+ All Categories
Home > Documents > Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

Date post: 13-Jan-2016
Category:
Upload: hieu
View: 28 times
Download: 0 times
Share this document with a friend
Description:
Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006. Cosmic acceleration Accelerating matter is required to fit current data. Preferred by modern data.  Amount of w=-1 matter . “Ordinary” non accelerating matter. Supernova. - PowerPoint PPT Presentation
61
Transcript
Page 1: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006
Page 2: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

Dark Energy Theory

Andreas Albrecht (UC Davis)

PASCOS

OSU Sep 10 2006

Page 3: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

Cosmic acceleration

Accelerating matter is required to fit current data

Supernova

Preferred by modern data

Amount of “ordinary” gravitating matter

A

mount

of

w=

-1 m

att

er

“Ordinary” non accelerating matter

Page 4: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

Dark energy appears to be the dominant component of the physical

Universe, yet there is no persuasive theoretical explanation. The

acceleration of the Universe is, along with dark matter, the observed

phenomenon which most directly demonstrates that our

fundamental theories of particles and gravity are either incorrect or

incomplete. Most experts believe that nothing short of a revolution

in our understanding of fundamental physics will be required to

achieve a full understanding of the cosmic acceleration. For these

reasons, the nature of dark energy ranks among the very most

compelling of all outstanding problems in physical science. These

circumstances demand an ambitious observational program to

determine the dark energy properties as well as possible.

From the Dark Energy Task Force report (2006)www.nsf.gov/mps/ast/detf.jsp

& to appear on the arXiv.

Page 5: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

This talk

Part 1:

A few attempts to explain dark energy

- Motivations, Problems and other comments

Theme: We may not know where this revolution is taking us, but it is already underway:

(see e.g. Copeland et al 2006 review)

Part 2

Modeling dark energy to make forecasts for new experiments

(see e.g. DETF report and AA & Bernstein 2006)

Page 6: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

This talk

Part 1:

A few attempts to explain dark energy

- Motivations, Problems and other comments

Theme: We may not know where this revolution is taking us, but it is already underway:

(see e.g. Copeland et al 2006 review)

Part 2

Modeling dark energy to make forecasts for new experiments

(see e.g. DETF report and AA & Bernstein 2006)

Page 7: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

Some general issues:

Properties:

Solve GR for the scale factor a of the Universe (a=1 today):

Positive acceleration clearly requires

• (unlike any known constituent of the Universe) or

• a non-zero cosmological constant or

• an alteration to General Relativity.

/ 1/ 3w p

43

3 3

a Gp

a

Page 8: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

• Today,

• Many field models require a particle mass of

Some general issues:

Numbers:

4120 4 310 10DE PM eV

31010Qm eV H 2 2

Q P DEm M from

Page 9: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

• Today,

• Many field models require a particle mass of

Some general issues:

Numbers:

4120 4 310 10DE PM eV

31010Qm eV H 2 2

Q P DEm M from

Where do these come from and how are they protected from quantum corrections?

Page 10: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

Specific ideas: i) A cosmological constant

• Nice “textbook” solutions BUT

• Deep problems/impacts re fundamental physics

Vacuum energy problem (we’ve gotten nowhere with this)

= 10120

0 ?

Vacuum Fluctuations

Page 11: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

Specific ideas: i) A cosmological constant

• Nice “textbook” solutions BUT

• Deep problems/impacts re fundamental physics

The string theory landscape (a radically different idea of what we mean by a fundamental theory)

Page 12: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

Specific ideas: i) A cosmological constant

• Nice “textbook” solutions BUT

• Deep problems/impacts re fundamental physics

The string theory landscape (a radically different idea of what we mean by a fundamental theory)

Not exactly a cosmological

constant

KKLT etc

Page 13: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

Specific ideas: i) A cosmological constant

• Nice “textbook” solutions BUT

• Deep problems/impacts re fundamental physics

De Sitter limit: Horizon Finite Entropy Equilibrium Cosmology

Rare Fluctuation

Banks, Fischler, Susskind, AA Sorbo etc

Page 14: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

Specific ideas: i) A cosmological constant

• Nice “textbook” solutions BUT

• Deep problems/impacts re fundamental physics

is not the “simple option”

Page 15: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

• Recycle inflation ideas (resurrect dream?)

• Serious unresolved problems

Explaining/ protecting

5th force problem

Vacuum energy problem

What is the Q field? (inherited from inflation)

Why now? (Often not a separate problem)

Specific ideas: ii) A scalar field (“Quintessence”)

31010Qm eV H

0

Page 16: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

today (t=14.5 Gyr). (not some other time)

Why now? (Often not a separate problem)

10-20

100-0.5

0

0.5

1

a

rad

matter

DE

Page 17: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

Specific ideas: ii) A scalar field (“Quintessence”)

• Illustration: Pseudo Nambu Goldstone Boson (PNGB) models

1)/cos(4 fMV

With f 1018GeV, M 10-3eV

PNGB: Frieman, Hill, Stebbins, & Waga 1995

PNGB mechanism protects M and 5th force issues

Page 18: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

Specific ideas: ii) A scalar field (“Quintessence”)

• Illustration: Pseudo Nambu Goldstone Boson (PNGB) models

0123-1.5

-1

-0.5

0

0.5

1

z

,

w

r

m

D

w

Hall et al 05

Page 19: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

Dark energy and the ego test

Page 20: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

Specific ideas: ii) A scalar field (“Quintessence”)

• Illustration: Exponential with prefactor (EwP) models:

All parameters O(1) in Planck units,

motivations/protections from extra dimensions & quantum gravity

2

0( ) exp /V V

AA & Skordis 1999

Burgess & collaborators

Page 21: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

Specific ideas: ii) A scalar field (“Quintessence”)

• Illustration: Exponential with prefactor (EwP) models:

All parameters O(1) in Planck units,

motivations/protections from extra dimensions & quantum gravity

AA & Skordis 1999

AA & Skordis 1999

Burgess & collaborators

V

2

0( ) exp /V V

Page 22: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

Specific ideas: ii) A scalar field (“Quintessence”)

• Illustration: Exponential with prefactor (EwP) models:

AA & Skordis 199910

-2010

0-1.5

-1

-0.5

0

0.5

1

a

,

w

r

m

D

w

Page 23: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

Specific ideas: iii) A mass varying neutrinos (“MaVaNs”)

• Exploit

• Issues Origin of “acceleron” (varies neutrino mass, accelerates the universe)

gravitational collapse

1/ 4 310DEm eV

Faradon, Nelson & Weiner

Afshordi et al 2005

Spitzer 2006

Page 24: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

Specific ideas: iii) A mass varying neutrinos (“MaVaNs”)

• Exploit

• Issues Origin of “acceleron” (varies neutrino mass, accelerates the universe)

gravitational collapse

1/ 4 310DEm eV

Faradon, Nelson & Weiner

Afshordi et al 2005

Spitzer 2006

“ ” Copeland et al

Page 25: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

Specific ideas: iv) Modify Gravity

• Not something to be done lightly, but given our confusion about cosmic acceleration, well worth considering.

• See previous talk

• Many deep technical issues

Page 26: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

This talk

Part 1:

A few attempts to explain dark energy

- Motivations, Problems and other comments

Theme: We may not know where this revolution is taking us, but it is already underway:

(see e.g. Copeland et al 2006 review)

Part 2

Modeling dark energy to make forecasts for new experiments

(see e.g. DETF report and AA & Bernstein 2006)

Page 27: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

This talk

Part 1:

A few attempts to explain dark energy

- Motivations, Problems and other comments

Theme: We may not know where this revolution is taking us, but it is already underway:

(see e.g. Copeland et al 2006 review)

Part 2

Modeling dark energy to make forecasts for new experiments

(see e.g. DETF report and AA & Bernstein 2006)

Page 28: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

Q: Given that we know so little about the cosmic acceleration, how do we represent source of this acceleration when we forecast the impact of future experiments?

Consensus Answer: (DETF, Joint Dark Energy Mission

Science Definition Team JDEM STD)

• Model dark energy as homogeneous fluid all information contained in

• Model possible breakdown of GR by inconsistent determination of w(a) by different methods.

/w a p a a

Page 29: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

w

wa

ww((aa)) ww + + wwaa((aa))ww((aa)) ww + + wwaa((aa))

DETF figure of merit:Area

95% CL contour

(DETF parameterization… Linder)

Page 30: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

The DETF stages (data models constructed for each one)

Stage 2: Underway

Stage 3: Medium size/term projects

Stage 4: Large longer term projects (ie JDEM, LST)

Page 31: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

DETF Projections

Stage 3

Fig

ure

of m

erit

Impr

ovem

ent

over

S

tage

2

Page 32: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

DETF Projections

Ground

Fig

ure

of m

erit

Impr

ovem

ent

over

S

tage

2

Page 33: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

DETF Projections

Space

Fig

ure

of m

erit

Impr

ovem

ent

over

S

tage

2

Page 34: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

DETF Projections

Ground + Space

Fig

ure

of m

erit

Impr

ovem

ent

over

S

tage

2

Page 35: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

0 0.5 1 1.5 2 2.5-4

-2

0

wSample w(z) curves in w

0-w

a space

0 0.5 1 1.5 2

-1

0

1

w

Sample w(z) curves for the PNGB models

0 0.5 1 1.5 2

-1

0

1

z

w

Sample w(z) curves for the EwP models

w0-wa can only do these

DE models can do this (and much more)

w

z

0( ) 1aw a w w a

How good is the w(a) ansatz?

Page 36: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

0 0.5 1 1.5 2 2.5-4

-2

0

wSample w(z) curves in w

0-w

a space

0 0.5 1 1.5 2

-1

0

1

w

Sample w(z) curves for the PNGB models

0 0.5 1 1.5 2

-1

0

1

z

w

Sample w(z) curves for the EwP models

w0-wa can only do these

DE models can do this (and much more)

w

z

0( ) 1aw a w w a

How good is the w(a) ansatz?

Page 37: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

0 0.5 1 1.5 2 2.5-4

-2

0

wSample w(z) curves in w

0-w

a space

0 0.5 1 1.5 2

-1

0

1

w

Sample w(z) curves for the PNGB models

0 0.5 1 1.5 2

-1

0

1

z

w

Sample w(z) curves for the EwP models

w0-wa can only do these

DE models can do this (and much more)

w

z

How good is the w(a) ansatz?

NB: Better than

0( ) 1aw a w w a

0( )w a w

Page 38: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

10-2

10-1

100

101

-1

0

1

z

Try 9D stepwise constant w(a)

w a

AA & G Bernstein 2006

9 parameters are coefficients of the “top hat functions”

9

11

( ) 1 1 ,i i ii

w a w a wT a a

1,i iT a a

0

-1 w a-2

Page 39: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

10-2

10-1

100

101

-1

0

1

z

Try 9D stepwise constant w(a)

w a

AA & G Bernstein 2006

9 parameters are coefficients of the “top hat functions”

9

11

( ) 1 1 ,i i ii

w a w a wT a a

1,i iT a a

Allows greater variety of w(a) behavior

Allows each experiment to “put its best foot forward”

0

-1 w a-2

Page 40: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

Q: How do you describe error ellipsis in 9D space?

A: In terms of 9 principle axes and corresponding 9 errors :

2D illustration:

1

2

Axis 1

Axis 2

if

i

1f

2f

Page 41: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

Q: How do you describe error ellipsis in 9D space?

A: In terms of 9 principle axes and corresponding 9 errors :

2D illustration:

1

2

Axis 1

Axis 2

if

i

1f

2f Assuming Gaussian

distributions for this discussion

Page 42: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

Q: How do you describe error ellipsis in 9D space?

A: In terms of 9 principle axes and corresponding 9 errors :

2D illustration:

1

2

Axis 1

Axis 2

if

i

1f

2f

NB: in general the s form a complete basis:

i ii

w f

if

The are independently measured qualities with errors

i

i

Page 43: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

1 2 3 4 5 6 7 8 90

1

2

Tag = 044301 Stage 2, Stage II NC Optimisitic

i

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-1

0

1

f's

a

1

2

3

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-1

0

1

f's

a

4

5

6

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-1

0

1

f's

a

7

8

9

i

Prin

cipl

e A

xes

Characterizing 9D ellipses by principle axes and corresponding errors

if i

z

DETF stage 2

Page 44: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

1 2 3 4 5 6 7 8 90

1

2

Tag = 044301 Stage 42, BAO Optimisitic

i

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-1

0

1

f's

a

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-1

0

1

f's

a

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-1

0

1

f's

a

1

2

3

4

5

6

7

8

9

i

Prin

cipl

e A

xes

Characterizing 9D ellipses by principle axes and corresponding errors

if i

z

DETF stage 4 WL Opt.

Page 45: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

DETF Figure of Merit:

DETF1 2

1

F

9D Figure of Merit:

9D 9

1

1

ii

F If we set 1i 1i

Page 46: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

BAOp BAOs SNp SNs WLp ALLp1

10

100

1e3

1e4

Stage 3

Bska Blst Slst Wska Wlst Aska Alst1

10

100

1e3

1e4

Stage 4 Ground

BAO SN WL S+W S+W+B1

10

100

1e3

1e4

Stage 4 Space

Grid Linear in a zmax = 4 scale: 0

1

10

100

1e3

1e4

Stage 4 Ground+Space

[SSBlstW lst] [BSSlstW lst] Alllst [SSWSBIIIs] SsW lst

DETF(-CL)

9D (-CL)

DETF/9DF

Page 47: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

BAOp BAOs SNp SNs WLp ALLp1

10

100

1e3

1e4

Stage 3

Bska Blst Slst Wska Wlst Aska Alst1

10

100

1e3

1e4

Stage 4 Ground

BAO SN WL S+W S+W+B1

10

100

1e3

1e4

Stage 4 Space

Grid Linear in a zmax = 4 scale: 0

1

10

100

1e3

1e4

Stage 4 Ground+Space

[SSBlstW lst] [BSSlstW lst] Alllst [SSWSBIIIs] SsW lst

DETF(-CL)

9D (-CL)

DETF/9DF

Stage 2 Stage 4 = 3 orders of magnitude (vs 1 for DETF)

Stage 2 Stage 3 = 1 order of magnitude (vs 0.5 for DETF)

Page 48: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

Define the “scale to 2D” function

2/2D

eDS F F

The idea: Construct an effective 2D FoM by assuming two dimensions with “average” errors (~geometric mean of 9D errors)

Purpose: Separate out the impact of higher dimensions on comparisons with DETF, vs other information from the D9 space (such relative comparisons of data model).

2D 2

1

aveS F

Page 49: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

Bp Bs Sp Ss Wp ALLp

1

23

5 10 20

Stage 3

1

23

5 10 20

Stage 4 Ground

Bska

BLST

Slst

Wska

Wlst

Aska

Alst

B S W SW SWB

1

23

5 10 20

Stage 4 Space

1

23

5 10 20

Stage 4 Ground+Space

[SSB

lstW

lst] [B

SS

lstW

lst] All

lst [S

SW

SB

IIIs] S

sW

lst

DETF(-CL)

9D (-CL)-Scaled to 2D

De= 4 for Stage 4 Pes, ; De= 4.5 for Stage 4 Pes,

De=4.5 for Stage 3De=4 for Stage 2.5

Page 50: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

Discussion of cost/benefit analysis should take place in higher dimensions (vs current standards)

“form” Frieman’s talk

1

2

Axis 1

Axis 2

1f

2f

DETF

Page 51: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

An example of the power of the principle component analysis:

Q: I’ve heard the claim that the DETF FoM is unfair to BAO, because w0-wa does not describe the high-z behavior which to which BAO is particularly sensitive. Why does this not show up in the 9D analysis?

Page 52: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

BAOp BAOs SNp SNs WLp ALLp1

10

100

1e3

1e4

Stage 3

Bska Blst Slst Wska Wlst Aska Alst1

10

100

1e3

1e4

Stage 4 Ground

BAO SN WL S+W S+W+B1

10

100

1e3

1e4

Stage 4 Space

Grid Linear in a zmax = 4 scale: 0

1

10

100

1e3

1e4

Stage 4 Ground+Space

[SSBlstW lst] [BSSlstW lst] Alllst [SSWSBIIIs] SsW lst

DETF(-CL)

9D (-CL)

DETF/9DF

Specific Case:

Page 53: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

1 2 3 4 5 6 7 8 90

1

2

Stage 4 Space BAO Opt; lin-a NGrid

= 9, zmax

= 4, Tag = 044301

i

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-1

0

1

f's

a

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-1

0

1

f's

a

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-1

0

1

f's

a

1

2

3

4

5

6

7

8

9

BAO

Page 54: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

1 2 3 4 5 6 7 8 90

1

2

Stage 4 Space SN Opt; lin-a NGrid

= 9, zmax

= 4, Tag = 044301

i

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-1

0

1

f's

a

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-1

0

1

f's

a

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-1

0

1

f's

a

1

2

3

4

5

6

7

8

9

SN

Page 55: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

1 2 3 4 5 6 7 8 90

1

2

Stage 4 Space SN Opt; lin-a NGrid

= 9, zmax

= 4, Tag = 044301

i

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-1

0

1

f's

a

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-1

0

1

f's

a

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-1

0

1

f's

a

1

2

3

4

5

6

7

8

9

SNw0-wa analysis shows two parameters measured on average as well as 3.5 of these

Page 56: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

Upshot of 9D FoM:

1) DETF underestimates impact of expts

2) DETF underestimates relative value of Stage 4 vs Stage 3

3) The above can be understood approximately in terms of a simple rescaling

4) DETF FoM is fine for most purposes (ranking, value of combinations etc).

Page 57: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

Dark energy appears to be the dominant component of the physical

Universe, yet there is no persuasive theoretical explanation. The

acceleration of the Universe is, along with dark matter, the observed

phenomenon which most directly demonstrates that our

fundamental theories of particles and gravity are either incorrect or

incomplete. Most experts believe that nothing short of a revolution

in our understanding of fundamental physics will be required to

achieve a full understanding of the cosmic acceleration. For these

reasons, the nature of dark energy ranks among the very most

compelling of all outstanding problems in physical science. These

circumstances demand an ambitious observational program to

determine the dark energy properties as well as possible.

From the Dark Energy Task Force report (2006)www.nsf.gov/mps/ast/detf.jsp

& to appear on the arXiv.

Page 58: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

END

Page 59: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

Extra material

Page 60: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

0 100 200 300 400 500 600

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

sigMax = 4 sigMin = 0 OneModel = 0 OneVersionP1 = 0 OneRun = 0 EigenSR14 AllSolsV22

mode 1

mode 2

Markers label different scalar field models

Coordinates are first three

in

Page 61: Dark Energy Theory Andreas Albrecht (UC Davis) PASCOS OSU Sep 10 2006

0 100 200 300 400 500 600

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

sigMax = 4 sigMin = 0 OneModel = 0 OneVersionP1 = 0 OneRun = 0 EigenSR14 AllSolsV22

mode 1

mode 2

Markers label different scalar field models

Coordinates are first three

in

Implication: New experiments will have very significant discriminating power among actual scalar field models. (See Augusta Abrahamse, Michael Barnard, Brandon Bozek & AA, to appear soon)


Recommended