 and integrated using 3D profiling

algorithms. The resulting data were reduced to produce hkl reflections and their

intensities and estimated standard deviations. The data were corrected for Lorentz and

polarization effects and numerical absorption corrections were applied based on indexed

and measured faces.

The structure was solved and refined in SHELXTL2013, using full-matrix least-

squares refinement. The non-H atoms were refined with anisotropic thermal parameters

and all of the H atoms were calculated in idealized positions and refined riding on their

parent atoms. Atom H32 on C32 was obtained from a Difference Fourier map and

refined freely. In the final cycle of refinement, 9503 reflections (of which 8697 are

observed with I > 2(I)) were used to refine 461 parameters and the resulting R1, wR2

and S (goodness of fit) were 1.81%, 4.21% and 1.030, respectively. The refinement was

carried out by minimizing the wR2 function using F2 rather than F values. R1 is calculated

to provide a reference to the conventional R value but its function is not minimized.

Lattice toluene molecules were disordered and could not be modeled properly, thus

program SQUEEZE, a part of the PLATON package of crystallographic software, was

used to calculate the solvent disorder area and remove its contribution to the overall

intensity data. Comment: checkcif identified an alert level B “Isotropic non-H Atoms in

Main Residue(s). Response: all non-H disordered atoms were refined with isotropic

displacement parameters.

Page 20: Cyclic polymers from alkynes - media.  · PDF fileCyclic polymers from alkynes Christopher D. Roland, Hong Li, Khalil A. Abboud, Kenneth B. Wagener, and Adam S. Veige*

NATURE CHEMISTRY | www.nature.com/naturechemistry 20

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NCHEM.2516

S20

Table S6. Crystal data and structure refinement for cdr1.

Identification code cdr1

Empirical formula C46 H66 O3 W

Formula weight 850.83

Temperature 100(2) K

Wavelength 0.71073 Å

Crystal system Triclinic

Space group P -1

Unit cell dimensions a = 10.7569(15) Å = 108.810(2)°.

b = 11.4834(17) Å = 91.728(2)°.

c = 17.772(3) Å = 92.276(2)°.

Volume 2074.3(5) Å3

Z 2

Density (calculated) 1.346 Mg/m3

Absorption coefficient 2.822 mm-1

F(000) 880

Crystal size 0.184 x 0.094 x 0.046 mm3

Theta range for data collection 1.875 to 27.500°.

Index ranges -13≤h≤13, -14≤k≤14, -23≤l≤23

Reflections collected 35543

Independent reflections 9503 [R(int) = 0.0323]

Completeness to theta = 25.242° 100.0 %

Absorption correction Analytical

Max. and min. transmission 0.8998 and 0.7214

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 9503 / 0 / 461

Goodness-of-fit on F2 1.030

Final R indices [I>2sigma(I)] R1 = 0.0181, wR2 = 0.0421 [8697]

R indices (all data) R1 = 0.0215, wR2 = 0.0429

Extinction coefficient n/a

Largest diff. peak and hole 1.026 and -0.506 e.Å-3 R1 = (||Fo| - |Fc||) / |Fo|

wR2 = [w(Fo2 - Fc2)2] / wFo22]]1/2

S = [w(Fo2 - Fc2)2] / (n-p)]1/2

w= 1/[2(Fo2)+(m*p)2+n*p], p = [max(Fo2,0)+ 2* Fc2]/3, m & n are constants.

Page 21: Cyclic polymers from alkynes - media.  · PDF fileCyclic polymers from alkynes Christopher D. Roland, Hong Li, Khalil A. Abboud, Kenneth B. Wagener, and Adam S. Veige*

NATURE CHEMISTRY | www.nature.com/naturechemistry 21

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NCHEM.2516

S21

Table S7. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103)

for cdr1. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

________________________________________________________________________________

x y z U(eq)

________________________________________________________________________________ W(1) 3174(1) 994(1) 2598(1) 12(1)

O(1) 2997(1) -283(1) 3129(1) 16(1)

O(2) 4182(1) 2082(1) 2154(1) 16(1)

O(3) 4942(1) -129(1) 2245(1) 19(1)

C(1) 2620(2) -156(2) 3876(1) 16(1)

C(2) 1705(2) -990(2) 3999(1) 18(1)

C(3) 1386(2) -811(2) 4783(1) 22(1)

C(4) 1943(2) 117(2) 5431(1) 24(1)

C(5) 2847(2) 907(2) 5303(1) 21(1)

C(6) 3188(2) 788(2) 4530(1) 18(1)

C(7) 4184(2) 1639(2) 4418(1) 17(1)

C(8) 5328(2) 1774(2) 4837(1) 21(1)

C(9) 6276(2) 2560(2) 4737(1) 23(1)

C(10) 6099(2) 3206(2) 4207(1) 20(1)

C(11) 4958(2) 3111(2) 3787(1) 16(1)

C(12) 3970(2) 2335(2) 3902(1) 15(1)

C(13) 4798(2) 3866(2) 3260(1) 16(1)

C(14) 5106(2) 5132(2) 3566(1) 20(1)

C(15) 5016(2) 5858(2) 3087(1) 22(1)

C(16) 4615(2) 5325(2) 2292(1) 21(1)

C(17) 4296(2) 4065(2) 1951(1) 17(1)

C(18) 4399(2) 3328(2) 2451(1) 15(1)

C(19) 1078(2) -2057(2) 3312(1) 20(1)

C(20) 2073(2) -2918(2) 2867(1) 24(1)

C(21) 144(2) -2842(2) 3608(1) 26(1)

C(22) 363(2) -1541(2) 2734(1) 21(1)

C(23) 3835(2) 3532(2) 1074(1) 22(1)

C(24) 2483(2) 3022(2) 1026(1) 26(1)

C(25) 4675(2) 2511(2) 614(1) 31(1)

C(26) 3850(2) 4516(2) 655(1) 33(1)

Page 22: Cyclic polymers from alkynes - media.  · PDF fileCyclic polymers from alkynes Christopher D. Roland, Hong Li, Khalil A. Abboud, Kenneth B. Wagener, and Adam S. Veige*

NATURE CHEMISTRY | www.nature.com/naturechemistry 22

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NCHEM.2516

S22

C(27) 2071(2) 90(2) 1607(1) 16(1)

C(28) 1870(2) -925(2) 813(1) 18(1)

C(29) 469(2) -1174(2) 598(1) 27(1)

C(30) 2457(2) -2105(2) 857(1) 23(1)

C(31) 2503(2) -500(2) 174(1) 25(1)

C(32) 1471(2) 972(2) 2088(1) 17(1)

C(33) 2689(2) 2291(2) 3496(1) 15(1)

C(34) 1683(2) 3134(2) 3912(1) 17(1)

C(35) 1334(2) 3954(2) 3410(1) 24(1)

C(36) 2130(2) 3971(2) 4750(1) 29(1)

C(37) 532(2) 2345(2) 3992(1) 22(1)

C(38) 5869(7) 79(7) 1693(5) 22(2)

C(39) 6671(6) -1033(6) 1566(4) 30(2)

C(40) 6851(6) -929(6) 2443(4) 32(2)

C(41) 5371(6) -1035(6) 2586(4) 18(1)

C(38') 5691(5) -145(5) 1581(3) 23(1)

C(39') 6991(5) -617(5) 1804(3) 38(1)

C(40') 6490(4) -1577(4) 2155(3) 35(1)

C(41') 5584(4) -716(5) 2761(3) 26(1)

C(42) 8960(4) 5624(4) 862(2) 78(1)

C(43) 8146(3) 5272(3) 1452(2) 61(1)

C(44) 8563(2) 4172(3) 1657(2) 42(1)

C(45) 7742(3) 3803(3) 2227(2) 55(1)

C(46) 8085(3) 2654(3) 2387(2) 45(1)

________________________________________________________________________________

Page 23: Cyclic polymers from alkynes - media.  · PDF fileCyclic polymers from alkynes Christopher D. Roland, Hong Li, Khalil A. Abboud, Kenneth B. Wagener, and Adam S. Veige*

NATURE CHEMISTRY | www.nature.com/naturechemistry 23

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NCHEM.2516

S23

Table S8. Bond lengths [Å] and angles [°] for 4.

_____________________________________________________

W(1)-C(33) 1.9021(19) C(15)-C(16) 1.393(3)

W(1)-O(2) 1.9844(13) C(16)-C(17) 1.400(3)

W(1)-O(1) 1.9903(13) C(17)-C(18) 1.416(3)

W(1)-C(32) 2.014(2) C(17)-C(23) 1.538(3)

W(1)-C(27) 2.0454(19) C(19)-C(21) 1.538(3)

W(1)-O(3) 2.3279(14) C(19)-C(22) 1.541(3)

W(1)-C(12) 2.4385(18) C(19)-C(20) 1.543(3)

O(1)-C(1) 1.363(2) C(23)-C(24) 1.536(3)

O(2)-C(18) 1.364(2) C(23)-C(25) 1.539(3)

O(3)-C(38') 1.445(5) C(23)-C(26) 1.540(3)

O(3)-C(41) 1.446(6) C(27)-C(32) 1.304(3)

O(3)-C(41') 1.473(4) C(27)-C(28) 1.516(3)

O(3)-C(38) 1.486(7) C(28)-C(29) 1.535(3)

C(1)-C(6) 1.412(3) C(28)-C(31) 1.539(3)

C(1)-C(2) 1.417(3) C(28)-C(30) 1.541(3)

C(2)-C(3) 1.398(3) C(32)-H(32) 0.94(2)

C(2)-C(19) 1.538(3) C(33)-C(34) 1.525(3)

C(3)-C(4) 1.392(3) C(34)-C(36) 1.539(3)

C(4)-C(5) 1.377(3) C(34)-C(35) 1.541(3)

C(5)-C(6) 1.398(3) C(34)-C(37) 1.542(3)

C(6)-C(7) 1.483(3) C(38)-C(39) 1.530(9)

C(7)-C(8) 1.395(3) C(39)-C(40) 1.530(9)

C(7)-C(12) 1.416(3) C(40)-C(41) 1.625(8)

C(8)-C(9) 1.388(3) C(38')-C(39') 1.604(7)

C(9)-C(10) 1.386(3) C(39')-C(40') 1.520(7)

C(10)-C(11) 1.400(3) C(40')-C(41') 1.594(6)

C(11)-C(12) 1.422(3) C(42)-C(43) 1.527(4)

C(11)-C(13) 1.477(3) C(43)-C(44) 1.504(4)

C(12)-C(33) 1.527(3) C(44)-C(45) 1.511(4)

C(13)-C(14) 1.400(3) C(45)-C(46) 1.495(4)

C(13)-C(18) 1.414(3) C(33)-W(1)-O(2) 95.07(7)

C(14)-C(15) 1.375(3) C(33)-W(1)-O(1) 94.09(7)

O(2)-W(1)-O(1) 152.37(6) C(5)-C(4)-C(3) 119.25(19)

Page 24: Cyclic polymers from alkynes - media.  · PDF fileCyclic polymers from alkynes Christopher D. Roland, Hong Li, Khalil A. Abboud, Kenneth B. Wagener, and Adam S. Veige*

NATURE CHEMISTRY | www.nature.com/naturechemistry 24

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NCHEM.2516

S24

C(33)-W(1)-C(32) 88.51(8) C(4)-C(5)-C(6) 120.34(19)

O(2)-W(1)-C(32) 102.55(7) C(5)-C(6)-C(1) 120.14(18)

O(1)-W(1)-C(32) 103.69(7) C(5)-C(6)-C(7) 118.76(18)

C(33)-W(1)-C(27) 125.92(8) C(1)-C(6)-C(7) 121.07(17)

O(2)-W(1)-C(27) 98.73(6) C(8)-C(7)-C(12) 119.97(18)

O(1)-W(1)-C(27) 96.83(6) C(8)-C(7)-C(6) 119.68(18)

C(32)-W(1)-C(27) 37.47(8) C(12)-C(7)-C(6) 120.34(17)

C(33)-W(1)-O(3) 136.07(7) C(9)-C(8)-C(7) 120.65(19)

O(2)-W(1)-O(3) 78.80(5) C(10)-C(9)-C(8) 120.02(19)

O(1)-W(1)-O(3) 76.54(5) C(9)-C(10)-C(11) 120.99(19)

C(32)-W(1)-O(3) 135.41(7) C(10)-C(11)-C(12) 119.38(18)

C(27)-W(1)-O(3) 97.95(7) C(10)-C(11)-C(13) 118.81(17)

C(33)-W(1)-C(12) 38.76(7) C(12)-C(11)-C(13) 121.76(17)

O(2)-W(1)-C(12) 86.24(6) C(7)-C(12)-C(11) 118.89(17)

O(1)-W(1)-C(12) 84.74(6) C(7)-C(12)-C(33) 120.84(17)

C(32)-W(1)-C(12) 127.27(7) C(11)-C(12)-C(33) 120.24(17)

C(27)-W(1)-C(12) 164.60(7) C(7)-C(12)-W(1) 110.48(12)

O(3)-W(1)-C(12) 97.31(6) C(11)-C(12)-W(1) 108.16(13)

C(1)-O(1)-W(1) 128.67(11) C(33)-C(12)-W(1) 51.26(9)

C(18)-O(2)-W(1) 128.62(12) C(14)-C(13)-C(18) 119.84(18)

C(38')-O(3)-C(41') 110.4(3) C(14)-C(13)-C(11) 118.62(17)

C(41)-O(3)-C(38) 109.8(4) C(18)-C(13)-C(11) 121.48(16)

C(38')-O(3)-W(1) 124.9(2) C(15)-C(14)-C(13) 120.43(19)

C(41)-O(3)-W(1) 125.6(2) C(14)-C(15)-C(16) 119.49(18)

C(41')-O(3)-W(1) 123.66(18) C(15)-C(16)-C(17) 122.78(19)

C(38)-O(3)-W(1) 124.3(3) C(16)-C(17)-C(18) 117.08(18)

O(1)-C(1)-C(6) 119.22(17) C(16)-C(17)-C(23) 120.50(18)

O(1)-C(1)-C(2) 120.54(17) C(18)-C(17)-C(23) 122.41(17)

C(6)-C(1)-C(2) 120.19(18) O(2)-C(18)-C(13) 118.72(17)

C(3)-C(2)-C(1) 117.04(18) O(2)-C(18)-C(17) 120.78(17)

C(3)-C(2)-C(19) 120.39(18) C(13)-C(18)-C(17) 120.40(17)

C(1)-C(2)-C(19) 122.57(17) C(2)-C(19)-C(21) 112.15(17)

C(4)-C(3)-C(2) 123.01(19) C(2)-C(19)-C(22) 109.83(16)

C(21)-C(19)-C(22) 107.78(17) C(12)-C(33)-W(1) 89.98(11)

C(2)-C(19)-C(20) 109.76(17) C(33)-C(34)-C(36) 111.95(16)

Page 25: Cyclic polymers from alkynes - media.  · PDF fileCyclic polymers from alkynes Christopher D. Roland, Hong Li, Khalil A. Abboud, Kenneth B. Wagener, and Adam S. Veige*

NATURE CHEMISTRY | www.nature.com/naturechemistry 25

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NCHEM.2516

S25

C(21)-C(19)-C(20) 107.24(16) C(33)-C(34)-C(35) 108.54(16)

C(22)-C(19)-C(20) 110.02(17) C(36)-C(34)-C(35) 108.46(17)

C(24)-C(23)-C(17) 109.40(16) C(33)-C(34)-C(37) 109.41(15)

C(24)-C(23)-C(25) 110.42(18) C(36)-C(34)-C(37) 108.34(17)

C(17)-C(23)-C(25) 110.32(18) C(35)-C(34)-C(37) 110.14(16)

C(24)-C(23)-C(26) 107.21(18) O(3)-C(38)-C(39) 101.7(5)

C(17)-C(23)-C(26) 112.11(17) C(40)-C(39)-C(38) 96.9(6)

C(25)-C(23)-C(26) 107.31(18) C(39)-C(40)-C(41) 94.8(5)

C(32)-C(27)-C(28) 139.75(19) O(3)-C(41)-C(40) 99.4(4)

C(32)-C(27)-W(1) 69.95(12) O(3)-C(38')-C(39') 103.0(3)

C(28)-C(27)-W(1) 150.28(15) C(40')-C(39')-C(38') 98.8(4)

C(27)-C(28)-C(29) 109.72(17) C(39')-C(40')-C(41') 97.2(4)

C(27)-C(28)-C(31) 108.43(16) O(3)-C(41')-C(40') 101.3(3)

C(29)-C(28)-C(31) 109.36(17) C(44)-C(43)-C(42) 114.0(3)

C(27)-C(28)-C(30) 109.78(16) C(43)-C(44)-C(45) 114.1(3)

C(29)-C(28)-C(30) 110.18(16) C(46)-C(45)-C(44) 114.8(3)

C(31)-C(28)-C(30) 109.34(17) W(1)-C(32)-H(32) 150.5(13)

C(27)-C(32)-W(1) 72.58(12) C(34)-C(33)-C(12) 121.20(16)

C(27)-C(32)-H(32) 136.9(13) C(34)-C(33)-W(1) 148.79(14)

________________________

Symmetry transformations used to generate equivalent atoms:

Page 26: Cyclic polymers from alkynes - media.  · PDF fileCyclic polymers from alkynes Christopher D. Roland, Hong Li, Khalil A. Abboud, Kenneth B. Wagener, and Adam S. Veige*

NATURE CHEMISTRY | www.nature.com/naturechemistry 26

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NCHEM.2516

S26

Table S9. Anisotropic displacement parameters (Å2x 103) for cdr1. The anisotropic

displacement factor exponent takes the form: - 2[ h2 a*2U11 + ... + 2 h k a* b* U12 ]

______________________________________________________________________________

U11 U22 U33 U23 U13 U12

______________________________________________________________________________

W(1) 14(1) 10(1) 12(1) 4(1) 2(1) 1(1)

O(1) 19(1) 13(1) 15(1) 6(1) 5(1) 4(1)

O(2) 17(1) 12(1) 17(1) 4(1) 3(1) 0(1)

O(3) 18(1) 20(1) 20(1) 9(1) 5(1) 5(1)

C(1) 20(1) 14(1) 17(1) 8(1) 4(1) 8(1)

C(2) 21(1) 15(1) 20(1) 8(1) 6(1) 9(1)

C(3) 24(1) 22(1) 27(1) 15(1) 11(1) 9(1)

C(4) 32(1) 28(1) 18(1) 12(1) 10(1) 13(1)

C(5) 29(1) 20(1) 16(1) 7(1) 2(1) 10(1)

C(6) 22(1) 15(1) 18(1) 8(1) 3(1) 8(1)

C(7) 23(1) 13(1) 13(1) 1(1) 3(1) 6(1)

C(8) 28(1) 17(1) 18(1) 4(1) -1(1) 7(1)

C(9) 23(1) 20(1) 22(1) 1(1) -6(1) 4(1)

C(10) 19(1) 15(1) 21(1) 0(1) 0(1) 1(1)

C(11) 19(1) 13(1) 14(1) 0(1) 2(1) 4(1)

C(12) 19(1) 12(1) 12(1) 0(1) 1(1) 4(1)

C(13) 12(1) 14(1) 20(1) 5(1) 4(1) 2(1)

C(14) 18(1) 16(1) 21(1) 2(1) 1(1) 0(1)

C(15) 23(1) 13(1) 30(1) 6(1) 3(1) -1(1)

C(16) 22(1) 17(1) 26(1) 11(1) 6(1) 2(1)

C(17) 14(1) 18(1) 20(1) 6(1) 6(1) 1(1)

C(18) 11(1) 13(1) 20(1) 4(1) 4(1) 1(1)

C(19) 22(1) 14(1) 24(1) 7(1) 7(1) 2(1)

C(20) 26(1) 16(1) 31(1) 7(1) 8(1) 4(1)

C(21) 30(1) 19(1) 32(1) 11(1) 10(1) 1(1)

C(22) 21(1) 19(1) 26(1) 9(1) 4(1) 0(1)

C(23) 28(1) 22(1) 19(1) 10(1) 4(1) -2(1)

C(24) 28(1) 29(1) 26(1) 16(1) -5(1) -6(1)

C(25) 39(1) 32(1) 20(1) 5(1) 9(1) 0(1)

C(26) 49(2) 32(1) 23(1) 17(1) 1(1) -8(1)

Page 27: Cyclic polymers from alkynes - media.  · PDF fileCyclic polymers from alkynes Christopher D. Roland, Hong Li, Khalil A. Abboud, Kenneth B. Wagener, and Adam S. Veige*

NATURE CHEMISTRY | www.nature.com/naturechemistry 27

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NCHEM.2516

S27

C(27) 20(1) 16(1) 16(1) 9(1) 0(1) -3(1)

C(29) 24(1) 29(1) 25(1) 7(1) -6(1) -3(1)

C(30) 30(1) 17(1) 21(1) 2(1) 0(1) 1(1)

C(31) 33(1) 24(1) 16(1) 5(1) 3(1) -2(1)

C(32) 17(1) 16(1) 18(1) 7(1) 1(1) 0(1)

C(33) 16(1) 13(1) 16(1) 7(1) 0(1) 0(1)

C(34) 18(1) 14(1) 19(1) 4(1) 3(1) 4(1)

C(35) 22(1) 16(1) 36(1) 11(1) 4(1) 5(1)

C(36) 28(1) 27(1) 25(1) -4(1) 2(1) 9(1)

C(37) 21(1) 23(1) 25(1) 10(1) 8(1) 5(1)

C(42) 84(3) 85(3) 55(2) 18(2) -13(2) -52(2)

C(43) 44(2) 75(2) 70(2) 36(2) -13(2) -12(2)

C(44) 32(1) 49(2) 33(1) -1(1) 1(1) -10(1)

C(45) 32(2) 71(2) 72(2) 33(2) 17(1) 18(1)

C(46) 37(2) 53(2) 40(2) 9(1) -3(1) 1(1) ______________________________________________________________________________

1 K. P. McGowan, M. E. O'Reilly, I. Ghiviriga, K. A. Abboud and A. S. Veige, Chem. Sci., 2013, 2013, 1145-1155.


Recommended