+ All Categories
Home > Documents > D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St....

D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St....

Date post: 28-Feb-2021
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
117
Appendices Ringsend WwTW EIS D.2 Constraints Mapping Report For inspection purposes only. Consent of copyright owner required for any other use. EPA Export 10-12-2012:23:35:15
Transcript
Page 1: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Appendices    Ringsend WwTW EIS 

  

 

D.2   Constraints Mapping Report 

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:15

Page 2: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:15

Page 3: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Ringsend Wastewater Treatment Works Extension

Constraint Mapping of Dublin Bay

April 2010

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:15

Page 4: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:15

Page 5: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Constraints Mapping of Dublin Bay Apr 10

Page i

Document Code: 75461-DG45-Dft02

Document Control Sheet

Client Dublin City Council

Project Ringsend Wastewater Treatment Works Extension

Report Constraint Mapping of Dublin Bay

Date April 2010

Project No: 75461 Document Reference: (74979) 75461/ 40/ DG45

Version Author Checked Reviewed Date

Draft 01 L. Gaston/ A. O’Connell

Anthony Kerr Bob Gaudes 25 Feb 10

Draft 02 L. Gaston Anthony Kerr Bob Gaudes 14 Apr 10

For in

spec

tion p

urpo

ses o

nly.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:15

Page 6: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Constraints Mapping of Dublin Bay Apr 10

Page ii

Document Code: 75461-DG45-Dft02

Table of Contents

1 Introduction ................................................................................................. 1 1.1 Progress to Date ................................................................................................................... 1 1.2 Dublin Bay ............................................................................................................................ 2 1.3 Report Outline ..................................................................................................................... 3

2 Operational – Map A .................................................................................. 4 2.1 Dublin Port ........................................................................................................................... 4 2.2 Dun Laoghaire Harbour Company ................................................................................... 6

3 Environmental – Map B ............................................................................. 7 3.1 Protected Areas .................................................................................................................... 7

3.1.1 Natura 2000 Sites ........................................................................................................ 7 3.1.2 Natural Heritage Areas .............................................................................................. 8 3.1.3 Notifiable Actions ....................................................................................................... 9

3.2 Fauna and Fisheries not Covered by Designations......................................................... 9 3.2.1 Mammals ..................................................................................................................... 9

3.3 Water Body Classifications .............................................................................................. 11 3.3.1 Transitional Waters .................................................................................................. 11 3.3.2 Coastal Waters........................................................................................................... 11 3.3.3 Nutrient Sensitive Waters ........................................................................................ 12

4 Structures and Obstructions – Map C ................................................... 14 4.1 Pipelines and Cables ......................................................................................................... 14

4.1.1 Sewage Pipelines ....................................................................................................... 14 4.1.2 Gas Pipelines ............................................................................................................. 15 4.1.3 Telecommunications Cables .................................................................................... 15 4.1.4 Electricity Cables ....................................................................................................... 15

4.2 Shipwrecks ......................................................................................................................... 16 4.3 Unexploded Ordnance...................................................................................................... 17

5 Amenity – Map D ..................................................................................... 18 5.1 Sailing/ Leisure Boating ................................................................................................... 18 5.2 Bathing Waters .................................................................................................................. 18 5.3 Recreation (including water sports) ................................................................................ 21

6 Inshore Fisheries – Map E ....................................................................... 22

7 Geological – Map F ................................................................................... 23 7.1 Geology ............................................................................................................................... 23 7.2 Bathymetry ......................................................................................................................... 23

8 Conclusions and Recommendations ..................................................... 25 8.1 Conclusions ........................................................................................................................ 25 8.2 Recommendations ............................................................................................................. 25

9 References .................................................................................................. 26

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:15

Page 7: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Constraints Mapping of Dublin Bay Apr 10

Page iii

Document Code: 75461-DG45-Dft02

List of Tables

Table 1: Operational Constraints - Dublin Port Company .......................................................... 5Table 2: Operational Constraints - Dun Laoghaire Harbour Company .................................... 6Table 3: Environmental Constraints in Dublin Bay ................................................................... 13Table 4: Seabed Constraints – Sewage Pipeline .......................................................................... 14Table 5: Seabed Constraints – Gas Pipeline ................................................................................ 15Table 6: Seabed Constraints – Telecommunication Cables ....................................................... 15Table 7: Seabed Constraints – Electricity Cables ........................................................................ 16Table 8: Seabed Constraints – Shipwrecks .................................................................................. 16Table 9: Amenity Constraints in Dublin Bay .............................................................................. 20Table 10: Inshore Fisheries Constraints – Marine Institute Datasets ....................................... 22

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:15

Page 8: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:15

Page 9: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Constraints Mapping of Dublin Bay Apr 10

Page 1

Document Code: 75461-DG45-Dft02

1 Introduction

Dublin City Council intend to upgrade the Ringsend Wastewater Treament Works (WwTW) to meet the future demand projected for the agglomeration and to ensure compliance with relevant legislation. The plant is presently experiencing periodic loading in excess of current capacity. The plant will be upgraded from its present capacity of 1.64 million PE to a design capacity of 2.2 million PE.

The selected effluent disposal option is to construct an extension of the existing final effluent outfall by 7 to 10 kilometres long to discharge the secondary treated effluent. Preliminary hydraulic modelling of two extended effluent outfall options demonstrated that the associated secondary treated discharges would not have any impact on Coastal or Transitional water bodies. Appropriate Ecological Assessments of these outfall discharge points concluded that there would be changes in water quality in the immediate vicinities of the discharges, but that no significant impacts were predicted for any Natura 2000 site. In fact, by extending the existing final effluent discharge outside of the Liffey River Estuary, water quality within the estuary and the inner bay, where Natura 2000 sites and bathing waters are located, will improve.

This report deals with the constraints for the construction of any proposed new effluent discharge extension within Dublin Bay. At this stage it is envisaged that any new effluent discharge outfall extension would be constructed in a tunnel. Construction of an effluent discharge outfall would require two periods of field operations in Dublin Bay, for both the:

Phase I – Project Planning and Investigation Preliminary assessment of potential tunnel routes by geophysical surveys and drilling investigative boreholes; and

Phase II – Project Construction Tunnel and termini construction phase.

All possible constraints must be identified and examined prior to any field operations in the Bay. The objective of this report is to locate and examine the constraints to both phases of field operations in Dublin Bay. The results of the comprehensive constraints studies will also feed into both the tunnel route and the termini location selection process and associated environmental studies.

1.1 Progress to Date CDM with subcontractor DHI (Danish Hydraulic Institute) completed a preliminary outfall discharge location modelling in October 2009, entitled ‘Modelling the Impact of Ringsend Discharges in the Liffey and Tolka Estuaries and Possible Long Sea Outfall Discharges in Dublin Bay’ (CDM, 2009a). The objective of this modelling study was to assess the impact of five alternative outfalls into Dublin Bay discharging at five different locations. Two locations were

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:16

Page 10: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Constraints Mapping of Dublin Bay Apr 10

Page 2

Document Code: 75461-DG45-Dft02

found to be more technically viable for the outfall discharge location whilst the other three locations were found to be less viable.

The discharge location points of the outfalls were somewhat indicative in order to assess whether an outfall would be potentially viable; a lot more detailed investigations will be required prior to the outfall construction of any outfall extension. An extensive field campaign will be required to provide adequate hydrodynamic and water quality data for a full and reliable calibration before any selected outfall location options are examined in detail.

The environmental considerations for the technically viable extended outfall discharge locations identified from the preliminary modelling were assessed in a report called ‘Preliminary Assessment of Long Sea Outfall Locations’ (CDM, 2009b). The examination of the preliminary modelling results has shown that apart from a mixing zone in the vicinity of the outfall points the receiving waters will meet the Environmental Quality Objectives for coastal water nutrients - Dissolved Inorganic Nitrogen (DIN). It was determined that there would be no deterioration in the bathing water quality in the Dublin area from either locations. The quality is expected to improve as a result of the ceasing of discharge to the Liffey Estuary.

Appropriate Ecological Assessments in accordance with Article 6 of the Habitats Directive were also undertaken for both outfall discharge location options. No significant effects on Natura 2000 sites were predicted. No significant impact is predicted on this habitat which is located over 5 km from the nearest of the two outfall discharge locations. Neither of the two technically viable options were found to conflict with any of the 16 priority objectives set out in the Dublin Bay Water Quality Management Plan.

1.2 Dublin Bay Ringsend WwTW is located by the mouth of the River Liffey as it enters Dublin Bay. The Liffey enters Dublin Bay between Clontarf and Ringsend in the channel formed by the North Bull Wall and the Great South Wall. The North Bull Wall is a natural bank reinforced by a stone embankment that is only inundated at half tide. It therefore holds back the water flowing out of the harbour at and after half ebb. The navigation channel runs close to the South Wall and extends from the Port area through the mouth of the harbour. This navigation channel is maintained at a depth of 7 to 8 metres below chart datum by dredging and natural scouring.

Dublin Bay is a small, shallow sandy embayment. It is enclosed by two headlands Howth to the north and Dalkey to the south. It is approximately 10 kilometres across the mouth of the bay and narrows to the mouth of the River Liffey.

The intertidal zone of the bay occupies the inner third of the bay. The bay slopes gently reaching depths of 20m at the mouth of the Bay. The water depth decreases towards the harbour with depths of less than 5m occurring in the inner half of the bay. The Burford Bank sits centrally across the mouth of Dublin Bay. The Burford Bank is a linear sand ridge about 5km in length, which rises to within 5m of the surface.

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:16

Page 11: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Constraints Mapping of Dublin Bay Apr 10

Page 3

Document Code: 75461-DG45-Dft02

The North Bull Island is a prominent physical feature in the bay which developed due to sedimentation accumulation after the construction of the North Bull wall in 1821. To the north of the channel are extensive areas which dry out at low water. These mudflats extend from the mouth of the River Tolka almost to the end of the Bull Wall and north-eastwards to the Bull Island Causeway at St. Annes.

Dublin Bay is currently home to a range of activities including fisheries, bathing recreational sports such as watersports and boating. Maritime traffic is busy in Dublin Bay as it is home to Ireland’s largest port.

1.3 Report Outline This report was prepared following a desk study to identify of the constraints that are likely to affect the field operations and potential construction activities in Dublin Bay. The potential constraints in Dublin Bay have broadly been split into six categories, as listed below:

A Operational (Section 2)

B Environmental (Section 3)

C Structures and Obstructions (Section 4)

D Amenity (Section 5)

E Fisheries (Section 6)

F Geological (Section 7)

Each category is discussed in a separate section of the report and a bespoke map corresponding to each of the six categories can be found in Appendix A. A key map summarising all the potential constraints is contained and discussed in Section 8.

Constraints to field investigations and to the design/ planning of the tunnel route and termini locations will differ from one another and this is highlighted where necessary throughout the report.

Note: It must be emphasised that the constraints study is an on-going process and will involve various consultations with the relevant parties.

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:16

Page 12: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Constraints Mapping of Dublin Bay Apr 10

Page 4

Document Code: 75461-DG45-Dft02

2 Operational – Map A

To prevent disruption to Dublin Port Company and Dún Laoghaire Harbour operations, whilst undertaking investigation or construction in the Bay, consultations have been held with both and the constraints are summarised here. Once survey locations have been decided they will have to be approved by Dublin Port Company and Dún Laoghaire Harbour.

The Department of Transport will be given advanced notice of any activities. Marine Notices will then be circulated by the Department to individuals and organisations ranging from state agencies and the fishing industry to international shipping and water-based recreational interests. The Marine Notice will detail the location, date of commencement and time period of activities.

The Harbours Act 1966 as amended by the Harbours (Amendment) Act 2009, sets the limits of Dublin Port Company as extending from Rory O’Moore Bridge (by the Guinness Brewery) on the Liffey Estuary to an imaginary line connecting Howth to Sorrento Point, Dalkey through Burford Bank. This line is shown on Map A. It should be noted that the boundary excludes the limits of the harbour of Dún Laoghaire Harbour Company and also the harbours of Coliemore and Sutton.

Dublin Port Authority have been named as the Pilotage Authority for the area shown on Map A. Dublin Port ensures the safe passage of a vessel through the pilotage district. Under the Harbours (Amendment) Act 2009, the boundary of the Dublin Pilotage District consists of “the waters of the River Liffey below the Matt Talbot Memorial Bridge and so much of the sea westward of the sixth meridian as lies between the parallels of latitude passing through the Baily Lighthouse on the North and through Sorrento Point on the South including all bays, creeks, harbours and all tidal docks within such area”.

2.1 Dublin Port Dublin Port Company (DPC) operates extensive port operations in the Upper Liffey Estuary and maintains deep navigational channels into the port. CDM met with DPC on two occasions; 21 January 2010 and 3 February 2010 to discuss operational constraints (Internal Ref: 22825/67511/MM66 and MM69). There are six areas shown on Map A that have designated uses for DPC. These have been sourced from the Admiralty Chart 1415 and confirmed with DPC.

DPC stated that no investigative drilling can take place in the area immediately adjacent to the ‘roundabout’ buoy in the centre of Dublin Bay. A circular exclusion zone (A.1 Exclusion Zone) of radius 800m around the buoy is shown on Map A <Exclusion zone to be confirmed with DPC>. In addition investigative drilling should be avoided in the Traffic Separation Scheme Zones marked A.5. on Map A excepting A.1. and A.5., DPC state that the investigative drilling could take place in the majority of locations in the Bay over which they have authority, subject to co-ordination with appropriate stakeholders.

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:16

Page 13: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Constraints Mapping of Dublin Bay Apr 10

Page 5

Document Code:: 75461-DG45-Dft02

Table 1: Operational Constraints - Dublin Port Company Map Ref. Area Description Constraint

A.1 Navigational Channel

Navigational channels which enter Dublin Bay to the north and south of Burford Bank meeting at a central roundabout buoy which then lead to Dublin Port via a dredged channel of 7.8m maintained depth. Travel around the central buoy is anti-circular.

DPC state that a rig/boat can move through the navigational channel. Drilling could be permitted in most parts of the navigational channel, subject to co-ordination with DPC except around the central ‘roundabout’ buoy. The exclusion area around the central buoy has been labelled “A.1 Exclusion Zone” on Map A.

A.2 Anchorage Area

A circular area in a south-easterly position in Dublin Bay for anchorage.

DPC state that drilling could be permitted in this area, subject to co-ordination with DPC.

A.3 Spoil Ground DPC have delineated a 2.15km2 spoil disposal area west of Burford Bank. DPC have a permit from the EPA to dump dredged material in this area..

DPC state that drilling is permitted in the spoil disposal area although EPA should be contacted prior to any works.

A.4 Inshore Traffic Zone

Vessels of less than 20 metres in length, sailing vessels and vessels engaged in fishing may use the inshore traffic zone. Larger vessels may use the inshore traffic zone if en-route to port or in immediate danger. DPC note that since there are no ports in the Inshore Traffic Zones in Dublin Bay, no vessel larger than 20m can access them. (Collision Regs., 1993)

DPC state drilling is permitted in Inshore Traffic Zone subject to co-ordination with DPC.

A.5 Traffic

Separation Scheme

The traffic separation scheme is zones which separate directions of navigation. (Collision Regs, 1993)

DPC state that investigative drilling should be avoided in these areas.

A.6

Burford Bank – Area to Avoid for Mariners

This area is marked on the Admiralty Chart as an area to avoid for Mariners.

As an area to avoid for Mariners, it is therefore an area to be avoided or entered at caution for investigative vessels.

Contact for DPC is Capt. David Dignam, Harbour Master (Tel: 01 8876000)

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:16

Page 14: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Constraints Mapping of Dublin Bay Apr 10

Page 6

Document Code: 75461-DG45-Dft02

It should be noted that A.6. Burford Bank is an area to be avoided by mariners due to the sandbar below, creating water depths as low as 4.6m.

Although investigative drilling the operational constraints areas marked on Map A (excluding A.1. ‘Exclusion Zone’ and A.5.) may be permitted as the works are temporary it is perhaps not feasible or desirable to construct a permanent structure such as a diffuser in these zones.

2.2 Dun Laoghaire Harbour Company Dun Laoghaire Harbour Company limit includes the area within the east and west piers and extends to 600m outside the mouth of the harbour. CDM met with Dun Laoghaire Harbour Master on 4 February 2010 (Internal Ref: 22825/67511/MM70).

The HSS Stena Line operates from March – December in 2010. The HSS will sail once a day in July/August and the small Stena Lynx will sail twice a day. The Stena Lynx does not sail in bad weather.

Table 2: Operational Constraints - Dun Laoghaire Harbour Company Map Ref. Area* Data Source Description Constraint

A.7.

Dun Laoghaire Harbour to Holyhead

Route

Coordinates from Dun Laoghaire Harbour and the route is inferred

Two routes leading from Dun Laoghaire Harbour to Holyhead – the choice of route being weather dependent. (Normal route shown on map)

Drilling is permitted along these routes subject to co-ordination with DLHC and DPC. The Stena Line ships can manoeuvre easily.

Contact for DLHC is Simon Coate, Harbour Master (Tel: 01 2808681)

For in

spec

tion p

urpo

ses o

nly.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:16

Page 15: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Constraints Mapping of Dublin Bay Apr 10

Page 7

Document Code: 75461-DG45-Dft02

3 Environmental – Map B

The environmental considerations for the two technically viable outfall locations were assessed in a report called ‘Preliminary Assessment of Long Sea Outfall Locations’ (CDM, 2009b). This preliminary study included the assessment of the impact of the two indicative outfall locations on protected areas and Water Framework Directive water bodies in Dublin Bay.

3.1 Protected Areas Within Dublin Bay there are several areas designated for the protection of species and habitats of national or European importance, these are described below.

3.1.1 Natura 2000 Sites There are four existing Natura 2000 sites in Dublin Bay; two Special Protected Areas (SPAs) and two candidate Special Areas of Conservation (SACs).

The SPAs are areas of conservation value for the protection of rare and endangered bird species designated internationally under Council Directive 79/409/EEC on the Conservation of Wild Birds.

The SACs are habitats of EU importance designated for conservation under Council Directive 92/43/EEC on the Conservation of Natural Habitats and of Wild Fauna and Flora.

It is also understood that the NPWS intend to propose the Kish Bank as an SAC under the Habitats Directive (and possibly as an SPA under the Birds Directive). This area is being considered for designation due to the presence of the habitat sandbanks ‘which are slightly covered by sea water all the time’ (code 1110), which is listed in Annex I of the EU Habitats Directive.

‘Preliminary Assessment of Long Sea Outfall Locations’ (CDM, 2009b) included Appropriate Ecological Assessments in accordance Article 6 of the Habitats Directive for both outfall options. No significant effect on Natura 2000 sites were predicted. No significant impact is predicted on this habitat which is located over 5 km from the nearest sea outfall option.

South Dublin Bay and River Tolka Estuary SPA The South Dublin Bay and River Tolka Estuary SPA comprises a substantial part of Dublin Bay. It includes the intertidal area between the River Liffey and Dun Laoghaire, the estuary of the River Tolka to the north of the River Liffey, Booterstown Marsh and an area of grassland at Poolbeg, north of Irishtown Nature Park. A portion of the shallow marine waters of the Bay is also included. The site is of special conservation interest for a number of bird species (Light-Bellied Brent Goose, Oystercatcher, Ringed Plover, Golden Plover, Grey Plover, Knot, Sanderling, Dunlin, Bar-tailed Godwit, Redshank, Black-Headed Gull, Roseate Tern, Common Tern and Arctic Tern) and is important for wintering

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:16

Page 16: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Constraints Mapping of Dublin Bay Apr 10

Page 8

Document Code: 75461-DG45-Dft02

waterfowl and wintering gulls. An internationally important population of Light-bellied Brent Goose feed on the Eelgrass bed at Merrion and is also known to feed on the grassland at Poolbeg. The SPA is of international importance for Light-bellied Brent Goose and of national importance for nine other waterfowl species. It is also of international importance as an autumn tern roost.

The EU Birds Directive pays particular attention to wetlands, and these form part of the SPA, the site and its associated waterbirds are of special conservation interests for wetlands and waterbirds.

North Bull Island SPA North Bull Island is a sand spit that developed after the construction of the North Bull Wall. This island is covered in dune grassland. Other important ecosystems associated with the island are salt marsh and mud flats. The reserves are of international scientific importance for Brent Geese and also on botanical, ornithological, zoological and geomorphological grounds.

North Bull Island SPA is of international importance for waterfowl on the basis that it regularly supports in excess of 20,000 waterfowl. It also qualifies for international importance as the numbers of two species exceed the international threshold – Brent Goose and Bar-tailed Godwit. A further 15 species have populations of national importance – Shelduck, Teal, Pintail, Shoveler, Oystercatcher, Ringed Plover, Golden Plover, Grey Plover, Knot, Sanderling, Dunlin, Black-tailed Godwit, Curlew, Redshank and Turnstone. The North Bull Island SPA is a regular site for passage waders, especially Ruff, Curlew Sandpiper and Spotted Redshank.

North Dublin Bay cSAC Annex I Habitats include fixed dunes, marram/shifting dunes, embryonic shifting dunes, dune slack, annual vegetation of drift lines, salicornia mud and sand flats, Atlantic salt meadows, Mediterranean salt meadows, mud and sand flats. Annex II species include Petalwort. The site overlaps with North Bull Island SPA.

South Dublin Bay cSAC The site has extensive areas of sand and mudflats, a habitat listed on Annex I of the EU Habitats Directive. The largest stand of Eelgrass on the east coast occurs at Merrion Gates. New habitats are developing just south of Merrion Gates including embryonic dunes and a sand spit. This area is becoming increasingly important as a high tide roost site for waterfowl. The site overlaps with South Dublin Bay and River Tolka Estuary SPA

3.1.2 Natural Heritage Areas Natural Heritage Areas (NHAs) are protected under the Wildlife Act (2000). The basic designation for wildlife is the NHA. This is an area considered important for the habitats present or which holds species of plants and animals whose habitat needs protection. There are two pNHAs within the Bay the South Dublin Bay NHA and the North Dublin Bay pNHA. They are both ‘proposed’ NHAs published on a non-statutory basis. The NHAs in Dublin Bay largely overlap with SACs.

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:16

Page 17: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Constraints Mapping of Dublin Bay Apr 10

Page 9

Document Code: 75461-DG45-Dft02

3.1.3 Notifiable Actions To carry out certain activities, not covered by licence or consent from another statutory body, within the designated area, they must consult with, and get consent from, the Minister for the Environment, Heritage and Local Government (DEHLG). These activities are listed as “Notifiable Actions” for each habitat.

Notifiable actions for mudflats and sandflats, sandy coastal beaches, shingle beaches, boulder beaches and bedrock shores include:

“driving vehicles over the area, except over rights of way or over access to licensed aquaculture facilities; and

digging, ploughing or otherwise disturbing the substrate.”

The site investigations carried out by a Local Authority have to notify the Minister for the DEHLG of the proposed works, under Section 228 f the Planning and Development Act 2000. For the construction of the proposed outfall extension a Foreshore Consent will have to be obtained from the DEHLG.

3.2 Fauna and Fisheries not Covered by Designations Natura Environmental Consultants (2009) were commissioned to carry out a desktop study to determine the implications of the technically viable extended outfall options for the achievement of objectives set out in the Dublin Bay Water Quality Management Plan (DBWQMP, 1991) for fauna and fisheries not covered by designations.

They determined that the removal of the discharge from the Liffey Estuary will ensure that excessive dissolved oxygen deficits do not occur in the waters of the Liffey Estuary as a result of the WwTW, and that the dissolved oxygen standards are met; thereby protecting migratory fish.

Effluent discharging from the extended outfall will be treated to the same standards as the existing effluent discharging to the Liffey Estuary. Due to the location of the two technically viable extended outfall discharge location options, the quality of effluent discharging and the location and distribution of the modelled plumes there are no significant impacts predicted to fish populations within Dublin Bay and adjacent waters as a result of discharge from either outfall.

Birds and mammals, occurring in Dublin Bay, which are dependent on fish as a food source will not be affected by the two outfall options. There will be no significant impacts to the ecology of Dublin Bay as a result of the two technically viable extended outfall discharge locations.

3.2.1 Mammals Seals Both grey (Halichoerus grypus) and harbour (Phoca vituline - common) seals are found around the majority of the Irish coast, although most of the important breeding sites are located on the west and south-west coasts. Both seals are

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:16

Page 18: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Constraints Mapping of Dublin Bay Apr 10

Page 10

Document Code: 75461-DG45-Dft02

protected under Annex II and Annex V of the EU Habitats Directive and are listed under Appendix III of the Bern Convention. The Habitats Directive requires Ireland to establish SACs for conservation of both species of seal. Any activity likely to impact upon the seal population requires consent from the Minister. This legal protection affords seals considerable security from hunting and disturbance at haul-out sites. Dublin Bay is not designated as an SAC for the protection of seals.

Both grey seals and harbour seals feed in small numbers in Dublin Bay although there are no significant breeding groups here. There is a regular haul-out (resting place) for both species at the north-east end of North Bull Island. Occasional harbour seal pups have been reported from here but the site is not suitable as a breeding location for either species due to the high level of human disturbance. Grey seals regularly haul-out in small numbers on the rocks between Dun Laoghaire Harbour and Dalkey Island. There are no suitable pupping beaches or caves on these islands.

The nearest large breeding assemblage of seals to Dublin Bay is on Lambay Island, and Ireland’s Eye off north Co. Dublin. The all-age population there was estimated to be in the region of 203 to 261 animals. There is also a significant haul-out of harbour seals on the west side of Lambay Island with approximately 30 animals recorded in 2003. These animals disperse widely outside the breeding and moulting season and could be feeding anywhere in Dublin Bay. Their primary prey is fish but they also feed on squid and crustaceans such as crabs. They are not highly sensitive to water quality changes although they would be negatively affected by any significant reduction in fish populations in the inshore waters in which they feed.

Cetaceans (whales, dolphins and porpoise) All cetacean species are protected under Annex IV of the EU Habitats Directive and harbour porpoise and bottlenose dolphin are also listed under Annex II of the same directive. The most common near-shore species found within Dublin Bay are the harbour porpoise (Phocoena phocoena), bottlenose dolphin (Tursiops truncates), and minke whale (Balaenoptera acutorostrata).

Harbour porpoise are mainly confined to shelf waters, although sightings have occurred in deep water. They are the most common cetacean in Irish Waters; despite this it can often be difficult to observe due to its small size. The diet of harbour porpoise comprises a wide range of small fish, such as small gadoids, whiting, poor cod, sprat, sandeel, herring, saithe, pollack, dab, flounder, and sole. Harbour porpoise have been surveyed by the Irish Whale and Dolphin Group (IWDG) in Dublin Bay in 2008. Acoustic monitoring and estimates of diversity and abundance suggest that the numbers of porpoise off Howth Head are the highest recorded in Ireland (S. Berrow, pers. comm.).

Marine noise may have the potential to affect cetaceans. Seismic surveying is the geophysical exploration by acoustic methods. Sound energy (pressure pulses) is released from a source being towed by a vessel, and this signal is reflected off the seabed. There are various procedures that can be followed in a surveying

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:16

Page 19: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Constraints Mapping of Dublin Bay Apr 10

Page 11

Document Code: 75461-DG45-Dft02

programme to minimise the impact such as a soft start, using initial very low levels of sound to encourage marine mammals to leave the survey area and having Marine Mammal Observers (MMO). The “Code of Practice for the Protection of Marine Mammals during Acoustic Seafloor Surveys in Irish Waters” from the Department of Environment Heritage and Local Government (DEHLG) should be followed for seismic activities in Dublin Bay.

3.3 Water Body Classifications The general objective of the WFD is to achieve ‘good status’ for all surface waters by 2015. ‘Good status’ means both ‘good ecological status’ and ‘good chemical status’. The Environmental Objectives (Surface Waters) Regulations 2009 came into effect in July 2009 in order to implement aspects of the Water Framework Directive. EQS means the concentration of a particular pollutant or group of pollutants in water, sediment or in aquatic life which should not be exceeded in order to protect human health and the environment.

EQS for each water body type are set down in the regulations. The technically viable extended outfall options being considered have discharges that are located some distance out into the Irish Sea. It should be noted that the locations of the discharge points are outside the areas delineated for consideration under the Water Framework Directive.

Under the EU Bathing Waters Directive (76/160/EC) four stretches of beach have been designated as bathing water protected areas within Dublin Bay. These are discussed further in Section 5.

The examination of the preliminary modelling results has shown that apart from a mixing zone in the vicinity of the outfall points the receiving waters will meet the EQSs for coastal water nutrients - Dissolved Inorganic Nitrogen (DIN). It was determined that there would be no deterioration in the bathing water quality in the Dublin area. The quality is expected to improve as a result of the ceasing of discharge to the Liffey Estuary. (CDM, 2009b)

3.3.1 Transitional Waters Under the WFD coastal waters are defined as bodies of surface water in the vicinity of river mouths which are partly saline in character as a result of their vicinity to coastal waters, but which are substantially influenced by freshwater flows. The principal quality standard of concern in relation to wastewater discharges to transitional waters is Molybdate Reactive Phosphorus (MRP).

3.3.2 Coastal Waters Under the WFD coastal waters are defined as surface water on the landward side of a line, every point of which is at a distance of one nautical mile on the seaward side from the nearest point of the baseline from which the breadth of territorial waters is measured, extending where appropriate up to the outer limit of transitional waters.

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:16

Page 20: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Constraints Mapping of Dublin Bay Apr 10

Page 12

Document Code: 75461-DG45-Dft02

The principal quality standard of concern in relation to wastewater discharges to coastal waters are nutrients in the form of Dissolved Inorganic Nitrogen (DIN). DIN (rather than MRP) is considered to be the limiting nutrient in coastal waters and a breach of the EQSs may lead to eutrophic conditions (algal blooms, etc) and consequently the only nutrient standards in place for coastal waters are for DIN.

The EPA propose to designate the whole of Dublin Bay as a coastal water body, the boundary to which is not yet known.

3.3.3 Nutrient Sensitive Waters Nutrient Sensitive Areas are waters designated as sensitive under the Urban Waste Water Treatment Directive (91/271/EEC). The Liffey Estuary has been designated as sensitive from Islandbridge weir to Poolbeg Lighthouse, including the River Tolka basin and South Bull Lagoon. Nutrient removal to achieve 10 mg/L total nitrogen and 1 mg/L total phosphorus, in addition to normal secondary treatment standards, is required for continued discharge at the existing outfall.

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:16

Page 21: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Constraints Mapping of Dublin Bay Apr 10

Page 13

Document Code: 75461-DG45-Dft02

Table 3: Environmental Constraints in Dublin Bay Map Ref. Protected Area Data Source Site Investigation Constraints Outfall Design/ Construction Constraints

B.1 Special Area of Conservation NPWS Website Notify DEHLG

No adverse impacts – will be dealt with under EIS/ appropriate assessments and consultation with DEHLG/ NPWS

B.2 Special Protected Area NPWS Website Notify DEHLG

No adverse impacts – will be dealt with under EIS/ appropriate assessments and consultation with DEHLG/ NPWS

B.3 Natural Heritage Area NPWS Website None - the NHAs in the Bay are ‘proposed’ and non-statutory

B.4 WFD – Transitional Waters EPA WFD data None

Demonstrate compliance with Environmental Objectives (Surface Waters) Regulations 2009 S.I. No. 272 of 2009

B.5 WFD – Coastal Waters EPA WFD data None

Demonstrate compliance with Environmental Objectives (Surface Waters) Regulations 2009 S.I. No. 272 of 2009

B.6 Nutrient Sensitive Waters EPA WFD data None Demonstrate compliance with Urban Waste Water

Treatment Regulations 2001 (S.I. No. 254 of 2001)

n/a Fisheries Habitat n/a Need to contact Eastern Region Fisheries Board to verify

No adverse impacts – will be dealt with under EIS/ appropriate assessments and consultation with DEHLG and Fisheries Boards

n/a Marine Mammals n/a Follow - “Code of Practice for the Protection of Marine Mammals during Acoustic Seafloor Surveys in Irish Waters” from the DEHLG

No adverse impacts – will be dealt with under EIS and consultation with DEHLG/ NPWS

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:16

Page 22: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Constraints Mapping of Dublin Bay Apr 10

Page 14

Document Code: 75461-DG45-Dft02

4 Structures and Obstructions – Map C

4.1 Pipelines and Cables Pipelines and cables are marked on the Admiralty Chart of Dublin Bay (1415). Mariners should not anchor or carry out dredging or drilling close to pipeline or cables refer to Annual Notice to Mariners No.24/06 for further guidance. The locations of the pipelines and cables on Map C are taken from the Admiralty chart unless otherwise stated.

Further work:

The Admiralty chart pipeline and cable route locations need to be verified with the relevant parties prior to any works being carried out; and

Find out more details about the pipelines and cables from relevant parties.

4.1.1 Sewage Pipelines Mariners are advised to exercise caution when navigating in the vicinity of the pipelines as charted depths may be reduced by as much as 0.5 metres (Admiralty chart 1415).

There are two cross bay sewerage pipelines on Map C. Pipeline C.1 carries sewage from the Sutton pumping station in the North of Dublin to Ringsend WwTW. Pipeline C.2 carries sewage from the West Pier pumping station in Dun Laoghaire Rathdown to the Ringsend WwTW. Details of pipeline material and diameters was sourced from CAPCIS (2008). The depth of the Sutton to Ringsend cross bay pipeline is the approximate range for the length of the pipeline taken from the as built drawing (DCC ref: DBP-C4-03).

Table 4: Seabed Constraints – Sewage Pipeline Map Ref.

Constraint Name

Owner/ contact Details Material Diameter

(m) Depth Restriction

C.1

Sutton – Ringsend cross bay

sewage line

Dublin City Council Steel 1.422

4 – 8 m below bed level

?

C.2

Dun Laoghaire – Ringsend cross bay

sewage line

Dun Laoghaire Rathdown Steel 0.965 ? ?

C.3 Dodder Twin Lines

Dun Laoghaire Rathdown

Steel/ Pre-stressed

concrete

0.9144/ 1.2192 ? ?

C.4. Long sea

Outfall - Dun Laoghaire

Dun Laoghaire Rathdown ? 0.9 ? ?

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:16

Page 23: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Constraints Mapping of Dublin Bay Apr 10

Page 15

Document Code: 75461-DG45-Dft02

4.1.2 Gas Pipelines There is a high pressure gas main that runs into the ESB site at Poolbeg. The information of this gas main was sourced from CAPCIS (2008). The route was also sourced from this report and the pipeline is not in fact shown on the Admiralty chart.

Table 5: Seabed Constraints – Gas Pipeline

Map Ref. Constraint Name

Owner/ contact Details Material Diameter

(m) Depth Restriction

C.5. Bord Gais Pipeline Bord Gais Steel 1.422 ? ?

4.1.3 Telecommunications Cables There are five telecommunications cables in Dublin Bay labelled Cable C.6 - Cable C.11 on Map C, except C.8 which is a proposed cable. CDM attended a meeting with the GSI on 2nd February 2010. The GSI mentioned a planning application for a new fibre optic cable to be laid in the Bay and exiting the Bay between Howth and the northern tip of the Burford Bank.

Cables C6 and C7 are active cables and the status of cables C9 to C11 is currently unknown. The routes of these cables were taken from the Admiralty chart and will have to be verified with the relevant parties. Emergency contact information for the submarine cables can be obtained from Kingfisher Information Service at http://www.kisca.org.uk/Charts/Web_IrishSea.pdf.

Table 6: Seabed Constraints – Telecommunication Cables

Map Ref. Constraint

Name

Owner/ contact Details

Material Depth Restriction

C.6. Hibernia D Hibernia Atlantic,

01 867 3600 ? ? ?

C.7. Esat 2 Esat BT, 01 432 6555 ? ? Meeting required to

discuss restrictions

C.8. Proposed Fibre optic

cable ? ? ? ?

C.9. ? ? ? ? ? C.10. ? ? ? ? ? C.11. ? ? ? ? ?

4.1.4 Electricity Cables None identified at present.

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:16

Page 24: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Constraints Mapping of Dublin Bay Apr 10

Page 16

Document Code: 75461-DG45-Dft02

Table 7: Seabed Constraints – Electricity Cables

Map Ref. Constraint Name

Owner/ contact Details

Material Depth Restriction

C.X ? ? ? ?

4.2 Shipwrecks Shipwreck information as shown on Map C was obtained from three sources. The datasets differ slightly so all three have been shown on the map, however it is believed that the Underwater Archaeology Unit (UAU) have the most comprehensive and accurate dataset. The three datasets include:

1. Under water Archaeology Unit (UAU) of the DEHLG - have produced a draft Inventory of Recorded Shipwrecks for the East Coast of Ireland

2. INFOMAR – have been able to identify possible shipwrecks and from their multibeam marine mapping. This has been a co-operative effort between GSI and the Underwater Archaeology Unit of the National Monuments Section (NMS), at the Department of Environment Heritage and Local Government.

3. Admiralty Chart - published by the UKHO, contains the location of some wrecks. In certain cases an approximate position and date of sinking may be available.

The UAU manage and update the Shipwreck Inventory of Ireland. These databases will need to be investigated as part of the EIA process upon the selected engineering solution to scope the potential requirements for underwater survey work. This work should be undertaken by a suitably qualified archaeologist to ensure that the potential for archaeological impact is fully investigated prior to construction.

Wrecks over 100 years old and archaeological objects found underwater are protected under the National Monuments (Amendment) Acts 1987 and 1994. Significant wrecks less than 100 years old can be designated by Underwater Heritage Order on account of their historical, archaeological or artistic importance.

Table 8: Seabed Constraints – Shipwrecks Map Ref.

Constraint Name Data Source Owner/ contact

Details Restriction

C.10. Shipwrecks

1. Underwater Archaeology Unit

2. INFOMAR 3. Admiralty Maps

UAU - Karl Brady 01 4189757 [email protected]

?

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:16

Page 25: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Constraints Mapping of Dublin Bay Apr 10

Page 17

Document Code: 75461-DG45-Dft02

Further work:

Brady (2008). Shipwreck Inventory of Ireland.

Determine restrictions related to working with them e.g. Buffer zones or requirements for side scan sonar

4.3 Unexploded Ordnance No military or naval operations have resulted in the presence of unexploded ordnance in Dublin Bay. There are no official records of historical unexploded ordnance kept but there have not been any reports of such in Dublin Bay (Dept. of Defence - Press Office, pers. comms.).

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:16

Page 26: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Constraints Mapping of Dublin Bay Apr 10

Page 18

Document Code: 75461-DG45-Dft02

5 Amenity – Map D

Dublin Bay is host to many water based amenities, including sailing and boating, water sports and bathing beaches. There are constraints associated with each such as stakeholders that are required to be consulted and notified or certain water quality standards that need to be met.

5.1 Sailing/ Leisure Boating There are eight clubs in the Bay which are engaged in the organisation of sailing and/or leisure boating activities for their members and are affiliated with the Irish Sailing Association, as listed below:

Sailing in Dublin;

Clontarf Yacht & Boat Club;

Dun Laoghaire Motor Yacht Club;

National Yacht Club;

Poolbeg Yacht Club;

Royal Irish Yacht Club;

Royal St George Yacht Club; and

Sutton Dinghy Club.

The locations for these clubs were obtained from the Coastal and Marine Resources Centre and they are displayed on Map D (CMRC, 2009).

Dublin Bay Sailing Club which is not shown on the map as the club possesses no premises. With permission from Dublin Port Company, the club lays yacht racing marks within the Port of Dublin from April to October 2010. Each is a pillar-mark, 8' high (Notices to Mariners, No.10 of 2010). The marks cover a large area, extending from Salthill and Seapoint on the western side of Bay to near the Burford Bank on the east. The racing season usually starts at the end of April and continues up to the end of September. There are mid-week races on Tuesdays and Thursdays and as well as weekend races. The Irish Sailing Association have a calendar of the race dates.

5.2 Bathing Waters Under the EU Bathing Waters Directive (76/160/EC) four stretches of beach have been designated as bathing water protected areas within Dublin Bay;

Dollymount Strand;

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:16

Page 27: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Constraints Mapping of Dublin Bay Apr 10

Page 19

Document Code: 75461-DG45-Dft02

Sandymount Strand;

Merrion Strand; and

Seapoint.

The bathing water season runs from 1 June to 15 September. During this time the bathing waters are monitored. The Bathing Water Directive sets water quality standards that must be met in these areas. These standards include total and faecal coliforms, colour, mineral oils, phenols, transparency and floatables.

The Bathing Water Quality Regulations 2008 (S.I. 79 of 2008) will repeal and replace the Quality of Bathing Waters Regulations, 1992 (S.I. No. 155 of 1992) with effect from 31st December 2014 (Both regulations remain relevant).

The Blue Flag is an exclusive eco-label awarded for beaches and marinas by the Foundation for Environmental Education (FEE). The Blue Flag Programme is operated in Ireland by An Taisce – The National Trust for Ireland with support from the DEHLG and on behalf of the FEE. Blue Flag Beaches are selected through strict criteria dealing with water quality, environmental education and information, environmental management, and safety and other services. The water quality standards for Blue Flag Beaches are more stringent than the Bathing Water Regulations. In 2009 a total of 74 beaches of 133 were awarded the Blue Flag in the Republic of Ireland, only one of which was within Dublin Bay and that was Dollymount Strand (Blue Flag, 2010).

The Dublin Bay Water Quality Management Plan written in 1991 set out priority objectives for certain areas of Dublin Bay to which the objects should apply. The priority object for bathing waters in the marked areas is to meet the requirements of the Bathing Water Regulations with particular emphasis to microbial parameters (DBWQMP, 1991).

The ’Preliminary Assessment of Long Sea Outfall Locations’ (CDM, 2009b) assessed the potential impact of discharge from a number of extended outfall locations using modelling for an extreme case scenario. The results of the simulations showed that the discharge plume from the assessed outfall locations will remain offshore and that bathing water beaches in Dublin Bay will not be impacted by discharge from the extended outfall locations assessed. There will be no discernible increase in the bacteriological quality at the beaches as a result of the discharge via the extended outfalls. However, the beaches will still be vulnerable to bacteriological contamination from other sources such as the Tolka and Liffey. Nonetheless, the fact that the discharges of treated effluent to the estuary will be discontinued should result in an overall improvement in bathing water quality at the beaches around Dublin Bay.

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:16

Page 28: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Constraints Mapping of Dublin Bay Apr 10

Page 20

Document Code: 75461-DG45-Dft02

Table 9: Amenity Constraints in Dublin Bay Map Ref. Constraint Name Data source Site Investigation Constraints Tunnel Design/ Construction Constraints

D.1 Racing Buoys

DPC website. Notices to Mariners, No.10 of 2010

Sailing Amenity should be considered when selecting drilling and construction sites. Contact Dublin Bay Sailing Club. Donal O’ Sullivan 087 6524761

Sailing amenity will part of the stakeholder process of the EIS

D.2 Bathing Waters EPA WFD data None Bathing Water Regulations 1992 and 2008

D.3 Recreational Areas – Water sports

Dublin Bay Water Quality Management Plan, 1992 None

In the absence of water quality standards the Bathing Water Regulations 1992 and 2008 can be referred to

D.4 Recreational Areas Dublin Bay Water Quality Management Plan, 1992 None

In the absence of water quality standards the Bathing Water Regulations 1992 and 2008 can be referred to

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:16

Page 29: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Constraints Mapping of Dublin Bay Apr 10

Page 21

Document Code: 75461-DG45-Dft02

5.3 Recreation (including water sports) In the Dublin Bay Water Quality Management Plan (1991) many of the objectives were directed at protecting recreation and water sports areas within the Bay and the areas cover virtually the entire coastline in the Bay area.

The area from Dalkey to Seapoint is a zone of water sports recreation and the objective set was to protect the microbiological quality of the waters for water sports such as wind surfing. The objective for the other areas of recreation was to protect the recreational uses of the areas.

The ‘Preliminary Assessment of Long Sea Outfall Locations’ (CDM, 2009b) assessed the consequences of the technically viable extended outfall discharge location options in terms of the contribution that they will make to the overall faecal coliform counts in the these amenity areas. There will be no discernible impact whatsoever on the bacteriological quality of the amenity areas defined in the Priority Objectives. If anything there will be noticeable improvement due to the fact the discharge of treated effluent to the Liffey Estuary will cease.

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:16

Page 30: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Constraints Mapping of Dublin Bay Apr 10

Page 22

Document Code: 75461-DG45-Dft02

6 Inshore Fisheries – Map E

Presently fishing activities in Dublin Bay are limited. The boundaries for areas where different methods of fishing are commonly used were obtained from the Marine Institute from their Inshore Fisheries Atlas and are displayed on Map E.

Potting for lobster and velvet crab is the main activity in the south of the Bay and it is seasonal, however there are only a few pots located here and there. Line fishing is permitted throughout the Bay. Dublin Bay is a no trawl zone and so there is no activity such as trawling or dredging anymore (D. Rehan, Bord Iascaigh Mhara (BIM), pers. comm.)

The Fishery Monitoring Centre from Irish Naval Services monitors the fishing activity in Dublin Bay. All fishing vessels over 15 metres have a transponder system fitted since 1st Jan 2005. Information is collected regarding their position, effort and catch. The area to the east of Burford Bank was found to be busy but with passing traffic only and not with active fishing for the month of July 2009 (M. McGrath, pers. comm.).

It is not envisaged that the site investigations will have an impact on fisheries as the works are temporary and the fishermen will be advised in advance of the works with by a Department of Transport Marine Notice.

Further Work:

The MI/ BIM/ Irish Naval Service will be contacted to determine the status of these fisheries and any restrictions in the fishing areas.

Table 10: Inshore Fisheries Constraints – Marine Institute Datasets Map Ref. Constraint Name Description Constraint

E.1. Aquaculture There are three areas of aquaculture in Dublin Bay for the growth of mussels. ?

E.2. Dredge Part of the area of the Burford bank is where dredge fishing occurred for scallops. n/a

E.3. Pots

There are three large areas of Dublin Bay where pot fishing occurs for large crustaceans such as lobsters and velvet crab and whelks. The largest whelk fishery in Ireland is the one located just south of Howth.

?

E.4. Trawl Trawl fishing using mobile nets is carried out around the Burford Bank area and south of Howth Head for fish and/ or molluscs.

n/a

E.5. Line Hook and Line fishing is carried out in the entire Bay. None

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:16

Page 31: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Constraints Mapping of Dublin Bay Apr 10

Page 23

Document Code: 75461-DG45-Dft02

7 Geological – Map F

7.1 Geology CDM carried out a preliminary desk study of the geology of Dublin Bay, entitled ‘An Overview of the Geology of Dublin Bay’ (CDM, 2010). There are three types of bedrock that can be expected in the Bay – limestone, metasediments, and granite and these all have very different physical properties. As such, additional geological and geotechnical characterisation of the Bay is necessary.

The predominant bedrock in the inner Bay is likely to be Calp Limestone. This is the more easily solubilised, less resilient limestone that has eroded gradually, leaving a well-defined bay. The Leinster Granite formation to the south of the Bay, from Dun Laoghaire to Dalkey, that may lie in the path of any proposed tunnel routes. The Rathcoole Fault has been inferred in the nearshore from onshore geology, and it is predicted that it runs diagonally across the mouth of the Bay from the Rathcoole Fault in Dun Laoghaire to the Dalkey Fault. This fault is likely to be encountered with either of the outfall alignments.

While there have been a number of subsurface investigations conducted within the Bay, no boreholes have met bedrock with the deepest being 25 m below the surface.

It cannot be determined the amount of changes in the bedrock type that are present in Dublin Bay and changes in bedrock type has an impact on the tunnel boring process. Further information on the geology of Dublin Bay needs to be acquired prior to the detailed design phase. This will potentially inculde:

Interpretation of INFOMAR geophyiscal survey data; and

A field programme involving further geophyics and investigative drilling.

7.2 Bathymetry Dublin Bay is a shallow sandy embayment on the east coast of Ireland. Admiralty Chart 1415 of Dublin Bay shows depth to chart datum in metres for Dublin Bay. Contours from the Admiralty Chart are shown at 2m, 5m, 10m and 20m on Map C. The Bay slopes downwards to the east gently reaching depths of 20m at the mouth of the Bay.

The Burford Bank sits centrally across the mouth of Dublin Bay. The Burford Bank is a linear sand ridge about 5km in length, which rises to within 5m of the marine water surface. Bathymetric comparisons suggest that the offshore banks are quasi-stable over time probably maintaining their position due to the interaction between wave and current regimes (Wheeler et al., 2000).

The Marine Institute worked in partnership with the Geological Survey of Ireland (GSI) on the Irish National Seabed Survey (INSS). The survey aimed to map

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:16

Page 32: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Constraints Mapping of Dublin Bay Apr 10

Page 24

Document Code: 75461-DG45-Dft02

Ireland's 220 million acres of territorial seafloor. Phase 1 of the Irish National Seabed Survey (INSS) is now complete and includes bathymetric mapping of approximately 65 percent of Dublin Bay.

The final 35 percent of Dublin Bay will be mapped in Phase 2 of the survey under the INFOMAR project (INtegated mapping FOr the sustainable development of the MArine Resource). While Phase 1 concentrated on outer deep-sea territorial waters, Phase 2 has moved inshore to coastal waters. Dublin Bay Phase 2 will be available from the GSI in non-quality controlled format in the summer of 2010. The accurate bathymetry data will feed into the hydrodynamic and water quality modelling.

Further Work:

Acquire bathymetric data from INFOMAR once it has been processed

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:16

Page 33: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Constraints Mapping of Dublin Bay Apr 10

Page 25

Document Code: 75461-DG45-Dft02

8 Conclusions and Recommendations

8.1 Conclusions Six maps displaying the constraints for site investigations and tunnel construction have been developed. The categories include operational, environmental, structures and obstructions, amenity, fisheries and geology. Perhaps the most important constraints will be cooperating with the requirements of the port companies and accurately locating utilities/ shipwrecks on the seabed. The Key Map summarises all of the identified potential constraints within Dublin Bay.

The objective of the preliminary modelling (CDM, 2009a) was to assess the impact of five extended outfall discharge location options in Dublin Bay. Two locations were found to be more technically viable for an outfall location whilst the other three locations were found to be less viable, these locations are shown on the Key Map.

Keeping the results of the preliminary modelling in mind and all the potential constraints shown on the map there are several areas which stand out as potentially suitable for the outfall terminus. The general area of these potential termini locations are indicated on the Key Map with an asterisk. Three potential locations for the termini for the outfall discharge location are located within the Bay itself and one is located outside the Burford Banks. The potential location outside the Burford Bank could be located anywhere outside the bank as there are minimal constraints in that area. The suitability of these potential outfall termini locations will have to be tested with detailed hydraulic and water quality modelling, and the results may produce more of an envelope of potentially suitable areas. These results will also need to feed into a cost benefit analysis of the viable options.

As can be seen from Key Map, the Bay is densely populated with constraints, therefore in each category further investigation and consultations are required to determine the restrictions for works.

8.2 Recommendations The main recommendations include the following:

Close out of gaps in the constraints information;

Complete hydraulic and water quality modelling for the selection of the outfall termini location;

Feed the constraints information into EIS and site investigation documents; and

Carry out site investigations to aid the selection and truth check information for the tunnel alignment and termini location.

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:16

Page 34: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Constraints Mapping of Dublin Bay Apr 10

Page 26

Document Code: 75461-DG45-Dft02

9 References

Admiralty Chart 1415. Dublin Bay. United Kingdom Hydrographic Office.

Blue Flag, 2010. http://www.blueflag.org/Menu/Blue+Flag+beaches%2fmarinas/2009/Northern+Hemisphere/Ireland/Dublin/

CAPCIS (2008). Dublin Bay Stray current review and monitoring plan. Dun Laoghaire Rathdown County Council.

CDM 2009a. Modelling the Impact of Ringsend Discharges in the Liffey and Tolka Estuaries and Possible Long Sea Outfall Discharges in Dublin Bay. Internal Ref: 22825/67511/40/DG 16.

CDM, 2009b. Preliminary Assessment of Long Sea Outfall Locations. Internal Ref: 22825/67511/40/DG 19.

CDM 2010. Overview of Geology in Dublin Bay. Internal Ref: 22825/67511/40/DG 20.

Coastal and Marine Resources Centre (CMRC), 2009. Irish Sailing Association – Sailing Club Members. http://mida.ucc.ie/pages/dataLayers.htm

Collision Regulations (Ships and Water Craft on the Water) (Amendment) Order 1993 (S.I. No. 287/1993).

Dublin Pilotage Order, 1925 (Amendment) Order, 1963 (S.I. No. 24/1963).

INFOMAR www.marine.ie/home/services/surveys/seabed/

Jeffrey, D. W. 1991. Dublin Bay Water Quality Management Plan, 1991

Marine Institute. Inshore Fisheries Atlas. http://www.maps.marine.ie/inshore/default.aspx

Meeting with Dublin Port Harbour Master. Meeting Minutes Internal Ref: 22825/67511/30/MM 69.

Meeting with Dun Laoghaire Harbour Master. Meeting Minutes Internal Ref: 22825/67511/30/MM 70.

Meeting with GSI (INFOMAR) regarding Geophysical data in Dublin Bay. Meeting Minutes Internal Ref: 22825/67511/30/MM 73.

Natura, 2009. Ecological Impact Assessment on Dublin Bay Water Quality Management Plan Priority Objectives. Appendix C in: CDM, 2009b. Preliminary Assessment of Long Sea Outfall Locations. Internal Ref: 22825/67511/40/DG 19.

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:16

Page 35: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Constraints Mapping of Dublin Bay Apr 10

Page 27

Document Code: 75461-DG45-Dft02

Notices to Mariners, No.10 of 2010. http://www.dublinport.ie/information-centre/notice-to-mariners/

Wheeler, A.J., Walshe, J. and Sutton, G.D. (2000). Geological Appraisal of the Kish, Burford, Bray and Fraser Banks, Outer Dublin Bay Area. Marine Institute.

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:16

Page 36: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:16

Page 37: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

GF

GF

GF

GF

GF

GF

GF

GF

GF

GF

GF

GF

GFGF

GF

GFGFGFGF

GF

GFGFGF

GF

GF

GF

GF

GF

GF

GF

GF

GF

GF

GFGFGFGF

GF

GF

GF

GF

GF

GF

GF

GF

GF GF

GF

GF

GF

GF

GF

GF

GF

GF

GF

GF

GF

GF GF

GF

GF

GF

GF

GF GF

GF

GF

GF

GF

GF

GF

GF

GF GF

GF

GFGFGF

GF

GF

GFGF

GF

GFGFGF

GF

GF

k

k

k

k30

5

10

20

0

2

5

5

0

10

10

2

0

2

5

10

5

5

0

5

5

0

0

10

0

10

52

0

2

0

2

5

0

0

0

2

2 20

5

5

0

5

10

5

0

20

5

5

5

20

5

5

0

30

55

20

5

0

0

0

0

2

0

0

20

20

5

5

0

20

10

2

5

2

0

5

5

50

0

20

0

5

5

20

0

5

10

0

10

0

5

0

2

4Ringsend WwTW Site Investigation ConstraintsKey Map - Overview of Potential Constraints

Draft V2

0 0.8 1.6 2.4 3.2 40.4km

Source: © Ordnance Survey Ireland. All rights reserved. Licence No AR 0095908

© CopyrightThis drawing and any design hereon is copyright and should not be reproduced without the owner permission.© British Crown and SeaZone Solutions Limited. All rights reserved. Products Licence No. 012010.005This product has been derived in part from material obtained fromthe UK Hydrographic Office with the permission of the Controller ofHer Majesty's Stationery Office and UK Hydrographic Office(www.ukho.gov.uk). “NOT TO BE USED FOR NAVIGATION”.

Drawn by: LG

Internal Project Reference: Date: 13/04/2010

\\Erbdgis\gis\CURRENT_PROJECTS\67511_Ringsend_WWTW_Extension\02_GIS_Tasks\11_ConstraintMapping\MXDs\ConstraintsMapV2.G.mxd

Legend

k Potential Termini Locations

Preliminary Modelling - Technically Viable Site

Preliminary Modelling - Technically Unviable Site

Boundary of Dublin Pilotage District

Boundary of Dublin Port Company

Boundary of Dun Laoghaire Harbour Company

Map A - Operational Constraints

Map B - Environmental Constraints

Map C - Seabed Constraints

GF Map C - Seabed Constraints - Shipwrecks

Map D - Amenity Areas

&R Map D - Racing Marks

Map E - Fishery Constraints (excl line fishing)

Map F - Structural Geological Linework

Map F - Inferred Fault

Land

Sea

Bathymetry

Depth contour (m)

Scale 1:55,000

Rathcoole Fault

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:16

Page 38: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Constraints Mapping of Dublin Bay Apr 10

Page 28

Document Code: 75461-DG45-Dft02

Appendix A

Constraint Maps by Category

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:16

Page 39: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

30

5

10

20

0

2

5

5

0

10

10

2

0

2

5

10

5

5

0

5

5

0

0

10

2

0

10

52

0

2

0

2

5

0

0

0

2

2 20

5

5

0

5

10

5

0

20

5

5

5

20

5

5

0

30

55

20

5

0

0

0

0

2

0

0

20

20

5

5

0

20

10

2

5

2

0

5

5

50

0

20

0

5

5

20

0

5

10

0

10

0

5

0

2Buoy

A.1.

A.2.

A.3.

A.4.

A.4.

A.5.

A.5.

A.6.

4Ringsend WwTW Site Investigation ConstraintsMap A - OperationalDraft V1.1

0 1 2 3 4 50.5km

Source: © Ordnance Survey Ireland. All rights reserved. Licence No AR 0095908

© CopyrightThis drawing and any design hereon is copyright and should not be reproduced without the owner permission.© British Crown and SeaZone Solutions Limited. All rights reserved. Products Licence No. 012010.005This product has been derived in part from material obtained fromthe UK Hydrographic Office with the permission of the Controller ofHer Majesty's Stationery Office and UK Hydrographic Office(www.ukho.gov.uk). “NOT TO BE USED FOR NAVIGATION”.

Drawn by: AOC / LG

Internal Project Reference: Date: 24/02/2010

\\Erbdgis\gis\CURRENT_PROJECTS\67511_Ringsend_WWTW_Extension\02_GIS_Tasks\11_ConstraintMapping\MXDs\ConstraintsMapV1.1.A.mxd

LegendIreland Outline

Boundary of Dublin Pilotage District

Boundary of Dublin Port Company

Boundary of Dun Laoghaire Harbour Company

!( A.1. Central 'Roundabout' Buoy

A.1. Dublin Port Company Navigational Channel

A.1. Drilling Exclusion Zone - 800m around Buoy

A.2. Dublin Port Company Anchorage Site

A.3. Dublin Port Company Spoil Ground

A.4. Inshore Traffic Zone

A.5. Traffic Separation Scheme

A.6. Burford Bank - Area for Mariners to Avoid

A.7. Dun Laoghaire Stena Route

Dun Laoghaire to Holyhead

Hollyhead to Dun Laoghaire

A.7. Inferred Dun Laoghaire Stena Route

Depth contour (m)

Depth area, Drying

Depth area, 0 - 10m

Depth area, 10 - 20m

Depth area, 20 - 50m

Burford Bank

Scale 1:55,000

Limit of Dublin Port Company

Limit of Dublin Pilotage District

Limit of Dun Laoghaire

Harbour Company

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:16

Page 40: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

6°7'46"E, 53°18'56"N30

5

10

20

0

2

5

5

0

10

10

2

0

2

5

10

5

5

0

5

5

0

0

10

2

0

10

52

0

2

0

2

5

0

0

0

2

2 20

5

5

0

5

10

5

0

20

5

5

5

20

5

5

0

30

55

20

5

0

0

0

0

2

0

0

20

20

5

5

0

20

10

2

5

2

0

5

5

50

0

20

0

5

5

20

0

5

10

0

10

0

5

0

2

4Ringsend WwTW Site Investigation ConstraintsMap B - EnvironmentalDraft V1.1

0 1 2 3 4 50.5km

Source: © Ordnance Survey Ireland. All rights reserved. Licence No AR 0095908

© CopyrightThis drawing and any design hereon is copyright and should not be reproduced without the owner permission.© British Crown and SeaZone Solutions Limited. All rights reserved. Products Licence No. 012010.005This product has been derived in part from material obtained fromthe UK Hydrographic Office with the permission of the Controller ofHer Majesty's Stationery Office and UK Hydrographic Office(www.ukho.gov.uk). “NOT TO BE USED FOR NAVIGATION”.

Drawn by: AOC / LG

Internal Project Reference: Date: 24/02/2010

\\Erbdgis\gis\CURRENT_PROJECTS\67511_Ringsend_WWTW_Extension\02_GIS_Tasks\11_ConstraintMapping\MXDs\ConstraintsMapV1.1.B.mxd

LegendBoundary of Dublin Pilotage District

Boundary of Dublin Port Company

Boundary of Dun Laoghaire Harbour Company

B.1. Special Areas of Conservation

B.2. Special Protected Areas

B.3. Natural Heritage Area

B.4. Water Framework Directive - Transitional Waters

B.5. Water Framework Directive - Coastal Waters

B.6. Nutrient Sensitive Waters

Bathing Water Beaches

Bathymetry

Depth contour (m)

Depth area, Drying

Depth area, 0 - 10m

Depth area, 10 - 20m

Depth area, 20 - 50m

Burford Bank

Scale 1:55,000

Limit of Dublin Port Company

Limit of Dublin Pilotage District

Limit of Dun Laoghaire

Harbour Company

Water Framework DirectiveWater Body Classifications

B.4.

B.5.

B.5.

B.5.

B.6.

B.1.

B.1.

B.2.

B.2.

B.2.

B.1.

B.3.

B.3.

B.3.

B.3.

B.2.

B.3.

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:16

Page 41: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

GF

GF

GF

GF

GF

GF

GF

GF

GF

GF

GF

GF

GF

GF

GFGF

GF

GFGFGFGF

GF

GFGFGFGF

GF

GF

GF

GF

GF

GF

GF

GF

GF

GFGFGFGF

GF

GF

GF

GF

GF

GF

GF

GF

GF

GFGF

GF

GF

GF

GF

GFGF

GF

GF

GF

GF

GF

GF GF

GF

GF

GFGF

GF GF

GF

GF

GF

GFGF

GF

GF

GF GF

GF

GFGFGF

GF

GFGFGF

GF

GFGFGF

GF

GF

C.7.

C.6.C.8.

C.11.

C.9.C.10.

C.1.

C.2.

C.3.

C.4.

30

5

10

20

0

2

5

5

0

10

10

2

0

2

5

10

5

5

0

5

5

0

0

10

0

10

52

0

2

0

2

5

0

0

0

2

2 20

5

5

0

5

10

5

0

20

5

5

5

20

5

5

0

30

55

20

5

0

0

0

0

2

0

0

20

20

5

5

0

20

10

2

5

2

0

5

5

50

0

20

0

5

5

20

0

5

10

0

10

0

5

0

2

C.5.

4Ringsend WwTW Site Investigation ConstraintsMap C - Structures and Obstructions

Draft V2.1

0 1 2 3 4 50.5km

Source: © Ordnance Survey Ireland. All rights reserved. Licence No AR 0095908

© CopyrightThis drawing and any design hereon is copyright and should not be reproduced without the owner permission.© British Crown and SeaZone Solutions Limited. All rights reserved. Products Licence No. 012010.005This product has been derived in part from material obtained fromthe UK Hydrographic Office with the permission of the Controller ofHer Majesty's Stationery Office and UK Hydrographic Office(www.ukho.gov.uk). “NOT TO BE USED FOR NAVIGATION”.

Drawn by: LG

Internal Project Reference: Date: 13/04/2010

\\Erbdgis\gis\CURRENT_PROJECTS\67511_Ringsend_WWTW_Extension\02_GIS_Tasks\11_ConstraintMapping\MXDs\ConstraintsMapV2.C.mxd

LegendBoundary of Dublin Pilotage District

Boundary of Dublin Port Company

Boundary of Dun Laoghaire Harbour Company

C.1. - C.4. Sewerage Pipelines

C.5. Gas Pipeline

C.6. - C.7. Active Telecommunications Cables

C.8. Proposed Fibre Optic Cable DRAFT

C.9. - C.11. Unknown Status of Telecommunications Cables

GF C.10. Shipwrecks - Underwater Archaeology Department

GF C.10. Shipwrecks - INFOMAR

GF C.10. Shipwrecks - UKHO Admiralty Chart

Bathymetry

Depth contour (m)

Depth area, Drying

Depth area, 0 - 10m

Depth area, 10 - 20m

Depth area, 20 - 50m

Burford Bank

Scale 1:55,000

Limit of Dublin Port Company

Limit of Dublin Pilotage District

Limit of Dun Laoghaire

Harbour Company

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:16

Page 42: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

\

\

\

\

\

&R&R

&R

&R

&R

&R

&R

&R

&R

&R

&R

&R

&R

&R

&R

&R

&R

&R

&R

&R

&R

&R

&R

&R

[h

[h

[h

[h

[h

[h

[h[h

[h

[h

30

5

10

20

0

2

5

5

0

10

10

2

0

2

5

10

5

5

0

5

5

0

0

10

2

0

10

52

0

2

0

2

5

0

0

0

2

2 20

5

5

0

5

10

5

0

20

5

5

5

20

5

5

0

30

55

20

5

0

0

0

0

2

0

0

20

20

5

5

0

20

10

2

5

2

0

5

5

50

0

20

0

5

5

20

0

5

10

0

10

0

5

0

2

Seapoint

Sandymount

Dollymount

Merrion Strand

4Ringsend WwTW Site Investigation ConstraintsMap D - Amenity

Draft V1.1

0 1 2 3 4 50.5km

Source: © Ordnance Survey Ireland. All rights reserved. Licence No AR 0095908

© CopyrightThis drawing and any design hereon is copyright and should not be reproduced without the owner permission.© British Crown and SeaZone Solutions Limited. All rights reserved. Products Licence No. 012010.005This product has been derived in part from material obtained fromthe UK Hydrographic Office with the permission of the Controller ofHer Majesty's Stationery Office and UK Hydrographic Office(www.ukho.gov.uk). “NOT TO BE USED FOR NAVIGATION”.

Drawn by: AOC / LG

Internal Project Reference: Date: 24/02/2010

\\Erbdgis\gis\CURRENT_PROJECTS\67511_Ringsend_WWTW_Extension\02_GIS_Tasks\11_ConstraintMapping\MXDs\ConstraintsMapV1.1.D.mxd

LegendBoundary of Dublin Pilotage District

Boundary of Dublin Port Company

Boundary of Dun Laoghaire Harbour Company

[h Irish Sailing Association - Sailing Clubs

&R D.1. Dublin Bay Sailing Club Racing Marks

\ D.2. 2009 Blue Flag Beach

\ D.2. 2009 Non Blue Flag Beach

D.2. Bathing Water Beaches

Dublin Bay Water Quality Management Plan (1991)

D.2. Bathing

D.3. Water Sports

D.4. Recreation

Bathymetry

Depth contour (m)

Depth area, Drying

Depth area, 0 - 10m

Depth area, 10 - 20m

Depth area, 20 - 50m

Burford Bank

Scale 1:55,000

Limit of Dublin Port Company

Limit of Dublin Pilotage District

Limit of Dun Laoghaire

Harbour Company

Limit of Dun Laoghaire Harbour Company

D.1.

D.2.

D.2.

D.2.

D.2.

D.4.

D.2.

D.4.

D.4.

D.3.

D.3.

D.2.

D.1.

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:16

Page 43: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

30

5

10

20

0

2

5

5

0

10

10

2

0

2

5

10

5

5

0

5

5

0

0

10

2

0

10

52

0

2

0

2

5

0

0

0

2

2 20

5

5

0

5

10

5

0

20

5

5

5

20

5

5

0

30

55

20

5

0

0

0

0

2

0

0

20

20

5

5

0

20

10

2

5

2

0

5

5

50

0

20

0

5

5

20

0

5

10

0

10

0

5

0

2

4Ringsend WwTW Site Investigation ConstraintsMap E - FisheriesDraft V1.1

0 1 2 3 4 50.5km

Source: © Ordnance Survey Ireland. All rights reserved. Licence No AR 0095908

© CopyrightThis drawing and any design hereon is copyright and should not be reproduced without the owner permission.© British Crown and SeaZone Solutions Limited. All rights reserved. Products Licence No. 012010.005This product has been derived in part from material obtained fromthe UK Hydrographic Office with the permission of the Controller ofHer Majesty's Stationery Office and UK Hydrographic Office(www.ukho.gov.uk). “NOT TO BE USED FOR NAVIGATION”.

Drawn by: AOC / LG

Internal Project Reference: Date: 24/02/2010

\\Erbdgis\gis\CURRENT_PROJECTS\67511_Ringsend_WWTW_Extension\02_GIS_Tasks\11_ConstraintMapping\MXDs\ConstraintsMapV1.1.E.mxd

LegendBoundary of Dublin Pilotage District

Boundary of Dublin Port Company

Boundary of Dun Laoghaire Harbour Company

E.1. Aquaculture

E.2. Dredge

E.3. Pots

E.4. Trawl

E.5. Hook and Line

Bathymetry

Depth contour (m)

Burford Bank

Scale 1:55,000

Limit of Dublin Port Company

Limit of Dublin Pilotage District

Limit of Dun Laoghaire

Harbour Company

E.1.

E.1.

E.1.

E.2.

E.5.

E.3.

E.3.

E.3.

E.4.

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:17

Page 44: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

4Ringsend WwTW Site Investigation ConstraintsMap F - GeologyDraft V1.1

0 1 2 3 4 50.5km

Source: © Ordnance Survey Ireland. All rights reserved. Licence No AR 0095908

© CopyrightThis drawing and any design hereon is copyright and should not be reproduced without the owner permission.© British Crown and SeaZone Solutions Limited. All rights reserved. Products Licence No. 012010.005This product has been derived in part from material obtained fromthe UK Hydrographic Office with the permission of the Controller ofHer Majesty's Stationery Office and UK Hydrographic Office(www.ukho.gov.uk). “NOT TO BE USED FOR NAVIGATION”.

Drawn by: AOC / LG

Internal Project Reference: Date: 24/02/2010

\\Erbdgis\gis\CURRENT_PROJECTS\67511_Ringsend_WWTW_Extension\02_GIS_Tasks\11_ConstraintMapping\MXDs\ConstraintsMapV1.1.F.mxd

LegendInferred Fault (source Dobson and Whittington, 1979)

Structural Linework

Bedrock Outcrops

Bedrock Formations (100K)Calp

Tober Colleen Formation

Ballysteen Formation

Waulsortian Limestones

Butter Mountain Formation

Drumleck Formation

Elsinore Formation

Gaskins Leap Formation

Hippy Hole Formation

Pipers Gut Formation

Type 1 granodiorite

Type 2e equigranular

Type 2p microcline porphyritic

Type 3 muscovite porphyritic

Scale 1:55,000

Rathcoole Fault

Geology is currently uncertain in foreshore. Further research currently underway

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:17

Page 45: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Appendices    Ringsend WwTW EIS 

  

 

D.3   Effluent Outfall Extension Tunnel ‐Concept Design Report     

 

 

 

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:17

Page 46: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:17

Page 47: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

     Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report  

Doc Ref:  75461/DG44/ Draft 02  Page i 

Document Control Sheet  

Client  Dublin City Council 

Project  Ringsend WwTW Plant Upgrade.  

Report  Effluent Outfall Extension Tunnel ‐ Concept design report 

Date  October 2011 

Project No:   75461 

Document Reference  DG 44 – Draft 02 

Version  Author  Reviewed   Checked  Date 

Draft 01  U. Burbaum   Michael Loeffler  A Kerr  August 2011 

Draft 02  U. Burbaum   Juergen Schmitt  A Kerr  October 2011 

         

 

Distribution  Copy No. 

Master (CDM)  01 

DCC  02 

DCC  03 

DCC  04 

   

 

© 2011 CAMP DRESSER & MCKEE ALL RIGHTS RESERVED 

Reuse  Of  Documents:  These  documents  and  designs  provided  by  professional  service,  incorporated  herein,  are  the 

property of CDM and are not to be used, in whole or part, for any other project without the written authorization of CDM. 

 

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:17

Page 48: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

     Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report  

 Doc Ref:  75461/DG44/ Draft 02  Page ii 

Table of Contents SECTION 1  GENERAL ........................................................................................... 1 

1.1  Project Overview ............................................................................................ 1 1.2  Preferred Tunnel Route .................................................................................. 1 1.3  Tunnel Diameter ............................................................................................. 2 

SECTION 2  REFERENCES ....................................................................................... 3 

2.1  Project Documents ......................................................................................... 3 2.2  Communications ............................................................................................. 3 2.3  Project Datum ................................................................................................ 3 2.4  Cost Estimates ................................................................................................ 3 

SECTION 3  GEOLOGICAL, GEOTECHNICAL AND HYDROGEOLOGICAL CONDITIONS .............. 4 

3.1  General ........................................................................................................... 4 3.2  Scope of Site Investigation ............................................................................. 4 3.3  Geology ........................................................................................................... 5 

3.3.1  General ................................................................................................. 5 3.3.2  Overburden .......................................................................................... 6 3.3.3  Bedrock ................................................................................................ 8 

3.4  Geotechnical Properties ............................................................................... 13 3.4.1  Sediments ........................................................................................... 13 3.4.2  Glacial Till /Boulder Clay .................................................................... 13 3.4.3  Bedrock .............................................................................................. 14 

3.5  Hydrogeological Conditions ......................................................................... 14 3.5.1  Onshore .............................................................................................. 14 3.5.2  Offshore ............................................................................................. 16 3.5.3  Ground Water Quality ........................................................................ 16 

3.6  Contamination of Soils and Water ............................................................... 17 

SECTION 4  OVERALL CONSTRUCTION LAYOUT AND DESIGN ....................................... 18 

4.1  Linking of Outfall Elements .......................................................................... 18 4.2  Design Life .................................................................................................... 18 4.3  Exposure Class for Concrete ......................................................................... 18 4.4  Geotechnical Baseline Report ...................................................................... 18 4.5  Baseline Tender Reference Design (BTRD) ................................................... 19 

SECTION 5  ONSHORE TUNNEL INLET SHAFT ........................................................... 21 

5.1  General ......................................................................................................... 21 5.2  Ground Conditions ....................................................................................... 21 5.3  Vibrations ..................................................................................................... 21 5.4  Inner Shaft Diameter .................................................................................... 21 5.5  Minimum Depth of Shaft .............................................................................. 22 5.6  Shaft construction ........................................................................................ 23 

5.6.1  Shaft Construction Techniques In General ........................................ 23 5.6.2  Shaft Concept Design ......................................................................... 29 

5.7  Serviceability Test for Shaft Lining Prior to Excavation ................................ 33 5.8  Excavation .................................................................................................... 33 

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:17

Page 49: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

     Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report  

Doc Ref:  75461/DG44/ Draft 02  Page iii 

5.9  Survey ........................................................................................................... 33 5.10  Optimum Shaft Construction Technique ...................................................... 34 5.11  Overall Costs ................................................................................................. 38 

SECTION 6  TUNNELLED SECTION .......................................................................... 39 

6.1  General ......................................................................................................... 39 6.2  Tunnel Mechanics Requirements ................................................................. 39 6.3  Tunnel Environment, Costs Of Tunnelling And Advance Rates .................... 41 6.4  Vertical Tunnel Alignment ............................................................................ 42 

6.4.1  General Guidelines ............................................................................. 42 6.4.2  To Keep The External Water Pressure On The Tunnel As Low As Possible, 

The Tunnel Alignment Should Be As Elevated As Possible. Tunnel Gradient ............................................................................................. 42 

6.5  Geotechnical Conditions .............................................................................. 44 6.6  Tunnelling Method ....................................................................................... 44 6.7  Slurry ............................................................................................................ 49 6.8  Minimum Diameter Of The Tunnel .............................................................. 50 6.9  Tunnel Lining Segments ................................................................................ 50 6.10  TBM Facilities For Probing And Ground Improvement ................................ 51 6.11  TBM Maintenance ........................................................................................ 52 6.12  Connection To The Diffuser Shaft ................................................................ 52 6.13  Compound Requirements ............................................................................ 53 6.14  Excavated Soil ............................................................................................... 53 6.15  Survey ........................................................................................................... 53 

SECTION 7  OFFSHORE MARINE TUNNEL OUTLET DIFFUSER SHAFT .............................. 54 

7.1  General ......................................................................................................... 54 7.2  Ground Conditions ....................................................................................... 54 7.3  Inner Shaft Diameter .................................................................................... 54 7.4  Depth of Shaft .............................................................................................. 55 7.5  Dewatering / Buoyancy ................................................................................ 55 7.6  Construction ................................................................................................. 56 7.7  Shaft Mechanics ........................................................................................... 56 7.8  Connection Between Shaft and Tunnel Section ........................................... 57 7.9  Onshore Construction Compound/Berthing Areas ...................................... 57 7.10  Soft Ground Condition Problems for Plant................................................... 57 7.11  Construction Sequence Diffuser Shaft ......................................................... 58 7.12  Survey ........................................................................................................... 58 

SECTION 8  SUMMARY ....................................................................................... 59 

8.1  General ......................................................................................................... 59 8.2  Geological Risk .............................................................................................. 59 8.3  Diffuser Shaft Location ................................................................................. 60 8.4  Additional Site Investigation ........................................................................ 61 8.5  Risk Assessment ........................................................................................... 61 

SECTION 9  CONCLUSIONS .................................................................................. 62 

APPENDIX A  DRAWINGS ...................................................................................... 63 

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:17

Page 50: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

     Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report  

 Doc Ref:  75461/DG44/ Draft 02  Page iv 

 

APPENDIX A – DRAWINGS 

Drawing 1:  Drawing Number ‐ 75461/Tunnel/Concept Design Report/01 

  Drawing Title ‐ Plan of tunnel alignment   

Drawing 2:  Drawing Number ‐ 75461/Tunnel/Concept Design Report/02 

  Drawing Title ‐ Geological cross section 

Drawing 3:  Drawing Number ‐ 75461/Tunnel/Concept Design Report/03 

  Drawing Title ‐ Vertical tunnel alignment 

 

 

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:17

Page 51: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report   

 Doc Ref:  75461/DG44/ Draft 02  Page 1 

Section 1 General 

1.1 Project Overview 

Currently  the  existing  final  effluent  outfall  from  the  Ringsend  Waste  Water  Treatment  Works 

(Ringsend WwTW) discharges  into  the Liffey Estuary at  the North East corner of  the ESB Ringsend 

Poolbeg Power Station. 

The current Ringsend WwTW capacity is 1.8 million PE, which generates an average daily flow of 5.7 

m3/s.  Current  peak  flow  rate  to  the  outfall  is  11.1 m3/s.  The  current  Ringsend WwTW  treatment 

capacity has to be increased to accommodate an average future capacity of 2.4 million PE (2.1 million 

PE, firm), which generates an average daily flow of 7.0 m3/s to the year 2025 horizon.  

As  part  of  the  review  of  upgrading  options  for  the  Ringsend WwTW  the  option  of  diverting  the 

existing final treated effluent discharge culvert into a purpose built long sea outfall tunnel (Ringsend 

LSOT) is being considered. Under such a scenario the existing final effluent discharge outfall location 

at the North East corner of the Ringsend ESB Poolbeg site will become substantially redundant and 

the  final  treated  effluent will  be  diverted  eastwards  to  the  outer  reaches  of  Dublin  Bay  via  the 

Ringsend LSOT for final discharge into deep marine waters approximately 9 km offshore and close to 

Burford Bank. 

The constructed LSOT will involve three key components; 

A large onshore tunnel inlet shaft in the Ringsend Poolbeg peninsula area in the vicinity of the 

ESB Poolbeg power station.  

A large diameter tunnelled section. 

A large diameter offshore marine tunnel outlet diffuser riser shaft and diffuser head (diffuser 

shaft and diffuser head). 

As part of  the scoping and development exercises  to determine  the viability and  issues associated 

with the construction of the LSOT three previous technical workshops were held during March and 

May 2011. 

A  large site  investigation was undertaken starting  in September 2010. Fieldwork was completed  in 

July  2011,  laboratory  testing  and  reporting  is  still  ongoing.  The  final  SI  report  is  expected  in  late 

October 2011. 

1.2 Preferred Tunnel Route 

Currently, the optimum location for the diffuser shaft and diffuser head outfall location is at location 

B3  (See  Fig  1).  The  concept  design  described  within  this  document  is  based  upon  the  tunnel 

terminating at  location B3. This may be subject to change  in subsequent project phases should the 

current optimum location B3 be relocated elsewhere.  

 

 

 

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:17

Page 52: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

 Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report 

 

Page 2  Doc Ref:  75461/DG44/ Draft 02 

 

Fig. 1 Marine site investigation borehole locations and potential diffuser outfall discharge locations 

 

1.3 Tunnel Diameter 

All  statements  and  designs  of  this  report  are  based  upon  an  assumed  finished  internal  tunnel 

diameter of 5 m. This  final  finished  internal  tunnel diameter will be confirmed after a  subsequent 

design phase. Therefore, all statements on depths,  lengths etc.  in this document must be reviewed 

once the finished  internal diameter  is finalised at the subsequent design stage. For the purposes of 

this report the finished outer diameter of the tunnel section is assumed to be 6.5 m.  

 

 

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:17

Page 53: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report   

 Doc Ref:  75461/DG44/ Draft 02  Page 3 

Section 2 References 

This  report  refers  to some project documents, communications and publications. Unless otherwise 

stated, all data  referring  to  soil or  rock properties are based on  the preliminary  site  investigation 

reports from the marine and onshore drilled boreholes received to date from the SI contractor. 

2.1 Project Documents 

The working documents used in the preparation of this report are as follows; 

Constructability Workshop  for Onshore  Shaft &  Tunnel  Elements, March  7‐8,  2011, Output 

report and recommendations, Draft 02, May 2011, DG 32 

Constructability Workshop  for Offshore marine Diffuser  Shaft, May 12, 2011, Output  report 

and recommendations, Draft 02, July 2011, DG 39 

Tunnel Spoil Disposal report, Draft 02, June 2011, DG 34 

Various working drafts of  reports, borehole  logs  and  laboratory  results obtained during  the 

progress of the marine site investigation works.  

2.2 Communications 

Limits of vibration for electrical/mechanical plant at the ESB Poolbeg Ringsend site were provided by 

email from Denis McCabe/ESB to Anthony Kerr/CDM, 2011‐07‐21 and 2011‐07‐25 (75461/20/CI 577 

& CI 578)   

2.3 Project Datum 

All work for this project refers to Irish grid coordinates and to Malin Head Ordnance Datum.  Lowest 

Astronomical Tide (LAT) is ‐2.61 m below Malin Head Ordnance Datum. 

2.4 Cost Estimates 

All costs provided within this report are estimates based upon current costs for comparable works as 

per  information  provided  by  a  number  of  tunnelling  contractors.  The  cost  estimate  information 

provided  by  these  tunnelling  contractors  may  therefore  not  fully  reflect  competitive  market 

conditions. Final submitted tender costs/prices will vary  from the costs  in this report due  to either 

changes in the market or due to strategic interests of particular contractors etc that will prevail at the 

time of tendering.  

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:17

Page 54: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

 Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report 

 

Page 4  Doc Ref:  75461/DG44/ Draft 02 

Section 3 Geological, Geotechnical and Hydrogeological Conditions 

3.1 General 

The following description of geological, geotechnical and hydrogeological conditions is based upon a 

preliminary interpretation of the current findings of the marine site investigation. Since most of the 

reporting  of  results  is  still  ongoing  no  overall  detailed  interpretation  of  the  results  has  yet  been 

undertaken. Therefore, as part of any subsequent project stage it is possible that some descriptions 

or values of geotechnical properties quoted within this report may change. 

Design parameters used within  this  report  are based upon  the preliminary  results of  the ongoing 

laboratory  testing and  represent  the potential  top/bottom  range of potential characteristic values. 

These are  subject  to  further  review and will be detailed  fully as part of  the geotechnical baseline 

report to be prepared at a later stage. 

3.2 Scope of Site Investigation 

A site investigation for this project was undertaken. The extent of the site investigation comprises: 

19 marine boreholes in Dublin Bay (Offshore) 

2 onshore boreholes on the proposed onshore inlet shaft location at Poolbeg/Ringsend where 

piezometers have been installed in both boreholes 

Geophysics investigation (seismic reflection) offshore  

Geophysics  investigation  (seismic  reflection and  refraction, electric  resistivity)  intertidal zone 

and onshore 

Seabed surveys, bathymetry, magnetometer, side scan sonar, at marine borehole locations 

Laboratory tests 

The  marine  site  investigation  fieldwork  is  completed.  Laboratory  testing  is  still  ongoing  (final 

reporting due for completion in late October 2011) and comprises determination of the following: 

Density by immersion in water or water displacement 

Particle size distribution  

Moisture content 

Liquid limit, plastic limit and plasticity index 

Organic Content 

Mass loss on ignition 

Sulphate content  

Shear Strength  

Schmidt rebound hardness 

Uniaxial compressive strength 

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:17

Page 55: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report   

 Doc Ref:  75461/DG44/ Draft 02  Page 5 

Point load strength of rock specimen 

Abrasivity 

Quartz content  

Clay minerals of cohesive soils (sort and percentage of each sort of mineral)   

Rock minerals on rock samples using thin section microscopy 

Swell tests on cohesive soils   

Calcium carbonate content of water samples 

Slake durability tests on rock samples 

Indirect tensile strength by Brazilian test 

Contamination in overburden materials above bedrock 

Water quality in the overburden and the deep bedrock  

Sulphate content 

Field  testing  is completed  (final reporting due  for completion  in  late October 2011) and comprised 

the following: 

Standard Penetration tests 

Menard Pressuremeter tests 

Dilatometer tests 

Packer tests 

Rising head tests (onshore boreholes BH O 01 and BH O 02 only) 

A  technical  assessment  of  the  bedrock  strata  encountered  is  subject  to  ongoing  review  and may 

change following receipt of all final marine site investigation reports.  

The location of all drilled boreholes is shown on Fig. 1. 

3.3 Geology 

3.3.1 General 

The marine  geology  (19 marine  boreholes  drilled)  in  the  project  area  consists  roughly  of marine 

sediments which are followed by glacial till.  In some boreholes (for example Boreholes M20, M21), 

glacial till was not encountered. 

The marine sediments/glacial till are underlain by bedrock. The bedrock surface  is very uneven and 

was found between ca. ‐15 m and – 55 m below seabed level which is ca. ‐18 and ‐65 m to OD Malin 

Head.  

The underlying bedrock of the project area is mostly comprised of the Dublin Calp basin consisting of 

Calp  limestone which  belongs  to  the  Visean  series  of  the  Lower  Carboniferous.  Older  limestone 

formations of the Tournesian series of the Lower Carboniferous were encountered in boreholes M 21 

and M 11.  

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:17

Page 56: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

 Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report 

 

Page 6  Doc Ref:  75461/DG44/ Draft 02 

In boreholes M 22 and M 24 (not part of the current tunnel route – running between onshore and 

offshore  location  B3,  Fig  1)  rocks  of  older  Paleozoic  series,  potentially  Cambrian  and/or  Silurian 

formation, were encountered. This change in strata is likely to be fault controlled. 

The older formation forms the eastern rim of the Dublin Calp basin.  

The most eastern borehole, M 23 (not part of the current tunnel route – running between onshore 

and offshore location B3, Fig 1) has a proven presence of bedrock belonging to much younger series 

of the Jurassic era. This major change of strata is fault controlled.  

In  onshore  borings,  heavily  fractured  dolomitised  limestone  was  encountered  which  might  be 

interpreted as a possible continuation of the Howth fault. It is to be expected that heavily fractured 

bedrock around the proposed onshore shaft location will be encountered. 

Granitoidic rocks, initially predicted prior to the commissioning of the marine site investigation, to be 

present in the project area of Dublin Bay have been not encountered. 

A more focused geological bedrock determination will be undertaken at a later stage to support the 

preparation of the geotechnical baseline report. Currently the Geological Survey Ireland (GSI) are also 

considering  the possibility of  funding a Research Masters project  to  look at  the marine geological 

findings in greater detail. If this Masters project does progress, and in a timely fashion, it may provide 

further information for inclusion in the geotechnical baseline report. 

The proposed  tunnel  route between onshore boreholes BH O 01 & O 02 and marine borehole BH 

M11 (at the optimum diffuser location B3) is shown on Drawing 1 in Appendix A.  A geological cross 

section for the proposed tunnel route is shown on Drawing 2 in Appendix A 

3.3.2 Overburden  

Marine Sediments 

The  depth  of marine  sediments  varies  across  the  Bay  to  approximately  between  8  ‐  20m  below 

seabed level. However in BH M09 marine sediments were encountered to a greater depth of 32.4m 

below seabed level. 

The marine sediments comprised a mixture of muds, grey coloured silty ‐ gravelly sands, silty – sandy 

clays  and  fine‐  coarse  gravels with  very  occasional  cobbles  of  a  grey  argillaceous  limestone  and 

occasional  quartzite.  Cobbles when  present  ranged  from  40mm  to  130mm  in  size.  Gravels were 

described as being sub‐angular to sub‐rounded in shape and were composed of grey limestone.  Sand 

is described as fine or medium in most of the samples. Layers of sandy gravel were also described as 

containing occasional pockets  (<60mm) of a dark grey  silty  clay. Marine  sediments  sampled  in BH 

M10 consisted of silt or sand and were described as having a slightly organic odour. Shell fragments 

(5‐10mm) were present  in  the  sand  layers on occasion and  identified as bivalve  shells, or  in  some 

cases as razor shells. 

Glacial Till 

The  glacial  till  comprises  layers of  sands,  clay,  gravels,  cobbles  and boulders. Glacial  till  is usually 

described as a grey slightly clayey sandy gravel with occasional cobbles and boulders of  limestone, 

see Figs. 2a‐2e. Gravel is usually angular to rounded in shape, and can be fine to coarse and usually of 

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:17

Page 57: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report   

 Doc Ref:  75461/DG44/ Draft 02  Page 7 

a light grey coloured limestone. Cobbles found in the till are described as being sub‐angular in shape 

and  are  of medium  strong  or  strong  dark  grey  argillaceous  limestone.    Boulders  in  general were 

described as a dark grey argillaceous  limestone with calcite veining  (<20mm) present and  in  some 

cases  contained  rare  pyrite  crystals  (<5mm).  The  occasional  cobble  of  green  quartzite  is  also 

described.  The  glacial  boulder  clay  is  usually  described  as  firm  grey  colored  gravelly  sandy  clay 

(occasionally soft) with occasional to many cobbles and boulders of limestone. Boulders described in 

BH M11  are  large  (300mm  x  full  core  circumference)  and  are  of  strong  dark  grey  argillaceous 

limestone.  

The glacial till  is a highly heterogenous type of soil.  It consists of all kinds of grain sizes, comprising 

clay size grains to boulder size grains. Layers or  lenses with more or  less pure clay, pure sand, pure 

gravel occur as well as layers containing a mixture of the above (Figs. 2a – 2e). The maximum size of 

the boulders varies up to 1 ‐ 2 m. 

Fig 2a: Glacial Till – Clay grain size to gravel grain size (BH M09, 42.50 – 44.00 m) 

Fig 2b: Glacial Till – Clay grain size to Cobble grain size (BH M09, 44.00 – 45.50 m) 

Fig 2c: Glacial Till – Clay (BH M08, 17.80 – 19.30 m) 

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:17

Page 58: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

 Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report 

 

Page 8  Doc Ref:  75461/DG44/ Draft 02 

Fig 2d: Glacial Till – Coarse gravel to cobble grain size (BH M05, 29,95 – 31.45 m) 

Fig 2e: Glacial Till – Boulder (BH M05, 33.45 – 34.95 m) 

 

3.3.3 Bedrock 

Calp Limestone 

The Calp  limestone consists  in particular of  layers of  limestone as well as of  layers of claystone. A 

section of typical cores is shown in Figs. 3a – 3c.  

The limestone is a medium strong dark grey coloured argillaceous limestone. Crinoid stems and shell 

fragments are frequently found in the bedrock, usually measuring < 4mm diameter. It displays calcite 

veining  in many  locations  and  this  veining  is  sometimes  described  as  closely  spaced  subvertical 

veining. These veins can range in size between <0.5mm to < 5mm.  

The top of the Calp limestone was generally quite fractured and often recovered as fragmented non‐

intact  moderately  weathered  limestone.  The  deeper  limestone  is  mostly  intact  and  competent. 

However, fractured zones occur in the deeper sections as well.  

Fractures in the limestone can range from locally very closely spaced to medium spaced, and can be 

described  as  rough  to  smooth,  and  are  generally  inclined.  Some  fractures  in  the  limestone  are 

reported as infilled locally with either clay or sand layers.  

Pyrite  crystals were  also present  in  small  amounts  in  the  limestone,  and  are described  as  rare  to 

frequent in some cores. The pyrite crystals were usually < 2mm in size.  

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:17

Page 59: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report   

 Doc Ref:  75461/DG44/ Draft 02  Page 9 

Fig 3a: Calp limestone, unweathered, few fissures (BH M 07, 37.00 – 38.40 m) 

Fig 3b: Calp limestone, unweathered, few fissures (BH M 10, 59.25 – 60.80 m) 

Fig 3c: Calp limestone, weathered, fractured, fissured, fissure infilling consisting of sand, silt and clay (BH M 14, 60.30 – 70.80 m) 

 

Limestone formations of the Tournesian series of the Lower Carboniferous  

Limestone formations of the Tournesian series of the Lower Carboniferous were found at boreholes 

BH M 21 and BH M 11*, see Fig. 4a –  4e. 

* It should be noted that BH M 11 corresponds to the location of the proposed offshore marine tunnel diffuser riser shaft. 

The rock is in general slightly more weathered, fractured and fissured than the Calp limestone. 

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:17

Page 60: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

 Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report 

 

Page 10  Doc Ref:  75461/DG44/ Draft 02 

Fig 4a: Limestone  formations of  the Tournesian series of  the Lower Carboniferous, unweathered, fractured, fissured (BH M 11, 33.40 – 36.40 m) 

Fig 4b: Limestone  formations of  the Tournesian series of  the Lower Carboniferous, unweathered, fractured, fissured (BH M 11, 46.80 – 48.80 m) 

Fig 4c: Limestone  formations of  the Tournesian series of  the Lower Carboniferous, unweathered, fractured, fissured (BH M 21, 26.00 – 29.00 m) 

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:17

Page 61: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report   

 Doc Ref:  75461/DG44/ Draft 02  Page 11 

Fig  4d:  Limestone  formations  of  the  Tournesian  series  of  the  Lower  Carboniferous, weathered, fractured, fissured (BH M 21, 44.75 – 48.00 m) 

Fig  4e:  Limestone  formations  of  the  Tournesian  series  of  the  Lower  Carboniferous,  heavily weathered (BH M 21, 56.75 – 58.25 m) 

 Rock at onshore site locations 

Bedrock at the proposed onshore shaft  location site was in general very severely fractured (see Fig. 

5a – 5e). A fault zone has likely been encountered at this location.  

Fig 5a: , BH O 01, very heavily fractured bedrock (BH O 01, 45.5 – 47.00 m depth) 

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:17

Page 62: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

 Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report 

 

Page 12  Doc Ref:  75461/DG44/ Draft 02 

Fig 5b: , BH O 01, very heavily fractured bedrock (BH O 01, 48.50 – 50.00 m depth) 

Fig 5c: , BH O 02, very heavily fractured bedrock (BH O 02, 55.50 – 56.50 m depth) 

Fig 5d: , BH O 02, very heavily fractured bedrock (BH O 02, 57.50 – 59.00 m depth) 

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:17

Page 63: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report   

 Doc Ref:  75461/DG44/ Draft 02  Page 13 

Fig 5e: , BH O 02, very heavily fractured bedrock, (BH O 02, 69.50 – 70.80 m depth)  

 

3.4 Geotechnical Properties 

3.4.1 Sediments 

The SPT results in the marine sediments range in general between N = 20 – 30 blows which indicates 

soils of considerable density/consistency. In some of the boreholes a standard penetration test (SPT) 

“N” value of 0 blows/450 mm penetration was recorded which indicates presence of extremely very 

soft material. The expected presence of such soft materials to significant depth had been established 

previously as part of the previous geological desk study exercise, which was undertaken  in advance 

of tendering the marine site investigation contract. Additionally, experience gathered from very deep 

leg penetration of  the  legs of  the  jack‐up drilling barges used  in  the marine  site  investigation also 

shows that the marine sediments are very heterogenous and soft to depths of up to  20 m or more 

below seabed.  

3.4.2 Glacial Till /Boulder Clay 

The density  ranges between 2.0  and 2.6  g/cm3. Plasticity of  the  clay  fraction  is  in  general  low  to 

medium. Consistency ranges from soft to firm. N values from SPT tests generally range from about 22 

to more than 50 blows. The till is therefore mostly dense to very dense. 

The  fines  consists  mostly  (more  than  70  %)  of  clay  minerals  (kaolinite,  illite,  interstratified 

illite/smectite and chlorite). Remaining parts are quartz and calcite. Sand and gravel grains consist 

mainly of quartz and limestone. Swelling tests indicate in general no considerable swell behavior. In 

one sample of BH M 06, swelling pressure of 10 kN/m² was recorded, in one other sample (BH M 23,) 

swelling pressure of 7  kN/m² was  recorded. The  final  value  for  swelling pressure  selected  for  the 

static analyses design work will be determined following a detailed analysis of the site  investigation 

results. This information will subsequently be included as part of the geotechnical baseline report. 

The elasticity moduli range between 5 MPa and 36 Mpa.  

Effective  friction  angle  ranges  between  20  and  40  degrees,  effective  cohesion  ranges  in  general 

between  5  to  30  kN/m².  In  sections  containing  less  clay  and more  sand  and  gravel  fraction  the 

friction angle ranges between 30 and 40 degrees, whilst the cohesion is less than 5kN/m². 

Abrasion tests show results with abrasivity indices up to 1776 g/t which indicates that the till may be 

classified as “highly abrasive”. The clay from the clay sections may exhibit high clogging potential due 

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:17

Page 64: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

 Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report 

 

Page 14  Doc Ref:  75461/DG44/ Draft 02 

to  their plasticity and consistency. This will be determined  following a detailed analysis of  the site 

investigation  results.  This  information  will  subsequently  be  included  as  part  of  the  geotechnical 

baseline report. 

3.4.3 Bedrock 

The Calp limestone consists mostly of limestone rock but as well as of some claystone rock sections. 

The limestone rock sections are in general very stable and competent. In cases of presence of clayey 

fillings or fractured zones, the stability  is reduced. The claystone rock sections   are  in general more 

weathered and less stable than the limestone rock sections. The limestone rock parts do not change 

in general in water storage tests. Slake durability tests on limestone parts indicate that limestone is 

of  high  to  very  high  durability.  Slake  durability  tests  on  the  claystone  parts  indicates  a medium 

durability 

The rock  is  in general of a very stiff type. Elasticity moduli of more than 50,000 MPa  in  intact rock 

were  encountered.  In more  weathered/disturbed  sections  an  elasticity modulus  of  ca.  5,000  to 

10,000 MPa was found. 

The unconfined compression strengths range from ca. 20 to 170 MPa. 

A rock abrasity index (RAI) of less than 30 in general has been derived from the reported data so far 

(with  single  highest  values  of  ca.  40).  The  abrasivity  is  therefore  classified  as  low.  Some minor 

sections may be classified as medium abrasive.  

The  bedrock  around  the  potential  diffuser  location  differs  from  the  properties  described  above. 

Unconfined compression strength and stiffness  is lower. A final description of the properties must be 

worked out as part of the geotechnical baseline report. 

The bedrock around the onshore location differs from the properties described above. The bedrock is 

highly  fractured. No  sufficient  samples  could  be  cored  to  perform  unconfined  compression  tests. 

Based on this and on visual  inspection of the cores  it  is believed that the stiffness of the bedrock  is 

lower  than  described  above  (less  than  5,000 MPa)  A  final  description  of  the  properties must  be 

worked out as part of the geotechnical baseline report.  

3.5 Hydrogeological Conditions 

3.5.1 Onshore 

Piezometers have been installed in the two onshore boreholes BH O 01 and BH O 02 with response 

zones at depths of ‐42.65 – ‐47.65 m OD (BH O 01) and ‐23.30 – ‐29.80 m OD (BH O 02) respectively 

one in bedrock (BH O 01) and one in overburden (BH O 02). 

The water levels are being continuously monitored in the two onshore boreholes. The water levels in 

both  BH  O  01  and  BH  O  02  continue  to  correspond  to  the  main  sea  level  and  are  oscillating 

continuously in unison with the tides (Fig. 6.)  

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:17

Page 65: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report   

 Doc Ref:  75461/DG44/ Draft 02  Page 15 

Fig 6: Sea level and ground water level – Onshore BH O 01 and BH O 02   

 

Rising head tests in the bedrock sections of the onshore boreholes have been undertaken in order to 

determine  the permeability.  It was not possible  to undertake packer  tests due  to adverse ground 

conditions – i.e. the highly fractured nature of the rock. 

Coefficients  of  permeability  ranges  from  K  =  2.8*10‐4  m/s  to  1.4*10‐5  m/s.  For  preliminary 

calculations  provided  in  this  document  a  coefficient  of  permeability  of  K  =  1*10‐4 m/s  as  a  likely 

medium value is used to represent bedrock at the onshore shaft site. 

The fissures in bedrock at the onshore shaft location are hydraulically connected since a response in 

ground water  level  in BH O 01 was recorded during  the rising head pump  tests  in BH O 02. This  is 

demonstrated in Fig. 78. At 10:05 hrs the pumping for the rising head test in BH O 02, 86.5 m depth, 

starts. The ground water level (in borehole O 01, red curve), normally linked to the tides (blue curve) 

and  supposed  to  rise at  the  time of  the  test, decreases. When pumps  turned off at 10:30 hrs  the 

ground water  level  in borehole O 01  rises  immediately and  significantly  to  reflect  the  tide  level at 

that time. The same behaviour is apparent when the rising head test at 92.5 m depth in borehole O 

02 was undertaken at 15:57 hrs.  

 

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:17

Page 66: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

 Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report 

 

Page 16  Doc Ref:  75461/DG44/ Draft 02 

Fig 7: Response of ground water level in BH O1 whilst undertakingrising head test in BH O2 

3.5.2 Offshore 

Assuming that the marine sediments and the glacial  till strata  in  the marine environment have the 

same properties as those encountered for the onshore boreholes, it is likely that the ground water in 

the bedrock is connected to the main sea level, too in the marine area. 

Packer  tests  were  undertaken  successfully  in  the  marine  boreholes  to  assess  bedrock  mass 

permeability. Permeability of bedrock is in general low (coefficient of permeability of less than 1*10‐6 

m/s). For some packer tests, as for example in BH M16 (two tests) or in BH M17 (one test), no water 

absorption was recorded, the tested sections are therefore  impermeable. However,  in some highly 

fissured  /  fractured  sections  of  bedrock  higher  permeability  was  encountered  (coefficient  of 

permeability of more than 1*10‐6 m/s). For this reason as part of the site investigation interpretation 

exercise  a  range  of  permeabilities  should  be  developed  for  further  inclusion  in  the  geotechnical 

baseline report. 

3.5.3 Ground Water Quality 

Water analyses taken from the onshore boreholes BH O 01 and BH O 02 show that the ground water 

is sea water dominated since the chloride content  is high (BH O 01, 4.5 m depth: 8,200 mg/l, BH O 

02, 10.20 m depth: 17,000 mg/l, 104.00 m depth: 13,000 mg/l).Normal chloride content of sea water 

ranges from ca. 18,000 to 21,000 mg/l with variations for humid/arid sea area conditions as well as 

for estuary conditions. 

Sulphate content is elevated (BH O 01, 4.5 m depth: 1,300 mg/l, BH O 02, 10.20 m depth: 2,300 mg/l, 

104.00 m  depth:  1,700 mg/).  This  correlates  to  the  pyrite  encountered  in  the  limestone  and  sea 

water environment.  

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:17

Page 67: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report   

 Doc Ref:  75461/DG44/ Draft 02  Page 17 

Aggressive Carbon Dioxide content is in general low (BH O 01, 70.00 m depth: 2 mg/l, BH O 02, 74.50 

m depth: 7 mg/l), only one result displays a slightly elevated level of 30 mg/l (BH O 02, 104 m depth). 

3.6 Contamination of Soils and Water 

Chemical analyses on soils/rock samples and water samples has been undertaken for the purposes of 

establishing  potential  levels  of  contamination.  This  information  is  still  being  collated  and will  be 

provided in detail in a separate report at a later stage. 

However,  preliminary  assessment  of  the  results  so  far  indicate  that  the  level  of  contamination 

encountered will not affect  the  likely  selection of  the  final  shaft construction  technique, or  tunnel 

alignment  selected.  This  issue  will  be  reviewed  at  a  later  stage  following  a  further  detailed 

assessment of the results from the soil/water contamination test samples when the separate report 

is available. 

 

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:17

Page 68: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

 Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report 

 

Page 18  Doc Ref:  75461/DG44/ Draft 02 

Section 4 Overall Construction Layout and Design 

4.1 Linking of Outfall Elements 

The construction of the tunnelled section is the most critical part of the outfall structure in terms of 

risks,  costs  and  time  frame.  The  critical  elements  of  tunnelling  are  the  geotechnical  and 

hydrogeological conditions  in which  the  tunnel  is driven.  It  is  therefore crucial  to choose a vertical 

tunnel  alignment  according  to  the  geotechnical  and  hydrogeological  conditions  offering  the  best 

conditions  in  terms of  lowest  geotechnical  risk,  lowest  cost  and highest  advance  rates.  The most 

promising geotechnical conditions for the tunnel are  in the underlying bedrock (see section 6). The 

preliminary assessment of the results of the geotechnical conditions to date indicate that the tunnel 

should  be advanced at a level of ca. ‐60 m  to ‐70 m to OD approx. 

However,  the  constructability of  the  shafts  (onshore  and offshore)  cannot be  separated  from  the 

tunnelled section and vice versa. The ground conditions encountered at the onshore shaft  location 

were found to be unexpectedly very poor  in terms of stability and permeability of the bedrock (see 

section 5). That means that the deeper the onshore shaft is, the higher both the risks and the costs of 

construction are. The onshore shaft may therefore become a programme critical path element of the 

construction as it has to be completed in advance of the tunnel drive. To keep both the programme 

risks and  the construction costs of  the onshore  shaft as  low as possible,  the onshore  shaft  should 

therefore  be as shallow as possible. 

4.2 Design Life 

The entire long sea outfall system, onshore shaft, tunnel, offshore shaft should have a design life of 

120 years.  

4.3 Exposure Class for Concrete 

Although laboratory testing is still ongoing a preliminary analyses of a groundwater sample at boring 

BH O  01  indicates  an  elevated  level  of  Sulphate  content,  Chloride  and  partly  of  Carbon  dioxide. 

Therefore as a minimum the concrete exposure class to meet these requirements has to be specified 

as part of the Baseline Tender Reference Design. 

4.4 Geotechnical Baseline Report 

It  is  essential  for  tendering  and  awarding  of  the  tunnel/shaft  construction  contract  that  the 

geotechnical data gathered from the marine site investigation is assessed and interpreted. The main 

reasons for this are to: 

allocate the results to geological and/or geotechnical units of homogenous properties 

analyse results statistically,  

interpret and compare results from different testing methods and  

provide  a  comprehensive  characterization  and  description  of  the  geotechnical  and 

hydrogeological properties and behaviour.  

As  part  of  this  detailed  assessment  and  interpretation  characteristic  design  parameters  will  be 

provided to determine characteristic design loads and resistances. 

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:17

Page 69: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report   

 Doc Ref:  75461/DG44/ Draft 02  Page 19 

This  output  will  form  a  key  input  to  the    geotechnical  baseline  report.  The  comprehensive 

geotechnical  baseline  report  will  be  required  as  a  key  support  document  for  inclusion  with  the 

tunnel/shaft contract tender documentation. 

Geological/Geotechnical/Hydrogeological technical specifications to be used as a basis for tendering, 

awarding and design will be detailed as part of this geotechnical baseline report. 

4.5 Baseline Tender Reference Design (BTRD) 

An  Employer  prepared  baseline  tender  reference  design  (BTRD)  will  be  required  for  tendering 

purposes. 

The key elements of the project – onshore shaft, tunnel and diffuser shaft ‐ should be dealt with  in 

separate sections.  

Part of this BTRD  is for each key element to assess and  interpret the geotechnical data gathered  in 

the marine site investigation in terms of construction requirements, which is essentially for tendering 

and awarding of the construction contract. 

A key requirement is to define sections of homogenous geotechnical and hydrogeological properties 

along the tunnel route so as to determine: 

a) Tunnel driving requirements such as: 

Tunnel face stability (preliminary tunnel static analyses must be undertaken) 

Tunnel face support 

Water pressure 

Water ingress (Permeability) 

Abrasivity / Cutting tools 

Clogging potential 

Additional measurements (for example grouting) 

Settlements 

b) Design of tunnel lining 

Rock mass dead load 

Stiffness 

Strength 

Deformation of lining 

Water quality 

Additional supporting measurements as well as some “emergency tunnel driving measurements”  in 

case of unexpected ground conditions must be defined also. 

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:17

Page 70: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

 Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report 

 

Page 20  Doc Ref:  75461/DG44/ Draft 02 

A number of  tunnel  face conditions  for no: of homogenous  tunnel driving  requirements has  to be 

defined and a prediction of their location in the tunnel route and their percentage of the total tunnel 

length. 

All these assessments lead to the development of the technical specifications as a basis for tendering 

awarding and design which will be provided within that report. The output has to be reported  in a 

Tunnelling Baseline Report (TBR). 

Similar work should be undertaken for both onshore and diffuser shaft. 

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:17

Page 71: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report   

 Doc Ref:  75461/DG44/ Draft 02  Page 21 

Section 5 Onshore Tunnel Inlet Shaft 

5.1 General 

The purposes of the onshore shaft are: 

1. Temporarily  use  as  launch  pit  for  tunnelling  operations  and  access  to  tunnel  during  tunnel 

construction  stage,  i.e  the  onshore  shaft  construction  must  guarantee  a  safe  working 

environment. 

2. Permanent use as conveyance pipe for final WwTW plant effluent 

The temporary use as a  launch pit for tunnelling operations ‐ TBM/Other ‐ will determine the  inner 

shaft  diameter,  and  the  shaft  construction  technique  to  be  adopted  including  the  retaining wall 

system / shaft dewatering system. 

5.2 Ground Conditions 

Existing ground  level at  the onshore shaft  location  is ca. + 4.7 m OD. The  first 2  ‐ 5 metres below 

existing ground level consists of made ground. Below the made ground there is approximately ‐18 to 

‐19.7 m of marine and/or fluvial sediments. This is underlain by approximately 14 m to 16 m of glacial 

till. The rockhead level for the underlying bedrock is at ca. ‐34 m OD. 

The  rock  is  significantly heavily  fractured up  to  the borehole  site  investigation depth of ca. 106 m 

(102 m OD) and highly permeable. Coefficients of permeability are in an order from K = 1*10‐2 m/s to 

1 *10‐5 m/s. (See Section 3.5). For the preliminary calculations provided in this report a coefficient of 

permeability of K = 1*10‐4 m/s has been assumed for the bedrock at the onshore shaft location. This 

must be reviewed once the marine site investigation reporting is finalized. 

The  ground  conditions  encountered  at  the  onshore  shaft  location  are  unexpectedly  very  poor  in 

terms of stability and the bedrock exhibits very high levels of permeability. 

5.3 Vibrations 

The vibration limit at the ESB steam turbine adjacent to the red brick admin and control building ca. 

200 m in distance from the proposed onshore shaft location is 11 mm/sec (Limitation of vibration at 

ESB site, Emails Denis McCabe/ESB to Anthony Kerr/CDM, 2011‐07‐21 and 2011‐07‐25). Vibrations in 

excess of this limit will trip the turbine using via the inbuilt seismic probes. For design purposes it has 

been  assumed  that  this  limit  will  apply  for  vertical  and  horizontal  directions  as  well  as  for  all 

frequencies. 

5.4 Inner Shaft Diameter 

The inner shaft diameter has to match the requirements for its use as a tunnel launch pit TBM/Other. 

Based on  current project experience and  the  results of  the  constructability workshop  for onshore 

shaft and tunnel elements, March 7‐8, 2011, the inner shaft diameter will be in the range of 15 and 

20 m, depending upon the final tunnel construction design and its assembly requirements. 

 

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:17

Page 72: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

 Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report 

 

Page 22  Doc Ref:  75461/DG44/ Draft 02 

For the purposes of this report, both  limits (15 m and 20 m) are used to provide the  likely extreme 

scenarios. 

5.5 Minimum Depth of Shaft 

The minimum  depth  of  the  shaft  is  controlled  both  by  the  requirements  of  the  vertical  tunnel 

alignment as well as by the level of risks on the programme and the construction costs as well as the 

need to keep the H&S  impacts  low.  It  is therefore prudent to keep the onshore shaft as shallow as 

possible.  

Due to poor ground conditions the rock mass overburden above the top of the tunnel should be at 

least three times the externally excavated tunnel diameter (6.5 m, see above) as a minimum so as to 

match tunnel mechanics requirements. This is roughly at:  

‐ 34 m to OD (rock head level) – 3*6.5 m = ‐ 53.5 m to OD.  

The tunnel bottom would then be at:  

‐ 53.5 m to OD – 6.5 =  ‐60 m to OD 

The shaft bottom should also be kept roughly 2 m below the bottom of the tunnel, this is at: 

‐ 60 m to OD – 2 = ‐62 m to OD.  

Considering that the existing ground level is roughly at + 4.5 m to OD, the depth of the shaft equals 

to: 

  + 4.5 m to OD – (‐ 62 m to OD) = 66.5 m approx 

This is shown in Fig. 8. 

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:17

Page 73: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report   

 Doc Ref:  75461/DG44/ Draft 02  Page 23 

 

Fig 8. Depth of the onshore shaft (Blue line = ground water level) 

 

5.6 Shaft construction 

5.6.1 Shaft Construction Techniques In General 

The construction of  the onshore  shaft and  its excavation are  strongly  interlinked. For  the onshore 

shaft  to be sunk  in highly permeable ground conditions,  the  first  things  to decide are both how  to 

keep the shaft dewatered and provide ground support during construction. In general there are two 

options:  

1. Dewatering of the shaft by drawdown of the groundwater table during the construction phase. 

Use of a retaining wall system as ground support.  

2. Application of an impermeable vertical and horizontal shaft lining or lowering the permeability of 

the ground by grouting (Ground freezing could be applied also). Use of a retaining wall system as 

ground support. Vertical impermeable lining and retaining wall are normally combined. 

The two systems have the following impacts. 

1  Drawdown of the groundwater table 

Whilst such systems are normally commonly applied for depths of drawdown only up to 15 – 20 m, 

an application for this proposed deeper onshore shaft is theoretically possible. This requires lowering 

the groundwater table to at least 1 m below the shaft bottom i.e . to ca. ‐ 63 m OD. This can only be 

achieved using deep wells around the shaft in which submerged pumps are used to pump the water 

out. These wells must be sunk significantly deeper than the target shaft depth. A retaining wall must 

also be applied as a shaft  lining to support the ground. Considering the ground conditions and  the 

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:17

Page 74: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

 Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report 

 

Page 24  Doc Ref:  75461/DG44/ Draft 02 

earth pressure at the target depth of the shaft (‐62 m OD), only a bored pile wall or a diaphragm wall 

could be constructed as a retaining wall. 

The theoretical discharge and the radius of the cone of depression of the groundwater table can be 

calculated  using  the  formulae  for  Dupuit‐Thiem  (Discharge)  and  Sichardt  (Radius  of  cone  of 

depression), see Fig. 9.  

Fig. 9: Analysis of discharge for an unconfined aquifer. 

A calculation of the discharge for an onshore shaft of 15 m in diameter (as this leads to the minimum 

discharge) and of 66.5 m in depth is given is Fig. 10. This diameter was selected in order to determine 

the  likely  minimum  water  flow  rates  which  will  have  to  be  dealt  with  during  construction.  By 

implication a contractor constructing a larger diameter shaft will have to deal with larger flow rates 

than those calculated below. 

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:17

Page 75: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report   

 Doc Ref:  75461/DG44/ Draft 02  Page 25 

Fig. 10: Calculation of water discharge and  radius of  cone of depression  for a  shaft of 15 m  in diameter and of 66.5 m in depth. 

A minimum water discharge of roughly 2,500 m³/h must be assumed. This calculation represents a 

minimum discharge as  the minimum shaft diameter was chosen and  this calculation does not  take 

account of any boundary  condition  such as  the  fact  that  the  shoreline  is only a  couple of metres 

away. Inclusion of these boundary conditions will increase the predicted discharge significantly. The 

predicted discharge  is also  likely to  increase because of  increase of permeability caused by erosion 

effects of fines in the rock fissures due to the high hydraulic gradients.  

The dewatering system has to be kept in operation until an inner concrete structure is cast in place. 

The predicted drawdown, the radius of the cone of depression and the discharge are very significant. 

This will cause significant impacts: 

Change of the groundwater regime for the entire construction period within a radius of ca. 1.9 

km from the onshore shaft. 

Lowering of groundwater table will  increase the effective vertical dead  load of the ground  in 

the area of drawdown due to  loss of buoyancy of the ground. Settlements of the ground will 

occur which will affect the buildings in the vicinity of the onshore shaft i.e. the nearby adjacent 

ESB buildings and facilities in particular. 

The  onshore  shaft  is  located  in  an  old  industrial  area.  It  is  very  likely  that  spots  of  groundwater 

contamination are present  in  the vicinity.  (See  section 3.6). Contamination  levels are detailed  in a 

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:18

Page 76: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

 Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report 

 

Page 26  Doc Ref:  75461/DG44/ Draft 02 

separate  report.  However,  irrespective  of  the  level  of  contamination  present,  if  dewatering  is 

adopted  then  any  existing  contamination will migrate  towards  the  shaft. Based upon  the  level of 

contamination encountered onsite water treatment would then be required prior to disposal off site 

of the pumped groundwater. 

Given however,  that  the  preference  is  to use  an  impermeable  system primarily because of other 

more  technical  reasons  as  detailed  below  ‐  a  dewatering  system  can  be  avoided.  The  issue  of 

dewatering  and  treating  contaminated  ground  water  should  then  be  significantly mitigated  and 

become less of a concern.  

2  Impermeable vertical and horizontal shaft lining / Reduction of ground permeability 

The application of  these  systems  combines both  keeping  the  shaft dewatered and  supporting  the 

ground. Two options for vertical lining elements will be applicable: 

a  Construction of a diaphragm wall 

b  Reduction of permeability of the ground by pre grouting (or ground freezing). 

Both options require an  impermeable shaft bottom (“horizontal  lining element”) as well. This could 

be achieved either by bedding the vertical shaft lining in suitable aquicludes or by technical measures 

such as grouting, freezing or casting concrete underwater to form rafts for the shaft base. Both must 

match the uplift stability criteria re. buoyancy. 

The two systems are described below (see also Fig.11). 

a  Construction of a diaphragm wall 

A diaphragm wall of reinforced concrete (RC) is constructed by excavating a trench in which 

concrete  is  then cast. The  trench  is normally excavated  in sections of 2 – 2.8 m  in width. 

Trench wall  supporting  during  excavation  is  normally  undertaken  using  bentonite  slurry. 

The trenches are excavated, RC cages installed, and then the concrete is cast.  

To guarantee a sufficient overlapping at section transitions zones a minimum thickness of 

the wall is required to overcome deviations from verticality of excavation. This determines 

the thickness of the diaphragm wall rather than static requirements. A wall thickness in the 

order of 1.00 to 1.20 m is normally applied for a shaft depth such as that being proposed.  

b  Reduction of permeability of the ground by grouting 

Grouting is a permanent measure. Borings will be sunk down to target depth through which 

grout  is  then  pumped  into  the  pores/fissures  of  the  ground.  The  grout  fills  the 

pores/fissures  which  in  turn  reduces  the  effective  space  for  water  flow,  i.e.  the 

permeability. The strength of the grouted ground  increases significantly as well due to an 

increase  of  its  cohesion  if  cement  based  grout  is  applied.  This  is  a  very  common 

construction  technique and  is often used  if both  functions  (reduction of permeability and 

increasing  of  strength)  are  required.  The  improved  ground  itself  then  works  as  an 

impermeable  retaining  wall.  The  final  shaft  then  only  requires  a  thin  inner  lining  of 

shotcrete  (sprayed concrete). However, grouting of  the overburden, esp.  the glacial  till  is 

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:18

Page 77: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report   

 Doc Ref:  75461/DG44/ Draft 02  Page 27 

only possible using  jet‐grouting  techniques, which  is normally more expensive  than other 

techniques. 

Buoyancy forces are normally controlled by the dead weight either of an aquiclude, or of the grouted 

soil slab or the underwater cast concrete raft.  

The principles of these construction techniques are shown in Fig 11. 

Excavation starts once the vertical retaining walls (Grouted soil/rock, diaphragm wall) are completed. 

The excavation can either be undertaken in the dry or under water. Underwater excavation can only 

be undertaken without any visual inspection during excavation. The tear‐out/rippability force of any 

under water excavator suitable for the envisaged depth is very limited and likely to be unsuitable for 

this kind of bedrock. Therefore an underwater excavation technique is not recommended. 

 a) aquiclude as horizontal lining element 

 

b) grouted soil/rock as horizontal lining element,  

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:18

Page 78: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

 Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report 

 

Page 28  Doc Ref:  75461/DG44/ Draft 02 

 

c) underwater concrete raft as horizontal lining element 

Fig 11: Shaft constructions principles grouting (left)  and diaphragm wall (right) a) aquiclude as horizontal lining element,  b) grouted soil/rock as horizontal lining element,  c) underwater concrete raft as horizontal lining element 

 

Although  these  systems are considered as  impermeable  from a  technical point of view  it  is nearly 

impossible  to make  the  systems  fully  impermeable.  A  small  amount  of  ground water  inflow will 

always be present but  this can be controlled by  technical measurements,  for example by grouting 

techniques. This unavoidable remaining water inflow can be specified as a target limit in the contract. 

If the amount  is  lower than the  limit during construction,  it can be accepted,  if  it  is above the  limit, 

the contractor has to take measurements to reduce the inflow. This procedure is quite common. The 

standard agreed amount of remaining water inflow is normally considered as 2.0 – 3.0 l/s per 1,000 

m² lining surface (surface in contact with water. This leads to a water inflow of  

Q =   [π * D * h + π * D² / 4] * 2.0 …. 3.0 l/(s*1,000 m²)  

= [π * 15 * 63 + π * 15² / 4] * 2.0 …. 3.0 =   6.3 …. 9.4 l/s       = 23…….34 m³/h 

This  level of water  ingress  is  easily  controllable.  The  impact on  the  groundwater  regime must be 

assessed and detailed in the design phase. 

The  groundwater  in  the  shaft  has  to  be  discharged  during  excavation  only.  This  is  particularly 

advantageous  when  contaminated  water  is  present  as  the  groundwater  volumes  to  be 

treated/disposed off are kept  to a minimum. The amount of water equals  roughly  the  inner  shaft 

volume times the pore content of the soil  

Ground freezing has the same effect as grouting because the ground water in pores are frozen. The 

ground will become  fully  impermeable and  its strength  increases. A cooling agent running  through 

(vertical) bored pipes is applied to freeze the ground water. The freezing equipment must be kept in 

operation during the whole construction period of the shaft until a stable  lining  is completed. Once 

the structures are completed, the ground freezing is switched off and the ice melts. It is a temporary 

measure which is normally completely reversible. Ground freezing is a very expensive method due to 

high costs for energy and cooling agents and mostly applied when no other techniques are possible, 

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:18

Page 79: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report   

 Doc Ref:  75461/DG44/ Draft 02  Page 29 

or  if permanent measures  like cement grouting are not allowed due to environmental reasons. For 

these reasons ground freezing has not been considered further in this concept design report. 

A  construction  system using drawdown of  the  groundwater  table has  significant disadvantages  as 

described above. It is therefore strongly recommended that the construction system adopted should 

focus on the construction of an impermeable system. 

5.6.2 Shaft Concept Design 

A very basic preliminary design for the proposed onshore shaft based on the general guidelines on 

shaft construction techniques outlined above is given within this section. 

a. Horizontal lining element (shaft base) 

A man made horizontal impermeable lining (shaft base) must be applied because the existence of an 

aquiclude at the base of the proposed shaft has not been proven from the marine site investigation. 

Considering  the depth of  the  shaft  and  the  implication  for underwater  casting of  concrete  at  the 

depths  envisaged  re  the  accuracy  of  raft  geometry  /  thickness  etc,  a  solution  using  grouting 

techniques is likely to be the best option for constructing the shaft base. 

The thickness of the horizontal lining has to meet buoyancy requirements. Normally the dead load of 

the horizontal lining and the shaft wall friction is taken into account. A rough analysis of the required 

thickness of the shaft base is given in Fig. 12. This is a very preliminary overview to demonstrate the 

scale/nature of what may be required.  

The  thickness of  the grouted bedrock  section  is assessed  to be ca. 14 m  in  thickness  to overcome 

buoyancy issues, see Fig. 12. The final depth of the bottom is therefore ca. 76 m to OD. This will be 

the subject of a more detailed analysis in a subsequent design phase.  

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:18

Page 80: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

 Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report 

 

Page 30  Doc Ref:  75461/DG44/ Draft 02 

Fig 12: Calculation of bouyancy of shaft 

b. Vertical lining elements (shaft walls) 

The bottom of the vertical lining must reach the bottom of the grouted horizontal lining (shaft base) 

to guarantee a sufficient connection. The total length of vertical lining from ground level is therefore 

ca. 80.5 m depth (finishing at ca. ‐ 76 m OD).   

There are three options to construct the vertical shaft lining: 

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:18

Page 81: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report   

 Doc Ref:  75461/DG44/ Draft 02  Page 31 

1. Diaphragm wall 

2. Grouting 

3. Combination of diaphragm wall in overburden and grouting of bedrock 

The options are shown in Fig. 13. 

Fig. 13: Options vertical shaft lining 

1. Diaphragm wall 

Application of a diaphragm wall is technically feasible in overburden as well as in bedrock, but is 

mostly applied in overburden. A wall thickness in the order of 1.00 to 1.20 m is normally applied 

for this order of shaft depth. The diaphragm wall should reach the bottom of horizontal  lining 

(grouted rock, see above) to minimise the risk of water inflow / ground stability failure. 

The depth up to which a diaphragm wall trench can be excavated with standard equipment is ca. 

45 m to 50 m. Extra equipment  is required when this  limit  is exceeded. Excavating of rock will 

require more effort as well as different equipment than that used for the overburden soils. 

The costs for that kind of diaphragm wall ‐ up to 50 m depth – are in the order of 500 Euro/m² 

for the overburden section and 600 Euro/m² for the bedrock section. Extra costs of the order of 

roughly 200 Euro/m² must be added when the  limit of 50 m depth  is exceeded. The orders of 

costs for the diaphragm wall are given in Table 1.  

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:18

Page 82: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

 Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report 

 

Page 32  Doc Ref:  75461/DG44/ Draft 02 

Table  1:  Costs  for  diaphragm wall  construction  (shaft  20 m  in  diameter)  incl.  excavation  of 

trenches, concreting, reinforcement steel. 

Section / Element  Quantity Costs per unit 

[Euro/ m²] 

Costs 

[Euro] 

Overburden section +4.5 m to ‐ 34 m OD  

(0 ‐ 38.5 m depth) 

20 m * π * 38.5 m = 

2420 m² 500  1,210,000 

Bedrock section – 34 m to 45.5 m OD  

(38.5 m to 50 m depth)  

20 m * π * 11,5 m = 723 

m² 600  434,000 

Bedrock section ‐45.5 m to ‐ 76 m OD  

(50 m to 80.5 depth 

(Estimated up to bottom of grouted section) 

20 m * π * 30.5 m = 

1,916 m² 800  1,533,000 

Total costs      3,177,000 

 

2. Grouting 

Grouting  is  technically  feasible  in overburden as well as  in bedrock. However, grouting of  the 

overburden is possible using jet‐grouting techniques only because the overburden soils are not 

groutable by standard grouting techniques. Jet grouting is a very costly technique. The thickness 

of the grouted ground should be in an order of 2.5 m.  

The costs for jet grouting are in an order of 500 – 600 Euro/m³ (grouted ground). The costs for 

standard grouting are in an order of 300 ‐ 400 Euro/m³ (grouted ground). The order of costs for 

the grouted wall are as shown in Table 2. 

Table 2: Costs for grouted wall (shaft 20 m in diameter) construction incl. Drilling, grout supply, 

grouting operation 

Section / Element  Quantity Costs per unit 

[Euro/unit] 

Costs 

[Euro] 

Jet grouting in overburden section  

+4.5 m to ‐ 34 m OD (0 ‐ 38.5 m depth) 

((24/2)²‐(20/2)²) * π * 38.5 m  = 5,322 m³ 

600  3,193,000 

Grouting of bedrock section – 34 m to ‐ 62 m OD  

(38.5 m to 66.5 m depth) assumed up to shaft bottom, 

only. Grouting of vertical lining below shaft bottom = 

grouting of horizontal lining 

((24/2)²‐(20/2)²) * π * 28 m = 3,870 m³ 

400  1,548,000 

Shotcrete lining normal grouted section 20 m * π * 66.5 m =  

4,178 m² 80  334,000 

Total costs      5,075,000 

 

3. Combination of diaphragm wall in overburden and grouting of bedrock 

Application  of  a  diaphragm  wall  in  overburden  and  grouting  of  the  bedrock  combines  the 

advantages  of  both  techniques  /  avoids  their  disadvantages.  The  overlapping  between  the 

diaphragm  wall  and  the  grouted  section  should  be  in  an  order  of  2 m.  The  length  of  the 

diaphragm wall section is therefore ca. 40.5 m. 

The order of costs for the combined wall solution are given in Table 3. 

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:18

Page 83: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report   

 Doc Ref:  75461/DG44/ Draft 02  Page 33 

Table  3:  Costs  for  diaphragm  wall/grouted  wall  (shaft  20 m  in  diameter)  construction  incl. 

excavation of trenches, concreting, reinforcement steel, drillings, grout, grouting 

Section / Element  Quantity Costs per unit 

[Euro/unit] 

Costs 

[Euro] 

Diaphragm wall overburden section 

 +4.5 m to – 34 m OD  (0 – 38.5 m depth) 

20 m * π * 38.5 m = 

2420 m² 500  1,210,000 

Diaphragm wall bedrock section 

 – 34 m to ‐36  m OD (38.5 m to 40.5 m depth)  

20 m * π * 2 m =  

126 m² 600  76,000 

Grouting of bedrock section – 34 m to ‐ 62 m OD  

(38.5 m to 66.5 m depth) assumed up to shaft bottom, 

only. Grouting of vertical lining below shaft bottom = 

grouting of horizontal lining 

(12²‐10²) * π * 28 m  

= 3,870 m³ 400  1,548,000 

Shotcrete lining grouted section 20 m * π * 28 m =  

1,759 m² 80  141,000 

Total costs      2,975,000 

 

This  approximate  cost  assessment  indicates  that  option  1  and  option  3  are  similar  in  broad 

economical terms. The final decision on the system to be chosen must be left to a subsequent project 

stage where a more detailed design of shaft geometry and depth has to be undertaken. 

5.7 Serviceability Test for Shaft Lining Prior to Excavation 

A serviceability  test  for  the proposed shaft  lining must be undertaken prior  to excavation  to prove 

the suitability of the lining in terms of impermeability (see Fig. 14e). 

The groundwater  inside the yet completed shaft  lining has to be pumped out of the  (unexcavated) 

shaft by means of a well which has to be sunk in the shaft down to the top of the horizontal lining. 

Simultaneously  the  groundwater  level  outside  the  shaft  will  also  be monitored  by  a  number  of 

piezometers to be installed around the exterior of the shaft.  

The  serviceability of  the  lining will be  confirmed when no  significant  change  in groundwater  level 

outside  the  shaft  is  registered  and  the  water  level  in  the  well  inside  the  shaft  does  not  rise 

significantly after pumping.  

5.8 Excavation 

Excavation could be undertaken using a heavy excavator for soil and bedrock and / or a rotary cutter 

in bedrock. Some sections in bedrock may reach a level of strength that explosives must be used. It is 

technically feasible to match the specified ESB vibration  limits (Section 2.2) with an accurate choice 

of explosives, number of blast holes and blast sequence ignition. 

5.9 Survey 

The  shaft  construction  has  to  be  monitored  using  piezometers,  seismic,  inclinometers, 

extensometers and geodetic measurements during the entire construction period. 

 

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:18

Page 84: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

 Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report 

 

Page 34  Doc Ref:  75461/DG44/ Draft 02 

5.10 Optimum Shaft Construction Technique 

On the basis of the foregoing  it  is CDM’s opinion that the onshore shaft would be best constructed 

using  a  combination  of  diaphragm wall  and  grouted  rock  for  the  vertical  lining walls/element  as 

described above and to grout the rock below the shaft bottom to form the shaft slab (Option 3 from 

above). The construction sequence for this option is shown in Figs. 14 a – 14 h. 

Fig.: 14a: Grouting of bedrock for vertical shaft lining   

Fig.: 14b: Grouting of bedrock for horizontal shaft lining (“shaft slap”) 

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:18

Page 85: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report   

 Doc Ref:  75461/DG44/ Draft 02  Page 35 

 

Fig.: 14c: Construction of reinforced diaphragm wall 

 

Fig.: 14d: Grouting of transition zone diaphragm wall – grouted bedrock lining 

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:18

Page 86: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

 Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report 

 

Page 36  Doc Ref:  75461/DG44/ Draft 02 

 

Fig.: 14e: performing of serviceability test 

 

Fig.: 14f: Excavation of overburden 

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:18

Page 87: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report   

 Doc Ref:  75461/DG44/ Draft 02  Page 37 

Fig.: 14g: Excavation of bedrock, application of shotcrete lining 

Fig.: 14h: Excavation to final depth, concreting of a slab as work floor 

 

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:18

Page 88: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

 Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report 

 

Page 38  Doc Ref:  75461/DG44/ Draft 02 

5.11 Overall Costs 

Overall costs for the onshore shaft construction using Option 3 are given in Table 4. 

Table 4: Costs  for onshore shaft  (20 m  in diameter) construction  incl.  lining / excavation excluding 

extra costs for disposal of contaminated soils 

Section / Element  Quantity Costs per unit 

[Euro/unit] 

Costs 

[Euro] 

Vertical lining as specified above (Option 3)      2,975,000 

Horizontal lining (grouted rock) 10² * π * 14 m  

= 4,400 m³ 400  1,870,000 

Excavation (excluding extra costs for disposal of 

contaminated soils) 

10² x π * 66.5 m = 

20,900 m³ x 2.5 t/m³ = 

52,250 t 

100  5,250,000 

Monitoring facilities, maintenance and monitoring during 

operation, dewatering     1,500,000 

Total costs      11,595,000 

 

 

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:18

Page 89: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report   

 Doc Ref:  75461/DG44/ Draft 02  Page 39 

Section 6 Tunnelled section 

6.1 General 

The  key  technical  considerations  for  the  tunnelling  operations  are  the  geotechnical  conditions  in 

which the tunnel is driven. It is therefore advisable to choose a vertical tunnel alignment according to 

the  geotechnical  and  hydrogeological  conditions  offering  the  best  conditions  in  terms  of  lowest 

health and safety impacts, lowest geotechnical risk, lowest cost and highest advance rates. 

The costs and  risks associated with  tunnelling normally  rises  the more  the geological, geotechnical 

and  hydrogeological  conditions  vary.  The  general  guidelines  for  selecting  the  optimum    vertical 

tunnel alignment are therefore to choose; 

most homogenous geological, geotechnical and hydrogeological conditions along the tunnel 

most stable tunnel face conditions 

the lowest possible hydraulic head 

the lowest risk in terms of health and safety requirements 

Furthermore  it  is  important  to  understand  that  the  geotechnical/hydrogeological  conditions 

determine  the  tunnelling  requirements.  Normal  procedure  is  to  predict  the  geotechnical  and 

hydrogeological conditions as well as to predict the technical measurements/requirements that will 

be  required  to  overcome  these  ‐ which  is  part  of  the  project  Baseline  Tunnel  Reference  Design 

process. During tunnelling the behaviour of soils and rock masses must be monitored  (for example 

measurement of strain, stresses, settlements and displacement)  in order to check  if the monitored 

behaviour is consistent to that predicted. The onsite tunnelling process/operations must be reviewed 

immediately  if  predicted  and monitored  behaviours  do  not  correspond.  Technical measurements 

must be taken if required. 

6.2 Tunnel Mechanics Requirements 

The concept of tunnel mechanics is to establish a ring zone in the soil / rock around tunnel of suitable 

bearing  capacity  to overcome  the  rock mass  load  (Fig. 15). The  soil/rock around  the  tunnel  is  the 

structural  element  in  tunnelling  rather  than  the  tunnel  lining.  Tunnel  lining  has  the  function  to 

prevent soil/rock to get loose and to overcome groundwater pressure. 

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:18

Page 90: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

 Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report 

 

Page 40  Doc Ref:  75461/DG44/ Draft 02 

Fig 15: Principle of tunnel statics. 

 

Therefore for stability purposes all tunnels require a minimum overburden of certain strength above 

the top of the tunnel to allow the soils/rock to establish this ring zone. The size of overburden above 

the  top  of  tunnel  to  establish  this  ring  zone  depends  on  the  stiffness  and  the  strength  of  the 

soil/rock.  The  less  stiff  and  the  less  strength  the  soil/rock  is  the more  overburden  is  required. 

Normally  an  overburden  depth  of  twice  the  tunnel  diameter  is  sufficient.  In  very  stable  ground 

conditions  like  unfissured,  unweathered  rock  an  overburden  of  one  times  the  diameter  could  be 

sufficient. In less stable ground conditions however, three times the diameter or more is required. 

If the tunnel is below the ground water table a sufficient soils/rock dead load is required to prevent 

buoyancy of the tunnel. The normal minimum overburden is at least twice the outer diameter of the 

tunnel. In less dense soils like the encountered marine sediments the overburden depth would have 

to be more than that. 

The ground must have minimum bedding strength to carry the load of the tunnel lining. 

Stress‐strain behavior of soil and  rock  is strongly  time‐dependent.  In general,  the more plastic  the 

ground behaves  the  longer  it  takes  to  reach  the  final  strain  stage. At  final  stage,  rock  load  is at a 

minimum.  If the tunnel contour  isn’t supported at this stage, the ground  loses  its strength and the 

rock mass dead  load  increases. A principle of  tunnel mechanics  is  to allow a  certain  strain of  the 

soil/rock to match a minimum of rock  load. The number of variations of stress states of the ground 

must be reduced to a minimum. Therefore tunnel driving should be a continuous operation in terms 

of  hours. Night  pauses  or weekend  pauses  normally  should  therefore  be  avoided.  Tunnel  driving 

should operate 24 hour / 7 days per week to meet these tunnel mechanic requirements. A pause for 

a couple for days normally requires special measurements for temporary ground stabilization.  

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:18

Page 91: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report   

 Doc Ref:  75461/DG44/ Draft 02  Page 41 

In  this project  the  construction  stage  and operation  stage must be  considered  separately. During 

construction  the  tunnel will be empty hence  internal  static  forces  in  tunnel  linings will be normal 

compressive  forces and bending moments. Tension  forces  suitable  to create  fissures  in  the  tunnel 

lining are normally overcome by normal compressive forces during this stage.  

After  commissioning  the  tunnel  has  to  transport WwTW  final  effluent  to  the  sea  using  gravity 

induced hydraulic head. That means  the  inner water pressure will be higher  than  the outer water 

pressure  following completion and commissioning. Tension  stresses may occur  in  the  tunnel  lining 

which may result in fissures in tunnel lining which are potential voids for water moving out from the 

tunnel  into  the environment. Static analysis must assess  this and  the  lining has  to be designed  in 

order  to  keep  the  tunnel  lining  watertight.  The  watertightness  requirement  given  in  the  British 

Tunnelling Society Specification for Tunnelling for drainage and sewer tunnels is 0.5 l/m2/day. 

6.3 Tunnel Environment, Costs Of Tunnelling And Advance Rates 

The  first 10‐15 m of  the overburden  soil are mostly marine  sediments proven as  very  soft and  in 

general  unsuitable  to  have  any  considerable  strength  or  stiffness.  This  section  of  upper material 

should not be considered for tunnelling. 

Below these marine sediments and based on the assumption of a minimum overburden of suitable 

strength  and  stiffness  of  twice  (three  times  in  bad material  as  quoted  above)  times  the  outer 

diameter, the top of a potential tunnel will be at  

10  m  marine  sediments  +  (2  …  3)  *  diameter  (=  6.5  m  external  diameter)  

= 10 + 13 …. 19.5 = 23 …. 29.5 m below seabed level. 

The bottom of the tunnel will be at  

23 …. 29.5 m + 6.5 m = 29.5 … 36 m below seabed level.  

The findings of the marine site  investigation show mostly glacial till or even some bedrock at these 

depths. 

The  glacial  till  has  been  shown  to  be  extremely  heterogeneous  in  terms  of  geotechnical  and 

hydrogeological properties – therefore it will be extremely difficult for tunnelling. The order of costs 

for  tunnelling  in  these  geotechnical  conditions  in  this  depth  range will  vary  from  8,000  –  12,000 

Euros/m  (direct  production  costs).  There  will  be many  stops  for maintenance  /  cleaning  of  the 

machine / cutting wheel, etc.; the advance rate will be less than 12 m /day average production rate. 

Moving  into  deeper  bedrock  offers  the  best  conditions  for  tunnelling  because  the  marine  site 

investigation results show that the bedrock is mostly stable for the tunnel diameter being considered 

and of  low permeability  i.e.  it  is  likely  that  the major part of  the  tunnel can be advanced without 

active  face support. Therefore  the costs of  tunnelling  in bedrock are of  the order of 6,000 – 9,000 

Euro  per  m  (direct  production  costs).  The  advance  rate  will  be  at  ca.  15  m/day  (long  average 

production rate) with a highest production rate of ca. 30 m/day. 

It is therefore reasonable to choose the bedrock as the optimum tunnelling environment. The marine 

site  investigation borings show the bedrock to be weathered /  fractured  in  the top 5 – 10 m.    It  is 

recommended that the top of the tunnel should be kept twice the diameter (= 13 m) below rockhead 

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:18

Page 92: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

 Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report 

 

Page 42  Doc Ref:  75461/DG44/ Draft 02 

in good/fair rock quality conditions and three times the diameter (= 19.5 m)  in poor conditions  like 

such as those encountered at the onshore location. 

6.4 Vertical Tunnel Alignment 

6.4.1 General Guidelines 

As  stated above,  the  tunnel  should be kept  in  the bedrock at a  level  to match a  rock overburden 

above the tunnel of a minimum of 13 m. 

To date the marine site investigation shows that the top of bedrock is very uneven (See Drawing 2 in 

Appendix A). It should be noted from the drawing that the top of the bedrock is inferred and for this 

reason geophysics work needs to be done along the tunnel alignment to try and prove the bedrock 

head over the entire proposed tunnel length. It must be ensured that the tunnel is located in bedrock 

at every part of its alignment, and equally to assure 2‐3 times overburden cover it should not elevate 

above a  level of  ‐ 60 m OD at any point along  its  length with the exception of the section between 

the onshore shaft and BH M 05.  

6.4.2 To  Keep  The  External Water  Pressure  On  The  Tunnel  As  Low  As 

Possible, The Tunnel Alignment Should Be As Elevated As Possible. 

Tunnel Gradient 

The rockhead  level at  the proposed diffuser  location B3 was  found at ca. – 51 m OD. The bedrock 

overburden should be 13 m as minimum (see above 2 *6.5 = 13 m), so the top of the tunnel at the 

diffuser location is at – 64 m OD.  

The top of the tunnel at BH M 05 ‐ where the lowest rockhead level was found along the  route ‐ is at 

ca. ‐57 m OD. Given an overburden of 13 m as minimum (see above 2 *6.5 = 13 m), the top of the 

tunnel at location BH M 05  is at – 70 m OD.  

The difference  in  level between the BH M 05 and the marine diffuser shaft  is therefore 6 m which 

gives a gradient of  

(64 m – 70 m)/8,000 m = 0,075 %. 

For hydraulic purposes  the gradient  should not be  less  than 0,1 % which equals  to a difference  in 

level of  

8,000 m * 0,1 % = 8 m.  

The top of the tunnel around BH M 05 should therefore be at 

– 64 m OD (top of tunnel at B3) – 8 m= ‐ 72 m OD (=top of tunnel at BH M 05). 

The  rockhead  level  at  the  onshore  shaft  location  was  found  at  ca.  –  34  m  OD.  The  bedrock 

overburden  should be 19.5 m as a minimum  (see above),  so  the  top of  the  tunnel at  the diffuser 

location is at – 53.5 m OD. (see above). The top of the tunnel at borehole BH M 05 is ca. ‐‐72 m OD 

(see above), the difference in level is therefore  

– ‐72 m OD – (‐ 53.5 m OD) = 18.5 m  

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:18

Page 93: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report   

 Doc Ref:  75461/DG44/ Draft 02  Page 43 

which equates to a gradient of  

18.5 m/1,000 m = 1.85 %.  

The optimum vertical tunnel alignment is shown in Drawing 3 in Appendix A  

It  should be noted  that  the work  in  this  report  is preliminary concept design work which must be 

revisited when both the marine site  investigation/any additional site  investigation and the baseline 

tender  reference design have been completed. For  this  reason  the vertical alignment presented  in 

this report may be subject to future change. 

The tunnelling  layout has to be designed to accommodate a maximum water pressure according to 

its operating depth below maximum sea level. An extra over of water pressure of a couple of metres 

(for high tidal surges) should be included to meet a change to the vertical alignment. 

It should be noted that the optimum vertical tunnel alignment is of a “V”‐shape type. This approach 

is quite common since most of metro tunnels in urban areas (for example Channel Tunnel Rail Link / 

London, TBM tunnelling) are of this shape. A 6.6 km long road tunnel of ca. 11 m (TBM) in diameter 

crossing  the  Schelde  estuary  in  the  Netherlands  (“Westerschelde  Tunnel”)  with  comparable 

conditions  in  terms of  access possibilities  (single  access point  from onshore with no  intermediate 

shaft  access), water  pressure,  etc. was  completed  recently  in  2003. A  longitudinal  section  of  this 

project is shown in Fig. 16. 

Fig 16: Longitudinal cross section of Westerschelde tunnel. 

 

With  regards  to  Health  &  Safety  this  type  of  V  shape  tunnel  alignment  under  a  marine  sea 

environment, with single access entry point from onshore, and no intermediate shafts, is acceptable 

with  the  proviso  that  a  robust  H&S  management  plan  is  put  into  effect  and  comprehensively 

managed during construction. 

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:18

Page 94: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

 Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report 

 

Page 44  Doc Ref:  75461/DG44/ Draft 02 

6.5 Geotechnical Conditions 

At this stage a preliminary characterization of the bedrock in terms of tunnelling needs can be given 

although  a  detailed  geological,  geotechnical  and  hydrogeological  compilation  of  data  and 

interpretation as the basis for a design has not been completed yet. 

Whilst  the proposed  tunnel  section  in  the  vicinity of  the onshore  shaft  location  is not  competent 

either in terms of stability or permeability, the bedrock at borehole location BH M05 and further east 

of BH M05  is  in  general mostly  competent  in  terms  of  stability  and  permeability  i.e.  offers  good 

conditions  for  tunnelling  potential  along  the  proposed  route.  There  are  exceptions  however,  for 

example  sections  of  less  strength  and  higher  permeability  (For  example BH M  17,  ca.  44  –  46 m 

depth)  were  encountered  and  these  must  be  considered  as  part  of  the  tunnel  drive  planning. 

However,  a  detailed  prediction  of  the  exact  location  of  these  sections  along  the  entire  proposed 

tunnel  route  is not possible due  to  the  spacing distance of  the marine  site  investigation   borings. 

Whilst  more  boreholes  would  reduce  the  overall  level  of  uncertainty  regarding  the  change  in 

geotechnical conditions along the proposed tunnel route, uncertainty will always remain because of 

the nature and limited scope of geotechnical site investigations.  

Different geology has been investigated between BH O 01/O 02 and BH M 05 as well as between BH 

M 08 and BH M 21 / BH M 11. It must be assumed that similar changes of geology accompanied by 

transition zones of very poor ground conditions such as  the onshore shaft  location(although  these 

have not been proven during the marine site investigation)  – cannot be discounted. 

Water pressure will correspond to the mean sea level (0.0 m OD), i.e. ca. 7.2 bar at the top and ca. 8 

bar at the bottom of the tunnel. Since combinations of daily tides/surcharges can be as high as + 4.0 

m OD, water pressure may rise further up to 8.4 bar.  

Whilst  more  boreholes  would  reduce  the  overall  level  of  uncertainty  regarding  the  change  in 

geotechnical conditions along the proposed tunnel route, uncertainty will always remain because of 

the nature and limited scope that has to prevail when undertaking geotechnical site investigations.  

A geological  interpretation and prediction of  the  tunnelling conditions and  requirements along  the 

proposed route will be the subject of the baseline tender reference design. 

6.6 Tunnelling Method 

There are in general two tunnelling methods: 

1. Conventional tunnelling  

2. Mechanized tunnelling 

Either of these methods can be used for similar projects. A short description of the methods is given 

below. 

1  Conventional tunnelling  

Conventional  tunnel  heading  (also  known  as  “Shotcrete  Method”  or  as  “New  Austrian 

Tunnelling Method”) uses  shotcrete,  steel beams,  rock bolts  and drill  and blast  techniques. 

After each blast, the soil has to be transported out and the rock contour has to be supported 

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:18

Page 95: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report   

 Doc Ref:  75461/DG44/ Draft 02  Page 45 

by steel beams, shotcrete and  rock bolts. A minimum stability of  rock  is  required during  the 

setting  up  of  these  elements.  This  is  related  to  the  length  of  the  blasts.  In  very  stable 

conditions the length of the blasts can reach up to 6 m, in less stable conditions only 80 cm is 

achievable.  

Shotcrete  cannot be applied  to  the  tunnel  lining  if water  inflow  is present. The water  table 

must be drawn down  to  the bottom of  the  tunnel,  i.e.   a drainage channel  is  induced  in  the 

ground along  the  invert of  the  tunnel. The control of water  inflow  to  the  tunnel  is achieved 

either  by  working  in  low  permeable  ground  or,  in  high  permeable  ground  conditions,  by 

applying additional measurements such as drawdown of ground water table by wells, grouting, 

freezing or pressurized air.  

Some  large  size  rock  fractures were encountered during  the marine  site  investigation which 

will  be  likely  to  hold/transmit  water  which  will  in  turn  necessitate  the  additional 

measurements  as described  above. However,  it  is not possible  to determine  these  sections 

prior  to  construction works.  Horizontal  borings  are  required within  a  distance  of  a  couple 

metres from the tunnel face to investigate ground conditions prior to the blasts. 

The advance rate for this technique will not exceed 5 – 8 m/day.  

For economical, technical and H&S reasons it is recommended that the conventional tunnelling 

technique should not be used for this project but only mechanized tunnelling methods should 

be considered for this project.   

2  Mechanized tunnelling 

Mechanized  tunnelling,  as  opposed  to  conventional  techniques,  incorporates  all  of  the 

tunnelling techniques in which excavation is performed mechanically by means of teeth, picks 

or disks. These tunnelling techniques comprise a wide range of different machines,  from  the 

simplest,  such  as  backhoe  diggers  to  the  most  complicated  such  as  shield  TBMs.  These 

machines not only carry out the excavation of the ground, they mostly also provide support to 

the  ground during  tunnelling.  This  support  can be  just peripheral  (like  in  the  case of  shield 

TBMs) or also be applied to the front (Earth pressure TBMs or Slurry Shields for instance). The 

final  tunnel  lining  using  precast  concrete  elements  which  are  assembled  directly  by  the 

machine  can  be  applied  as  well.  Tunnel  driving  control  facilities,  accommodation,  toilets, 

electric power  facilities, emergency  facilities, air supply, tunnel segments erector, etc. are all 

part of the machine and located close to the extraction chamber, see Fig. 17. 

To overcome potential water inflow to the tunnel and/or potential unstable ground conditions 

(which  cannot be excluded) only a  shielded  tunnel boring machine  should be  considered. A 

shielded TBM with active  face  support  is applied  if  the  tunnel  face  is not  stable and  if  rock 

collapse may occur. The shield skin, which covers  the entire machine, serves as a  temporary 

support. As final support, usually pre‐cast lining segments of reinforced concrete are used. The 

lining segments are installed under the protection of the rear part of the shield, the so‐called 

tail‐skin. A face support using a slurry (slurry TBM) or an earth mud (Earth pressure balanced 

shield, EPBS), or a combined machine is normally applied. 

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:18

Page 96: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

 Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report 

 

Page 46  Doc Ref:  75461/DG44/ Draft 02 

Fig 17. Model of a shielded TBM (Slurry TBM used to construct a metro tunnel in Antwerpen) 

 

However, whilst both Slurry and EPB TBM’s normally apply  in  soft ground  such as  clay,  silt, 

sand  and  gravel  it  is  equally  possible  to  apply  these  tunnelling  techniques  to  hard  rock 

tunnelling where face supporting and ground water control is required.  

Slurry TBM 

Slurry  shields  are  TBMs  fitted with  a  full  face  cutterhead which  provides  face  support  by 

pressurizing  fluid  (“Slurry”)  inside  the cutterhead chamber  (see Fig. 18). These machines are 

most suited for tunnels through unstable material subjected to high groundwater pressure or 

water  inflow  that must be stopped by supporting the  face with slurry subjected to pressure. 

The cutterhead acts as  the means of excavation, whereas  face  support  is provided by  slurry 

counterpressure,  namely  a  suspension  of  bentonite  or  a  clay  and  water mix  (slurry).  This 

suspension  is pumped  into the excavation chamber where  it reaches the face and penetrates 

into  the  ground  forming  the  filter  cake,  or  the  impermeable  bulkhead  (fine  ground)  or 

impregnated  zone  (coarse ground) which guarantees  the  transfer of  counterpressure  to  the 

excavation  face.  This  slurry mixed  with  the  excavated  soil/rock  and  is  pumped  (hydraulic 

mucking)  from  the  excavation  chamber  to  a  separation  plant  located  on  the  surface which 

enables  the  bentonite‐clay  slurry  to  be  recycled.  In  the  closed  slurry  shield  in  which  the 

counterpressure  is  compensated  inside  the  excavation  chamber,  there  is  the  addition  of  a 

metal buffer which creates a chamber partially filled with air and connected to a compressor. 

The  result  is  the possibility of adjusting  the counterpressure at  the  face  independent of  the 

hydraulic circuit (supply of bentonite slurry and mucking of slurry and natural ground). These 

machines are specially suited to excavate ground with limited self‐supporting capacity. 

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:18

Page 97: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report   

 Doc Ref:  75461/DG44/ Draft 02  Page 47 

Fig 18: Slurry TBM 

 

Where  there  is  a  risk  of water  inflows  under  high  pressure,  the  possibility  for  immediate 

permanent  face  support provided by  the  slurry TBM will give greater  security  than all other 

tunnelling techniques. A slurry TBM option is more flexible as it provides: 

more ability to deal with unknown geological changes that may occur at the tunnel face 

more ability to deal with sudden water inflow/ingress 

more  certainty  regarding  overall  rate of  progress because  of  the  flexibility  to  control 

change 

Earth Pressure Balanced Shield TBM (EPBS) 

EPBS or earth‐pressure balance shields are TBMs used for the excavation of soils where face 

support  and  counter‐effect of  ground water pressure  is obtained by means of  the material 

excavated  by  the  cutting wheel, which  serves  as  support medium  itself  (see  Fig.  19).  The 

cutterhead  serves  as  the  means  of  excavation  whereas  face  support  is  provided  by  the 

excavated  earth which  is  kept  under  pressure  inside  the  excavation  chamber  by  the  thrust 

jacks on the shield. These jacks transfer the pressure to the separation bulkhead between the 

shield  and  the  excavation  chamber,  and  hence  to  the  excavated  earth.  Excavated  debris  is 

removed  from  the  excavation  chamber  by  a  screw  conveyor  which  allows  the  gradual 

reduction of pressure. These machines are used to excavate grounds with  limited or no self‐

supporting capacity.  

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:18

Page 98: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

 Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report 

 

Page 48  Doc Ref:  75461/DG44/ Draft 02 

 Fig 19: EPB ‐TBM 

The  ground  conditions  are mostly  stable  for  the main part of  the  tunnel  and will not need 

active  face supporting and/or control of ground water  inflow. That means  in most parts  the 

TBM can operate without providing active face supporting/control of ground water inflow in a 

so  called  open‐mode.  Only  smaller  lengths  of  the  tunnelled  section  will  require  a  face 

supporting / control of ground water inflow in a so called closed‐mode. The machine should be 

prepared for rapid change to close mode The reaction time will be subject to be more detailed 

assessment  in a  subsequent design phase as part of  the preparation of  the baseline  tender 

reference  design  and  as  part  of  the  technical  specification  development  for  tendering 

purposes.  

The outer tunnel diameter to be excavated is somewhat larger than the outer diameter of the 

tunnel lining because the tunnel lining is assembled under the protection of the shield, i.e. the 

shield diameter must be  larger  than  the  lining.  In addition a gap between excavated  tunnel 

contour and  shield  is  required  for  steering of  the TBM. The annular gap between excavated 

tunnel contour and tunnel  lining  is normally filled with a grout  injected behind the tailskin of 

the TBM.  

Comparison Slurry/EPB‐TBM 

Slurry and EPB‐TBMs have advantages and disadvantages. A general comparison between the 

performance  of  both  TBM  types  is  not  clear  cut  since  they  each  have  to  be  considered 

independently of each other for the specific project conditions. A minor disadvantage for one 

particular TBM  type on one project may become a major and critical advantage  for another 

project. 

However a  rough comparison between both Slurry and EPB TBMs  is given  in Table 5, which 

must be treated with extreme caution because of the above mentioned issues.  

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:18

Page 99: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report   

 Doc Ref:  75461/DG44/ Draft 02  Page 49 

Table 5: Comparisons between Slurry and EPB‐TBM 

  Slurry TBM  EPB TBM 

Price    Normally cheaper 

Procurement  Equal 

Advance rates  Equal 

certainty of overall advance rate because of 

the flexibility to control change Normally higher   

Operating    Normally simpler 

Consumption of additives   Normally lower (no slurry 

circuit) 

Torque  Normally lower   

Power consumption  Normally lower   

Compound size    Normally smaller 

Reaction time to control face stability  Normally much quicker   

Ability to deal with unknown geological 

changes  Normally greater   

Ability to deal with sudden water 

inflow/ingress Normally greater   

Hard rock conditions  Normally more independently   

High water pressure (up to 8 bars)  Normally recommended Not normally recommended at 

this pressure 

 

6.7 Slurry 

The  slurry  is a mixture of water and bentonite, a  smectite clay mineral. Some additives  improving 

certain properties of the slurry can also be applied.  

The slurry has two main properties; 

Thixotropic properties A (bentonite) slurry is viscous under normal conditions but behaves like 

a fluid over time when shaken, agitated, or otherwise stressed. Sea water cannot be used for 

mixing of the slurry because the thixotropic properties are strongly related to the electrolyte 

content of water. Clay minerals will coagulate and lose thixotropic properties when sea water 

is used. 

Filter cake / Sealing properties A  filter cake  is a  thin  layer of highly  impermeable bentonite 

mineral  particles  caked  (or  “plastered”)  on  the  soil  contour  set  up  because  of  a  hydraulic 

gradient towards the soil. A filter cake is shown in Fig. 20. 

 

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:18

Page 100: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

 Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report 

 

Page 50  Doc Ref:  75461/DG44/ Draft 02 

Fig 20: Filter cake 

The main purpose of the slurry is to: 

Seal the tunnel contours in high permeable ground conditions (“filter cake”) 

Support the ground (thixotropy) 

Transport of the cuttings 

Cooling of the cutting tools 

6.8 Minimum Diameter Of The Tunnel 

The minimum diameter of the tunnel is determined by TBM supply and H&S requirements;  

Tunnel segments have to be transported through the tunnel,  

Transport vehicles for TBM supply require a minimum space,  

Pipe, live wires, etc. requires space, 

Spoil disposal requires space,  

Emergency vehicles require minimum space. 

Normally, the minimum  inner diameter should therefore not be  less than ca. 4.0 ‐ 4.5 m. However, 

because of the environment and  length of this proposed tunnel, a minimum  inner diameter of  less 

than 4.5 m should not be permitted. This data is derived from practical experience.  

If for some reason a smaller diameter tunnel than 4.5 m  internal diameter  is chosen, then an  inner 

lining of  the  required  reduced diameter will have  to be  inserted after  the 4.5 m diameter primary 

tunnel  lining has been  constructed. The primary  tunnel  lining has  then only a  temporary  function 

which  will  reduce  the  cost  of  construction.  The  inner  lining  can  be  constructed  using  precast 

elements. The annular  space between  tunnel  lining and  inner  lining has  to be  filled using  injected 

mortar. 

6.9 Tunnel Lining Segments 

Precast  concrete  tunnel  segments  are  used  normally  as  tunnel  lining  elements  for  shielded 

tunnelling,  see  Fig.  21  and  Fig.  22. Normally  4  to  8  elements  are  used  per  ring.  The  thickness  of 

tunnel lining segments range normally between 30 cm and 60 cm. Preliminary indications are that a 

40 cm thick lining will be required for this project. The segments are transported via the tunnel to the 

TBM for assembly. Temporary bolts ‐ removed after closure of one ring ‐ are used for assembly. The 

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:18

Page 101: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report   

 Doc Ref:  75461/DG44/ Draft 02  Page 51 

assembly  starts  in  the bottom. A  special key  segment of a  conic  form  is used as  final  segment  to 

complete the ring. Sealing is performed using sealing elements. 

Fig 21: Assembled precasted tunnel lining segments 

 

Fig 22: Assembled tunnel lining segments (left) and segments ready for transport (right) 

 

The precasted segments have pockets for their assembly. These pockets may have an impact on the 

hydraulic  (relative)  roughness of  the  completed  lining. Radial  joints may have a  similar effect –  if 

lipping occurs. If required, the pockets and joints can be filled with mortar. Normally the friction loss 

impacts of pockets and joints on the hydraulic properties are minor and negligible. In case of doubt, 

this issue can be investigated further as part of the detailed design requirements of the tunnel lining. 

6.10 TBM Facilities For Probing And Ground Improvement 

The  TBM  machine  should  be  prepared  for  geophysical  site  investigation,  probing  and  ground 

improvement (i.e. grouting) ahead of the TBM if required. This is essentially necessary to reduce and 

effectively manage the geotechnical risk. 

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:18

Page 102: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

 Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report 

 

Page 52  Doc Ref:  75461/DG44/ Draft 02 

The machine should be equipped with 2 ‐ 3 permanent installed drill rigs, located inside the shield for 

the horizontal drilling, the third one is located behind the ring erection area for the radial drilling. An 

additional fourth drill rig to be installed on the erector should be considered.    

Given the nature of this project a key risk  is the  issue of ground conditions. Therefore the  level the 

level of  significance of  ground  condition  change must be  assessed  as part of  the baseline  tender 

reference  design.  This  information will  form  a  key  component  of  the  technical  specifications  for 

tendering.  To  investigate  this  during  construction  geophysical  investigation  should  be  carried  out 

ahead  of  the  TBM  and  subsequently  by  drilling  from  the machine  face  if  results  of  geophysical 

investigation indicate significant changes of geotechnical conditions.  

Probing and drilling can be done  in open mode and, for the majority of the positions, also in closed 

mode conditions using blow out preventer units. 

Probing  by  drilling will  reduce  the  advance  rate  because  the  TBM  cannot  operate whilst  drilling 

ahead of the TBM.  

Additional measures,  like grouting for ground  improvement, should be suggested by the contractor 

based upon the findings and approved by the Client Representative. 

6.11 TBM Maintenance 

Whilst divers can be used to change the tools on the cutting head of a TBM by entry to a pressurised 

face through an air lock, it is highly desirable to change the tools in a free air environment. This can 

be done where water  ingress  is not too great. This will require the onshore tunnel  inlet shaft to be 

deep enough to ensure the tunnel is driven in competent bed rock and adequate ventilation will have 

to be provided to the tunnel face. 

Consideration should be given to utilising a tunnelling machine where tool/cutting head replacement 

can be done from the back face of the cutter head – thus eliminating the need to send maintenance 

staff into the tunnel face area at the front of the machine. 

Whilst the tunnel will be driven against water pressures of potentially up to 7‐ 8.4 bar, compressed 

air working  should  be  avoided.  Compressed  air working  should  only  be  considered  if  there  is  no 

technical alternative. The National standards for compressed air working vary by country – this issue 

has to be treated and assessed with consistency in returned tenders. Currently in the UK for example 

compressed air work is not done in tunnels where pressures are in excess of 8 bar. If compressed air 

working is permitted then a full time hyperbaric doctor must be employed. 

6.12 Connection To The Diffuser Shaft 

One method is to pre‐drill the diffuser shaft/s to below proposed tunnel section invert and then drive 

through it with the TBM.  

The TBM will  then be driven past  the diffuser connections,  stripped out  to  some degree and  then 

filled  and  abandoned  (Stripping  out  and  abandonment  usually  takes  3 months).  Recovery  of  the 

carcass and all TBM equipment  is not usually cost effective.  The value of the equipment that could 

be  recovered would be of  the order of £0.25 million  to £0.5 million against which would be  set a 

contract time cost of around £100,000 per week and, if relevant, liquidated damages charges. 

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:18

Page 103: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report   

 Doc Ref:  75461/DG44/ Draft 02  Page 53 

6.13 Compound Requirements 

Main areas required for the compound area for: 

Temporary excavated soil (spoil) storage 

Tunnel segments storage 

Mixing plant for mortar to fill annular gap 

Mixing plant for slurry if a slurry TBM is used 

Separation plant if a slurry TBM is used 

The  size  of  storage  facilities  for  excavated  soil  (spoil)  and  tunnel  segments  is  determined  by 

possibilities of their disposal (spoil) / delivery (segments). Tunnel driving has to stop: 

if spoil disposal storage space is running low  

if precast tunnel lining segment stock is running low 

If mortar and slurry stock is running low 

Construction site logistics and required compound space are strongly linked together. The contractor 

should make provision as to how to meet delivery needs, available space at compound and risks of 

tunnel driving stops. 

6.14 Excavated Soil 

Tunnel  advance  rate  is  ca.  15 m/day  (long  average  production  rate)  and  ca.  30 m/day  (highest 

production rate). This leads to an average excavated volume of: 

  (6.5 m/2)² * π * 15 m/day = ca. 498 m³/day (average rate) 

  (6.5 m/2)² * π * 30 m/day = 995 m³/day (highest rate) 

6.15 Survey 

The tunnelling has to be monitored using stress/strain‐ and geodetic measurements during the entire 

construction period. 

 

 

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:18

Page 104: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

 Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report 

 

Page 54  Doc Ref:  75461/DG44/ Draft 02 

Section 7 Offshore Marine Tunnel Outlet Diffuser 

Shaft 

7.1 General 

The  indications  from  the water quality marine modelling exercise are  that a  single  large diameter 

diffuser  shaft with a diffuser head will  suffice,  to be  located at preferred diffuser  location B3,  see 

Drawing Nr 1.  

The purposes of this diffuser shaft will be to:  

1. Provide  a  temporary  construction  shaft  area  for  making  the  final  transition  structure 

connections between the diffuser shaft and the tunnelled section below, i.e the diffuser shaft 

construction must guarantee a safe working environment for final connection purposes. 

2. Use as the permanent  WwTW effluent riser shaft diffuser outfall 

The principles of offshore shaft construction are the same as those for the onshore shaft. However, 

many restrictions will apply to the marine environment in which the diffuser shaft/s has to be sunk.  

7.2 Ground Conditions 

Seabed level is ca. – 26 m OD at the site of the proposed diffuser shaft B3. Marine sediments extend 

to ca. 9 m below seabed level i.e. ca. ‐35 m OD. Marine sediments are underlain by glacial till down to 

bedrock at ca. 25 m depth below sea bed, i.e. ‐51 m OD. 

The marine  site  investigation has  established  that  the marine  sediments  are  exceptionally  soft  to 

very soft. The glacial till was found to be soft as well. Leg penetrations of the jack‐up barge used for 

the marine site  investigation at BH M 11 were ca. 16 m depth below sea bed  level. At this  location 

the underlying bedrock  is  likely  to be  limestone  formations of  the Tournesian  series of  the  Lower 

Carboniferous. The unconfined compression strength of  the  rock at BH M 11 and BH M 21  ranges 

between ca. 30 MPa and ca. 80 MPa.  

The bedrock  is mostly  stable. Coefficients of permeability derived  from packer  testing  in BH M 11 

range  between  1.4  to  4.9  *  10‐6 m/s.  For  the  preliminary  calculations  provided  in  this  report  a 

coefficient of permeability of K = 2*10‐6 m/s has been estimated for the bedrock at the offshore shaft 

location. 

7.3 Inner Shaft Diameter 

The  inner shaft diameter has  to meet  the hydraulic  requirements  for  the diffuser outlet structure. 

Whilst hydraulic analysis is still ongoing early indications are that the riser shaft internal diameter will 

be of the order of 4.0 m or less.  

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:18

Page 105: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report   

 Doc Ref:  75461/DG44/ Draft 02  Page 55 

7.4 Depth of Shaft 

The depth of the riser shaft is controlled by the requirements of the vertical tunnel alignment as well 

as by the level of risks on the programme and the construction costs. It is therefore prudent to keep 

the shaft as shallow as possible.  

The rock mass overburden above the top of the tunnel at the offshore diffuser location is much more 

stable than at the onshore shaft and must therefore match roughly only twice the tunnel diameter 

because of tunnel static requirements (see section 6 above). At the proposed diffuser location B3 this 

is roughly at:  

‐ 51 m to OD (rock head level) – 2 * 6.5 m = ‐ 64 m to OD.  

The tunnel bottom is then at:  

– 64 m – 6.5 m = ‐ 70.5 m to OD 

Considering the seabed level at location B3 is roughly at ‐26 m to OD, the depth of the shaft equals to 

  ‐26 m to OD – (‐ 70.5 m to OD) = 44.5 m approx  

This is shown in Fig. 23. 

 

Fig 23. Depth of the offshore diffuser shaft 

 

7.5 Dewatering / Buoyancy 

The bedrock at  the potential diffuser  location  is  less permeable  (as opposed  to  the onshore  shaft 

permeability conditions) and could be considered as an aquitard. The bedrock itself is considered to 

be stable enough to carry the  loads, therefore only a thin support structural shaft  lining  is  likely to 

required, most  likely comprising of and outer  large diameter steel drilled casing with an  inner steel 

casing inserted with the annulus between both casings concreted/grouted up.  

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:18

Page 106: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

 Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report 

 

Page 56  Doc Ref:  75461/DG44/ Draft 02 

Based upon the working assumption of an external drilled diameter of 5 m for the shaft and using the 

same  calculation  methodology  set  out  in  section  5  above  to  determine  likely  inflow  rates  the 

information from the site investigation currently suggests that the water inflow discharge rate maybe 

of the order of 66 m³/h. This level of water ingress is easily controllable. Therefore to keep the shaft 

dry dewatering by pumping will be required. 

In  the event  that  the  inflow discharge  rates are much higher  than 66m³/h grouting of  the bedrock 

section maybe required. 

7.6 Construction 

The  diffuser  shaft  sinking  and  lining  construction methods will  be  governed  by  the  depth  of  the 

seabed overburden and bedrock materials. The operation will also be restricted to a  large diameter 

drilling  operation  using  a  machine  drill  (with  multiple  drill  bits/heads  mounted  within  a  single 

machine  drill  face)  within  a  pre  installed  large  thick  walled  steel  liner  of  extended  length.  This 

approach  is  required  because  of  the marine working  environment whereby  extended  continuous 

shaft lining will be required. 

The pre‐installed  large  thick walled steel  liner will extend continuously up  to  the deck  level of  the 

drilling  jackup barge. Additional steel  liners will be welded  from  topside on  the  jackup deck as  the 

diffuser shaft advances downwards.  

The principal advantages of such systems are: 

Man‐entry is not required. 

Groundwater lowering is not required. 

The cutter head works submerged below the cutter ring. 

Spoil is removed as a pumped slurry. 

The shaft lining can be provided in long lengths – floated to site – to minimise jointing/welding 

and provide leaks. 

There could be limitations to the machine drilling system with regard to the maximum diameter and 

the  strength  of  rock  that  can  be  excavated  continuously without  excessive  cutter  tool wear  and 

maintenance costs. The boulders in the glacial till are likely to present problems for the machine drill 

and cutting heads for sinking the diffuser shaft. This has to be considered  in the subsequent design 

and tender process.  

7.7 Shaft Mechanics 

The marine sediments around the diffuser location have been proven to be very soft. The horizontal 

bedding  of  the  shaft  is  therefore  very  low.  A  certain  bedding  of  the  shaft  is maybe  required  to 

overcome horizontal loads on the diffuser head by water currents and their variation in direction. An 

improvement of the strength and density of the marine sediments must therefore be considered  in 

order to set‐up an economic design approach by reduction of the internal forces. This is subject to a 

detailed static analysis and subsequent design phase. 

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:18

Page 107: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report   

 Doc Ref:  75461/DG44/ Draft 02  Page 57 

7.8 Connection Between Shaft and Tunnel Section 

The method of  forming  the diffuser connection  into  the  tunnelled section will be dependent upon 

contractor  choice  of  operations/plant.  One  method  is  to  pre‐drill  the  diffuser  shaft/s  to  below 

proposed tunnelled section invert and then drive through this with the TBM. Tunnel driving through 

steel shaft lining is not possible. 

An  alternative  (and  probably most  preferred)  is  to  pre‐drill  the  diffuser  shaft/s  to  several meters 

above  the underlying  tunnelled  section and  then mine  through  from  the  completed  tunnel below 

into the underside of the completed diffuser shaft. The final choice of diffuser connection/s method 

should be left solely with the contractor. 

7.9 Onshore Construction Compound/Berthing Areas 

Whilst  the majority of  the diffuser  shaft construction operation will  take place at  sea  from  jackup 

platform barges  there will be a need  to provide a  significant onshore berthing area. The onshore 

berthing  area will  be  in  addition  to  the  onshore  compound  area  to  be  provided  for  the  overall 

Ringsend Long sea outfall project.  

However, with regard to the onshore berthing area a single berth area will be required to include the 

following: 

Berth area for storage of elements. 

Berth area for jackup platform barges and other marine support vessels. 

Berth area for laydown space, materials handling, and making up RC detailing cages etc. 

Fully serviced (with crane) berth area at least 100 m x 80 m approx. 

7.10 Soft Ground Condition Problems for Plant 

It  is  known  that  there  are deep marine muds/sediments  at  the  location of  the proposed diffuser 

shaft.  Equally  it  is  known  that  these  are  highly  heterogeneous  and  vary  significantly  over  short  

distances. Depths of up to 23 m leg penetration have been encountered in one location in Dublin Bay 

during the marine SI – which were  in excess of the effective working  leg  length of the  jackup barge 

being utilised. 

For the construction of the diffuser shaft it is therefore certain that very deep leg penetration of the 

jackup barges being utilised will occur. This will cause problems  in terms of providing suitable very 

large rigs with long enough legs. This problem must be clearly understood and addressed within the 

tender specifications which should  include  information on  the expected  range of seabed sediment 

conditions. 

The presence of deep marine muds will also present an operational challenge because the  legs are 

likely to become stuck in the deep sediments – particularly when the jackup is in a fixed location for 

at least three months during construction of the diffuser shaft. One way of attempting to overcome 

this problem would involve dredging out softer materials in the vicinity of the diffuser shaft to create 

a deep trench on which to site the jackup barge/s. In this way less of the jackup barge legs would be 

in  the marine muds/sediments. This option does however, present potential problems because of 

the possibility  for the dredged trench  to  fill back up with silts/sediments over time due to sea bed 

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:19

Page 108: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

 Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report 

 

Page 58  Doc Ref:  75461/DG44/ Draft 02 

movement –  i.e.  it becomes a silt trap. Equally the diffuser shaft  is  located close to the designated 

spoil dump for Dublin Bay – which may also introduce silt/sediment material into the dredged trench. 

Consideration  could  be  given  to  lowering  the  seabed  level  locally  to  reduce  the potential  for  the 

jackup barge legs to stick in the marine muds/sediments. 

7.11 Construction Sequence Diffuser Shaft 

The overall sequence of operations for the diffuser shaft construction is likely to be: 

Inspect seabed locally. 

Potential improvement of soft sediments.  

Grout of bedrock. 

Prepare seabed locally (Localised dredging of marine sediments may be required). 

Position jackup barge platform/s.  

Jackup barge platform to legs to be pre‐loaded to establish ground resistance levels. 

Position and drive outer steel liner into overburden sediments – shaft casing for machine drill. 

Use machine drill with slurry return to jackup barge platform. 

Add (weld) additional lengths to outer steel liner casing. 

Progress and complete drilling – remove machine drill. 

Insert inner steel liner. 

Tremie in concrete between inner and outer liner (and RC cages if necessary). 

Inner  liner reaming exercise to drill 2 – 3 m plug shaft below diffuser shaft  liner for eventual 

breakthrough into tunnel below. 

Fit out  and  cap diffuser  shaft with new diffuser head  and  isolation mechanism  for  re entry 

activities associated with the connection operation to the underlying tunnel. 

7.12 Survey 

The  shaft  construction  has  to  be  monitored  using  geodetic  measurements  during  the  entire 

construction period. 

 

 

 

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:19

Page 109: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report   

 Doc Ref:  75461/DG44/ Draft 02  Page 59 

Section 8 Summary 

8.1 General 

This report provides a concept of design for the  long sea outfall tunnel and  its  linked onshore  inlet 

and offshore outlet diffuser shafts comprising the main depths, vertical alignments, dimensions and 

seizing  of  its  elements.  This  approach  is  based  upon  rough  static  analyses  and/or  practical 

experiences gathered from similar projects.  

More  detailed  analysis  and  concept  design work will  be  essential  to  inform  the  baseline  tender 

reference design and tender specifications.  

In order  to  identify  the  final  tender specification  requirements and  the design needs  the  following 

reports have to be carried out:  

geotechnical baseline report (GBR), 

baseline tender reference design (BTRD) 

8.2 Geological Risk 

Site  investigation has proven the general technical feasibility of the project. However there are still 

some key issues related to ground conditions which are unresolved. Geological risks and related costs 

are strongly  linked to the density of site  investigation borings along the tunnel route. The “normal” 

distance of borings in land‐based tunnelling projects normally does not exceed ca. 200 m in distance. 

Sections  of  homogenous  conditions  require  less  dense  SI  borings,  sections  of  heterogeneous 

conditions more dense SI borings.  

Unfortunately,  the  average  distance  between  borings  in  this  project  is  ca.  900  m  which  is 

comparatively high. However, this final spacing was dictated by a combination of cost constraints but 

more  importantly operating  conditions within Dublin Bay –  including Environmental/ Operational/ 

Marine shipping. 

On balance, but with a few exceptions, the findings from the marine SI indicate that for the most part 

the 900 m spacing was adequate given the homogeneous nature of the underlying bedrock. 

However,  there  are  two  locations  in  particular  along  the  tunnel  route  whereby  an  increased 

geological risk still remains: 

Between Onshore shaft location and BH M 05.  

Whilst very poor bedrock conditions have been identified  in the onshore borings at both BH O 

01 and BH O 02,  the bedrock conditions at   BH M 05, which  is  located  in  the marine waters 

some  ca. 1,000 m due East, are fair to good. 

Geophysical  survey  investigation  results  show heterogeneous  conditions up  to  the  shoreline 

but  could  not  provide  detailed  prediction  of  their  extent  and  their  properties  along  the 

potential tunnel route. A more dense site investigation over this 1km length could reduce the 

geological  risk significantly and  thereby provide greater certainty  in contract  tendered costs. 

However, there are significant environmental constraints/restrictions in this area which is both 

a  designated  Special  Area  of  Conservation  and  a  Special  Protected  Area.  These 

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:19

Page 110: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

 Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report 

 

Page 60  Doc Ref:  75461/DG44/ Draft 02 

constraints/restrictions are the reason for the current lack of marine boreholes West of BH O 

05.  At  this  stage  there  is  no  evidence  that  these  constraints/restrictions  will  be  lifted  to 

accommodate further drilling.  

Between boreholes BH M 08 and BH M 21  

The distance between these two boreholes is ca. 2.5 km in length. No borings were undertaken   

over  this  length,  which  bisects  across  the  main  Dublin  Bay  shipping  lane,  because  of 

restrictions  imposed by Dublin Port. To date Dublin Port have resisted requests to drill along 

this section. 

In  tunnelling  terms  this  is  an  extremely  long  uninvestigated  section  which  results  in  a 

significant geological risk. A more dense SI along this  length would reduce the geological risk 

significantly.  It  is unlikely however that the Dublin Port will permit any  infill borehole drilling 

along this length. 

A change in bedrock strata has also been identified between BH M 08 and BH M 21. Therefore, 

it  is  highly  likely  that  transition  zone may  be  present  along  this  length.  The  location  and 

conditions/properties of this suspected transition zone are unknown.  

Other changes in strata may also occur within this 2.5 km undrilled length. 

Whilst to date the preliminary geophysical survey investigation results have been inconclusive 

in  the marine  environment  in  Dublin  Bay  because  of  the  strata  encountered  it  would  be 

prudent to investigate if alternative geophysical survey techniques are available to assess this 

2.5 km length. 

Investigations whilst tunnelling as described above are possible but reduce the advance rates 

and  leave  a  greater  uncertainty  to  the  construction  process  –  and will  inevitably  result  in 

higher contract costs.. 

8.3 Diffuser Shaft Location 

Ground conditions at the potential diffuser location B3 have been investigated by a single one boring 

(BH M 11). If the location does not change significantly, this will be sufficient as the main parameters 

of the soil and rock properties can be inferred from other borehole results.  

The  issue of  jackup barge  legs sticking  in the marine muds/sediments must be clearly presented  in 

the  tender documents with all  risk  transferred  to  the  contractors. Tenderers must be  required  to 

respond with a comprehensive method statement in their returned tender detailing how they intend 

to  plan  for,  deal with  and  resolve  this  issue  in  the  event  that  jackup  barges  become  stuck.  The 

method statements must  include a detailed recovery plan for how the  legs will be removed  if they 

become stuck – including techniques to be used such as air/water injection through the legs etc. 

Consideration should be given  in the tender documents to permitting the contractor to advance an 

independent SI around  the proposed diffuser  site as part of  the early contract  start‐up operations 

before the jackup barge/marine equipment is specified and mobilised.  

The seabed  local  to  the proposed diffuser shaft should be resurveyed – side sonar, magnetometer 

before a contractor mobilises marine construction equipment. 

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:19

Page 111: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report   

 Doc Ref:  75461/DG44/ Draft 02  Page 61 

The proposed  location  for  the diffuser, B3,  is  subjected  to  geomorphological  sea bed movements 

during  various marine/tide/storm  conditions. Although  the extent or  frequency of  these events  is 

unknown  the existence of seabed dunes  (and  the movement of such dunes) has  long been known 

about in the Bay close to Burford Bank. The presence of these seabed dunes has also been identified 

during the bathymetry survey which has been undertaken as part of the marine site investigation. 

The presence of  this  type of seabed movement may  lead  to  large buildup of materials around  the 

jack‐up  legs during  the  construction period  (which may  last up  to  six months.  This  issue must be 

clearly presented in the tender documents with all associated risks transferred to the contractor. 

8.4 Additional Site Investigation 

If  possible  we  recommend  that  some  local  additional  infill  site  investigation  works  should  be 

undertaken including: 

Marine geophysics (This is technically feasible and will be permitted) 

Intertidal geophysics (This is technically feasible and will be permitted) 

Onshore geophysics (This is technically feasible and will be permitted) 

Cored borings between onshore  shaft  location and BH M 05  (This  is  technically  feasible and 

unlikely to be permitted) 

Cored  borings  between  boreholes  BH M  08  and  BH M  21  (This  is  technically  feasible  but 

unlikely to be permitted) 

Install a well at the onshore site location (This is technically feasible and likely to be permitted) 

Though to date Dublin Port have refused requests to drill between borehole BH M 08 and BH M 21 

we recommend that one final attempt should be made to engage with Dublin Port (to advise them of 

the site investigation findings to date) to drill over this length. If permitted, between 4 and 8 borings 

should ideally be obtained over this length.  

Additional borehole and laboratory testing should be undertaken to determine the geotechnical and 

hydrogeological properties for any additional boreholes.  

8.5 Risk Assessment 

It is recommended that a risk assessment workshop is held to undertake a comprehensive review which deals with all aspects of Health & Safety issues regarding tunnel alignment, construction sequencing, construction methods, etc.

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:19

Page 112: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

 Ringsend WwTW Plant Upgrade | Effluent Outfall Extension Tunnel Concept Design Report 

 

Page 62  Doc Ref:  75461/DG44/ Draft 02 

Section 9 Conclusions A comprehensive site investigation was completed between September 2010 and September 2011.

The coverage of the site investigation was constraint because of significant environmental and operational constraints in Dublin Bay.

Following a preliminary review of the site investigation results a concept design has been developed for the onshore shaft construction, the tunnel alignment and the offshore shaft construction.

At this stage of the concept design work shows that the tunnel system can be constructed. The key issue however is the scale of geological risk remaining.

We believe that the geological risk can be reduced significantly if some further site investigation work is undertaken identified under section 8.

Due to environmental and operational constraints scope for undertaking further site investigation work may be limited. This matter needs to be investigated with the relevant statutory authorities and the Dublin Port authorities and the ESB.

A geotechnical baseline report (GBR) must be prepared based upon the findings from the site investigation. This report would be updated in accordance with the findings from any additional site investigation work which may be undertaken.

A baseline tender reference design (BTRD) must be prepared based upon the findings from the site investigation. The BTRD will include the tunnelling baseline report. This report would be updated in accordance with the findings from any additional site investigation work which may be undertaken.

The concept design presented in this report should be refined following a detailed interpretation of the site investigation works done to date and any future site investigation works.

The refined concept design will be incorporated within the finalized baseline tender reference design included in the tender.

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:19

Page 113: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

 

 

 

 

 

 

 

 

Appendix E  Planning and Policy Context 

No Content 

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:19

Page 114: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:19

Page 115: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

 

 

 

 

 

 

 

 

Appendix F  Human Beings 

No Content 

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:19

Page 116: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:19

Page 117: D.2 Constraints Mapping ReportBull Wall and north-eastwards to the Bull Island Causeway at St. Annes. Dublin Bay is currently home to a range of activities including fisheries, bathing

For

insp

ectio

n pur

pose

s only

.

Conse

nt of

copy

right

owne

r req

uired

for a

ny ot

her u

se.

EPA Export 10-12-2012:23:35:19


Recommended