+ All Categories
Home > Documents > Daadvid Hodge - Chemical Engineering and Materials … · Hardwood secondary xylem ... Glucan 10%...

Daadvid Hodge - Chemical Engineering and Materials … · Hardwood secondary xylem ... Glucan 10%...

Date post: 21-Aug-2018
Category:
Upload: dinhthu
View: 214 times
Download: 0 times
Share this document with a friend
34
Understanding and Enhancing Alkaline and Oxidative Chemical Pretreatments for the Oxidative Chemical Pretreatments for the Production of Biofuels through Improved Characterization Characterization Da vid Hodge Assistant Professor Chemical Engineering, Michigan State University 3 rd International Symposium on Bioenergy and Biotechnology Wuhan, Hubei, P.R. China 16 October, 2012
Transcript

Understanding and Enhancing Alkaline and Oxidative Chemical Pretreatments for theOxidative Chemical Pretreatments for the Production of Biofuels through Improved

CharacterizationCharacterization

David Hodgea d odgeAssistant Professor

Chemical Engineering, Michigan State Universityg g, g y

3rd International Symposium on y pBioenergy and Biotechnology

Wuhan, Hubei, P.R. China

16 October, 2012

Plant Tissues are Diverse and Highly HeterogeneousStorage Tissues: Food Crops Structural Tissues: Plant Cell Walls

Starch Granules in Corn Endosperm Source: USDA/ARS/ERRC

Arabidosis stem PNAS. 107(51): 22338–22343

Corn Stem Source: John Sedbrook, U. Illinois

Arabidopsis OleosomesNature Methods 3, 47 ‐ 53 (2006) 

Softwood secondary xylem (tracheids) http://www.cb.uu.se/

Hardwood secondary xylem (vessel elements and fibers)Plant Physiol 112:1479‐1490.

ts ous)

Commelinoid

Diversity of Cell Wall PolymersPrimary Cell Wall Secondary Cell Wall

3

Mon

ocot

(Herbaceo Commelinoid

(Grasses)

Non‐commelinoidpe

rms β‐GlucansGAX GMGAX

S GS G H FA FA

Herbaceous Dicot

commelinoid

Ang

iosp

XyGPP GX GMGX

S G

Dicots

Dicot

Woody Dicot

yPP

S GS G H

Woody Dicot(Hardwood)

ms

XyGPP GX GM GX

SHGSHG

SoftwoodGAX: glucuronoarabinoxylansGX: glucuronoxylans

mno

sper

m

SG Guaiacyl

Syringyl

Stem cross-sections

XyG: xyloglucansGMs: glucomannansPP: pectic polysaccharides

Gym H p-hydroxyphenyl

FA Ferulates

4

Monocot Lignins pCA

Lignin

S

Differences in composition and structural organization relative to herbaceous and woody dicots or

Li i

Sherbaceous and woody dicots or gymnosperm lignins

Ferulates and p‐coumarate can comprise a significant fraction of grass lignins Lignin

FA

significant fraction of grass ligninsEster crosslinksHighly condensed (~85%)High phenolic hydroxyl content

High alkali solubility

SGH pCA FA

p-coumaryl alcohol(H Lignins)

coniferyl alcohol(G Lignins)

sinapyl alcohol(S Lignins)

p-coumaricacid

ferulic acid

Barriers to the (Biological) Utilization of Plant Cell Wall Componentsof Plant Cell Wall Components

Targets/problems Science 315, 804 (2007)

Ultrastructure of plant cell walls needs to be broken downdown

Lignin prevents access to carbohydrate fraction

At the molecular level:Chemical modifications

Crystalline cellulose resists depolymerization, blocks access to internally packed

Chemical modifications

Depolymerization

Solubilizationaccess to internally packed polymers

How pretreatments

Solubilization

At the structural level:Physical redistribution ofHow pretreatments 

address this problemPhysical redistribution of components

Hemicellulose

Ch i l P t t tEnzymatic Depolymerization of 

Cellulose

Chemical Pretreatment Polysaccharides

Biochemical Conversion of Plant Cell Wall Polysaccharides 

Lignocellulose Feedstock (Plant Cell Walls)

yto Biofuels

Biological Conversion of Monosaccharides

Microbial MetabolitesEthanol, Butanol, Carboxylic Acids, Alkanes, Isoprenoids, …

Biological Mechanism 1: Secreted set of ll l

Oxidative Deconstruction of LignocelluloseT. terrestris GH61EBiochemistry 2010, 

cellulases• Individual proteins with CBM, flexible 

linker, and catalytic domain (e.g. Trichoderma reesei) 

49, 3305–3316

c ode a eese )

Biological Mechanism 2: Brown rot fungi• Deconstruction of cellulose and lignin• Deconstruction of cellulose and lignin 

using biologically‐generated ∙OH

Bi l i l M h i 3 Whit t f iBiological Mechanism 3: White rot fungi• Peroxidases and oxidases for lignin 

degradation Lignin Peroxidase from P. chrysosporium

Laccase from M. albomyces

Science 333:762‐765.Images source: http://chemistry.umeche.maine.edu/CHY431/Wood4.html

Alkaline Hydrogen Peroxide PretreatmentBased on existing alkaline hydrogenBased on existing alkaline hydrogen peroxide pulp bleaching stages in the paper industry

Alkaline‐oxidative pretreatments as either standalone pretreatments ORdelignifying “finishing” post‐delignifying finishing postpretreatment  step

Unique advantagesWell‐suited for grasses

Current Challenges:

Alkaline hydrogen peroxide bleaching tower >1000 tpd capacity at Smurfit‐K K f li Pi å S d ( h

Process integration

Economics

Water use/recycleKappa Kraftliner, Piteå, Sweden (photo courtesy: Outokumpu Oy)

/ y

Alkaline Hydrogen Peroxide PretreatmentBased on existing alkaline hydrogenBased on existing alkaline hydrogen peroxide pulp bleaching stages in the paper industry

Agricultural Residues:• Corn Stover/Corn Fiber• Wheat Straw

Alkaline‐oxidative pretreatments as either standalone pretreatments ORdelignifying “finishing” post‐

Wheat Straw• Sugar Cane Bagasse• Sorghum Bagasse• Rice Strawdelignifying finishing post

pretreatment  step

Unique advantages

• Rice Straw

Well‐suited for grasses

Current Challenges: Bioenergy Grasses:• Switchgrass

Process integration

Economics

Water use/recycle

g• Miscanthus sp. • Reed Canary Grass

/ y

Alkaline Hydrogen Peroxide PretreatmentBased on existing alkaline hydrogenBased on existing alkaline hydrogen peroxide pulp bleaching stages in the paper industry

Alkaline‐oxidative pretreatments as either standalone pretreatments ORdelignifying “finishing” post‐

Improved Processes?Catalytic approaches?

delignifying finishing postpretreatment  step

Unique advantages70

80

90

ass

Upper Theoretical Limit

Well‐suited for grasses

Current Challenges: 40

50

60OH / ton

 Bioma

Switchgrass

Process integration

Economics

Water use/recycle 0

10

20

30

Gal EtO Corn Stover

/ y$0.00 $2.00 $4.00 $6.00

Pretreatment Chemical Cost / Gal EtOH

11Alkaline Hydrogen Peroxide PretreatmentPretreatment Liquefaction/Saccharificationq

90%

100%

Unquantified Solids

h

90%

100%

Unquantified Solids

A hSolids transferred to Solids transferred to the

50%

60%

70%

80%

onen

t Fraction

Ash

Water+EtOH Extractives

Acetate

Uronic Acids

Galactan50%

60%

70%

80%

onen

t Fraction

Ash

Water+EtOH Extractives

Acetate

Uronic Acids

GalactanInsoluble Insoluble

Solids transferred to the liquid phase

Solids transferred to the liquid phase (hydrolysate)

10%

20%

30%

40%

Compo

Galactan

Mannan

Arabinan

Xylan

Glucan10%

20%

30%

40%

Compo

Galactan

Mannan

Arabinan

Xylan

Glucan

FractionFraction

0%

0 3 6 12 18 30 36 42 48

Pretreatment Time (h)

Lignin (Klason)

ASL

0%

0 3 6 12 18 30 36 42 48

Pretreatment Time (h)

Lignin (Klason)

ASL0 4 8 12 16 20 24 28 32 36 40 44 48

Hydrolysis Time (h)Banerjee et al. (2012). BiotechnolBioeng. 109(4):922‐931. 

Pretreatment, 0 hPretreatment, 0 hIntegration of AHP Pretreatment,

Hydrolysis, and Fermentation

on o

f ne

nts

y y ,

70

80

90

Glc Xly

Y87 (pH5.5) OD 1

6

8

Pretreatment, 48 hPretreatment, 48 h

solu

biliz

atio

all c

ompo

n

30

40

50

60

conc

. (g/

l)

y EtOH Xylitol glycerol OD 600

4

OD

600

Xylose-fermenting Saccharomyces

Hydrolysis, 0 Hydrolysis, 0 hrhr

crea

sing

san

t cel

l wa

0 50 100 150 200 2500

10

20

0

2

Inc

pla

1.67 g/L YNB w/o ammonium sulfate and 2 27 g/L of urea

0 50 100 150 200 250

time (h)

Hydrolysis, 24 Hydrolysis, 24 hrhrand 2.27 g/L of urea

Filter Sterilize

Fermentation

Sterilize(0.22 μm)

Liu et al. (in preparation).

Relating Cell Wall Properties to RecalcitranceUnderstanding cell wall properties impacting recalcitrance and relationship of these properties to enzymatic digestibility

Using pretreatment of plant cell walls with diverse phenotypes to t l ith di l it tigenerate samples with diverse recalcitrance properties

Analytical ToolProperty Impacting Recalcitrance

Water adsorption/retention 

Potentiometric titration

Cell wall hydrophilicity

Cellulose oxidation

Glycome Profiling

Klason Lignin

Polysaccharide accessibility

Lignin content

HPLC

Pyrolysis‐GC/MS

Ferulate content

S/G ratio

Thioacidolysis‐GC/MS

HSQC NMR

Lignin condensation

Diverse Cell Wall Properties: BiomassMonocot grasses

Corn Stovers (Zea mays)• Pioneer hybrid 36H56

• Inbred brown midrib bm1Inbred brown midrib bm1

• Inbred brown midrib bm3

Switchgrass(Panicum virgatum cv. Cave‐in‐Rock)

Miscanthus (Miscanthus x giganteus )

Woody dicotHybrid poplar 

(Populus nigra var Charkoviensis x Caudina)

Herbaceous dicot

(Populus nigra var. Charkoviensis x Caudina)

Goldenrod (Solidago sp.)dicot

Diverse Cell Wall Properties: Pretreatments 15

AHP

Soda pulping

Liquid Hot Water + qAHP post‐treatment

Cu(bpy)‐catalyzed AHP t t tAHP pretreatment

Cell Wall – Water Interactions ObjectivesHow can cell wall–water interactions  Property: Cell impact deconstruction

Water Retention Value 

i l S li

p yWall Composition

Quantifiable Particle Settling

Water Activity

15% Solids15% Solids

Lignin Content

Polysaccharide Content

Qmetrics

15% Solids15% Solids

Accessible vs. Amorphous

Corn StoverCorn Stover SwitchgrassSwitchgrass Inaccessible

Property: CellO t

vs. Crystalline

Property: Cell Wall Hydrophilicity

Outcomes:Water Penetration

Enzyme Penetration Property: Cell Wall Porosity

Enzyme Penetration

Polysaccharide Hydrolysis

Introduction of Carboxyl Groups with Oxidative Pretreatments?

?

COOH

COOH

COOH

COOH

COOH

COOH

COOH

COOHCOOHCOOHCOOH

COOH

Interactions Between Water and Cell WallWater retention value (WRV)

Step 1: Filter wash Step 2: Centrifuge Step 3: Weighing

Water retention value (WRV)

Determine Moisture Content of Pad

MwaterMdrypad

WRV =

Filter wash using 200mesh screen to

“Cookie Cutter” pad onto 200 mesh disk from filter

Weigh wet pad; Dry in oven at 105oC for ~2hrs

then weigh dry pad200mesh screen to ~ 80% moisture

200 mesh disk from filter funnel; Centrifuge at

900xg for 15min

Interactions Between Water and Cell WallB th t t ti l (WRV) Settling height (ht)Both water retention value (WRV)

and swelling volume are increased with pretreatment

Settling height (ht) Total height (Ht)

WRV is a very good predictor of

More water confined in cell wall

htHt

digestibility

80%

100%

on

LHW=Liquid Hot Water pretreated

1.00

ght

ht

40%

60%

80%

can

Con

vers

io

0.80

eigh

t/Tot

al h

eig

CS UntreatedCS 25% H2O2SG UntreatedSG 25% H2O2AHP

IncreasesS lli

20%

40%

7 D

ay G

lu SG

LHW SG

CS

LHW CS0.40

0.60S

ettli

ng h

e Swelling

0%1.4 2.0 2.6 3.2 3.8 4.4

WRV

2.0% 4.0% 6.0% 8.0% 10.0% 12.0%

Solids Concentration (w/w)Williams et al. (in preparation).

Interactions Between Water and the Cell Wall

30

Pretreated corn stover can adsorb more water in the cell wall Dynamic vapor

25

30

)

Corn StoverQuantifiable by decreased water 

i i

sorption/desorption isotherms

15

20C

onte

nt (%

)activity at a moisture content

i e more water is

10

Moi

stur

e Ci.e. more water is  

present in a constrained 

i t

0

5environment

0 0.25 0.5 0.75 1

Water Activity (aw) = Relative Humidity (hr) of vaporWilliams et al. (in preparation).

Interactions Between Water and the Cell Wall

30

Pretreated corn stover can adsorb more water in the cell wall Dynamic vapor

25

30

)

Corn StoverAHP Pretreated

Quantifiable by decreased water 

i i

sorption/desorption isotherms

15

20C

onte

nt (%

)Lower hr for AHP Corn

activity at a moisture content

i e more water is

10

Moi

stur

e Ci.e. more water is  

present in a constrained 

i t

0

5environment

0 0.25 0.5 0.75 1

Water Activity (aw) = Relative Humidity (hr) of vaporWilliams et al. (in preparation).

Hydrolysis Results for AHP Pretreatment of Diverse Cell Wall Phenotypes

Grasses: Increasing response to AHP

of Diverse Cell Wall Phenotypes

response to AHPpretreatment 

Herbaceous Dicot: Conversion saturates

Cell wall properties?

brid

pl

ar

nrod

over

6) ov

er

) tove

r 3)hu

s

rass

Hyb

Pop

Gol

den

Cor

n St

o(3

6H56

Cor

n St

o(b

m1

Cor

n St

(bm

3

Mis

cant

Switc

hgr

Dicots MonocotsLi et al. (in preparation)

Correlating Digestibility to Plant Cell Wall Properties: Lignin RemovalWall Properties: Lignin Removal

Digestibility and lignin content correlated 

100%Hybrid Stover

Extracted with alkali or AHP pretreated

Negative relationship                                                       

70%

80%

90%

ty

Hybrid Stover

Inbred bm1 stover

Inbred bm3 Stover

Hybrid Poplar

g pwith “threshold” value   for lignin removal 

40%

50%

60%

ucan

 Digestibilit Miscanthus

Critical level for cell wall hydrophobicity?

10%

20%

30%Glu

Properties associated with lignin removal?

0%0 0.05 0.1 0.15 0.2 0.25

Klason Lignin (Mass Fraction of Cell Wall)

g

24Lignin Analytical Methods: Pyrolysis GC-MS

High‐throughput destructive characterization of complete cell wallsBased on characterization of volatilized pyrolysis productspy y pPyrolysis for 10 s at 600oC, heated transfer line to GC/MS at 300oC

3.0

4.0

5.0

(x10,000,000)TICTIC

GC-MS

5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5

1.0

2.0

Lignin Analytical Methods: Pyrolysis GC-MSCorrelating aromatic products to monomers in the lignin polymer

25

70%

75%

80%

85%

acol o

rcrease

Correlating aromatic products to monomers in the lignin polymerOnly represents a fraction of original lignin

• Poor yield on condensed ligninsUnique products for each lignin monomer?

50%

55%

60%

65%

70%

Yrolytic 4‐vinylguai

4‐vinylphe

nol de

c

Ferulate

p‐coumarateH lignins ???

q p gpCA and FA yield clearly identifiable markers

• 4‐vinylphenol and 4‐vinylguaiacol

40%

45%

50%

0.00% 0.25% 0.50% 0.75% 1.00% 1.25%

PY

Quantified ferulate or p‐coumarate released

p‐coumarateH-lignins

p-coumaric???

(percentage of cell wall)acid

G-lignins???

FerulicAcid

???

S-lignins

Lignin Analytical Methods: Pyrolysis GC-MSCorrelating aromatic products to monomers in the lignin polymer

26

Correlating aromatic products to monomers in the lignin polymerOnly represents a fraction of original lignin

• Poor yield on condensed ligninsUnique products for each lignin monomer?

100% Syringyl Lignins

q p gpCA and FA yield clearly identifiable markers

• 4‐vinylphenol and 4‐vinylguaiacol Li et al. (2012). BiotechnolBiofuels. 5(1)38.

70%

80%

90%

zed by

 Pyrolysis 3,4,5‐Trimethoxytoluene

Syringol

Syringaldehyde

Methylsyringol

MethoxyeugenolFerulic acid

Guaiacyl Lignins

Sy gy g s

5 pools of lignin monomers identifiable

30%

40%

50%

60%

of Aromatics Volatiliz

Guaiacol

Eugenol

Creosol

Acetoveratrone

(E)‐Isoeugenol

4 i l i l

Ferulic acid (or guaiacyl lignin)

monomers identifiable

Can be used to:• Estimate S/G

0%

10%

20%

Switchgrass (cv.  Pioneer Hybrid  Inbred bm1  Inbred bm3  Sugar Maple 

Fraction

 o 4‐vinylguaiacol

Phenol

4‐vinylphenol

p-coumaric acid (or other lignin)

• Characterize changes to lignin during pretreatment

Cave‐In‐Rock) Stover Stover Stover (Acer saccharum)

Herbaceous Monocots (Grasses) Woody dicot

S l bili d f l i l d

Correlating Digestibility to Plant Cell Wall Properties

Solubilized ferulate is correlated to glucan digestibility

Pyrolytic 4‐vinylguaiacolPyrolytic 4 vinylguaiacol (Ferulate/Lignin): Correlated to lignin content and glucandigestibilitydigestibility

800000

28

G monomer S monomerDetermine relative quantities of (0.38)(0.26)(0.99)(0.86)(S/G)

Lignin Methods: Thioacidolysis GC/MS

500000

600000

700000Determine relative quantities of G, S, H lignins

Foster et al., 2010. J Vis Exps, 37

bm1bm3

0 6

0.7

0.8

0.9

1.0

Mon

omers Re

leased

 lysis

p‐Hydroxyphenyl (H)

Guiacyl (G)

Syringyl (S)

( )( )( )( )( )

100000

200000

300000

400000

Cleavage of alkyl‐aryl ethers in ligninQuantification of derivatized 0.2

0.3

0.4

0.5

0.6

ive Fraction

 of Lignin M

by Thioacido

08.05 8.15 8.25 8.35 8.45 8.55 8.65 8.75

fragments by GC‐MSProblematic in grasses? 

• Highly condensed ligninsGC MS

Time (minutes)

0.0

0.1

Pioneer Hybrid Stover

bm1 Inbred Stover

bm3 Inbred Stover

Switchgrass (cv. Cave‐In‐Rock)

Relati

GC-MS quantification

BSTF

CPG-SM

EtSH, BF3

β-O-4 linkageLi et al. (2012). BiotechnolBiofuels. 5(1)38.

29Quantitative ThioacidolysisDetermines the fraction of lignin involved in only ether linkagesDetermines the fraction of lignin involved in only ether linkagesThioacidolysis yield decreased from 5‐12% w/w to 1% w/w after pretreatment

AHP pretreatment solubilizing 50% lignin

Fraction of condensed lignin increased from 88‐95% w/w to 99% w/wLi et al. (2012). BiotechnolBiofuels. 5(1)38.

100%Cu(bpy)-Catalyzed AHP 30

Hybrid PoplarCatalyst significantly improves subsequent

80%

No AHP, no xylanaseAHP, no xylanaseAHP, xylanaseAHPwith Cu(bpy) no xylanase

Catalyst significantly improves subsequent enzymatic conversion of cellulose 

60%

version

AHP with Cu(bpy), no xylanaseCu(bpy) AHP, xylanase

40%

Glucan Co

nv

20%

0%24 48 72

Hydrolysis time (h)Li et al. (accepted 2012). Biotechnol Bioeng.

Oxidative Depolymerization of CelluloseO R

COOHOH

R HO

AHP depolymerizes cellulose (filter paper)

OO

COOHOHHO

C6 oxidation

?(filter paper)

Introduces ‐COOHO

OO

R

OHOH

OHOH

RHO

HO

Cellulose

O

HO

R

OH

OH

HO

on+

O

OHRHO

?

?

OOH

OH

R HO

COOH

C1 oxid

ation+OH OH

O R

OH

OH

HO

OC4 oxidation

+?

Li et al. (accepted 2012). Biotechnol Bioeng.

www.glbrc.org

SummaryW t d ti d t ti b l t d

32

Water adsorption and retention can be correlated to enzymatic conversion

Correlating digestibility to plant cell wall propertiesNegative relationship between Klason lignin and di ibili di ll lldigestibility across diverse cell wall typesFerulate content quantified by Py‐GC/MS in residual cell wall and LC/MS in hydrolysates can be correlated towall and LC/MS in hydrolysates can be correlated to lignin removal and digestibility

Oxidative cellulose depolymerization and –COOH p yintroduction demonstratedImpact on digestibility improvement? 

AcknowledgementsResearch Group:

Dan WilliamsMarc Hansen(†) Ryan Stoklosa

Dr. Tongjun LiuCharles Chen

Collaborators:Eric Hegg, MSUChris Saffron MSU

David Hodge Muyang LiAlex Smith(†)y

Zhenglun LiChris Saffron, MSUJonathan Walton, MSUMichael Hahn, U. GeorgiaTrey Sato U WisconsinTrey Sato, U. WisconsinArt Ragauskas, Georgia

Funding:DOE, BER DE‐FC02‐07ER64494,DOT, NE Sun Grant InitiativeNSF, DUE #0757020

Not pictured: pElizabeth Häggbjer, Natassa Christides, Genevieve Gagnier

Thank You!Thank You!

Questions?

[email protected]@ su edu

34


Recommended